Electron paramagnetic resonance spectroscopy in catalysis

What we shall learn

- applicability of NMR, EPR, and paramagnetic NMR spectroscopy
- how EPR spectroscopy differs from NMR spectroscopy
- information accessible from EPR spectra
- scope and limitations of operando EPR
- scope and limitations of hyperfine spectroscopy
- EPR + DFT approach to spatial and electronic structure of active sites
- use of isotope labelling in detecting reactions

Instead of a lecture script

• EPR entry in Ullmann's Encyclopedia of Industrial Chemistry, DOI: 10.1002/14356007.q09_q01

NMR or EPR?

Closed-shell systems

- closed-shell molecules have only paired electrons
- they are diamagnetic
- EPR spectroscopy is not applicable and conventional NMR spectroscopy works

Open-shell systems

- open-shell molecules have at least one unpaired electron
- they are paramagnetic
- EPR spectroscopy is applicable *unless* the electron spin relaxes very fast
- paramagnetic NMR spectroscopy is applicable *if* the electron spin relaxes very fast
- typically, open-shell systems are more reactive

Ni(II) electron configuration [Ar] $4s^23d^8$

(high spin, Hund's rule)

How do unpaired electrons originate?

(although chemical bonding involves electron pairing)

Where are the unpaired electrons?

• as a quantum object, an unpaired electron can be at several locations at once

• all these locations can be reactive "hot spots"

How can unpaired electrons be observed?

Electron spin - electron angular momentum contribution of pure quantum mechanical origin

Classical physics: A homogeneous sphere with charge q and angular momentum J features magnetic dipole moment μ

 $\vec{\mu} = \frac{q}{2m} \vec{J}$

Quantum physics: A correction factor $g \approx 2$ arises

$$\mu = -g \frac{e}{2m} \hbar S$$

Stern-Gerlach experiment 1922

• the unpaired electron behaves as a tiny bar magnet

Electron paramagnetic resonance

Electron spin S = 1/2 in a magnetic field features two eigenstates of different energy

- frequency v is in the microwave range (3-300 GHz)
- this corresponds to wave lengths between 10 cm and 1 mm
- by variation of the magnetic field at constant frequency we can find the resonance condition

• the tiny bar magnet can be flipped by microwave irradiation (oscillatory electromagnetic field)

Some are invisible

Kramers and non-Kramers ions

Zero-field splitting can be very large

- one contribution from dipole-dipole coupling of magnetic moments of the unpaired electrons
- one contribution from spin-orbit coupling
- sum may exceed typically accessible microwave frequency range at accessible magnetic fields

Non-Kramers ions

- for an *even number of unpaired electrons*, in general symmetry all transition frequencies may exceed the typically accessible microwave frequency range at zero field and at all accessible magnetic fields
- signals can be visible for systems with (nearly) axial symmetry
- convenient observation may require special microwave resonator geometry ("parallel mode EPR")

How does an EPR spectrometer look like?

 high power amplifiers for pulsed EPR

 very fast electronics (subnanosecond resolution) for generating excitation waveforms

 superconducting magnet required at high frequencies (> 70 GHz)

> Electromagnet 0-1.5 T

Continuous-wave EPR

- works at any electron spin relaxation time where the spectrum is resolved
- most sensitive technique for detecting EPR spectra of solids

Interactions and the information inferred from them

 B_{\circ}

Distinguishing high-spin from low-spin complexes

two high-spin Fe(III) species

Molecular Aspects of Catalysts and Surfaces HS 2022

Fingerprinting and following oxidation state changes

Spatial and electronic structure: Measuring hyperfine interactions

Example: Cu(II) complex

Large hyperfine interactions by CW EPR

³¹P ligand hyperfine couplings in a Ni(I) complex

- as ³¹P has spin *I* = 1/2 (as protons have), we expect a 1:2:1 hyperfine triplet
- in the solid state, complications arise from the combination of g and hyperfine anisotropy

Understanding "powder" lineshapes - g anisotropy in axial symmetry

Equatorial orientations are more probable than polar (axial) orientations

Intensity is higher at equatorial orientations corresponding to g_{\perp}

$$g_{\text{eff}} = \sqrt{\sin^2 \theta g_{\perp}^2 + \cos^2 \theta g_{\parallel}^2}$$

Understanding "powder" lineshapes - g anisotropy in CW EPR spectra

Understanding "powder" lineshapes - g and hyperfine anisotropy

Example: Cu(II), S =1/2, I = 3/2, axially symmetric g- and hyperfine tensor

If ligand hyperfine couplings are too small: hyperfine spectroscopy

Electron-nuclear double resonance (ENDOR)

HYperfine Sublevec CORrElation spectroscopy (*HYSCORE*)

• when applicable, HYSCORE provides superior resolution and simplifies assignment

Operando EPR

Measure under reaction conditions

- high sample temperature
- resonator at ambient temperature (water-cooled)
- controlled reaction gas mixture
- on-line product analysis (mass spectrometry)

Angew. Chem. Int. Ed. 60, 16200-16207 (2021)

Identification of active species from difference spectra

Methanol from methane on $\gamma\text{-Al2O3}$

Distinguishing multiple active species by g factor and hyperfine interaction

Methanol from methane on Cu-exchanged mordenite

Combining techniques in a kinetic study

Methanol from methane on Cu-exchanged mordenite

From molecular to surface species

Surface organometallic chemistry

Molecular Aspects of Catalysts and Surfaces HS 2022

Structural models by EPR + DFT

Molecular Aspects of Catalysts and Surfaces HS 2022

Verifying a reaction by isotope labelling

ELDOR-detected NMR contrast 1* to reacted 1*

- ethylene replaces ^tBu with (CH₂-CH₂)_n-^tBu probably only in part of the molecules
- evidence that a Ti(III) species catalyzes ethylene polymerization