

Fundamentals and applications of X-ray diffraction.

Applications in catalysts characterization.

Przemyslaw Rzepka

Outline

- 1. Crystal lattice. Symmetry
- 2. X-ray diffraction
- 3. Braggs' peaks positions. Indexing
- Relative intensities of Braggs' Peaks. Structure factor. Structure refinement
- 5. Sample preparation
- 6. Examples

What is crystal?

A material has a crystal structure if its constituents (such as atoms, molecules, or ions) are arranged in a 3D translationally periodic order forming a crystal lattice.

Crystal = Lattice * Motif

What is crystal?

A material has a crystal structure if its constituents (such as atoms, molecules, or ions) are arranged in a 3D translationally periodic order forming a crystal lattice

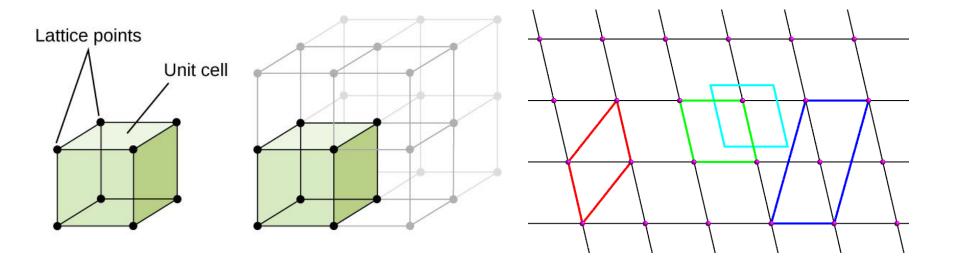
Crystal = Lattice * Motif

A material is a crystal if displays a sharp diffraction pattern with most of intensity concentrated in relatively sharp Bragg peaks.

Symmetry

Fundamental property of the orderly arrangements of atoms found in crystalline solids

Unit cell. Translational symmetry



Unit cell: smallest unit that repeats in the lattice (translation)

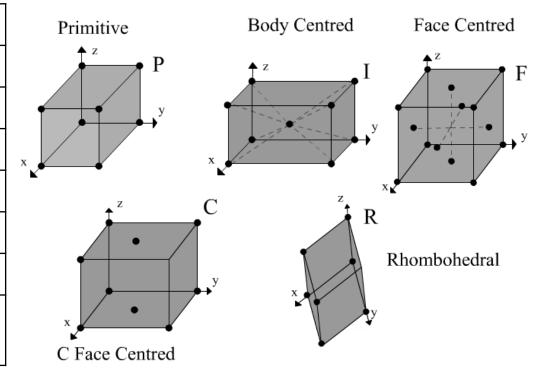
- minimum number of lattice points
- origin on one lattice point
- angles as close to 90° as possible

Unit cell centering

Unit cell: smallest unit that repeats in the lattice (translation)

- Primitive unit cell: lattice point only at corners
- Non-primitive unit cell: lattice points also at other positions

Centering Type	Symbol
Primitive - no centering	Р
A-face centered	Α
B-face centered	В
C-face centered	С
All-face centered	F
Body centered	I
Rhombohedrally centered	R



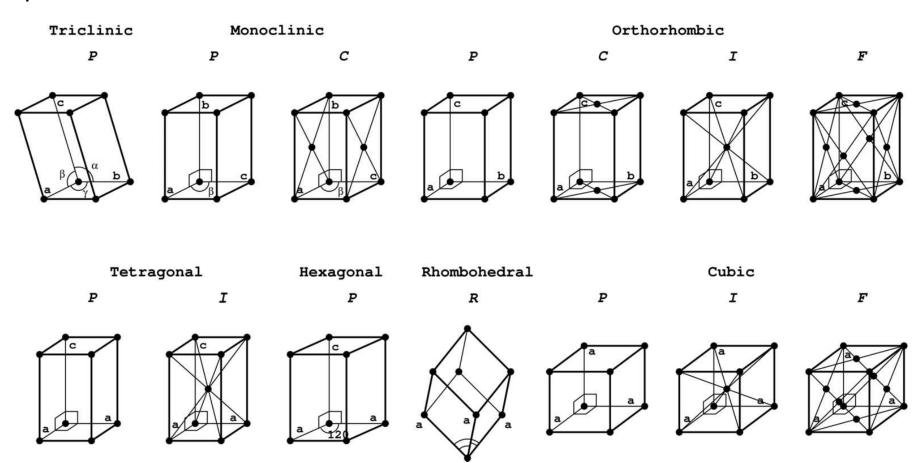
Crystal systems

Combining a lattice with the different orders of rotation symmetry leads to the seven possible crystal systems

Crystal System	Characteristic Symmetry	Unit-Cell Parameters
Triclinic	1× 1-fold	$a \neq b \neq c; \ \alpha \neq \beta \neq \gamma$
Monoclinic	1× 2-fold	$a \neq b \neq c; \ \alpha = \gamma = 90^{\circ}; \ \beta \neq 90^{\circ}$
Orthorhombic	3× 2-fold	$a \neq b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	1× 4-fold	$a = b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Trigonal	1× 3-fold	$a = b \neq c$; $\alpha = \beta = 90^{\circ}$; $\gamma = 120^{\circ}$
Hexagonal	1× 6-fold	$a = b \neq c$; $\alpha = \beta = 90^{\circ}$; $\gamma = 120^{\circ}$
Cubic	4× 3-fold	$a = b = c; \ \alpha = \beta = \gamma = 90^{\circ}$

Bravais lattices

Combining crystal systems with unit cell centerings leads to the fourteen possible Bravais lattices

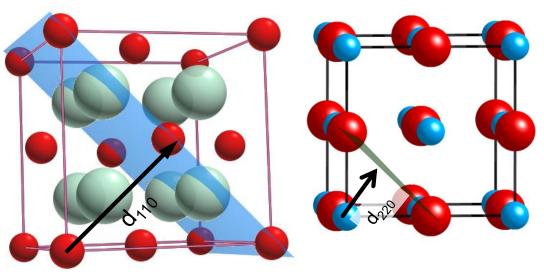


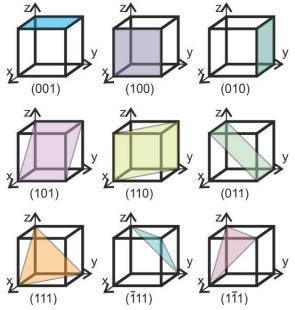
Calculated_Profile_00-005-0490

20

10

Miller indices (hkl)

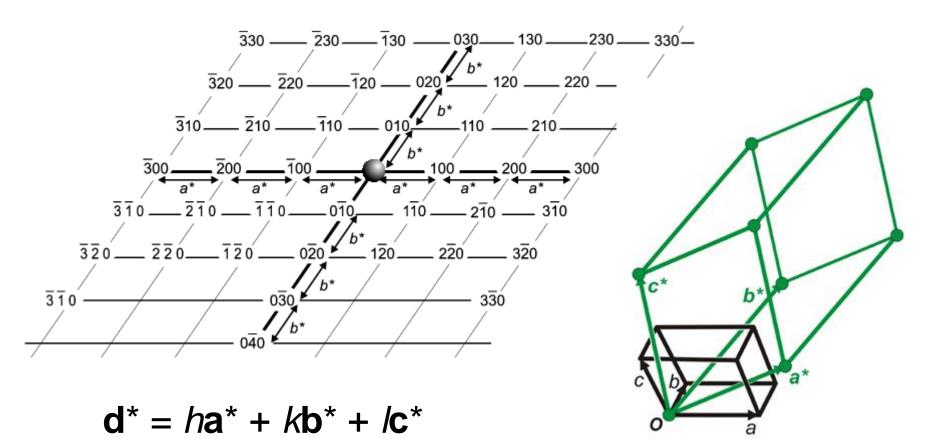




Miller indices represent the lattice planes. Peaks in a diffraction pattern can be assigned to planes of the crystal

Position [°2Theta] (Copper (Cu))

Reciprocal space



$$1/d = d^*$$

$$a^* = \frac{b \times c}{V}$$
; $b^* = \frac{c \times a}{V}$; $c^* = \frac{a \times b}{V}$;

Miller indices (hkl) and d-spacing

d-spacings in different crystal systems

Crystal system

d_{hkl} as a function of Miller indices and lattice parameters

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

$$\frac{1}{d^2} = \frac{4}{3} \quad \left(\frac{h^2 + hk + k^2}{a^2}\right) + \frac{l^2}{c^2}$$

$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$

Systematic absences

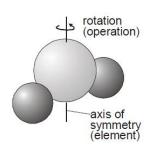
Lattice Centering	Symmetry Operator(s)	Reflection Condition
P	_	None
A	x, 1/2+y, 1/2+z	hkl: $k + l = 2n$
B	1/2+x,y,1/2+z	hkl: $h + l = 2n$
C	1/2+x,1/2+y,z	hkl: $h + k = 2n$
F	x,1/2+y,1/2+z; 1/2+x,y,1/2+z; 1/2+x,1/2+y,z	hkl: k + l, h + l, h + k = 2n
I	1/2+x,1/2+y,1/2+z	hkl: $h + k + l = 2n$
R	1/3+x,2/3+y,2/3+z; 2/3+x,1/3+y,1/3+z	hkl: -h + k + l = 3n

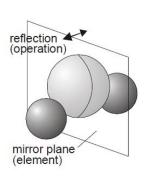
Rotary-Inversion Symmetry

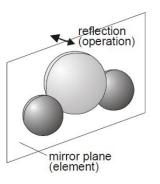
Symmetry operation	Symmetry elements	
Identity		
Rotation by 360°/n	n-fold axis	
Reflection	mirror plane	
Inversion	point	

Translation (Bravais lattice)

screw axis glide plane



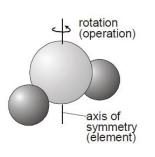


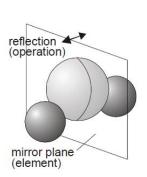


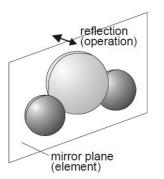
Rotary-Inversion Symmetry

Symmetry operation	Symmetry elements	
Identity		
Rotation by 360°/n	n-fold axis	
Reflection	mirror plane	
Inversion	point	

Translation (Bravais lattice)







230 space groups e.g. *Pm3m**

*http://img.chem.ucl.ac.uk/sgp/misc/notation.htm

Space groups

Triclinic: e.g. *P*-1

1. An inversion center (presence or absence)

Monoclinic: e.g. P2, Pm, P2/m

1. A symmetry with respect to the unique axis direction (b or c)

Orthorhombic: e.g. P222, Pmm2 (or Pm2m or P2mm), Pmmm

- 1. A symmetry with respect to the a axis
- 2. A symmetry with respect to the b axis
- 3. A symmetry with respect to the c axis

Tetragonal: e.g. *P*4, *P*-4, *P*4/*m*, *P*422, *P*4*mm*, *P*-42*m* (or *P*-4*m*2), *P*4/*mmm*

- 1. The 4-fold symmetry parallel to the c axis
- 2. The symmetry with respect to both the x and y axes
- 3. The symmetry with respect to the face diagonals [1 1 0]

Space groups

Trigonal & Rhombohedral: e.g. *P*3, *P*-3, *P*321, *P*312, *P*3*m*1, *P*31*m*, *P*-3*m*1, *P*-31*m*

- 1. The 3-fold symmetry parallel to the c axis
- 2. The symmetry with respect to the a and b axes
- 3. The additional symmetry elements with respect to [2 1 0]

Hexagonal: e.g. *P*6, *P*-6, *P*6/*m*, *P*622, *P*6*mm*, *P*-62*m* (or *P*-6*m*2), *P*6/*mmm*

- 1. The 6-fold symmetry parallel to the c axis
- 2. The symmetry with respect to the *a* and *b* axes
- 3. The additional symmetry elements with respect to [2 1 0]

Cubic: e.g. *P23*, *Pm-3*, *P432*, *P-43m*, *Pm3m*

- 1. The symmetry with respect to the a, b, and c axes
- 2. The 3-fold symmetry of the body diagonals [1 1 1]
- 3. The symmetry with respect to the face diagonals [1 1 0]

Tables for X-ray Crystallography

 $P4_{3}2_{1}2$

 D_4^8

422

Tetragonal

CONTINUED

No. 96

 $P4_{3}2_{1}2$

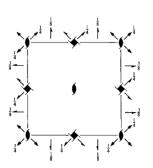
Reflection conditions

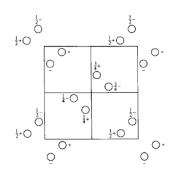
General:

No. 96

 $P4_{3}2_{1}2$

Patterson symmetry P4/mmm





Origin on 2[110] at 2,1(1,2)

Asymmetric unit $0 \le x \le 1$; $0 \le y \le 1$; $0 \le z \le \frac{1}{8}$

Symmetry operations

(1) 1
(5)
$$2(0,\frac{1}{2},0) = \frac{1}{4}, y, \frac{3}{8}$$

(2) $2(0,0,\frac{1}{2})$ 0,0,z(6) $2(\frac{1}{2},0,0)$ $x,\frac{1}{4},\frac{1}{8}$ (3) $4^{+}(0,0,\frac{3}{4})$ $0,\frac{1}{2},z$ (7) 2 x, x, 0

(4) 4 $(0,0,\frac{1}{4})$ $\frac{1}{2},0,z$ (8) 2 $x, \bar{x}, \frac{1}{4}$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Positions

Multiplicity, Wyckoff letter, Site symmetry

(1) x, y, z(2) $\vec{x}, \vec{y}, z + \frac{1}{2}$ (3) $\bar{y} + \frac{1}{2}, x + \frac{1}{2}, z + \frac{3}{4}$ (4) $y + \frac{1}{2}, \bar{x} + \frac{1}{2}, z + \frac{1}{4}$

Coordinates

b 1 (1)
$$x, y, z$$
 (2) $\bar{x}, \bar{y}, z + \frac{1}{2}$ (3) $\bar{y} + \frac{1}{2}, x + \frac{1}{2}, z + \frac{3}{4}$ (4) $y + \frac{1}{2}, \bar{x} + \frac{1}{2}, z + \frac{1}{4}$ 00 $t : t = 4n$ (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z} + \frac{1}{4}$ (6) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{4}$ (7) y, x, \bar{z} (8) $\bar{y}, \bar{x}, \bar{z} + \frac{1}{2}$ Special: as above, plus

a ..2
$$x,x,0$$
 $\bar{x},\bar{x},\frac{1}{2}$ $\bar{x}+\frac{1}{2},x+\frac{1}{2},\frac{1}{4}$ $x+\frac{1}{2},\bar{x}+\frac{1}{2},\frac{1}{4}$ $0kl: l=2n+1$ or $2k+l=4n$

