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The UHV setup

« Stainless steel UHV setup with * Tool and components:
flanges, pumps, pressure gauges, ... - preparation

« Typically, 10-19 to 10-"" mbar base - characterization
pressure - sample manipulation

- resistive heating




LEED

= Low-energy electron diffraction

Phosphor screen '.‘a‘ Electron
gun

Diffracted
electron beam

Pd(111)

nA = a sino

Collimated beam of low energy electrons (20-200 eV)
Wavelength (1) of 100 V electrons: ca. 1 A, < interatomics distances



LEED

m The structure of surfaces

surface reconstruction
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LEED

= Preparation of PdZn surface alloy for model studies

Pd(111) + 1ML Zn PdZn surface alloy
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Weilach et al., J. Phys. Chem. C 116 (2012) 18768



HREELS

High resolution electron energy loss spectroscopy

Interaction of low energy electrons with surfaces
Backscattered electrons are detected

Possible interactions are
= the excitations of vibrations of adsorbed molecules
= vibrations of the top layers of the substrate (surface phonons)

= vibrations of the electrons in the substrate or in films or islands on the
substrate surface (plasmons)

UHV is required
Surface sensitive technique
Technique of choice to study adsorbates at single crystal surfaces



HREELS

® How it works

= Some of the electron beam's energy is converted into
vibrational motion of the adsorbed molecule

= The result is a characteristic loss peak in the HREEL
spectrum

University of Waterloo: http://www.chembio.uoguelph.ca/educmat/CHM729/eels/eels0.htm



HREELS

m How it works — Interaction between electrons and molecules
m Two scattering modes

m Dipole scattering

® incident electron is like a electromagnetic wave interacting with oscillating
dipoles (vibration of species at surface)

m long-range effect mediated by the Coulomb field. The incoming electron is
influenced by a vibrating dipole at the surface.

m electron is scattered specularly with an energy loss characteristic of the
energy it delivered to the vibrational mode.



HREELS

m How it works — Interaction between electrons and molecules
m Two scattering modes

m Dipole scattering
B identical information to IR spectrum

m same rules as IR spectroscopy
m only fundamental transitions allowed
m only vibrations accompanied by change in dipole moment allowed
m s-polarized light undergoes 180° phase change upon reflection
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net electric field destructive interference

m surface (normal) selection rule: only dipoles perpendicular (normal) to the
surface are active
m intensity is at maximum for specular reflection



The surface selection rule
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Fig. 1. {(a) The lines of force and the electrical “image” resulting from a positive charge over the
surface of a conductor (the metal surface is the upper line above the hatched area). (b) The
changes during the vibration of a dipole parallel to the surface of the metal; the “image” dipole
change is in the opposite direction to the original. (c) The changes during the vibration of a di-

pole perpendicular to the surface; the “image” dipole change is in the same direction as the
original.

Pearce and Sheppard, Surf. Sci. 59 (1976) 205



HREELS

m How it works — Interaction between electrons and molecules
m Two scattering modes

m Impact Scattering

m transfer of energy between electron and molecule while the electron is in the
molecule

® short range scattering process from the ion core
m quantum mechanical formalism required for the theory

m vanishes in specular direction

m isotropic (not in the specular direction, but everywhere) but the energy losses
still reflect vibrational excitations in the adsorbate

m dominant at high vibrational energy

m strong dipole scatterers (CO) are weak impact scatterers

The angular distribution of peaks around the specular direction can distinguish
between peaks which result from different scattering modes



Setup
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Diagram of an electron energy loss spectrometer

E=1-1000 meV

Electrons from a cathode pass through a monochromator, strike the sample, and the
energy spectrum of the scattered electrons is probed by a second monochromator.



