EHzürich

Fundamentals and applications of X-ray diffraction. Applications in catalysts characterization.

Przemyslaw Rzepka

Outline

- 1. Crystal lattice. Symmetry
- 2. X-ray diffraction
- 3. Braggs' peaks positions. Indexing
- 4. Relative intensities of Braggs' Peaks. Structure factor. Structure refinement
- 5. Sample preparation
- 6. Examples

What is crystal?

A material has a crystal structure if its constituents (such as atoms, molecules, or ions) are arranged in a 3D translationally periodic order forming a crystal lattice.

Crystal = Lattice * Motif

What is crystal?

A material has a crystal structure if its constituents (such as atoms, molecules, or ions) are arranged in a 3D translationally periodic order forming a crystal lattice

Crystal = Lattice * Motif

A material is a crystal if displays a sharp diffraction pattern with most of intensity concentrated in relatively sharp Bragg peaks.

Unit cell. Translational symmetry

Unit cell: smallest unit that repeats in the lattice (translation)

- minimum number of lattice points
- origin on one lattice point
- angles as close to 90° as possible

Unit cell centering

Unit cell: smallest unit that repeats in the lattice (translation)

- Primitive unit cell: lattice point only at corners
- Non-primitive unit cell: lattice points also at other positions

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Crystal systems

Crystal systems and Bravais lattices

Miller indices (hkl)

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Reciprocal space

Miller indices (hkl) and d-spacing

Cubic:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Tetragonal:

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

Hexagonal:

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Rhombohedral:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2\alpha + 2(hk + kl + hl)(\cos^2\alpha - \cos\alpha)}{a^2(1 - 3\cos^2\alpha + 2\cos^3\alpha)}$$

Orthorhombic:

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Monoclinic:

$$\frac{1}{d^2} = \frac{1}{\sin^2\beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2\beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl\cos\beta}{ac} \right)$$

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Systematic absences

TABLE 4.1.8.	Determination of L	attice Type from	General Reflections, hkl
			Contraction and the contract of the second of the second s

	Condition for possible reflection ⁽¹⁾	Lattice type	Symbol	
	h+k=2n	Centred on the C-face (001)	C	
•	k+l=2n	Centred on the A-face (100)	A	
	l+h=2n	Centred on the B-face (010)	В	
	h, k, l all odd or all even	Centred on all faces	F	
	h+k+l=2n	Body centred	Ι	
	$\begin{cases} -h+k+l=3n^{(2)} \\ +h-k+l=3n^{(2)} \end{cases}$	Obverse position rhombohedral Reverse position lattice ⁽³⁾	R	
	h-k=3n	Hexagonal. Triple unit cell as in Fig. 2.5.2(a)	H ⁽⁴⁾	
	No restriction	Primitive	P ⁽⁵⁾	

(1) The symbol *n* stands here for any integer.

(2) These conditions refer to indexing on hexagonal axes which are always used both for hexagonal crystals and, in the first instance, for trigonal crystals, although some of the latter may turn out to be more simply described on rhombohedral axes. (3) For definition of "obverse" and "reverse" see section 2.5, Fig. 2.5.3.

(4) The symbol H is dropped in the present volume for systematic description (see, however, section 2.5).

(5) The symbol P is applied in the present work also to the primitive hexagonal lattice which was designated by the symbol C in the former International Tables (1935). See Note 7, Table 2.2.1.

Rotary-Inversion Symmetry

Symmetry operation	Symmetry elements
Identity	
Rotation by 360°/n	n-fold axis
Reflection	mirror plane
Inversion	point

Translation (Bravais lattice)

V

screw axis glide plane

Rotary-Inversion Symmetry

Symmetry operation	Symmetry elements
Identity	
Rotation by 360°/n	n-fold axis
Reflection	mirror plane
Inversion	point

230 space groups e.g. *Pm3m**

*http://img.chem.ucl.ac.uk/sgp/misc/notation.htm

Space groups

Triclinic: e.g. P-1

1. An inversion centre (presence or absence)

Monoclinic: e.g. P2, Pm, P2/m

1. A symmetry with respect to the unique axis direction (b or c)

Orthorhombic: e.g. P222, Pmm2 (or Pm2m or P2mm), Pmmm

- 1. A symmetry with respect to the a axis
- 2. A symmetry with respect to the b axis
- 3. A symmetry with respect to the c axis