Symmetry of special projections

Along [001] p4gm Along [100] p2gg Along [110] p2gm $\mathbf{a}' = \mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ $\mathbf{a}' = \mathbf{b} \qquad \mathbf{b}' = \mathbf{c}$ $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ Origin at $0, \frac{1}{2}, z$ Origin at $x, \frac{1}{4}, \frac{1}{8}$ Origin at x, x, 0

Maximal non-isomorphic subgroups

[2] P4, 11 (P4,, 78) [2] P2, 12 (C222, 20) 1; 2; 7; 8 [2] P2, 2, 1 (P2, 2, 2, 19) 1; 2; 5; 6 IIa

IIb

Maximal isomorphic subgroups of lowest index

[3] $P4_12_12$ ($\mathbf{c}' = 3\mathbf{c}$) (92); [5] $P4_22_12$ ($\mathbf{c}' = 5\mathbf{c}$) (96); [9] $P4_32_12$ ($\mathbf{a}' = 3\mathbf{a}$, $\mathbf{b}' = 3\mathbf{b}$) (96)

Minimal non-isomorphic supergroups

[3] P4, 32 (212)

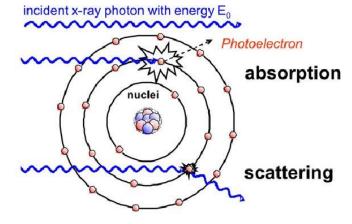
[2] $C4_322(P4_322, 95)$; [2] $I4_122(98)$; [2] $P4_22_12(\mathbf{c}' = \frac{1}{2}\mathbf{c})(94)$

Brief history of XRD

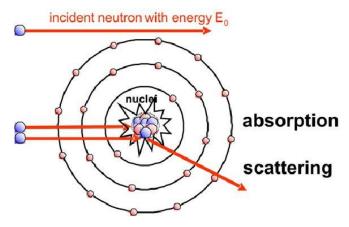
- 1895- Wilhelm Röntgen publishes the discovery of Xrays
- 1912- Maxwell von Laue observes diffraction of X-rays from a crystal
- 1913- Lawrence Bragg and William Henry Bragg solve the first crystal structure from X-ray diffraction data

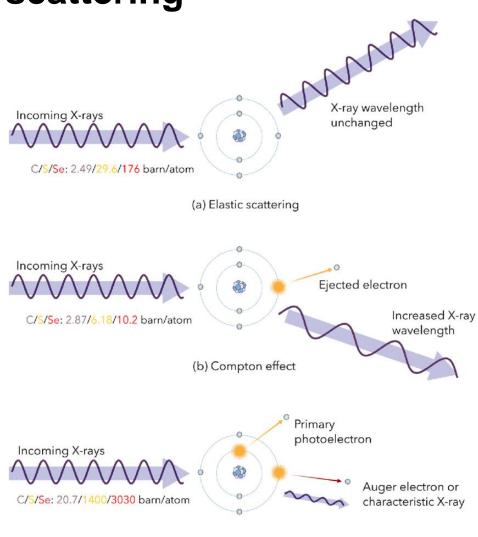
Elastic scattering

(a) x-rays



(b) neutrons

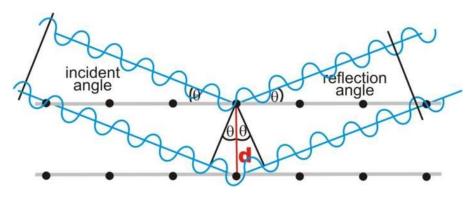




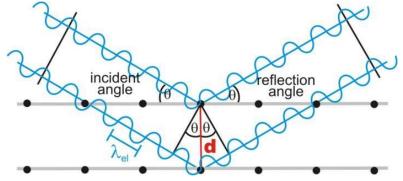
(c) Photoelectric effect

Bragg's Law

Elastic scattering phenomenon that occurs when a plane wave interacts with an obstacle or a slit whose size is approximately that of the wavelength



Destructive interference (out of phase).



Constructive interference (in phase).

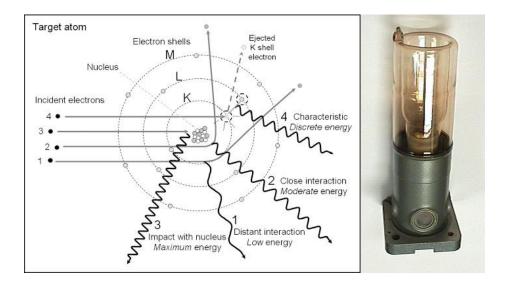
Bragg's Law $n\lambda = 2dsin\theta$

X-ray light source

Particle accelerator (synchrotron source): Electrons accelerated at velocity close to the speed of light emit electromagnetic radiation in the region of X-rays.

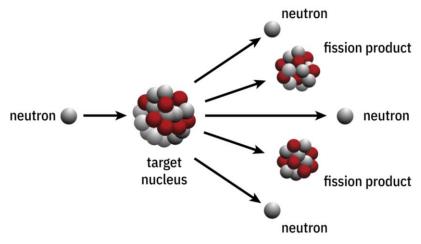
- Tunable wavelength
- High brilliance (many photons of a given wavelength and direction)
- X-rays: very high resolution

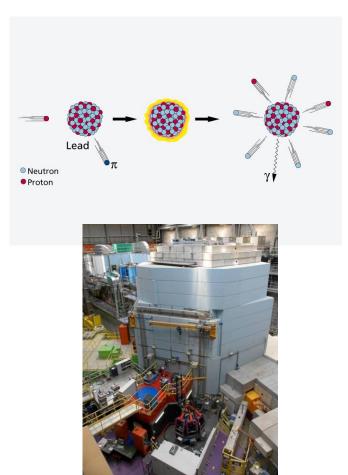
In-house diffraction: Energy released when an electron from an outer shell "fills the gap" left by an inner shell electron that has been ionized. $K\alpha$ Cu (1.5418 Å) is the most common



Sources of neutrons

Neutrons for scattering experiments can be produced either by nuclear fission in a reactor (ILL Grenoble) or by spallation when high-energy protons strike a heavy metal target eg. W, Ta, or Pb (SINQ).



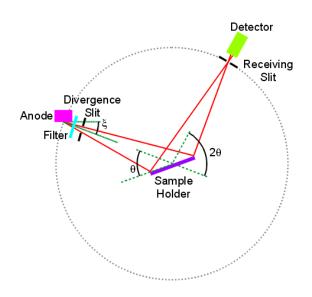


Comparison of different radiations

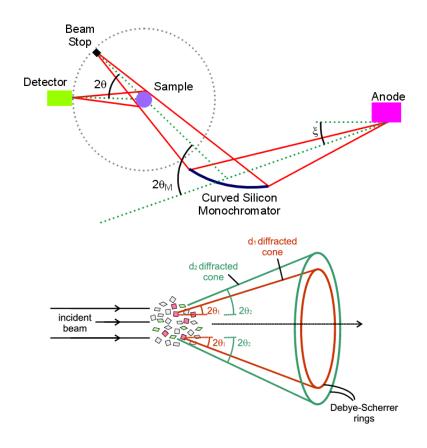
	X-ray (powder)	Electrons	Neutrons (powder)
Data collection	easy	Less easy	difficult
Crystallite size	μm	nm	μm
Lattice parameters	precise	approximate	precise
Intensities	kinematical	dynamical	kinematical
Overlap	yes	no	yes
Image	no	yes	no
Magnetic moment	no	yes	yes
Scattering power against Z	smooth	smooth	irregular

Diffraction geometry

The Bragg-Brentano (reflection) geometry needs the simultaneous, equiaxial move of the anode and the detector (2θ) to provide the constant irradiated volume from a sample



The Debye-Scherrer (transmission) geometry

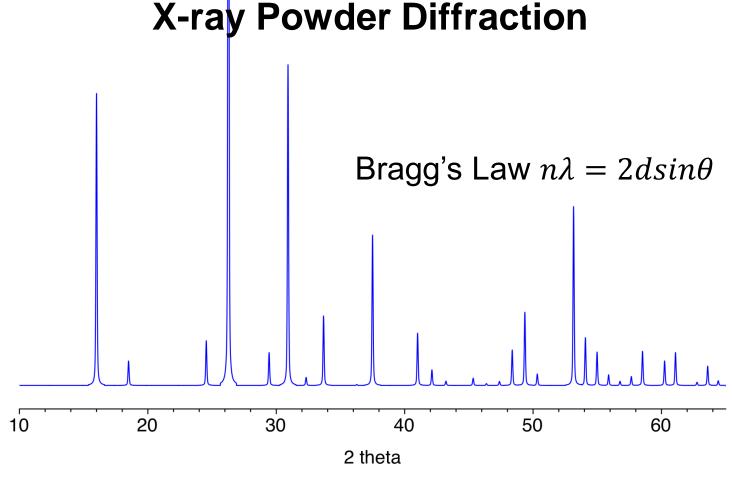


Diffraction geometry

The Bragg-Brentano (reflection) geometry needs the simultaneous, equiaxial move of the anode and the detector (2θ) to provide the constant irradiated volume from a sample

The Debye-Scherrer (transmission) geometry





Peak positions: lattice planes (unit cell, symmetry)

Peak intensities: atoms on the planes

Peak shape: microstructure (crystal size, microstrain, lattice defects)

Structure factor

$$F_{hkl} = \sum_{j} f_{j} \cdot e^{i2\pi(hx_{j} + ky_{j} + lz_{j})} = |F_{hkl}| \cdot e^{i\phi_{hkl}}$$

Structure factor contains the amplitude and phase of the wave diffracted by each plane hkl

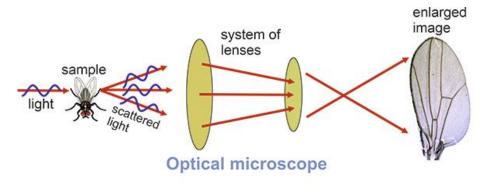
$$I_{obs}(hkl) = cjPLA |F_{obs}(hkl)|^2$$

- multiplicity, j
- the polarization factor, P
- the Lorentz factor, L
- X-ray absorption, A
- temperature

Structure factor

$$F_{hkl} = \sum_{j} f_{j} \cdot e^{i2\pi(hx_{j} + ky_{j} + lz_{j})} = |F_{hkl}| \cdot e^{i\phi_{hkl}}$$

Structure factor phases are lost in diffraction data

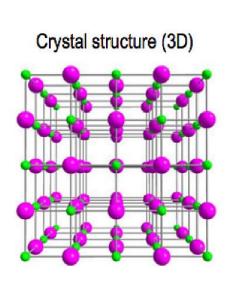




Structure factor

$$F_{hkl} = \sum_{j} f_{j} \cdot e^{i2\pi(hx_{j} + ky_{j} + lz_{j})} = |F_{hkl}| \cdot e^{i\phi_{hkl}}$$

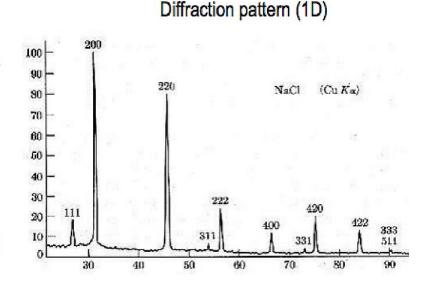
From the electron densities calculated from structure factor for each plane to measured intensities



$$\mathbf{F}(\mathbf{h}) = \int_{cell} \rho(\mathbf{x}) \exp(2\pi i \mathbf{h} \cdot \mathbf{x}) d\mathbf{v}$$
Diffraction experiment

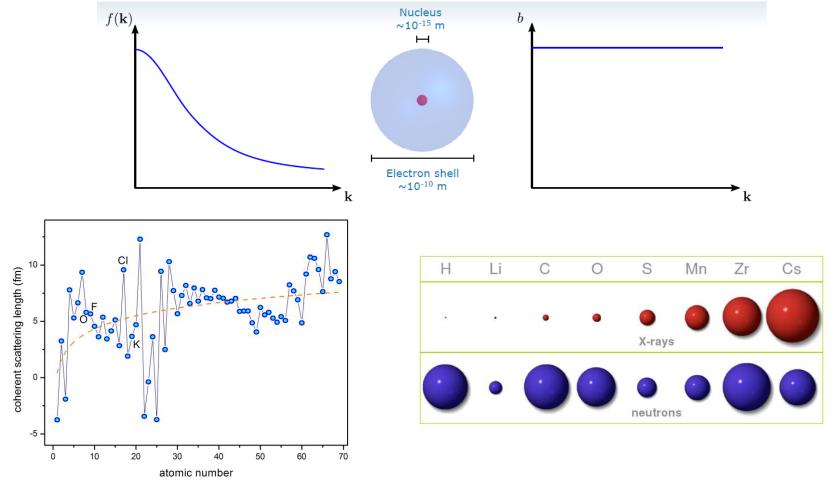
 $\rho(\mathbf{x}) = \frac{1}{V} \sum_{\mathbf{h}} \mathbf{F}(\mathbf{h}) \exp(-2\pi i \mathbf{h} \cdot \mathbf{x})$

Structure solution



Scattering power of an element

The amplitude of the scattered wave is called the atomic form factor f (X-rays) or scattering length b (neutrons).



