UHV Techniques

Dr. Davide Ferri Paul Scherrer Institut 2056 310 27 81 davide.ferri@psi.ch

Electrons-matter interaction

The UHV setup

- Stainless steel UHV setup with flanges, pumps, pressure gauges, …
- Typically, 10⁻¹⁰ to 10⁻¹¹ mbar base pressure
- Tool and components:
 - preparation
 - characterization
 - sample manipulation
 - resistive heating

Low-energy electron diffraction

 $n\lambda = a \sin \alpha$

Collimated beam of low energy electrons (20-200 eV) Wavelength (λ) of 100 V electrons: ca. 1 Å, < interatomics distances

(2x2) CO Pd(111)

The structure of surfaces

Pd(111) 1x1

surface reconstruction

Ni(100)-p4g(2x2)-2C Ni(100)-(1x1)

Figure 12. Carbon-chemisorption-induced restructuring of the Ni(100) surface.

Preparation of PdZn surface alloy for model studies

Weilach et al., J. Phys. Chem. C 116 (2012) 18768

HREELS

High resolution electron energy loss spectroscopy

- Interaction of low energy electrons with surfaces
- Backscattered electrons are detected
- Possible interactions are
 - the excitations of vibrations of adsorbed molecules
 - vibrations of the top layers of the substrate (surface phonons)
 - vibrations of the electrons in the substrate or in films or islands on the substrate surface (plasmons)
- UHV is required
- Surface sensitive technique
- Technique of choice to study adsorbates at single crystal surfaces

How it works

- Some of the electron beam's energy is converted into vibrational motion of the adsorbed molecule
- The result is a characteristic loss peak in the HREEL spectrum

University of Waterloo: http://www.chembio.uoguelph.ca/educmat/CHM729/eels/eels0.htm

HREELS

How it works – Interaction between electrons and molecules

Two scattering modes

Dipole scattering

incident electron is like a electromagnetic wave interacting with oscillating dipoles (vibration of species at surface)

Iong-range effect mediated by the Coulomb field. The incoming electron is influenced by a vibrating dipole at the surface.

electron is scattered specularly with an energy loss characteristic of the energy it delivered to the vibrational mode.

HREELS

How it works – Interaction between electrons and molecules

Two scattering modes

Dipole scattering

identical information to IR spectrum

- same rules as IR spectroscopy
 - only fundamental transitions allowed
 - only vibrations accompanied by change in dipole moment allowed
 - s-polarized light undergoes 180° phase change upon reflection

net electric field destructive interference

surface (normal) selection rule: only dipoles perpendicular (normal) to the surface are active

in

intensity is at maximum for specular reflection

The surface selection rule

Fig. 1. (a) The lines of force and the electrical "image" resulting from a positive charge over the surface of a conductor (the metal surface is the upper line above the hatched area). (b) The changes during the vibration of a dipole parallel to the surface of the metal; the "image" dipole change is in the opposite direction to the original. (c) The changes during the vibration of a dipole perpendicular to the surface; the "image" dipole change is in the same direction as the original.

HREELS

How it works – Interaction between electrons and molecules

Two scattering modes

Impact Scattering

- transfer of energy between electron and molecule while the electron is in the molecule
- short range scattering process from the ion core
- quantum mechanical formalism required for the theory
- vanishes in specular direction
- isotropic (not in the specular direction, but everywhere) but the energy losses still reflect vibrational excitations in the adsorbate
- dominant at high vibrational energy
- strong dipole scatterers (CO) are weak impact scatterers
- The angular distribution of peaks around the specular direction can distinguish between peaks which result from different scattering modes

Setup

Electrons from a cathode pass through a monochromator, strike the sample, and the energy spectrum of the scattered electrons is probed by a second monochromator.

The HREELS spectrum

The HREELS spectrum

 ΔE = energy of vibrational mode of excited adsorbate upon inelastic scattering

Examples

enhanced frequency range compared to FTIR

(2x2)

(/3x/3)R30°

surface structure is known at all points of the experiment (LEED)

Examples

Access to low vibrational energy

HREELS Examples

Examples

HREELS of surfaces

Phonons: elementary vibrational motion in which a lattice of atoms or molecules uniformly oscillates at a single frequency

Ibach et al., Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York, 1982

Reflection absorption IR spectroscopy

Specular/external reflection method

Greenler, J. Chem. Phys. 44 (1966) 310

CO adsorption on Pt(111)

Shigeishi et al., Surf. Sci. 58 (1976) 379

RAIRS

Single crystal vs. Powder

reference for assignment of signals on technical catalysts!

RAIRS

Non-UHV conditions

Superposition of contributions from surface and gas phase

Polarization-modulation IRRAS (PM-IRRAS)

Non-UHV experiments

- continuous generation of 2 polarizations (photoelastic modulator)
- excellent gas-phase compensation
- highly sensitive, time-resolved

Isolation of surface contribution

HREELS vs. RAIRS

HREELS

- access to low vibrational energy, e.g. of O (few meV)
- low energy resolution (≈ 4 meV;
 <30 cm⁻¹)
- 0.0001 monolayer of CO
- specialised setup (UHV)

RAIRS

- detectors limited to 400 cm⁻¹
- high energy resolution (4 cm⁻¹)

- 0.01 monolayer of CO
- also ambient pressure

SFG

Sum frequency generation

- Two laser beams mix at a surface and generate an output beam with a frequency equal to the sum of the two input frequencies
- Advantages
 - ability to be monolayer surface sensitive
 - ability to be performed in situ (for example aqueous surfaces and in gases)
 - does not cause much sample damage
- SFG gives complementary information to FTIR and Raman spectroscopy

SFG

IR-vis SFG laser spectroscopy

- no signal from isotropic gas phase
- no signal from centrosymmetric solid
- only adsorbates! (UHV to 1 bar)

laser required: non-linear process is weak

Information

composition

- orientation distributions
- structural information of molecules (vibrational spectroscopy)
- gas-solid, gas-liquid, liquid-solid
- selection rule: in order to generate a sum frequency emission, the excited vibrational mode must be both IR and Raman active

SFG

Setup

Modes of operation

Föttinger et al., Characterization of Solid Materials and Heterogeneous Catalysts, 2012, Wiley-VCH Verlag

Structure assignment in combination with LEED

Rupprechter, PCCP 3 (2001) 4621; Unterhalt et al., J. Phys. Chem. B 106 (2002) 356

Hydrocarbon fragments on Pt(111)

Somorjai et al., Introduction to surface chemistry and catalysis, Wiley, Hoboken, New Jersey, 2010