Tetragonal: e.g. *P*4, *P*-4, *P*4/*m*, *P*422, *P*4*mm*, *P*-42*m* (or *P*-4*m*2), *P*4/*mmm*

- 1. The 4-fold symmetry parallel to the c axis
- 2. The symmetry with respect to both the *x* and *y* axes
- 3. The symmetry with respect to the face diagonals (1 1 0)

Space groups

Trigonal & Rhombohedral: e.g. *P*3, *P*-3, *P*321, *P*312, *P*3*m*1, *P*31*m*, *P*-3*m*1, *P*-31*m*

- 1. The 3-fold symmetry parallel to the c axis
- 2. The symmetry with respect to the a and b axes
- 3. The additional symmetry elements

Hexagonal: e.g. P6, P-6, P6/m, P622, P6mm, P-62m (or P-6m2), P6/mmm

- 1. The 6-fold symmetry parallel to the c axis
- 2. The symmetry with respect to the *a* and *b* axes
- 3. The additional symmetry elements

Cubic: e.g. P23, Pm-3, P432, P-43m, Pm3m

- 1. The symmetry with respect to the a, b, and c axes
- 2. The 3-fold symmetry of the body diagonals (1 1 1)
- 3. The symmetry with respect to the face diagonals (1 1 0)

Tables for X-ray Crystallography

Tetragonal

Patterson symmetry P4/mmm

 $P4_{3}2_{1}2$

No. 96

 D_4^8

 $P4_{3}2_{1}2$

422

Origin on 2 [110] at 2, 1 (1,2)

Asymmetric unit $0 \le x \le 1; \quad 0 \le y \le 1; \quad 0 \le z \le \frac{1}{8}$

Symmetry operations

l) 1	(2) $2(0,0,\frac{1}{2}) 0,0,z$	(3) $4^{+}(0,0,\frac{3}{4}) = 0,\frac{1}{2},z$	(4) 4 $(0,0,\frac{1}{4})$ $\frac{1}{2},0,z$
5) $2(0, \frac{1}{2}, 0) = \frac{1}{4}, y, \frac{3}{8}$	(6) $2(\frac{1}{2},0,0) x,\frac{1}{4},\frac{1}{8}$	(7) 2 $x, x, 0$	(8) 2 $x, \bar{x}, \frac{1}{4}$

CONTINUED		No. 96	$P4_{3}2_{1}2$
Generators selected (1); $t(1,0)$,	0); $t(0,1,0)$; $t(0,0,1)$; (2); (3); (5)		
Positions Multiplicity, Wyckoff letter,	Coordinates		Reflection conditions
Site symmetry			General:
8 b 1 (1) x, y, z (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z} + \frac{3}{4}$	(2) $\vec{x}, \vec{y}, z + \frac{1}{2}$ (3) $\vec{y} + \frac{1}{2}, x + \frac{1}{2}, $ (6) $x + \frac{1}{2}, \vec{y} + \frac{1}{2}, \vec{z} + \frac{1}{4}$ (7) y, x, \vec{z}	$z + \frac{3}{4} (4) \ y + \frac{1}{2}, \overline{x} + \frac{1}{2}, z + \frac{1}{4} (8) \ \overline{y}, \overline{x}, \overline{z} + \frac{1}{2}$	$\begin{array}{l} 00l: \ l=4n\\ h00: \ h=2n \end{array}$
			Special: as above, plus
$4 a \dots 2 \qquad x, x, 0 \qquad \bar{x}, \bar{x},$	$\frac{1}{2}$ $\bar{x} + \frac{1}{2}, x + \frac{1}{2}, \frac{3}{4}$ $x + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{x} + \frac{1}{2}$	<u>1</u> 1 1 1 1 1 1 1 1 1 1 	0kl : l = 2n + 1 or $2k + l = 4n$
Symmetry of special projection	5		
Along [001] p4gm	Along [100] p2gg	Along [110] p2g	; m
$\mathbf{a}' = \mathbf{a} \qquad \mathbf{b}' = \mathbf{b}$	$\mathbf{a}' = \mathbf{b}$ $\mathbf{b}' = \mathbf{c}$	$\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$	$\mathbf{b}' = \mathbf{c}$
Origin at 0, 5,2	Origin at x, z, z	Ongin at x, x, 0	