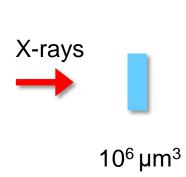
X-ray Atomic Form Factor

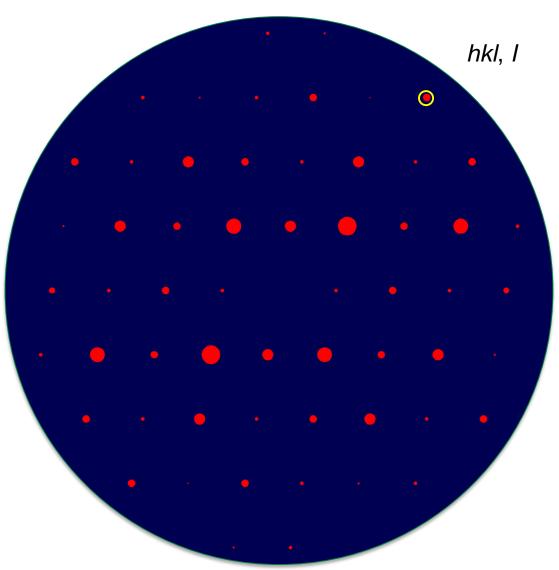
Atomic form factor represents the scattering power of specific element regardless its positioning or symmetry. It depends only on number of electrons, radiation energy and Debye-Waller factor (20)



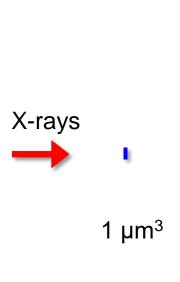
Silicon and aluminum demonstrate similar atomic number (Z=14 and 13) and are difficult to be distinguished