The HREELS spectrum
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The HREELS spectrum

AE= energy of vibrational mode of excited adsorbate upon inelastic scattering
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Examples

Rh-C

kS

surface structure is
known

at all points of the
experiment (LEED)
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Examples

m Access to low vibrational energy
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HREELS | Examples
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Examples

m HREELS of surfaces

m Phonons: elementary vibrational motion in which a lattice of atoms or
molecules uniformly oscillates at a single frequency

S
Si(111)-(2x1)
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Ibach et al., Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York, 1982



RAIRS

= Reflection absorption IR spectroscopy
m Specular/external reflection method

Perpendicular (s-) polarization (y-axis) Parallel (p-) polarization (x, z-axis)

Z Parallel: parallel to the plane of incident light
Sy
. "RAA NN
;:s 0 |
/\/\/\/ in-coming light /\/\/\/ in-coming light
\/\/\/\ reflected light /\/\/\/ reflected light

net electric field net electric field
near surface near surface
destructive interference constructive interference
This s-polarization does not contain information p-polarization is exploited

about surface species
(180° phase change)

Greenler, J. Chem. Phys. 44 (1966) 310
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Shigeishi et al., Surf. Sci. 58 (1976) 379



RAIRS

m Single crystal vs. Powder
m reference for assignment of signals on technical catalysts!
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RAIRS

m Non-UHV conditions
m Superposition of contributions from surface and gas phase

et ‘/ CO adsorbed
on Pd(111)
1943 ,

surface in ultrahigh vacuum
g
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Polarization-modulation IRRAS (PM-IRRAS)

m Non-UHV experiments
m continuous generation of 2 polarizations (photoelastic modulator)
m excellent gas-phase compensation
m highly sensitive, time-resolved

Perpendicular (s-) polarization (y-axis)

Gas inlet

Urakawa et al., J. Chem. Phys. 124 (2006) 054717

4 )
Rp - Rs = AR The surface spectra are
Parallel polarization Perpendicular polarization  Difference often shown in AR/R
surface + gas gas surface) (R=Rs+Rp)




RAIRS

m Isolation of surface contribution
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HREELS vs. RAIRS

= HREELS = RAIRS

detectors limited to 400 cm’
high energy resolution (4 cm-")

= access to low vibrational energy,
e.g. of O (few meV)

= |ow energy resolution (= 4 meV,
<30 cm™)

= (0.0001 monolayer of CO
= specialised setup (UHV)

0.01 monolayer of CO
also ambient pressure



SFG

= Sum frequency generation

= Two laser beams mix at a surface and generate an output beam with
a frequency equal to the sum of the two input frequencies

= Advantages
= ability to be monolayer surface sensitive
= ability to be performed in situ (for example aqueous surfaces and
in gases)
= does not cause much sample damage
= SFG gives complementary information to FTIR and
Raman spectroscopy



SFG

m IR-vis SFG laser spectroscopy

® no signal from isotropic gas phase
® no signal from centrosymmetric solid
m only adsorbates! (UHV to 1 bar)
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courtesy: K. Féttinger (TUVienna)



SFG

® Information

M composition

m orientation distributions

m structural information of molecules (vibrational spectroscopy)
m gas-solid, gas-liquid, liquid-solid

m selection rule: in order to generate a sum frequency emission, the
excited vibrational mode must be both IR and Raman active

Fottinger et al., Introduction to surface chemistry and catalysis, Wiley, Hoboken, New Jersey, 2010



m Setup

SFG
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Fottinger et al., Characterization of Solid Materials and Heterogeneous Catalysts, 2012, Wiley-VCH Verlag
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SFG

m Modes of operation

(c) time-resolved SFG (d) polarization-dependent SFG

Fottinger et al., Characterization of Solid Materials and Heterogeneous Catalysts, 2012, Wiley-VCH Verlag



SFG

m Structure assignment in combination with LEED

T

j) J‘J 2108 3
1899A | X05
1963 2105
1895 2091

1956 2086
N

—

1948

1920
~ A 0.50

1800 1900 2000 2100 2200

wavenumber [cm™1]

SFG Signal [a.u.]

Rupprechter, PCCP 3 (2001) 4621; Unterhalt et al., J. Phys. Chem. B 106 (2002) 356



SFG

m Hydrocarbon fragments on Pt(111)
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Somorjai et al., Introduction to surface chemistry and catalysis, Wiley, Hoboken, New Jersey, 2010