Maximal non-isomorphic subgroups

I	[2] P4, 11 (P4, 78)	1; 2; 3; 4
	[2] P2, 12 (C222, 20)	1; 2; 7; 8
	[2] P2 2 1 (P2 2 2, 19)	1; 2; 5; 6
Ha	none	

IIb none

Origin at $0, \frac{1}{2}, z$

Maximal isomorphic subgroups of lowest index

IIc $[3] P4_{2}2(\mathbf{c}' = 3\mathbf{c})(92); [5] P4_{2}2(\mathbf{c}' = 5\mathbf{c})(96); [9] P4_{2}2(\mathbf{a}' = 3\mathbf{a}, \mathbf{b}' = 3\mathbf{b})(96)$

Minimal non-isomorphic supergroups

I [3] P4, 32 (212)

п [2] $C4_322(P4_322, 95)$; [2] $I4_122(98)$; [2] $P4_22_12(\mathbf{c}' = \frac{1}{2}\mathbf{c})(94)$

Brief history of XRD

- 1895- Wilhelm Röntgen publishes the discovery of Xrays
- 1912- Maxwell von Laue observes diffraction of X-rays from a crystal
- 1913- Lawrence Bragg and William Henry Bragg solve the first crystal structure from X-ray diffraction data

Elastic scattering

(a) x-rays

(c) Photoelectric effect

Bragg's Law

Elastic scattering phenomenon that occurs when a plane wave interacts with an obstacle or a slit whose size is approximately that of the wavelength

Bragg's Law $n\lambda = 2dsin\theta$

X-ray light source

Particle accelerator (synchrotron source): Electrons accelerated at velocity close to the speed of light emit electromagnetic radiation in the region of X-rays.

- Tunable wavelength

- High brilliance (many photons of a given wavelength and direction)

- X-rays: very high resolution

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland In-house diffraction: Energy released when an electron from an outer shell "fills the gap" left by an inner shell electron that has been ionized. K α Cu (1.5418 Å) is the most common

Comparison of different radiations

	X-ray (powder)	Electrons	Neutrons (powder)
Data collection	easy	Less easy	difficult
Crystallite size	μm	nm	μm
Lattice parameters	precise	approximate	precise
Intensities	kinematical	dynamical	kinematical
Overlap	yes	no	yes
Image	no	yes	no
Magnetic moment	no	yes	yes
Scattering power against Z	smooth	smooth	irregular

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Diffraction geometry

The Bragg-Brentano (reflection) geometry needs the simultaneous, equiaxial move of the anode and the detector (2θ) to provide the constant irradiated volume from a sample

The Debye-Scherrer (transmission) geometry

Structure factor

$$F_{hkl} = \sum_{j} f_j \cdot e^{i2\pi(hx_j + ky_j + lz_j)} = |F_{hkl}| \cdot e^{i\phi_{hkl}}$$

Structure factor phases are lost in diffraction data

From the Structure Factor to Measured Intensities

$$I_{obs}(hkl) = cjPLA |F_{obs}(hkl)|^2$$

- multiplicity, j
- the polarization factor, P
- the Lorentz factor, L
- X-ray absorption, A
- temperature

Structure factor

$$F_{hkl} = \sum_{j} f_{j} \cdot e^{i2\pi(hx_{j} + ky_{j} + lz_{j})} = |F_{hkl}| \cdot e^{i\phi_{hkl}}$$

Structure factor phases are lost in diffraction data

"Impossible" X-ray microscope

Structure factor

$$F_{hkl} = \sum_{j} f_{j} \cdot e^{i2\pi(hx_{j} + ky_{j} + lz_{j})} = |F_{hkl}| \cdot e^{i\phi_{hkl}}$$

Structure factor phases are lost in diffraction data

X-ray Atomic Form Factor

Atomic form factor represents the scattering power of specific element regardless its positioning or symmetry. It depends only on number of electrons, radiation energy and Debye-Waller factor (2Θ)

Silicon and aluminum demonstrate similar atomic number (Z=14 and 13) and are difficult to be distinguished