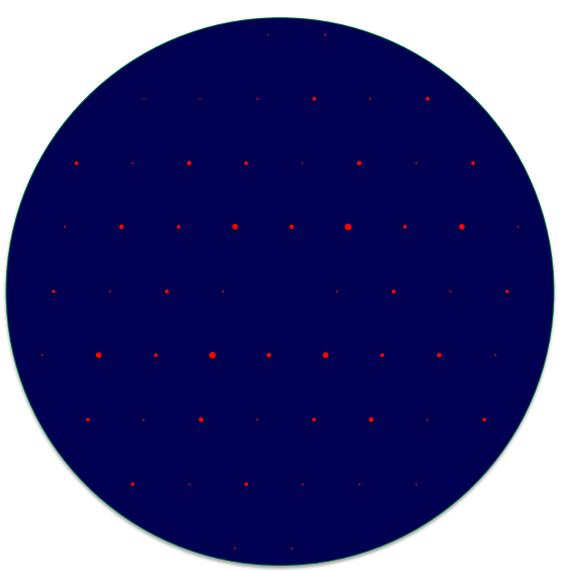
X-ray Single-crystal Diffraction



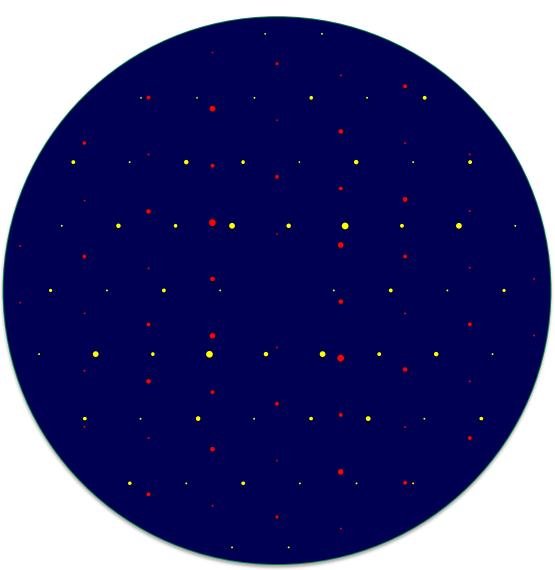


X-ray Powder Diffraction

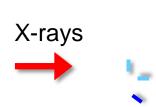


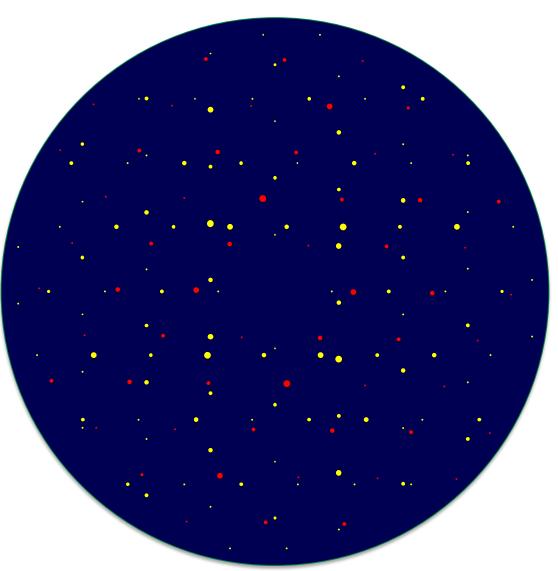


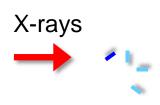
X-ray Powder Diffraction

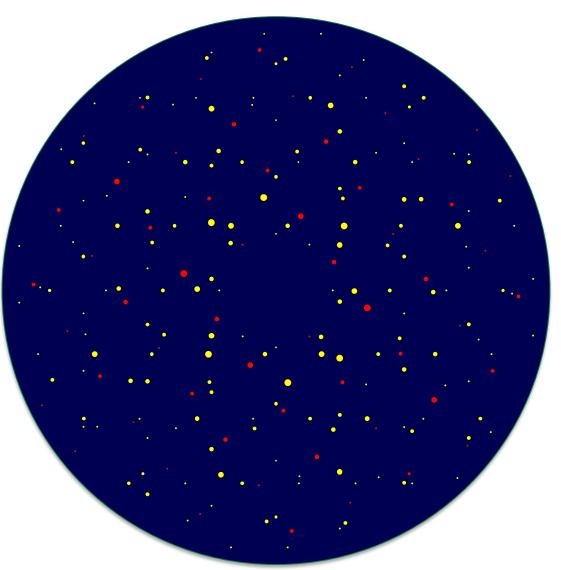


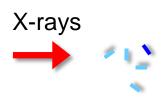
X-ray Powder Diffraction

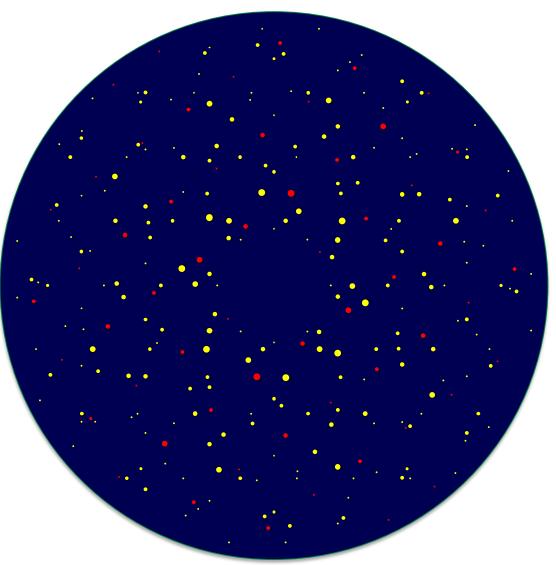


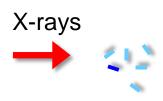


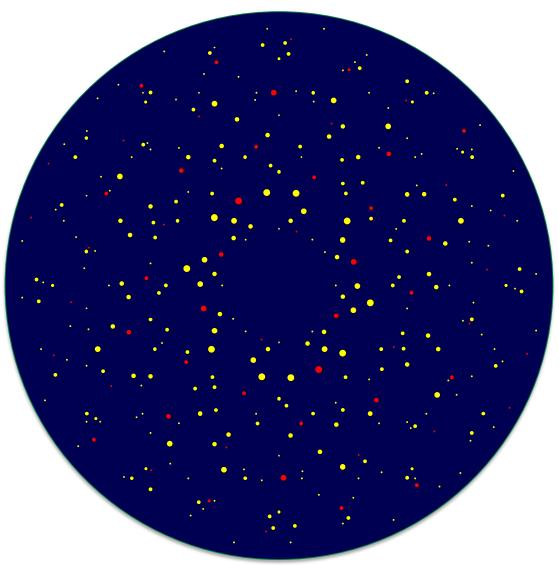


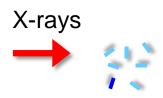


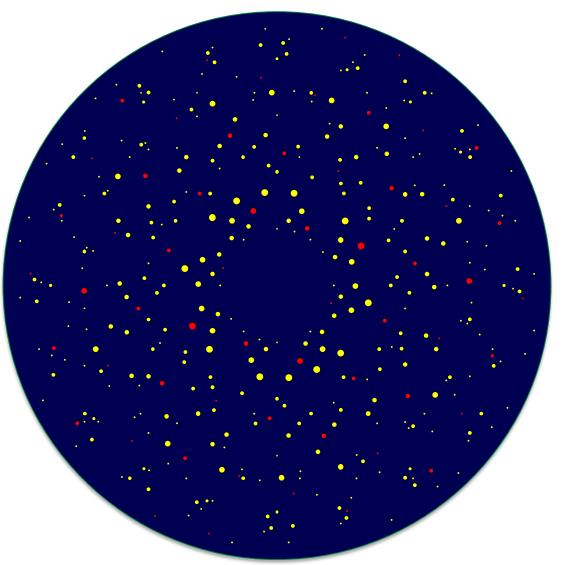


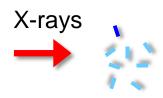


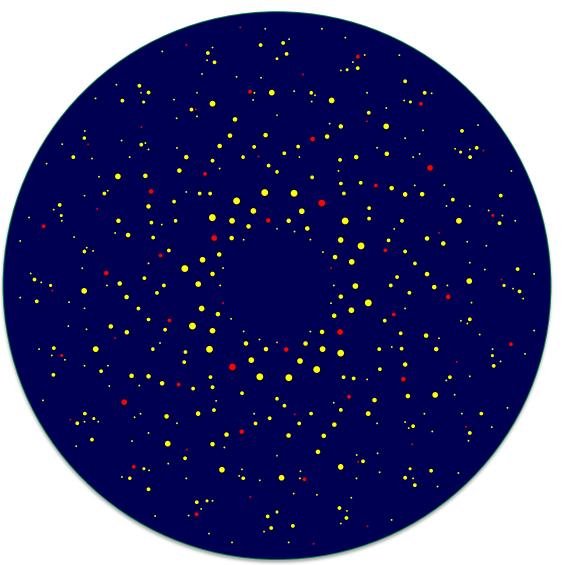


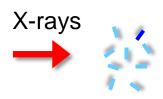


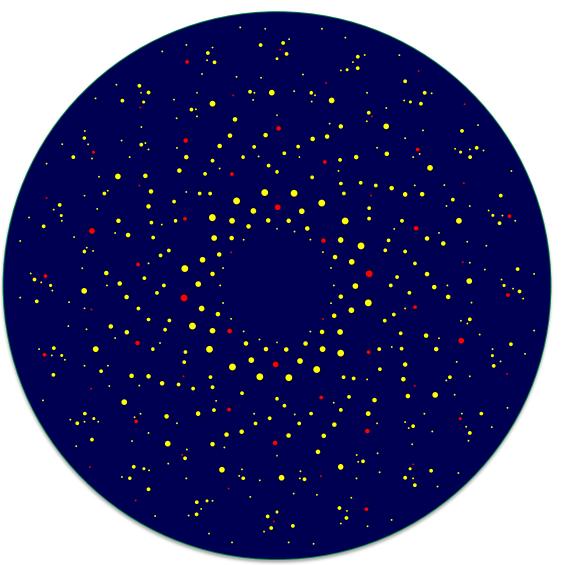


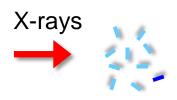


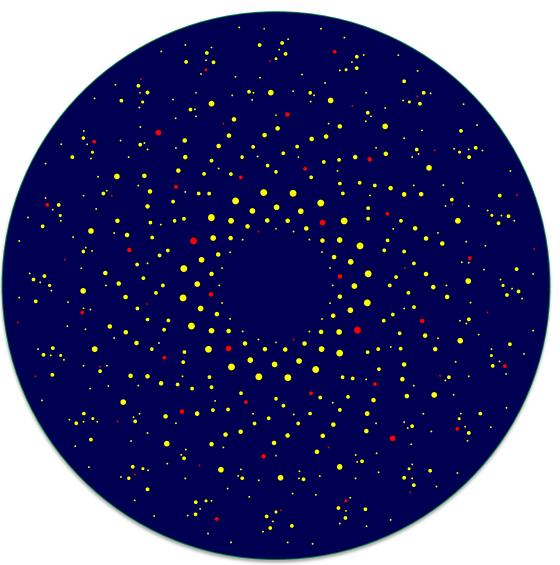


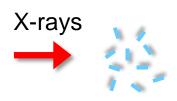


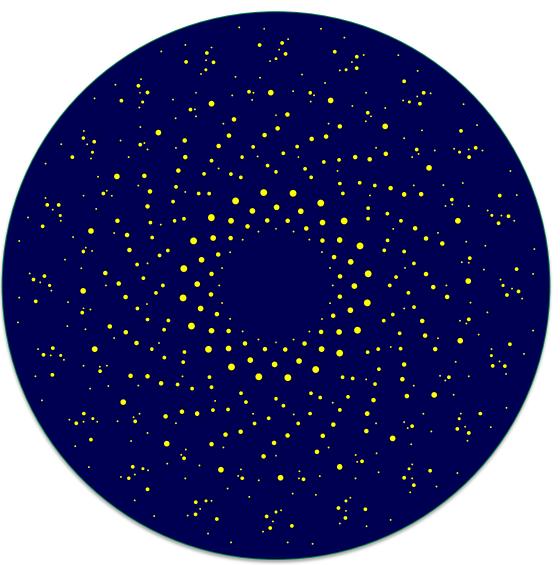


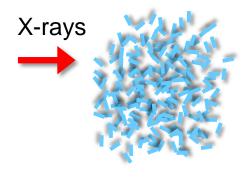


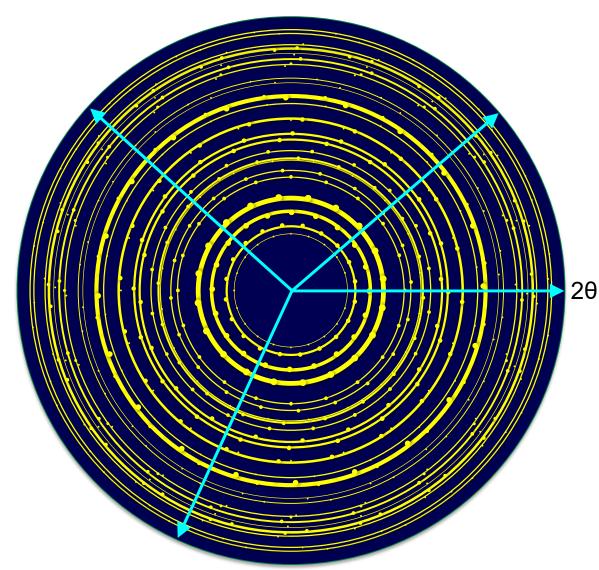


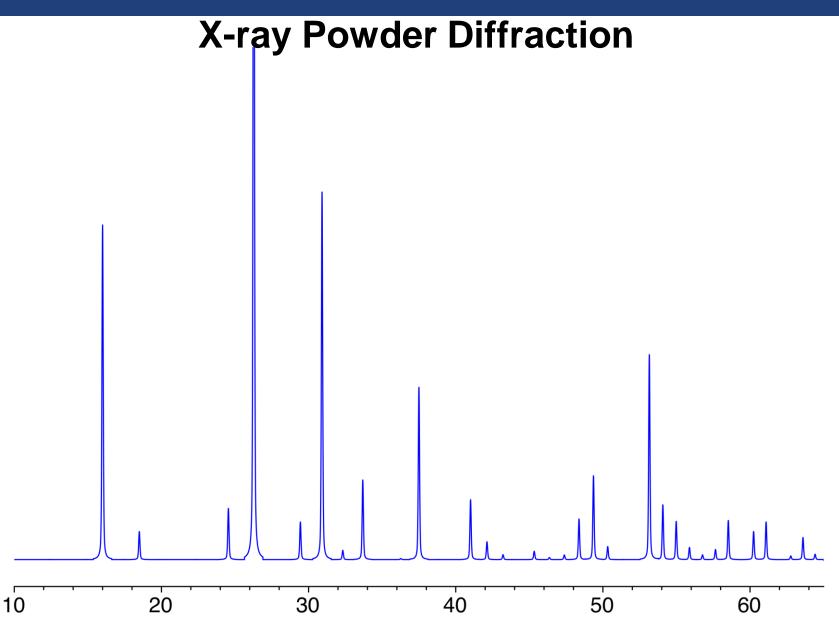




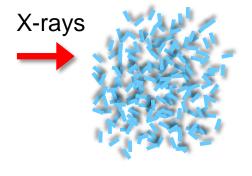


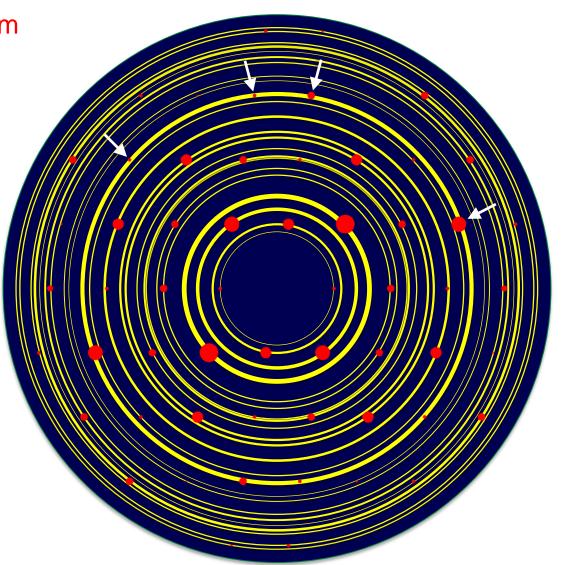






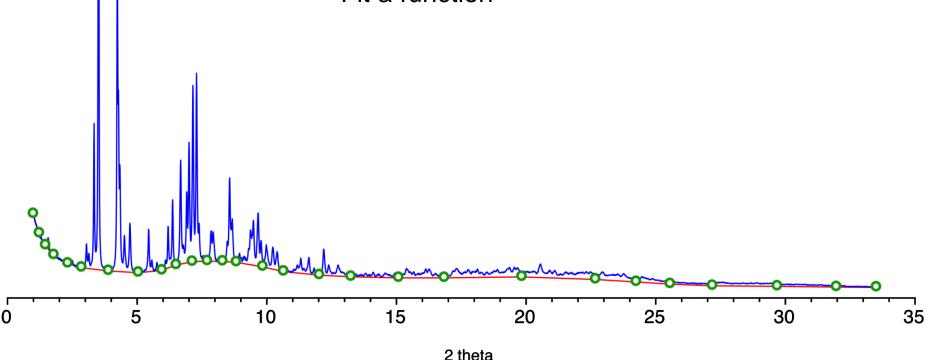
Reflection Overlap Problem

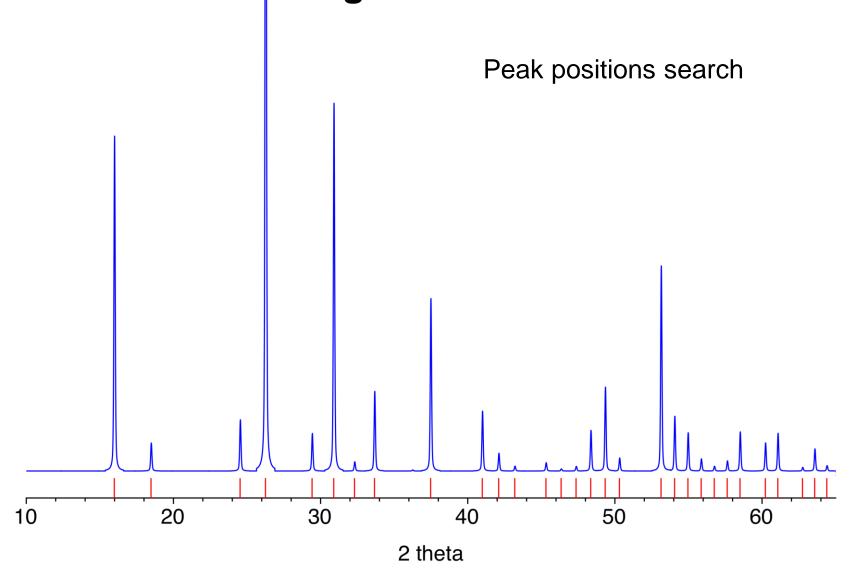




The determination of the background

- Assume flat background
- Measure an empty sample holder
- Estimate points and interpolate between them
- Fit a function





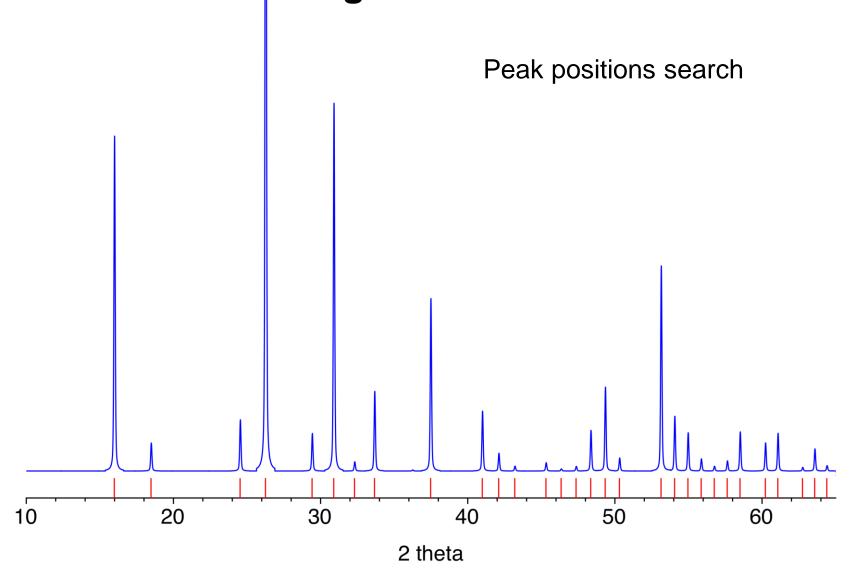
Relationship between 2θ and *d*-spacing

Bragg's Law
$$\lambda = 2d_{hkl} \sin \theta_{hkl}$$

$$d_{hkl} = \frac{\lambda}{2} \sin \theta_{hkl}$$

Relationship between *d*-spacing and lattice parameters

Cubic example
$$d_{hkl}^2 = \frac{a^2}{h^2 + k^2 + l^2}$$



Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \implies \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \implies \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

- 2θ (°)
- 16.00
- 18.50
- 24.55
- 26.28
- 29.44
- 30.91
- 32.33
- 33.68
- 37.50
- 41.01
- 42.12
- 43.22
- 45.34

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \longrightarrow \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	sin²θ
16.00	0.01937
18.50	0.02583
24.55	0.04520
26.28	0.05166
29.44	0.06457
30.91	0.07103
32.33	0.07749
33.68	0.08395
37.50	0.10332
41.01	0.12269
42.12	0.12915
43.22	0.13561
45.34	0.14852

$$\frac{\sin^2 \theta_2}{\sin^2 \theta_1} = \frac{\left(h_2^2 + k_2^2 + l_2^2\right)}{\left(h_1^2 + k_1^2 + l_1^2\right)}$$

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \implies \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

$\sin^2\theta$	ratio
0.01937	1.00
0.02583	1.33
0.04520	2.33
0.05166	2.67
0.06457	3.33
0.07103	3.66
0.07749	4.00
0.08395	4.33
0.10332	5.33
0.12269	6.33
0.12915	6.67
0.13561	7.00
0.14852	7.66
	0.01937 0.02583 0.04520 0.05166 0.06457 0.07103 0.07749 0.08395 0.10332 0.12269 0.12915 0.13561

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \longrightarrow \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	$\sin^2\theta$	ratio	integers
16.00	0.01937	1.00	3
18.50	0.02583	1.33	4
24.55	0.04520	2.33	7
26.28	0.05166	2.67	8
29.44	0.06457	3.33	10
30.91	0.07103	3.66	11
32.33	0.07749	4.00	12
33.68	0.08395	4.33	13
37.50	0.10332	5.33	16
41.01	0.12269	6.33	19
42.12	0.12915	6.67	20
43.22	0.13561	7.00	21
45.34	0.14852	7.66	23

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \implies \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	sin²θ	ratio	integers	$h^2 + k^2 + l^2$
16.00	0.01937	1.00	3	6
18.50	0.02583	1.33	4	8
24.55	0.04520	2.33	7	14
26.28	0.05166	2.67	8	16
29.44	0.06457	3.33	10	20
30.91	0.07103	3.66	11	22
32.33	0.07749	4.00	12	24
33.68	0.08395	4.33	13	26
37.50	0.10332	5.33	16	32
41.01	0.12269	6.33	19	38
42.12	0.12915	6.67	20	40
43.22	0.13561	7.00	21	42
45.34	0.14852	7.66	23	46

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \implies \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	sin²θ	ratio	integers	$h^2 + k^2 + l^2$	hkl
16.00	0.01937	1.00	3	6	211
18.50	0.02583	1.33	4	8	220
24.55	0.04520	2.33	7	14	321
26.28	0.05166	2.67	8	16	400
29.44	0.06457	3.33	10	20	420
30.91	0.07103	3.66	11	22	332
32.33	0.07749	4.00	12	24	422
33.68	0.08395	4.33	13	26	431
37.50	0.10332	5.33	16	32	440
41.01	0.12269	6.33	19	38	532, 611
42.12	0.12915	6.67	20	40	620
43.22	0.13561	7.00	21	42	541
45.34	0.14852	7.66	23	46	631

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \implies \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	sin²θ	ratio	integers	$h^2 + k^2 + l^2$	hkl	a (Å)
16.00	0.01937	1.00	3	6	211	13.5567
18.50	0.02583	1.33	4	8	220	13.5564
24.55	0.04520	2.33	7	14	321	13.5567
26.28	0.05166	2.67	8	16	400	13.5563
29.44	0.06457	3.33	10	20	420	13.5566
30.91	0.07103	3.66	11	22	332	13.5566
32.33	0.07749	4.00	12	24	422	13.5563
33.68	0.08395	4.33	13	26	431	13.5565
37.50	0.10332	5.33	16	32	440	13.5565
41.01	0.12269	6.33	19	38	532, 611	13.5564
42.12	0.12915	6.67	20	40	620	13.5565
43.22	0.13561	7.00	21	42	541	13.5565
45.34	0.14852	7.66	23	46	631	13.5565

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \longrightarrow \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	hkl
16.00	211
18.50	220
24.55	321
26.28	400
29.44	420
30.91	332
32.33	422
33.68	431
37.50	440
41.01	532, 611
42.12	620
43.22	541
45.34	631

Lattice parameter

$$a = 13.5565 \text{ Å}$$

Centered?

P: no conditions on hkl

$$1: h + k + 1 = 2n$$

F:
$$h+k=2n$$

 $h+l=2n$
 $k+l=2n$ hkl all
even or all
odd

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \longrightarrow \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)	hkl
16.00	211
18.50	220
24.55	321
26.28	400
29.44	420
30.91	332
32.33	422
33.68	431
37.50	440
41.01	532, 611
42.12	620
43.22	541
45.34	631

Lattice parameter

$$a = 13.5565 \text{ Å}$$

Centered?

P: no conditions on hkl

$$h + k + l = 2n$$

F:
$$h + k = 2n$$

 $h + l = 2n$
 $k + l = 2n$
odd

hkl all
even or all

Indexing an XPD Pattern
$$d_{hkl}^2 = \frac{\lambda^2}{4\sin^2\theta_{hkl}} = \frac{a^2}{h^2 + k^2 + l^2} \longrightarrow \sin^2\theta_{hkl} = \left(\frac{\lambda^2}{4a^2}\right) \left(\frac{h^2 + k^2 + l^2}{4a^2}\right)$$

2θ (°)

38.46

55.54

69.58

82.46

94.94

107.64

121.36

Exercise 1 (send answers to przepka@ethz.ch):

- Index listed peaks if you know the structure is cubic
- 2. What is lattice parameter a if $\lambda = 1.54 \text{Å}?$
- 3. What is centering?

