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Electron paramagnetic resonance spectroscopy in catalysis

What we shall learn

Instead of a lecture script

· applicability of NMR, EPR, and paramagnetic NMR spectroscopy

· how EPR spectroscopy differs from NMR spectroscopy

· information accessible from EPR spectra 

· scope and limitations of operando EPR

· scope and limitations of hyperfine spectroscopy

· EPR + DFT approach to spatial and electronic structure of active sites

· use of isotope labelling in detecting reactions

Molecular Aspects of Catalysts and Surfaces HS 2022

· EPR entry in Ullmann’s Encyclopedia of Industrial Chemistry, DOI:  10.1002/14356007.q09_q01 

https://onlinelibrary.wiley.com/doi/10.1002/14356007.q09_q01
https://onlinelibrary.wiley.com/doi/10.1002/14356007.q09_q01


NMR or EPR?
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· closed-shell molecules have only paired electrons

· open-shell molecules have at least one unpaired electron

· they are diamagnetic

· they are paramagnetic

· EPR spectroscopy is not applicable and conventional NMR spectroscopy works

· EPR spectroscopy is applicable unless the electron spin relaxes very fast

· paramagnetic NMR spectroscopy is applicable if  the electron spin relaxes very fast

· typically, open-shell systems are more reactive

Closed-shell systems

Open-shell systems
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(high spin, Hund’s rule)
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Homolytic bond scission Orbital degeneracy

Metal ions with odd number of electrons

Electron transfer

Coupled electron-proton transfer

How do unpaired electrons originate?
(although chemical bonding involves electron pairing)
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Where are the unpaired electrons?

e0

e-1

e-2

e1

HOMO

LUMO

SOMO

The singly occupied molecular orbital (SOMO)

· as a quantum object, an unpaired electron can be at several locations at once

· all these locations can be reactive “hot spots”

Ti(III) polymerization catalyst
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How can unpaired electrons be observed?

Electron spin - electron angular momentum contribution of pure quantum mechanical origin

Classical physics: A homogeneous sphere with charge q and angular momentum J features magnetic dipole moment m

Quantum physics: A correction factor g » 2 arises

m =         J
q

2m
® ®

m = -g         hS
e

2m
Stern-Gerlach experiment 1922

· the unpaired electron behaves as a tiny bar magnet
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Electron paramagnetic resonance

hn = gm B B 0

En
er

gy

Magnetic field B0

m  = -1/2, |bñ, ¯S

m  = +1/2, |añ, S

Electron spin S = 1/2 in a magnetic field features two eigenstates of different energy

· frequency n is in the microwave range (3-300 GHz)

· this corresponds to wave lengths between 10 cm and 1 mm

· by variation of the magnetic field at constant frequency

    we can find the resonance condition

· the tiny bar magnet can be flipped by microwave irradiation (oscillatory electromagnetic field)
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Some are invisible
Kramers and non-Kramers ionse

e

e

e

Zero-field splitting can be very large

Non-Kramers ions

· one contribution from dipole-dipole coupling of magnetic moments of the unpaired electrons

· for an , in general symmetry all transition frequencies may exceedeven number of unpaired electrons
    the typically accessible microwave frequency range at zero field and at all accessible magnetic fields 

· one contribution from spin-orbit coupling

· signals can be visible for systems with (nearly) axial symmetry 

· sum may exceed typically accessible microwave frequency range at accessible magnetic fields

· convenient observation may require special microwave resonator geometry (”parallel mode EPR”)
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How does an EPR spectrometer look like?

9.5 GHz
1 kW

34 GHz
200 W

Electromagnet
0-1.5 T

· high power amplifiers
    for pulsed EPR

· very fast electronics (sub-
    nanosecond resolution) for
     generating excitation waveforms 

· superconducting magnet
   required at high frequencies
   (> 70 GHz)
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Continuous-wave EPR

· works at any electron spin relaxation time where the spectrum is resolved

· most sensitive technique for detecting EPR spectra of solids
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electron Zeeman fingerprinting of radical type or metal coordination

nuclear Zeeman identification of nuclei that give rise to hfi

nuclear quadrupole binding situation of the nucleus for I > 1/2 
(chemical shift is not available)

hyperfine distribution of the SOMO (reactivity)

distance of protons from the center of spin density

zero-field fingerprinting of triplet type or metal coordination
spin state for metal ions (low or high spin)

exchange orbital overlap (important for electron transfer)

dipole-dipole distances in the nanometer range (15 - 100 Å)

Þ structure

Name Information

e

e

n

n

n

n

n

nB0

Interactions and the information inferred from them
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Distinguishing high-spin from low-spin complexes

Weak ligand field

S = 5/2 (high spin Fe(III))

Strong ligand field

S = 1/2 (low spin Fe(III))