X-ray Single-crystal Diffraction

10⁶ µm³

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland **EH**zürich

X-ray Powder Diffraction

1 µm³

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

X-ray Powder Diffraction

X-ray Powder Diffraction

X-rays

X-ray Powder Diffraction

X-ray Powder Diffraction

X-ray Powder Diffraction

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

X-ray Powder Diffraction

X-ray Powder Diffraction

X-ray Powder Diffraction

X-ray Powder Diffraction

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

X-ray Powder Diffraction

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

X-ray Powder Diffraction

EHzürich

X-ray Powder Diffraction

Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villiger, State

X-ray Powder Diffraction

Indexing an XPD Pattern

The determination of the background

- Assume flat background
- Measure an empty sample holder

20

2 theta

25

- Estimate points and interpolate between them
- Fit a function

15

10

5

n

30

35

Indexing an XPD Pattern

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Indexing an XPD Pattern

Relationship between 20 and *d*-spacing

Bragg's Law

$$\lambda = 2d_{hkl} \sin \theta_{hkl}$$

$$d_{hkl} = \lambda/2\sin\theta_{hkl}$$

Relationship between *d*-spacing and lattice parameters

$$d_{hkl}^{2} = \frac{a^{2}}{h^{2} + k^{2} + l^{2}}$$

~

Indexing an XPD Pattern

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland **EH**zürich

Indexing an XPD Pattern (2^2)

$$d_{hkl}^{2} = \frac{\lambda^{2}}{4\sin^{2}\theta_{hkl}} = \frac{a^{2}}{h^{2} + k^{2} + l^{2}} \implies \sin^{2}\theta_{hkl} = \left(\frac{\lambda^{2}}{4a^{2}}\right) \left(\frac{h^{2} + k^{2} + l^{2}}{4a^{2}}\right)$$

	Ir	ndexing	an XF	D Patte	rn
$d_{hkl}^2 = -2$	$\frac{\lambda^2}{4\sin^2\theta_{hkl}} =$	$=\frac{a^2}{h^2+k^2+l^2}$	-	$\sin^2 \theta_{hkl} = \left(\frac{1}{2}\right)$	$\frac{\lambda^2}{4a^2}\left(\frac{h^2+k^2+l^2}{k^2+l^2}\right)$
2θ (°)					
16.00					
18.50					
24.55					
26.28					
29.44					
30.91					
32.33					
33.68					
37.50					
41.01					
42.12					
43.22					
45.34					

	lr	ndexing	an XP	D Pattern		
$d_{hkl}^2 = -2$	$\frac{\lambda^2}{4\sin^2 heta_{hkl}}$:	$=\frac{a^2}{h^2+k^2+l^2}$		$\sin^2 \theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$		
2θ (°)	sin ² 0					
16.00	0.01937					
18.50	0.02583					
24.55	0.04520		$\sin^2 \theta_2$	$\left(\frac{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}{2}\right)$		
26.28	0.05166		$\sin^2 \theta_1$	$=\frac{(1-1)^{2}}{(h_{1}^{2}+k_{1}^{2}+l_{1}^{2})}$		
29.44	0.06457		I			
30.91	0.07103					
32.33	0.07749					
33.68	0.08395					
37.50	0.10332					
41.01	0.12269					
42.12	0.12915					
43.22	0.13561					

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

0.14852

45.34

Indexing	an	XPD	Pattern
2 ²			(22)

$d_{hkl}^2 =$	$\frac{\lambda^2}{4\sin^2\theta_{hkl}}$	$=\frac{i}{h^2+l}$
2θ (°)	sin ² 0	ratio
16.00	0.01937	1.00
18.50	0.02583	1.33
24.55	0.04520	2.33
26.28	0.05166	2.67
29.44	0.06457	3.33
30.91	0.07103	3.66
32.33	0.07749	4.00
33.68	0.08395	4.33
37.50	0.10332	5.33
41.01	0.12269	6.33
42.12	0.12915	6.67
43.22	0.13561	7.00
45.34	0.14852	7.66

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland **E** *H zürich*

Indexing an XPD Pattern $d_{hkl}^{2} = \frac{\lambda^{2}}{4\sin^{2}\theta_{hkl}} = \frac{a^{2}}{h^{2} + k^{2} + l^{2}}$

$$sin^2 \theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{k^2}\right)$$

2θ (°)	sin ² 0	ratio	integers
16.00	0.01937	1.00	3
18.50	0.02583	1.33	4
24.55	0.04520	2.33	7
26.28	0.05166	2.67	8
29.44	0.06457	3.33	10
30.91	0.07103	3.66	11
32.33	0.07749	4.00	12
33.68	0.08395	4.33	13
37.50	0.10332	5.33	16
41.01	0.12269	6.33	19
42.12	0.12915	6.67	20
43.22	0.13561	7.00	21
45.34	0.14852	7.66	23