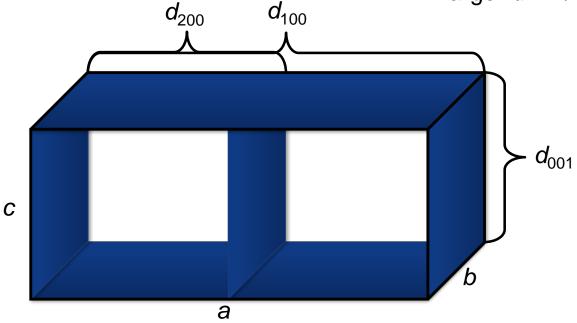
Reflection position

Parameters affecting reflection positions

- unit cell parameters
- zero point of the detector
- sample displacement

$$I = 2d_{hkl} \sin q_{hkl}$$

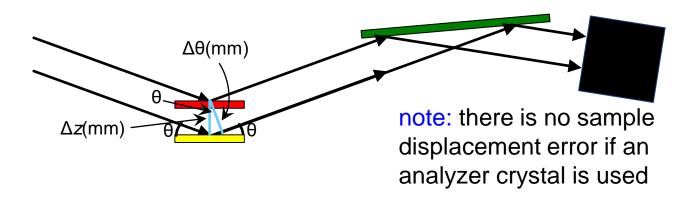
smaller $d \Rightarrow \text{larger } 2\theta$ larger $d \Rightarrow \text{smaller } 2\theta$



Reflection position

Parameters affecting reflection positions

- unit cell parameters
- zero point of the detector
- sample displacement (Bragg-Brentano)

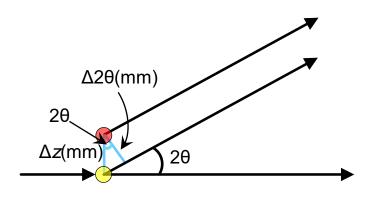


$$cos(2\theta) = \Delta 2\theta/\Delta z$$
$$\Delta \theta = \Delta z cos(\theta)$$

Reflection position

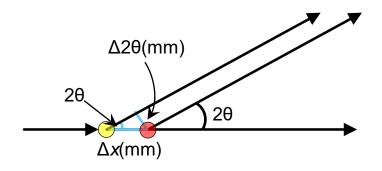
Parameters affecting reflection positions

- unit cell parameters
- zero point of the detector
- sample displacement (Debye-Scherrer)



$$cos(2\theta) = \Delta 2\theta/\Delta z$$

 $\Delta 2\theta = \Delta z cos(2\theta)$



$$sin(2\theta) = \Delta 2\theta/\Delta x$$

 $\Delta 2\theta = \Delta x sin(2\theta)$

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation
$$D = \frac{K\lambda}{FWHM \cos \theta}$$

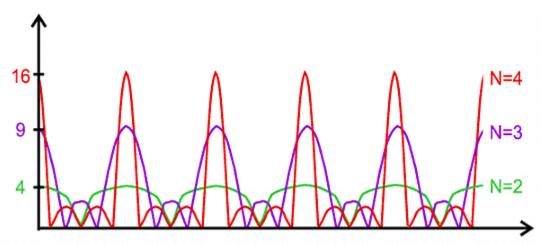
D – crystalline size, K=0.9 - shape factor, λ – wavelength, FWHM – the line broadening at half the maximum intensity, θ – Bragg angle

The Laue Equations describe the intensity of a diffracted peak from an **infinitely** large (> 1um) and perfectly ordered crystal. Deviations from the ideal (nanosizing) create peak broadening

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation
$$D = \frac{K\lambda}{FWHM \cos \theta}$$

D – crystalline size, K=0.9 - shape factor, λ – wavelength, FWHM – the line broadening at half the maximum intensity, θ – Bragg angle

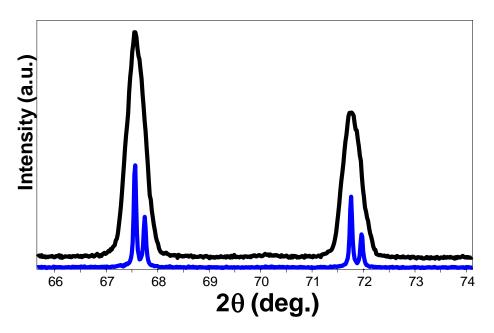


The interference from n = 2, 3, 4 scattering centers

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation
$$D = \frac{K\lambda}{FWHM \cos\theta}$$

D – crystalline size, K=0.9 - shape factor, λ – wavelength, FWHM – the line broadening at half the maximum intensity, θ – Bragg angle

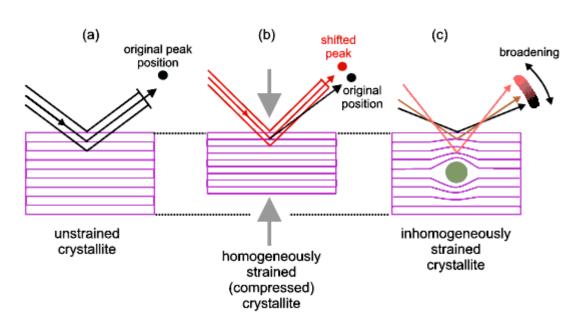


Note the instrumental contribution. Left: the same sample, different instruments

Peak width (B) is inversely proportional to crystallite size (L)

Scherrer equation
$$D = \frac{K\lambda}{FWHM \cos \theta}$$

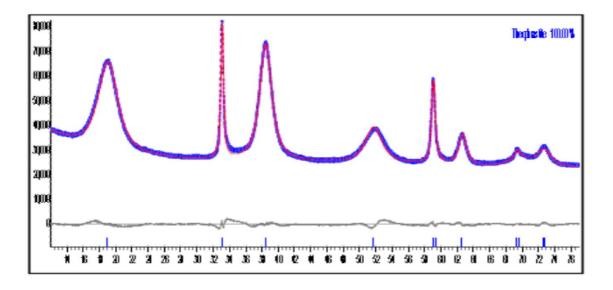
Microstrain (ϵ) analysis

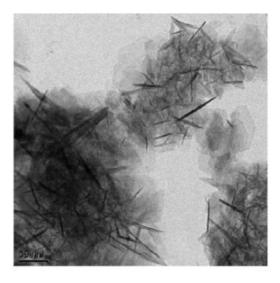


 $FWHM = C \varepsilon tan\theta$

Anisotropic Size Broadening

The broadening of a single diffraction peak is the product of the crystallite dimensions in the direction perpendicular to the planes that produced the diffraction peak

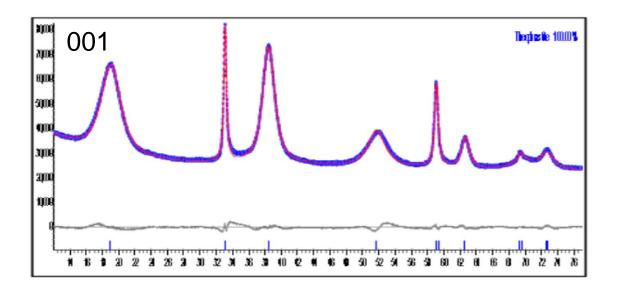


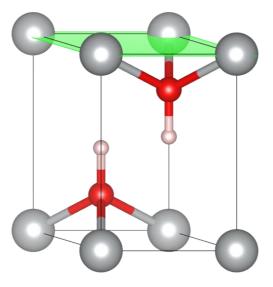


Anisotropic broadening in the PXRD pattern of Ni(OH)₂

Anisotropic Size Broadening

The broadening of a single diffraction peak is the product of the crystallite dimensions in the direction perpendicular to the planes that produced the diffraction peak

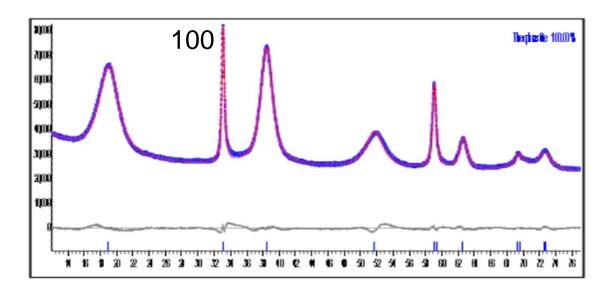


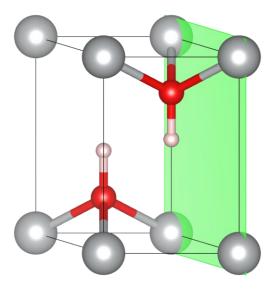


Anisotropic broadening in the PXRD pattern of Ni(OH)₂

Anisotropic Size Broadening

The broadening of a single diffraction peak is the product of the crystallite dimensions in the direction perpendicular to the planes that produced the diffraction peak





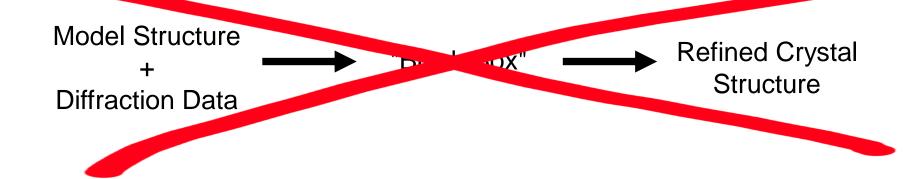
Anisotropic broadening in the PXRD pattern of Ni(OH)₂

The Rietveld analysis

The Rietveld method refines user-selected parameters to minimize the difference between an experimental pattern (observed data) and a model based on the hypothesized crystal structure and instrumental parameters (calculated pattern)

The Rietveld analysis

The Rietveld method refines user-selected parameters to minimize the difference between an experimental pattern (observed data) and a model based on the hypothesized crystal structure and instrumental parameters (calculated pattern)



From intensities to structural parameters

$$\Delta = \sum_{n=1}^{N} \{ I_n(\text{obs}) - I_n(\text{calc}) \} 2$$

$$I(\text{calc}) = c j_{\text{hkl}} L(2\theta) P(2\theta) A(2\theta) F^{2}(hkl)$$

where L, P, A are the Lorentz, polarization, and absorption corrections, respectively. j is the multiplicity factor (symmetry), c is a scale factor and F is a structure factor.

$$F_{hkl} = \sum_{j} f_{j} \exp[2\pi i(hx_{j} + hy_{j} + hz_{j})]$$

where f_i is atomic form factor.

bkg @ 0 0 0 0

R-Factors

$$R_{wp} = \{ \sum_{i} w_{i} \{ y_{i}(obs) - y_{i}(calc) \}^{2} / \{ \sum_{i} w_{i} y_{i}(obs)^{2} \}^{1/2}$$

$$w_{i}^{2} = 1 / \sigma(y_{i}(obs))^{2}$$

$$R_{exp} = \{ (M - P) / \{ \sum_{i} w_{i} y_{i} (obs)^{2} \}^{1/2}$$

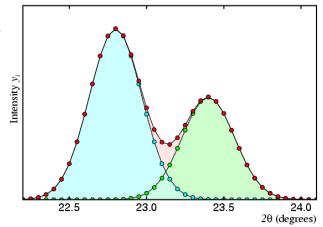
$$\chi^2 = (R_{wp}/R_{exp})^2$$
 (goodness-of-fit)

where w_i is weighting related to uncertainty σ . M – the number of data points, P – the number of parameters

Pawley and LeBail profile fitting

Parameters:

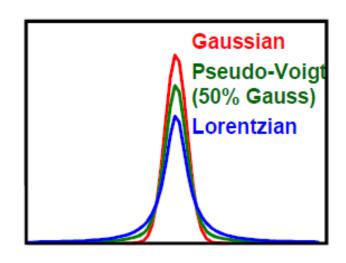
- I(hkl) Intensity of each reflection with indices hkl (only Pawley);
- *a,b,c,α,β,γ* Unit-cell metric tensor parameters;
- 2θ_{zero} Instrumental zero error;
- U,V,W Peak-width parameters;
- η, etc. Other peak-shape parameters



Pseudo-Voight peak shape function:

$$I(2\theta) = I_{hkl} [\eta L (2\theta - 2\theta_0) + (1 - \eta) G (2\theta - 2\theta_0)]$$

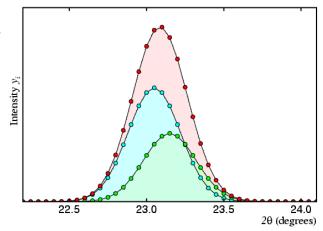
where L (2θ – $2\theta0$) and G (2θ – $2\theta0$) represent Lorentz and Gaussian functions, and η - the "Lorentz fraction"



Pawley and LeBail profile fitting

Parameters:

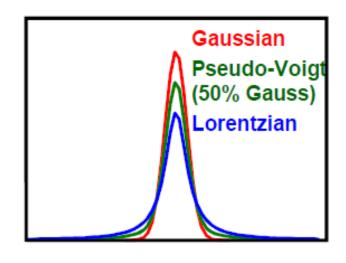
- I(hkl) Intensity of each reflection with indices hkl (only Pawley);
- *a,b,c,α,β,γ* Unit-cell metric tensor parameters;
- 2θ_{zero} Instrumental zero error;
- U,V,W Peak-width parameters;
- η, etc. Other peak-shape parameters



Pseudo-Voight peak shape function:

$$I(2\theta) = I_{hkl} [\eta L (2\theta - 2\theta_0) + (1 - \eta) G (2\theta - 2\theta_0)]$$

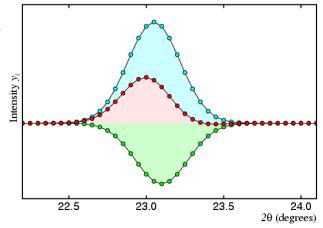
where L $(2\theta - 2\theta0)$ and G $(2\theta - 2\theta0)$ represent Lorentz and Gaussian functions, and η - the "Lorentz fraction"



Pawley and LeBail profile fitting

Parameters:

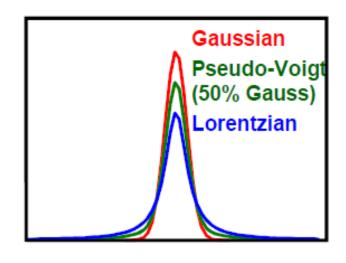
- I(hkl) Intensity of each reflection with indices hkl (only Pawley);
- *a,b,c,α,β,γ* Unit-cell metric tensor parameters;
- 2θ_{zero} Instrumental zero error;
- U,V,W Peak-width parameters;
- η, etc. Other peak-shape parameters



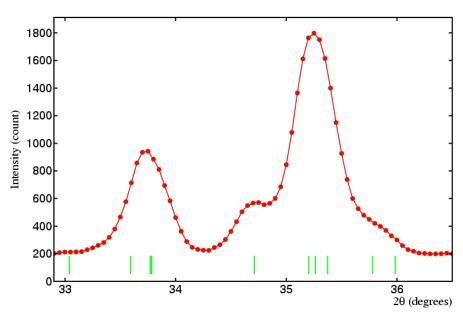
Pseudo-Voight peak shape function:

$$I(2\theta) = I_{hkl} [\eta L (2\theta - 2\theta_0) + (1 - \eta) G (2\theta - 2\theta_0)]$$

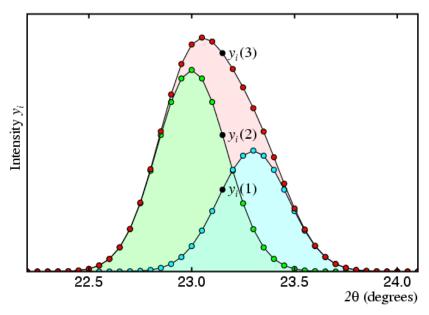
where L $(2\theta - 2\theta0)$ and G $(2\theta - 2\theta0)$ represent Lorentz and Gaussian functions, and η - the "Lorentz fraction"



Rietveld profile fitting



The detailed diffraction profile contained a lot more information than the extracted intensities of composite peaks



The detailed profile can be fitted on a point by point basis as the summation of the contribution of the profiles of all reflections to that point:

$$y_i(3) = yi(1) + yi(2)$$

Instrumental function

Refinement in TOPAS

```
xdd {
! Lam profile (wavelength)
@ SD()

@ PV_Peak_Type()
@ Simple_Axial_Model()
@ @ Scale
}
```