CW EPR before adding the substrate EDA

low-spin

Fe(III)

two high-spin Fe(III) species
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Fingerprinting and following oxidation state changes

Magnetic field (mT)

g values

4

5
6

S = 4

S = 1/2
S = 1/2

S = 3/2
&

Daniel Klose, Liam Grunwald, Serge Gambarelli, Victor Mougel



8-13Molecular Aspects of Catalysts and Surfaces HS 2022

Spatial and electronic structure: Measuring hyperfine interactions

Example: Cu(II) complex

Transition metal ion: 
EPR 

Directly coordinated nuclei: 

ED-NMR, ENDOR

(sometimes possible by EPR)

Remote nuclei:

 & ENDOR HYSCORE

EPR

ENDOR

ED-NMR

HYSCORE
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Large hyperfine interactions by CW EPR

31P ligand hyperfine couplings in a Ni(I) complex

290 300 310 320 330 340

Magnetic field [mT]

experiment

simulation

31
A( P)

31
A( P)

31· as P has spin I = 1/2 (as protons have),

    we expect a 1:2:1 hyperfine triplet

· in the solid state, complications arise
    from the combination of g and hyperfine
    anisotropy
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Understanding “powder” lineshapes - g anisotropy in axial symmetry

0B

q

circumference:

2p sinq r
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0

1
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P
(q

)

q 0 35 54.7 90°

2
gisoÖ 2+Dg /2

g^

g||

Equatorial orientations are more probable than polar (axial) orientations

Intensity is higher at equatorial orientations corresponding to g^

sin(q)

2 2g  = Ö g  + g   eff ^ ||

2 2sin q cos q 
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Understanding “powder” lineshapes - g anisotropy in CW EPR spectra

axial symmetry orthorhombic

hn /g mmw || B

hn /g mmw z B

hn /g mmw x B

hn /g mmw ^ B

hn /g mmw y B

300 320 340

B  (mT)0 B  (mT)0
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Example: Cu(II), S =1/2, I = 3/2, axially symmetric g- and hyperfine tensor

0.3 0.32 0.34 0.3 0.32 0.34

m  = |-3/2ñI

m  = |-1/2ñI
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A||
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Cu

L
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L
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Spectra of individual nuclear spin states Total spectrum

Absorption 
(echo detected)

CW-EPR
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Understanding “powder” lineshapes - g and hyperfine anisotropy 
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If ligand hyperfine couplings are too small: hyperfine spectroscopy
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No hyperfine resolution in CW EPR

Electron-nuclear double resonance
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· when applicable, HYSCORE provides 
    superior resolution and simplifies
    assignment
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Operando EPR

Measure under reaction conditions

· high sample temperature

· resonator at ambient temperature (water-cooled)

· controlled reaction gas mixture

· on-line product analysis (mass spectrometry)

Temperature / K

Angew. Chem. Int. Ed.

60, 3596-3602 (2021)
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Identification of active species from difference spectra

Anton Ashuiev, Daniel Klose, Christophe Copéret, Jeroen van Bokhoven

Methanol from methane on g-Al2O3

Angew. Chem. Int. Ed.

60, 16200-16207 (2021)

Molecular Aspects of Catalysts and Surfaces HS 2022



21

Jörg Fischer, Daniel Klose, Andreas Brenig, Vitaly Sushkevich, Jeroen van Bokhoven

Distinguishing multiple active species by g factor and hyperfine interaction

activated

after

reaction

EPR spectroscopyProcess IR spectroscopy

· UV-vis identifies an EPR-silent dimeric species S4

   in a sample with high (5.2 wt%) copper loading

Methanol from methane on Cu-exchanged mordenite
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Jörg Fischer, Daniel Klose, Andreas Brenig, Vitaly Sushkevich, Jeroen van Bokhoven

Combining techniques in a kinetic study

Operando EPR spectra Operando EPR kinetics Methane pressure kinetics Arrhenius plots

· kinetics data is consistent between samples and techniques (EPR and UV-vis)

Methanol from methane on Cu-exchanged mordenite
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From molecular to surface species
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Anton Ashuiev, Nino Wili, Daniel Klose, Florian Allouche, Christophe Copéret

Surface organometallic chemistry

Surface species 1@Al O2 3-700

Molecular species 1

300 340 360 380320 400 300 340 360 380320 400

B  [mT]0B  [mT]0

Chem. Sci.

12, 780-792 (2021)
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· proof that nacnac

   ligand remains

   attached
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Structural models by EPR + DFT

Anton Ashuiev, Nino Wili, Daniel Klose, Florian Allouche, Christophe Copéret
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Verifying a reaction by isotope labelling

Anton Ashuiev, Nino Wili, Daniel Klose, Florian Allouche, Christophe Copéret
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