EHzürich

Indexing an XPD Pattern

$d_{hkl}^2 = -$	λ^2 $4\sin^2 heta_{hkl}$	$=\frac{b^2}{h^2+b^2}$	$\frac{a^2}{k^2 + l^2}$	\rightarrow $\sin^2 \theta_{hk}$	$_{\alpha} = \left(\frac{\lambda^2}{4a^2}\right)$
2θ (°)	sin ² 0	ratio	integers	$h^2 + k^2 + l^2$	hkl
16.00	0.01937	1.00	3	6	211
18.50	0.02583	1.33	4	8	220
24.55	0.04520	2.33	7	14	321
26.28	0.05166	2.67	8	16	400
29.44	0.06457	3.33	10	20	420
30.91	0.07103	3.66	11	22	332
32.33	0.07749	4.00	12	24	422
33.68	0.08395	4.33	13	26	431
37.50	0.10332	5.33	16	32	440
41.01	0.12269	6.33	19	38	532, 611
42.12	0.12915	6.67	20	40	620
43.22	0.13561	7.00	21	42	541
45.34	0.14852	7.66	23	46	631

EHzürich

Indexing an XPD Pattern

$d_{hkl}^2 = -$	$\frac{\lambda^2}{4\sin^2\theta_{hkl}}$	$=\frac{h^2}{h^2+h^2}$	$\frac{a^2}{k^2 + l^2}$	\rightarrow sin ² θ_{hk}	$d = \left(\frac{\lambda^2}{4a^2}\right)$	$\left(\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2\right)$
2θ (°)	sin ² 0	ratio	integers	$h^2 + k^2 + l^2$	hkl	<i>a</i> (Å)
16.00	0.01937	1.00	3	6	211	13.5567
18.50	0.02583	1.33	4	8	220	13.5564
24.55	0.04520	2.33	7	14	321	13.5567
26.28	0.05166	2.67	8	16	400	13.5563
29.44	0.06457	3.33	10	20	420	13.5566
30.91	0.07103	3.66	11	22	332	13.5566
32.33	0.07749	4.00	12	24	422	13.5563
33.68	0.08395	4.33	13	26	431	13.5565
37.50	0.10332	5.33	16	32	440	13.5565
41.01	0.12269	6.33	19	38	532, 611	13.5564
42.12	0.12915	6.67	20	40	620	13.5565
43.22	0.13561	7.00	21	42	541	13.5565
45.34	0.14852	7.66	23	46	631	13.5565

	In	dexing an XPD Pattern
d ² _{hkl} =	$\frac{\lambda^2}{4\sin^2\theta_{hkl}} =$	$= \frac{a^2}{h^2 + k^2 + l^2} \qquad \Longrightarrow \qquad \sin^2 \theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$
2θ (°)	hkl	
16.00	211	Lattice parameter
18.50	220	<i>a</i> = 13.5565 Å
24.55	321	
26.28	400	Centered?
29.44	420	P: no conditions on nki I: $h + k + l = 2n$
30.91	332	F: h + k = 2n
32.33	422	$h + l = 2n \begin{cases} nkl all \\ even or all \end{cases}$
33.68	431	$k + l = 2n \int \frac{dvert dt an}{dd}$
37.50	440	
41.01	532, 611	
42.12	620	
43.22	541	

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

631

45.34

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

631

45.34

Indexing an XPD Pattern

$$d_{hkl}^{2} = \frac{\lambda^{2}}{4\sin^{2}\theta_{hkl}} = \frac{a^{2}}{h^{2} + k^{2} + l^{2}} \implies \sin^{2}\theta_{hkl} = \left(\frac{\lambda^{2}}{4a^{2}}\right)\left(h^{2} + k^{2} + l^{2}\right)$$

2θ (°)	
38.46	
55.54	
69.58	
82.46	
94.94	
107.64	
121.36	

Exercise 1 (send answers to przepka@ethz.ch):

- 1. Index listed peaks if you know the structure is cubic
- 2. What is lattice parameter a if $\lambda = 1.54$ Å?
- 3. What is centering?