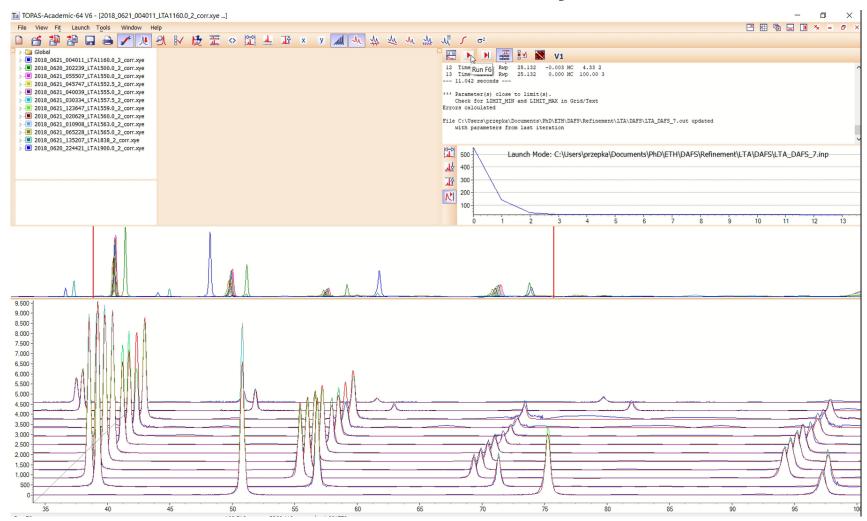
Structure parameters

```
str {
```

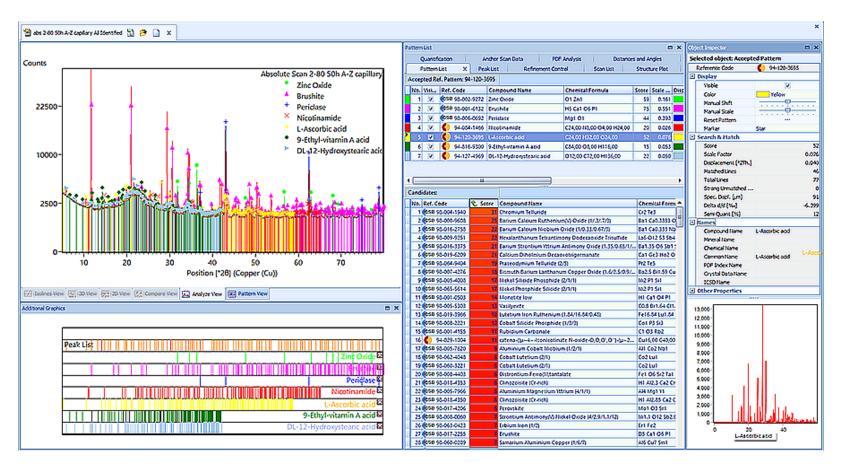
@ Unit cell parameters

```
Site
                                                          Ocupp.
                                                                    Therm.
                         Fractional atomic coordinates
                                                          Factor
                                                                    Factor
site Si(1) num_posns 16
                       x 0.32281 y 0.19961
                                              z 0.20804
                                                          occ Si 1.0 beg 1
site Si(2) num posns
                       x 0.08670
                                   v 0.20129
                                              z 0.00000
                                                         occ Si 1.0 beg 1
                                                          occ Si 1.0 beg 1
site Si(3) num_posns
                                   y 0.00000
                                               z 0.29371
                        x 0.27374
site Si(4)
        num posns
                        x 0.15538
                                   v 0.00000
                                               z 0.00000
                                                          occ Si 1.0 beg 1
site 0(8)
         num_posns
                        x 0.25169
                                   y 0.00000
                                              z 0.50000
                                                          occ O
                                                                 1.0 beg 1
                        x 0.20342
                                   y 0.00000
                                                                 1.0 beg 2
site 0(7)
         num posns
                                              z 0.18745
                                                          occ O
                     8 x 0.10707
                                   y 0.09088
site 0(5)
                                              z 0.00000
                                                                 1.0 beg 2
         num posns
                                                          occ O
site O(3)
                       x 0.34246 y 0.21404 z 0.00000
                                                          occ O
                                                                 1.0 beg 2
         num posns
                                   y 0.20890
site 0(6)
                     4 x 0.00000
                                              z 0.00000
                                                                 1.0 beg 2
         num posns
                                                          occ O
                                   v 0.25000
site 0(4)
                       x 0.25000
                                              z 0.25000
                                                          occ O
                                                                 1.0 beg 2
         num posns
site 0(2)
                     16 x 0.38070 y 0.24571 z 0.32000
                                                                 1.0 beg 2
         num posns
                                                          occ O
         num posns 16 x 0.31646 y 0.09052 z 0.24720
                                                                 1.0 beg 2
site O(1)
                                                          occ O
```


The Rietveld analysis



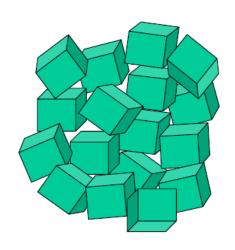
Phase identification



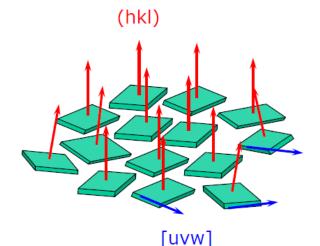
HighScore matches the peaks from collected data with database records

Sample preparation. What happens when wrong?

- 1. Not all crystal lattice planes present (graininess)
- 2. Relative intensities distribution different from expected (preferred orientation)



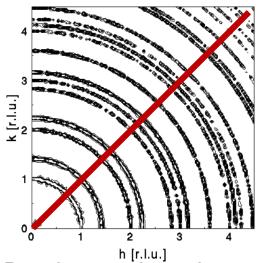
Random orientation of crystallites (e.g. isotropic powder)



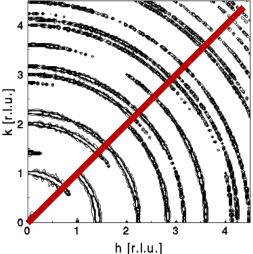
Preferred orientation of crystallites (typical for plate-like crystallites)

Sample preparation. What happens when wrong?

- 1. Not all crystal lattice planes present (graininess)
- 2. Relative intensities distribution different from expected (preferred orientation)



Random orientation of crystallites (e.g. isotropic powder)

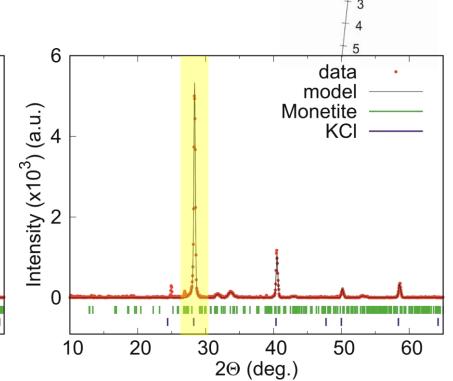


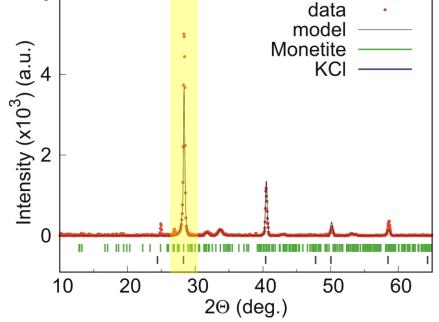
Preferred orientation of crystallites (typical for plate-like crystallites)

6

Sample preparation

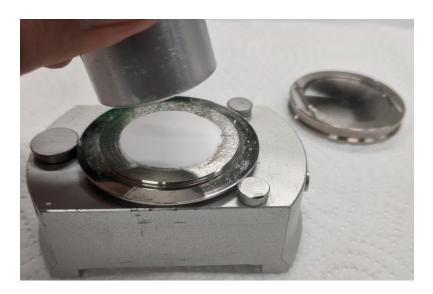
Preferred orientation may be corrected by spherical harmonics function. It compromises however the structure refinement or quantitative phase identification



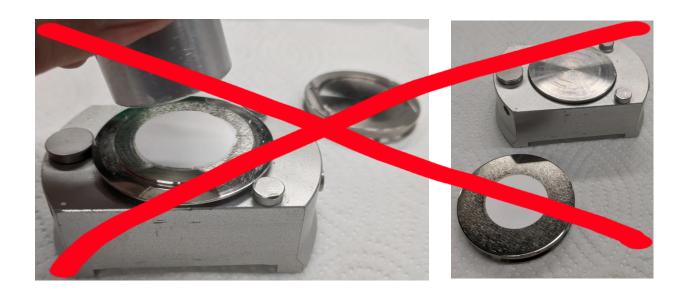


5

Sample preparation for reflection XRD



Sample preparation for reflection XRD



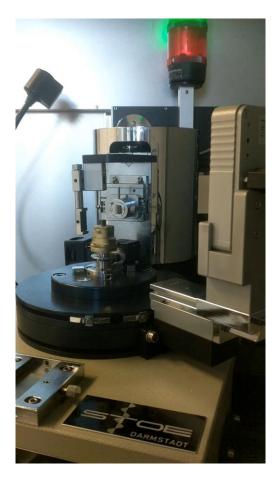
$$I/I_0 = e^{-(\mu_{tot}/\rho)x} < 1\% \text{ if } x > 0.5mm$$

 $I_0(ph/s)$ – incident photon flux for Cu anode; μ_{tot} – total absorption coefficient for a zeolite; ρ – density of a zeolite;

Sample preparation for reflection XRD

Sample preparation for transmission XRD





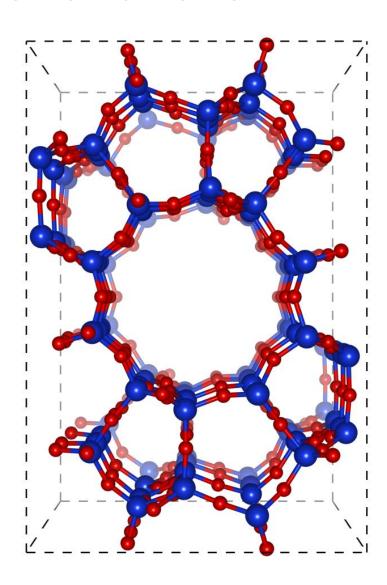
Stoe STADIP diffractometer working in Transmission-/Debye-Scherrergeometry available for ex situ capillaries measurements

Si:Al distribution in zeolite framework

Protons and other light elements are poor scatterers and cannot be detected directly by X-ray diffraction methods

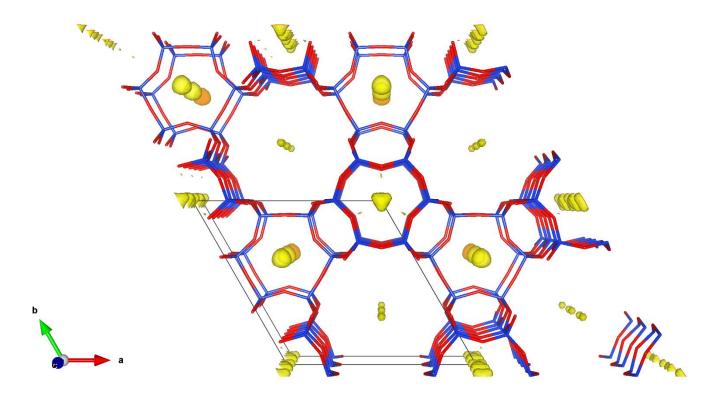
Brønsted acid sites or hydroxyl groups are balanced by framework charge associated to aluminum. Hence determination of Al positions allows on situating extraframework entities

Brønsted Acidity



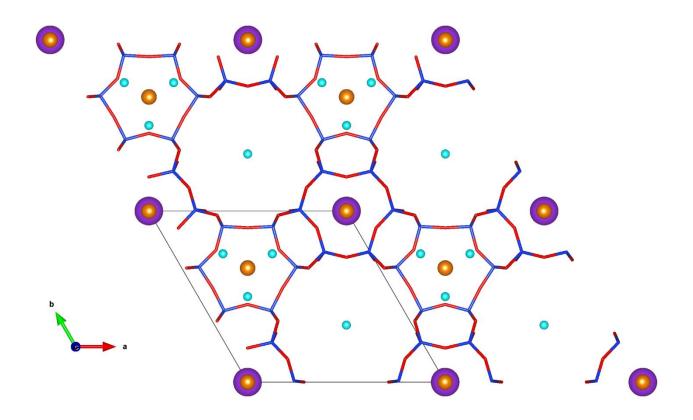
Difference density maps

fourier_map_formula=Fobs-Fcalc(model);



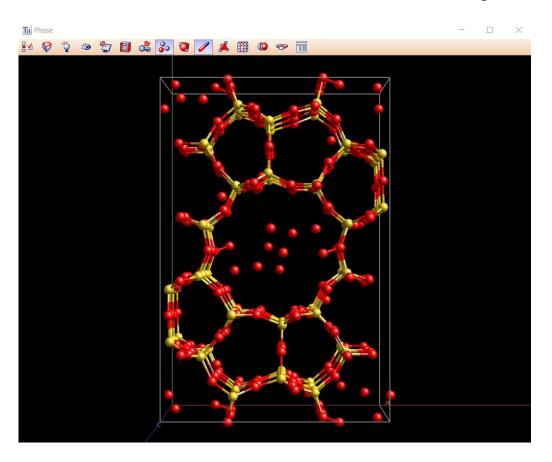
To investigate the positioning of the cations in Cu-OFF zeolite, the structure model containing only the framework atoms was subtracted from observed PXRD data

The refinement of extraframework cations



The structure of Cu-OFF with input positions of the extra-framework cations adopted from DDM was refined using Rietveld analysis

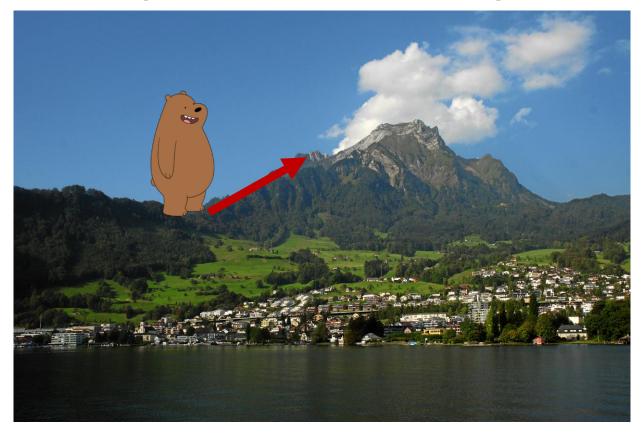
Structure Determination by Simulated Annealing



```
rigid
 load z_matrix {
   O1
   H2 1 0.9687
   H3 1 0.9687 2 104
 translate
   tx @ 0 ty @ 0 tz @ 0
 rotate
   qa @ 0 qb @ 0 qc @ 0
```

