

Catalysts under pressure

Jeroen A. van Bokhoven

PAUL SCHERRER INSTITUT

THE HETEROGENEOUS CATALYSIS GROUP

A catalyst breaks bonds ...

and makes bonds ...

Catalysts often have multiple components

ETH zürich

Industrial working conditions

Methanol synthesis A * CO + B * CO ₂ + C * H ₂ \rightleftharpoons D* CH ₃ OH + B * H ₂ O	250–300°C, 50–150 bar
Ammonia synthesis (Haber-Bosch) 1 * N ₂ + 3 * H ₂ \rightleftharpoons 2 * NH ₃	400–500°C, 150–300 bar
Fischer-Tropsch synthesis A * CO + (2*A+1) $H_2 \rightleftharpoons C_A H_{2A+2} + H_2 O$	200–300°C, 10–25 bar
Water-Gas-Shift reaction (High temperature) CO + $H_2O \rightleftharpoons CO_2 + H_2$	350–550°C, 60–80 bar

In situ / operando spectroscopy

- Catalyst structure is a function of its environment
- Only structure measured under reaction conditions can give insight into activity
- Conversion changes the gas environment

Shiran Zhang et al. Acc. Chem. Res. 2013, 46, 1731-1739.

there are surprising few systematic studies "Looking at catalysts under pressure"

How the surface looks like depends on conditions adsorbates

2

Li & Hammer Chem. Phys. Lett. 409, 1-7 (2005)

PAUL SCHERRER INSTITUT

- -

ETH zürich

The Pressure Gap *mechanism*

Arik Beck *in preparation*

$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$

Why study this?

- environmental concern
- making chemicals / fuels from carbon dioxide
- scientific debate about the structure of the catalyst

the big question:

Role of each component in multi-component catalysts

➤ Cu/ZnO/Al₂O₃
➤ Pd/ZnO

Active sites in Cu/ZnO/Al₂O₃

This talk

- Part 1. the pressure gap: structure of multiple components in Cu/ZnO/Al₂O₃
- Part 2. methanol synthesis from carbon dioxide: multiple component catalyst

Copper-Zinc-Alumina (CZA)

The high pressure catalyst: Cu/Zn/Al₂O₃ catalyst for methanol synthesis, water-gas-shift

Kuld et al. *Science* 2016, 352, 969 Behrens et al. *Science* 2012, 336, 893

Arguments in the field

The synergism of copper-zinc is a prototype for multicomponent catalysts. *But it is poorly understood*

- 1) Frei et al. ACS Catalysis 2019, 9, 5537-5544
- 2) Frei et al. ChemCatChem 2019, 11, 1587-1592
- 3) Kattel et al. Science 2017, 355, 1296-1299
- 4) Kuld et al. Science 2016, 352, 969-974
- 5) Van den Berg et al. Nat. Comm. 2016, 7, 13057
- 6) Lunkenbein et al. Angew. Chem. 2016, 55, 12708-12712
- 7) Kondrat et al. Nature 2016, 531, 83-87
- 8) Martin et al. Angew. Chem. 2016, 55, 11031-11036
- 9) Kuld et al. Angew. Chem. 2014, 53, 5941-5945
- 10) Fichtl et al. Angew. Chem. 2014, 53, 7043-7047
- 11) Kandemir et al. Angew. Chem. 2013, 52, 5166-5170
- 12) Zander et al. Angew. Chem. 2013, 52, 6536-6540
- 13) Prieto et al. Nature Mat. 2013, 12, 34-39
- 14) Behrens et al. Science 2012, 336, 893-897
- 15) Zabilskiy et al. Nature Comm. 2020, 11, 2409-2417

Pressure dependent zinc on copper surface coverage

16 h treatment at 200 °C at various hydrogen pressures leads to different surface coverages of zinc on copper

Kuld et al. Angew. Chem. 2014, 53, 5941-5945

The pressure gap

Systematic study of structure of copper-zinc-alumina

Example for a pressure-bridging technique: X-ray absorption spectroscopy

Do test at different partial pressures of H₂:

- 1 mbar
- 10 mbar
- 1000 mbar
- 1 bar
- 5 bar
- 10 bar

Bridge 4 orders of magnitude in partial pressure

Experimental set-up

Temperature programmed reduction (TPR):

- 5 °C min⁻¹
- 1 mbar, 10 mbar, 100 mbar, 1 bar, 5 bar, 10 bar

Temperature programmed reduction $100 \text{ mbar H}_2 (10\% \text{ H}_2/\text{ He})$

Temperature-programmed reduction pressure dependence

Reduction profile and speciation *strongly* pressure-dependent

Cu-Zn alloy at P>1 bar

So far, this is still trivial

Different structures form under different pressure

Conclusions part 1 *the pressure gap is a materials gap*

- The Cu-Zn-Al catalyst is sensitive to the hydrogen pressure *CuO reduction* temperature changes by 40 °C per pressure decade
- Cu(I) oxide is formed as short-lived intermediate at low hydrogen pressures (1-100 mbar).
- No copper-zinc (brass) alloy formation was detected at pressures below 100 mbar.
- There is a reduced form of ZnO_x prior to brass formation

Different pressures yield very different structures

Arik Beck, Maxim Zabilskiy et al. Nature Catalysis (2021)

Carbon dioxide to chemicals and fuels *methanol synthesis*

Materials synthesis and characterization go hand in hand

Lead author: Maxim Zabilskiy Nature Comm. 11 (2020) 2409-2417

$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$

Why study this?