Reflection position

Reflection position

Parameters affecting reflection positions

- unit cell parameters
- zero point of the detector
- sample displacement (capillary)

Crystalline size

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation $D = \frac{K\lambda}{FWHM \cos\theta}$

D – crystalline size, K=0.9 - shape factor, λ – wavelength, FWHM – the line broadening at half the maximum intensity, θ – Bragg angle

The Laue Equations describe the intensity of a diffracted peak from an **infinitely large (> 1um)** and **perfectly ordered** crystal. Deviations from the ideal (nano-sizing) create peak broadening.

Crystalline size

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation $D = \frac{K\lambda}{FWHM \cos\theta}$

D – crystalline size, K=0.9 - shape factor, λ – wavelength, FWHM – the line broadening at half the maximum intensity, θ – Bragg angle

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Crystalline size

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation $D = \frac{K\lambda}{FWHM \cos\theta}$

Microstrain analysis

Anisotropic Size Broadening

The broadening of a single diffraction peak is the product of the crystallite dimensions in the direction perpendicular to the planes that produced the diffraction peak.

The Rietveld analysis

The Rietveld method refines user-selected parameters to minimize the difference between an experimental pattern (observed data) and a model based on the hypothesized crystal structure and instrumental parameters (calculated pattern).

The Rietveld analysis

The Rietveld method refines user-selected parameters to minimize the difference between an experimental pattern (observed data) and a model based on the hypothesized crystal structure and instrumental parameters (calculated pattern).

From intensities to structural parameters

$$\Delta = \sum_{n=1}^{N} \{ I_n(\text{obs}) - I_n(\text{calc}) \} 2$$

 $I(\text{calc}) = c j_{\text{hkl}} L(2\theta) P(2\theta) A(2\theta) F^2(hkl)$

where L, P, A are the Lorentz, polarization, and absorption corrections, respectively. j is the multiplicity factor (symmetry), c is a scale factor and F is a structure factor.

$$F_{hkl} = \sum_{j} f_{j} \exp[2\pi i(hx_{j} + hy_{j} + hz_{j})]$$

where f_i is atomic form factor.

bkg @ 0 0 0 0

R-Factors

$$R_{wp} = \{\sum_{i} w_{i} \{y_{i}(obs) - y_{i}(calc)\}^{2} / \{\sum_{i} w_{i}y_{i}(obs)^{2}\}^{1/2}$$
$$w_{i}^{2} = 1/\sigma(y_{i}(obs))^{2}$$

$$R_{exp} = \{(M - P) / \{\sum_{i} w_{i} y_{i} (obs)^{2}\}^{1/2}$$

$$\chi^2 = (R_{wp}/R_{exp})^2$$
 (goodness-of-fit)

where w_i is weighting related to uncertainty σ . M – the number of data points, P – the number of parameters

Pawley and LeBail profile fitting

Parameters:

I(*hkl*) - Intensity of each reflection with indices *hkl* (only Pawley);

- $a,b,c,\alpha,\beta,\gamma$ Unit-cell metric tensor parameters;
- $2\theta_{zero}$ Instrumental zero error;
- *U*, *V*, *W* Peak-width parameters;
- η, etc. Other peak-shape parameters

Pseudo-Voight peak shape function:

$$I(2\theta) = I_{hkl} \left[\eta \mathbf{L} \left(2\theta - 2\theta_0 \right) + (1 - \eta) \mathbf{G} \left(2\theta - 2\theta_0 \right) \right]$$

where L ($2\theta - 2\theta 0$) and G ($2\theta - 2\theta 0$) represent Lorentz and Gaussian functions, and η - the "Lorentz fraction"

Pawley and LeBail profile fitting

Parameters:

I(*hkl*) - Intensity of each reflection with indices *hkl* (only Pawley);

- $a,b,c,\alpha,\beta,\gamma$ Unit-cell metric tensor parameters;
- $2\theta_{zero}$ Instrumental zero error;
- *U*, *V*, *W* Peak-width parameters;
- η, etc. Other peak-shape parameters.