The simulated annealing algorithm approximates the global optimum of a given parameter in an environment of a large number of local optima whereas least square methods are local optimization only

Simulated annealing vs least squares methods (Rietveld refinement)



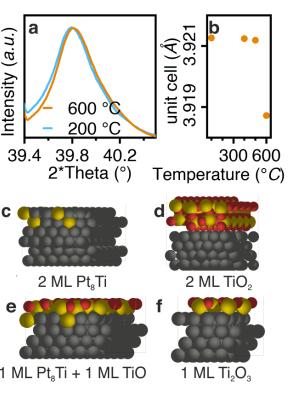
The simulated annealing algorithm approximates the global optimum of a given parameter in an environment of a large number of local optima whereas least square methods are local optimization only

Simulated annealing vs least squares methods (Rietveld refinement)

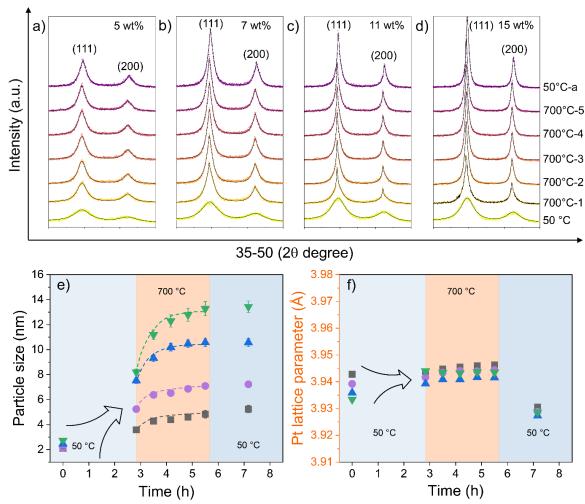
The simulated annealing algorithm approximates the global optimum of a given parameter in an environment of a large number of local optima whereas least square methods are local optimization only

Lattice parameters and particle size analysis

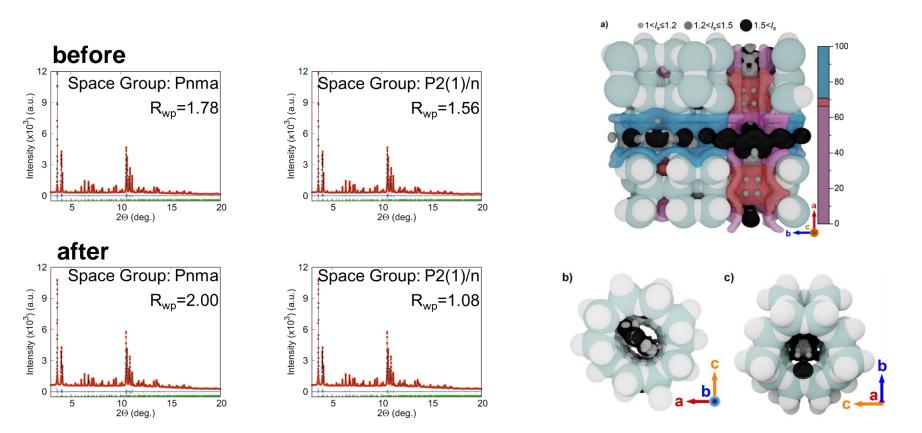
Formation of the strong metal support interaction (SMSI). Pt-Ti alloying



The annealing of carbon-supported Pt nanoparticles. The evolution of diffraction peaks

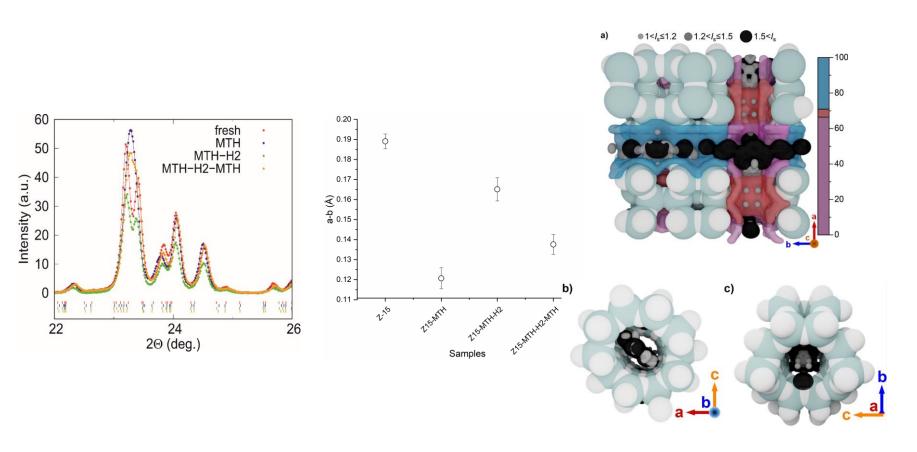


ZSM5 structure upon MTH conversion



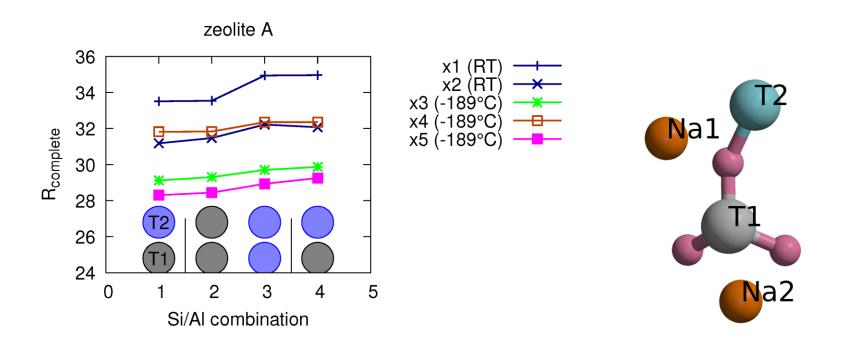
Clustering of coke in the intersection of ZSM-5 channels during methanol-tohydrocarbons conversion (MTH) leads to lowering of the structure symmetry

ZSM5 structure upon MTH conversion



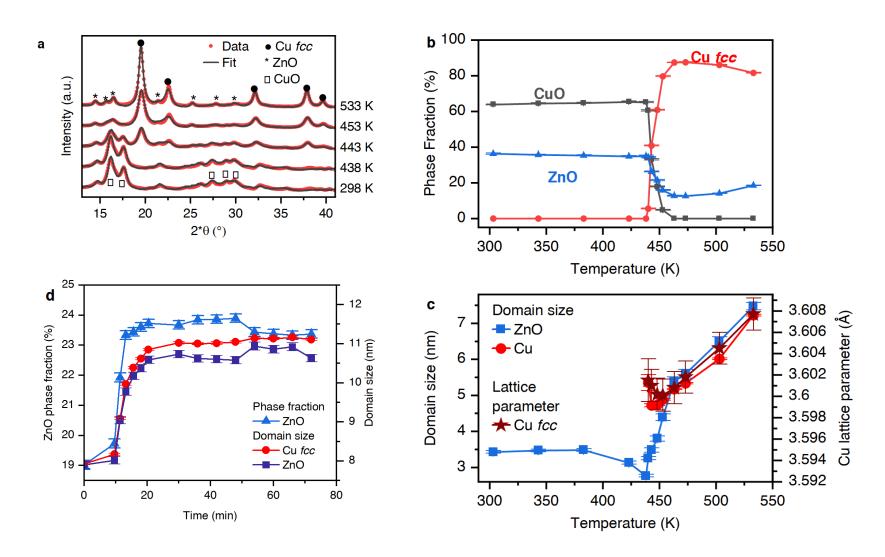
Clustering of coke in the intersection of ZSM-5 channels during methanol-tohydrocarbons conversion (MTH) is correlated by a-b lattice parameters change

Symmetry lowering with T-atoms alternations

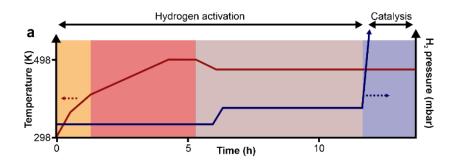


Electron diffraction demonstrates capability of energy discrimination to suppress noise and enables distinguishing between silicon and aluminum

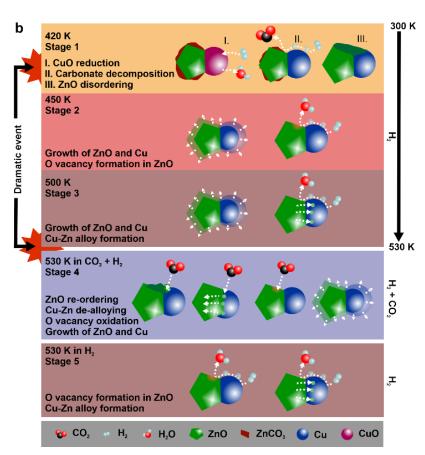
In situ TPR of CZA catalyst



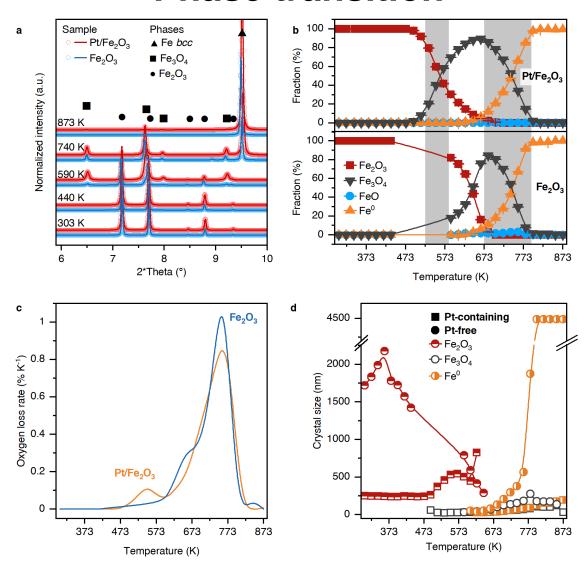
In situ TPR of CZA catalyst



Genesis and transformation of the CZA precursor to the working catalyst upon typical reported industrial activation protocol.

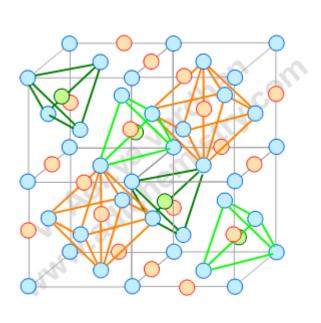


Phase transition

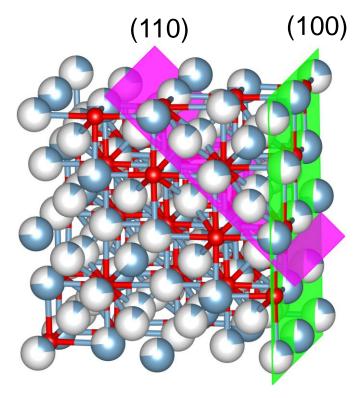


Iron oxides phase transition upon hydrogen in the presence and absence of platinum

Spinel structure of γ -Al₂O₃

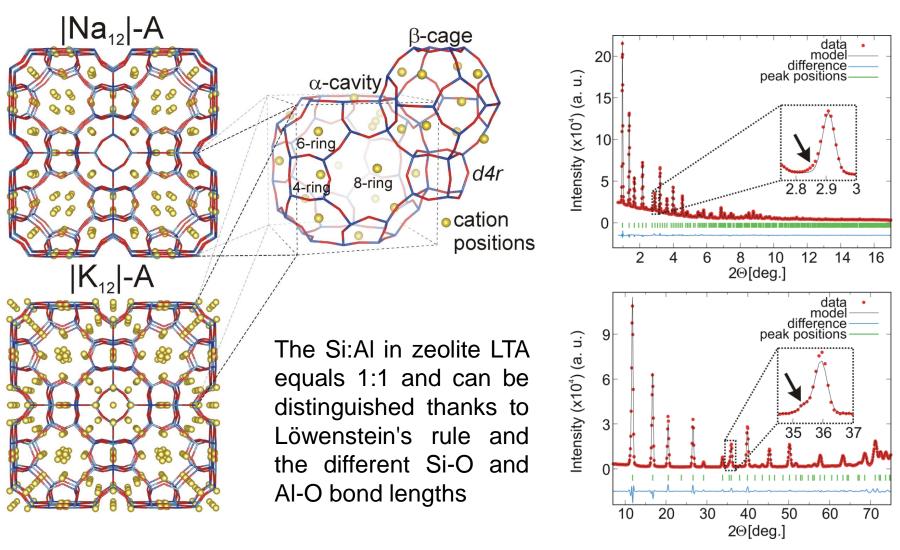


Al cations are distributed over the octahedral (16d) and tetrahedral (8a) site



{100} set of planes is specific for octahedral aluminum

Structure of zeolite LTA

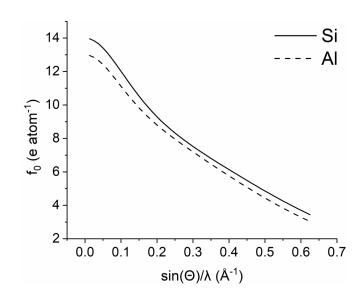


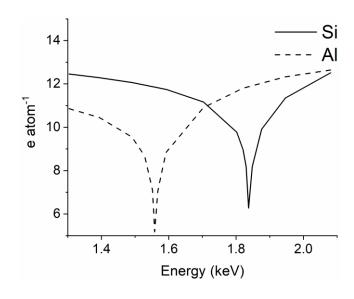
X-ray Anomalous Form Factor

Silicon and aluminum have similar atomic numbers (Z=14 and 13) and are difficult to be distinguished

At X-ray absorption energy level, the f' and f'' contributions become significant and the scattering power of an element changes