- environmental concern
- making chemicals / fuels from carbon dioxide
- scientific debate about the structure of the catalyst

the big question:

Role of each component in multi-component catalysts

Cu/ZnO/Al₂O₃
Pd/ZnO

Questions

role of zinc (oxide)?

CuZn / PdZn ?

Carbon dioxide hydrogenation to methanol: $CO_2 + 3H_2 \equiv CH_3OH + H_2O$ (Cu/ZnO/Al₂O₃ catalyst; P=15-50 bar; T=200-260 °C)

$CO_2 + H_2 \equiv CO + H_2O$ (side reaction)

What are the reactive species at the surface?

Combined SSITKA – FTIR

Operando SSITKA-FTIR

• SSITKA/FTIR under high pressure!

Catalyst:

• CuO/ZnO/Al₂O₃ (Alfa Aesar)

Experimental conditions:

- 15bars, 260 °C;
- $H_2/CO_2 = 3$

Formates are primary products and undergo full interconversion during the isotope switch!

Formate is a reactive intermediate

where is the formate? → on copper, ZnO or alumina?

Experimental conditions:

- 15bars, 260 ° C; $H_2/CO_2 = 3$;
- Transient switch from hydrogen to CO₂/H₂ mixture

Under reaction conditions

- CuZn de-alloys
- Formate is reactive intermediate
- Formate is associated with zinc

Zabilskiy M, Sushkevich VL, Palagin D, Newton MA, et al.

The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol

Nature Communications 11 (2020) 2409

What about Pd/ZnO?

Synthesis of Pd/ZnO

5 nm

Decrease of surface-to-volume ratio

Catalytic carbon dioxide hydrogenation

Pd/ZnO is highly active and selective

Switch from H2 to CO2/H2 mixture at 260 ° C and 15 bar

ETH zürich

Isotope labeling experiment coupled with FTIR spectroscopy and MS analysis

Switch from a $^{12}CO_2/H_2$ to $^{13}CO_2/H_2$ at 260 $^\circ~$ C and 15 bar total pressure

ETH zürich

Operando XAS study of CO2 hydrogenation over Pd/ZnO catalyst

Supported PdZn catalysts

Catalytic carbon dioxide hydrogenation

Catalyst	Carbon dioxide	Methanol	Methanol
	conversion, %	productivity,	selectivity, %
		g _{меОН} •kg _{cat} -1•hour-1	
PdZn/SiO ₂	2.6	30	11.2
PdZn/Al ₂ O ₃	4.4	27	6.0
PdZn/ZnO/SiO ₂	3.6	184	49.8
PdZn yields CO PdZn/ZnO vields CH ₂ OH		Zabilskiy et al. talysis 10 (2020) 14240 33 (2021) 17190	

Catalytic experiments were performed at 260 $^{\circ}$ C and 30 bar, catalyst mass: 100 mg, CO₂:H₂ ratio equals 1:3 and flowrate: 50 ml/min.

Take home message

Q. role of alloy vs zinc oxide

Alloy or not important?

- CuZn is unstable under reaction conditions
- PdZn is only selective in presence of zinc oxide

Zinc oxide induces selectivity to metanol

stabilization of reactive intermediate (formate)

In situ / operando spectroscopy

- Catalyst structure is a function of its environment
- Only structure measured under reaction conditions can give insight into activity
- Conversion changes the gas environment

Shiran Zhang et al. Acc. Chem. Res. 2013, 46, 1731-1739.

Pressure gap is a materials gap

Pressure, Temperature & Flow Conditions

Heterogeneity & Compexity

Be very careful with extrapolation of your results

Acknowledgements

Maxim Zabilskiy Arik Beck

Mark Newton
Vitaly Sushkevich
Dennis Palagin

Leon van de Water Gerhard Mestl Johnson Matthey Clariant

Marc Willinger TUM Frank Krumeich Maarten Nachtegaal Olga Safonova

THE HETEROGENEOUS CATALYSIS GROUP

Funding

- Swiss National Science Foundation
- ➢ ETHzurich
- > Paul Scherrer Institute

Beam lines

- SNBL at ESRF
- SuperXAS at SLS