Pseudo-Voight peak shape function:

$$I(2\theta) = I_{hkl} \left[\eta \mathbf{L} \left(2\theta - 2\theta_0 \right) + (1 - \eta) \mathbf{G} \left(2\theta - 2\theta_0 \right) \right]$$

where L (2θ – $2\theta0$) and G (2θ – $2\theta0$) represent Lorentz and Gaussian functions, and η - the "Lorentz fraction"

Pawley and LeBail profile fitting

Parameters:

I(*hkl*) - Intensity of each reflection with indices *hkl* (only Pawley);

- $a,b,c,\alpha,\beta,\gamma$ Unit-cell metric tensor parameters;
- $2\theta_{zero}$ Instrumental zero error;
- *U*, *V*, *W* Peak-width parameters;
- η, etc. Other peak-shape parameters.

$$I(2\theta) = I_{hkl} \left[\eta \mathbf{L} \left(2\theta - 2\theta_0 \right) + (1 - \eta) \mathbf{G} \left(2\theta - 2\theta_0 \right) \right]$$

where L (2θ – $2\theta0$) and G (2θ – $2\theta0$) represent Lorentz and Gaussian functions, and η - the "Lorentz fraction"

Rietveld profile fitting

The detailed diffraction profile contained a lot more information than the extracted intensities of composite peaks.

The detailed profile can be fitted on a point by point basis as the summation of the contribution of the profiles of all reflections to that point:

 $y_i(3) = yi(1) + yi(2)$

Instrumental function

Refinement in TOPAS

xdd {

}

! Lam profile (wavelength)

@ SD()

- @ PV_Peak_Type()
- @ Simple_Axial_Model()
- @ @ Scale
Structure parameters

str {

@ Unit cell parameters

					Site	
					Ocupp.	Therm.
		Fractional atomic coordinates			Factor	Factor
site Si(1) num_p	osns 16	x 0.32281	y 0.19961	z 0.20804	occ Si 1.	0 beq 1
site Si(2) num_p	osns 8	x 0.08670	y 0.20129	z 0.00000	occ Si 1.	0 beq 1
site Si(3) num_p	osns 8	x 0.27374	y 0.00000	z 0.29371	occ Si 1.	0 beq 1
site Si(4) num_p	osns 4	x 0.15538	y 0.00000	z 0.00000	occ Si 1.	0 beq 1
site O(8) num_p	oosns 4	x 0.25169	у 0.00000	z 0.50000	occ O 1	.0 beq 1
site O(7) num_p	oosns 8	x 0.20342	у 0.00000	z 0.18745	occ O 1	.0 beq 2
site O(5) num_p	oosns 8	x 0.10707	y 0.09088	z 0.00000	occ O 1	.0 beq 2
site O(3) num_p	oosns 8	x 0.34246	y 0.21404	z 0.00000	occ O 1	.0 beq 2
site O(6) num_p	oosns 4	x 0.00000	y 0.20890	z 0.00000	occ O 1	.0 beq 2
site O(4) num_p	oosns 8	x 0.25000	y 0.25000	z 0.25000	occ O 1	.0 beq 2
site O(2) num_p	oosns 16	x 0.38070	y 0.24571	z 0.32000	occ O 1	.0 beq 2
site O(1) num_p	oosns 16	x 0.31646	y 0.09052	z 0.24720	occ O 1	.0 beq 2
}						

The Rietveld analysis

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Phase identification

HighScore matches the peaks from collected data with database records

Sample preparation. What happens when wrong?

- 1. Not all crystal lattice planes present (graininess)
- 2. Relative intensities distribution different from expected (preferred orientation)

Random orientation of crystallites (e.g. isotropic powder)

[uvw] Preferred orientation of crystallites (typical for plate-like crystallites)

Sample preparation

Preferred orientation may be corrected by spherical harmonics function. It compromises however the structure refinement or quantitative phase identification

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

С

a 2

5 4 3

2 b

3 4 5

Sample preparation for reflection XRD

Sample preparation for reflection XRD

 $I/I_{0} = e^{-(\mu_{tot}/\rho)x} < 1\% \text{ if } x > 0.5mm$

 $I_0(ph/s)$ – incident photon flux for Cu anode; μ_{tot} – total absorption coefficient for a zeolite; ρ – density of a zeolite;

Sample preparation for reflection XRD

Sample preparation for transmission XRD

Stoe STADIP diffractometer working in Transmission-/Debye-Scherrergeometry available for ex situ capillaries measurements

Si:Al distribution in zeolite framework

Protons and other light elements are poor scatterers and cannot be detected directly by X-ray diffraction methods

Brønsted acid sites or hydroxyl groups are balanced by framework charge associated to aluminum. Hence determination of Al positions allows on situating extraframework entities

Difference density maps

fourier_map_formula=Fobs-Fcalc(model);

To investigate the positioning of the cations in Cu-OFF zeolite, the structure model containing only the framework atoms was subtracted from observed PXRD data.