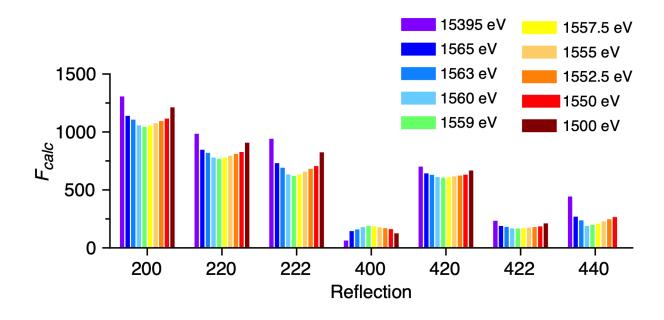
$$f = f_0 + f' + i \cdot f''$$



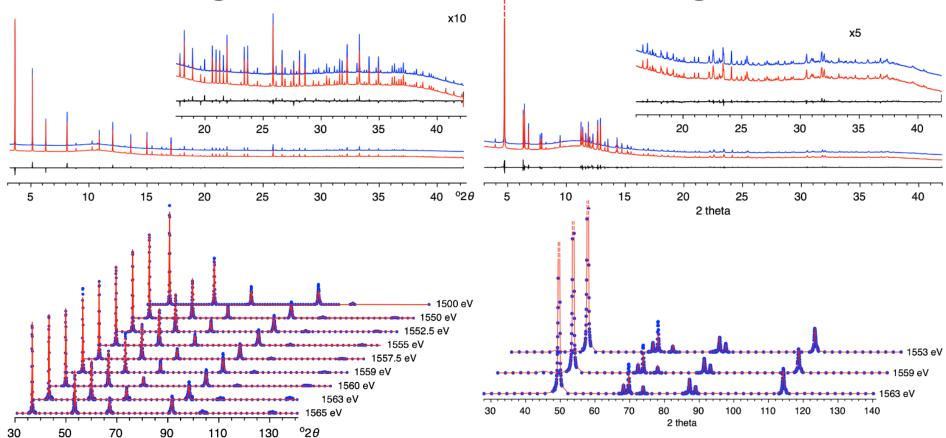


Refinement of resonant data collected from LTA

The F_{hkl} values calculated for zeolite A across Al K-edge energies. The small but significant differences arise from near the Al K-edge. Each reflection is affected slightly differently by the changes in the aluminum scattering factor and these allow the aluminium distribution to be determined



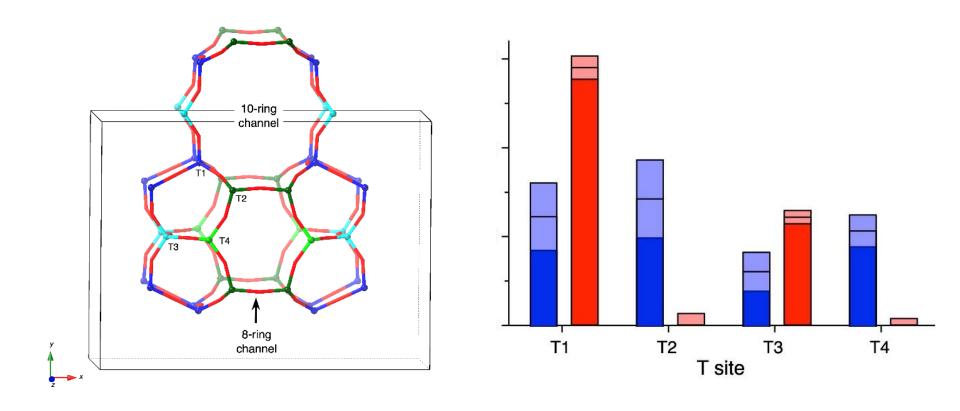
Structure Refinement using conventional and Al K-edge data



Structure refinement of Zeolite A

Structure refinement of zeolite FER

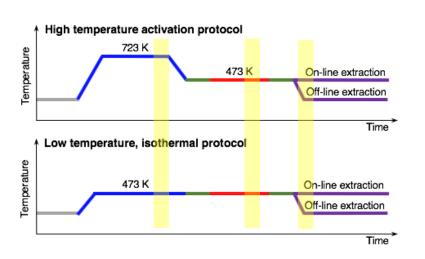
Refinement of resonant data collected from FER

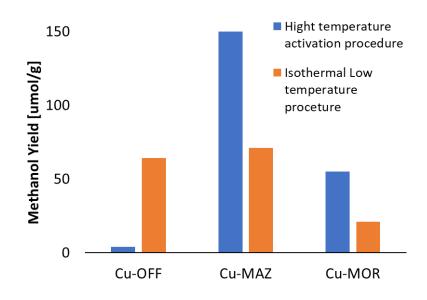


The ordering of the 2.2 aluminium atoms per unit cell over the four T-sites in FER1 (blue) and FER-PYRR (red)

Anomalous diffraction across copper K-edge

The aim of this project is to exploit anomalous scattering at the Cu K-edge to elucidate the structure of the copper species present during the partial oxidation of methane to methanol (MtM)

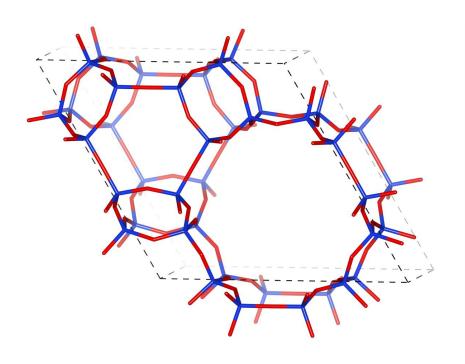


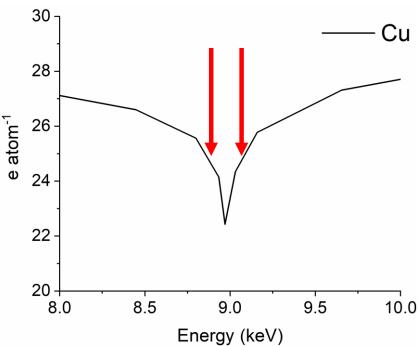


Copper offretite underwent isothermal and high-temperature procedures for methane-to-methanol conversion

Cu-offretite preforms better at lower temperature

Anomalous diffraction across copper K-edge

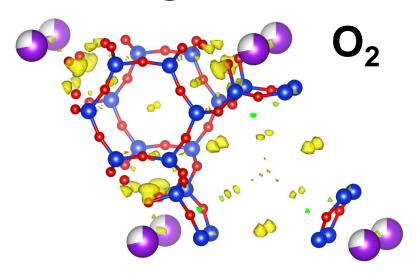




Offretite is hexagonal structure with 12-ring channels along z-axis. It is composed of gmelinite and cancrinite cages

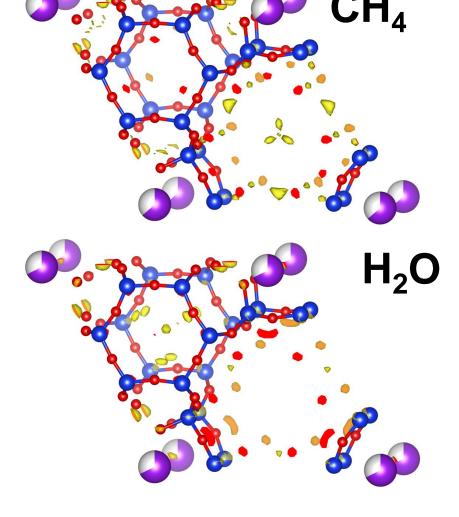
Each sample was measured at offresonance (17.5 keV) and onresonance conditions (8.97 keV and 8.98 keV)

High resolution diffraction of offretite

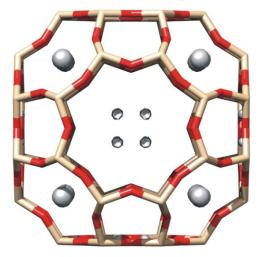


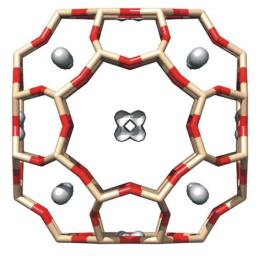
OFF structure reveals the electron densities near 8-ring window of gmelinite cage upon MtM protocol. Similar observation was done on Cu-Omega

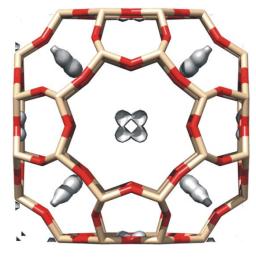
Anomalous diffraction is needed for ambiguous assignment of these densities to copper, oxygen or carbon



The population of Na⁺ and K⁺ in |Na_{12-x}K_x|-A

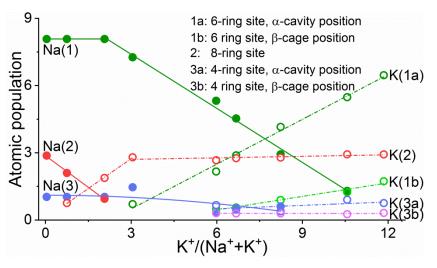






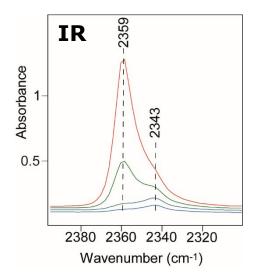
 $|Na_{12}|$ -A $|Na_9K_3|$ -A

 $|Na_{5.3}K_{6.7}|-A$

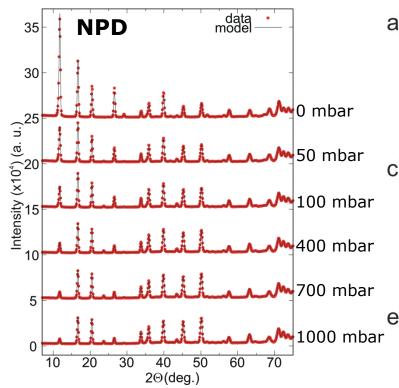


- K⁺ and Na⁺ populations are well resolved due to different positioning
- 8-ring is favored by cation replacement at low K+-content
- K⁺ gradually substitutes Na⁺ in 6-ring

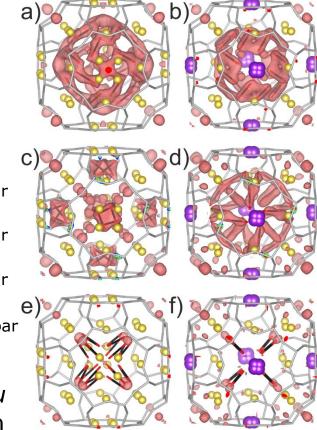
The chemical nature of physisorbed CO₂



IR bands showed differentiation of physisorbed CO₂ at |Na₁₂|-A

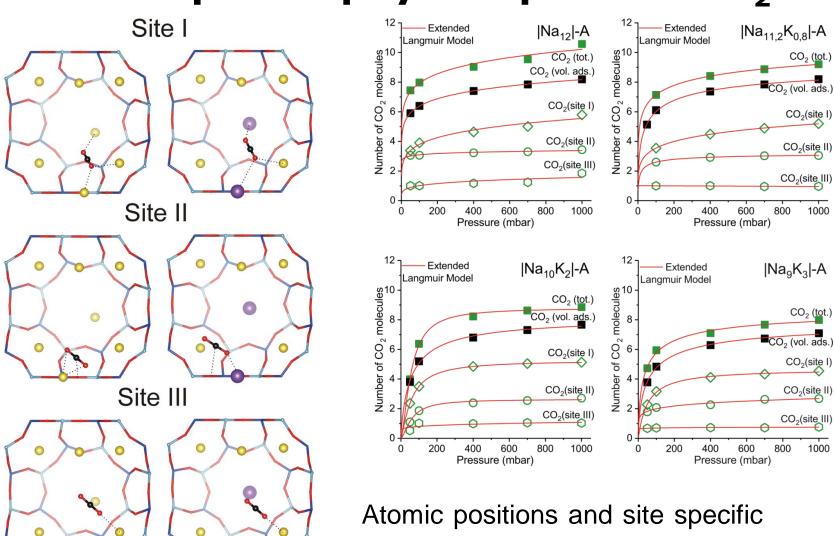


Rietveld analyses of the *in situ* neutron powder diffraction patterns of |Na₉K₃|-A



Difference Fourier maps of 3 sites of CO_2 for $|Na_{12}|$ -A (left) and $|Na_9K_3|$ -A (right)

Site-specific physisorption of CO₂

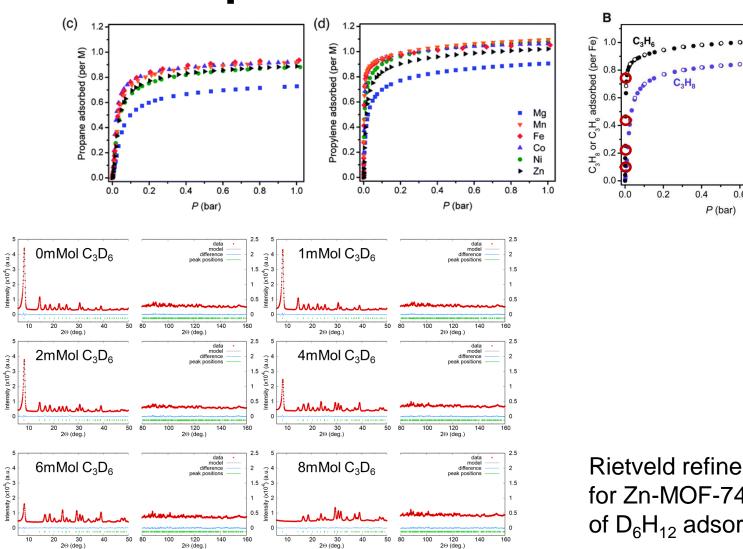


isotherms of adsorbed CO₂

1000

1000

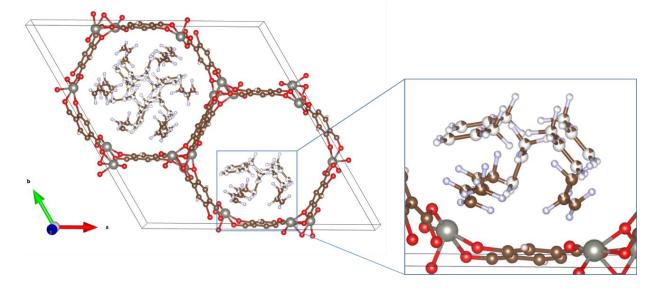
Adsorption of deuterated olefins

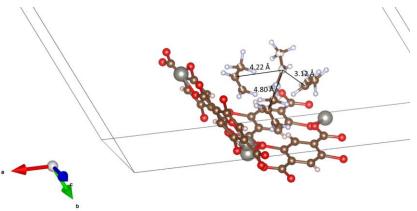


Rietveld refinement profile for Zn-MOF-74 as function of D₆H₁₂ adsorption

0.8

Adsorption of deuterated olefins





The refined propene-loaded Zn-MOF-74 structure with intermolecular distances

The propene density is increased inside the porous system upon formation of 2nd layer of adsorption

References

1. http://pd.chem.ucl.ac.uk/pd/welcome.htm

2. http://prism.mit.edu/xray/education/downloads.html

3. http://www.crystal.mat.ethz.ch/people/staff/mlynne/

Thank you for your attention!