The refinement of extraframework cations

The structure of Cu-OFF with input positions of the extra-framework cations adopted from DDM was refined using Rietveld analysis.

Structure Determination by Simulated Annealing

rigid load z_matrix { O1H2 1 0.9687 H3 1 0.9687 2 104 translate tx @ 0 ty @ 0 tz @ 0 rotate qa @ 0 qb @ 0 qc @ 0

The simulated annealing algorithm algorithm approximates the global optimum of a given parameter in an environment of a large number of local optima.

Symmetry lowering with T-atoms alternations

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

X-ray Anomalous Form Factor

Silicon and aluminum have similar atomic number (Z=14 and 13) and are difficult to be distinguished. However they display different absorption edges (1.84keV and 1.56keV).

Upon the vicinity of on-resonance X-ray absorption the scattering factor undergoes a change due to anomalous dispersion.

Refinement of anomalous data collected from LTA[■]

site T(1) x 0.0 y 0.09344 z 0.18538 occ Si =ppSi beq 1 occ AI =1-ppSi beq 1

site T(2) x 0.0 y 0.18638 z 0.09067 occ Si =1-ppAI beq 1 occ AI =ppAI beq 1

Prm @ Si 1 Prm @ AI 1

The Si:Al distribution in zeolite LTA is known as equals 1:1 and has to undergo Löwenstein's rule.

Refinement of anomalous data collected from LTA

Anomalous X-ray diffraction data collected from zeolite LTA (Si:Al=1:1) displays the relative intensities of Braggs' reflections alternated across the aluminum absorption edge data as a function of X-ray radiation energy. Relative intensities are alternated across the K-edge

Refinement of FER-PYRR

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Structure of zeolite LTA

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

_ 5 __

Anomalous diffraction across copper K-edge

The aim of this project is to exploit anomalous scattering at the Cu K-edge to elucidate the structure of the copper species present during the partial oxidation of methane to methanol (MtM)

Copper offretite underwent isothermal and high-temperature procedures for methane-to-methanol conversion

Cu-offretite preforms better at lower temperature

Anomalous diffraction across copper K-edge

Offretite is hexagonal structure with 12-ring channels along z-axis. It is composed of gmelinite and cancrinite cages

Each sample was measured at offresonance (17.5 keV) and onresonance conditions (8.97 keV and 8.98 keV)

High resolution diffraction of offretite

OFF structure reveals the electron densities near 8-ring window of gmelinite cage upon MtM protocol. Similar observation was done on Cu-Omega

Anomalous diffraction is needed for ambiguous assignment of these densities to copper, oxygen or carbon

The chemical nature of physisorbed CO₂

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Przemyslaw Rzepka

05.10.2021

E *H* zürich

Site-specific physisorption of CO₂

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland 600

|Na_{11.2}K_{0.8}|-A

CO₂ (tot.)

CO₂(site I)

CO₂(site II)

CO₂(site III)

1000

800

|Na_oK₃|-A

CO₂ (vol. ads.)

 CO_2 (tot.)

CO₂(site I)

CO₂(site II)

CO₂(site III)

1000

800

600

CO₂ (vol. ads.)

Adsorption of deuterated olefins

with C_6H_{12} and D_6H_{12} . The density peaks (right) correspond to C_6H_{12} positions.

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

- 11 —

Peak positions analysis

Formation of the strong metal support interaction (SMSI). Pt-Ti alloying.

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Przemyslaw Rzepka 05.10.2021

Phase analysis

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Phase analysis

Proportions between anatase and rutile in P25 catalyst

Spinel structure of γ-Al₂O₃ (110)

(A^{II})^{tet} ₈(B^{III})₁₆^{oct}O₃₂

Al cations are distributed over the octahedral (*16d*) and tetrahedral (*8a*) site

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen, Switzerland {100} set of planes is specific
for octahedral aluminum

E *zürich*

1. <u>http://pd.chem.ucl.ac.uk/pd/welcome.htm</u>

- 2. http://prism.mit.edu/xray/education/downloads.html
- 3. <u>http://www.crystal.mat.ethz.ch/people/staff/mlynne/</u>

Thank you for your attention!