FIGURE INDEX

2.1	Relaxation mechanisms contributing to the static relative di-
	electric permittivity of liquid media along with corresponding
	indicative characteristic timescales
2.2	Hypothetical processes defining the real solvation free energy
0.0	of an ion
2.3	Experimentally-elusive quantities required for the evaluation of intrinsic single-ion solvation free energies
າ 4	intrinsic single-ion solvation free energies
2.4	thermodynamic parameters for processes involving ions 34
	thermodynamic parameters for processes involving ions 54
3.1	Four basic choices defining a molecular model 41
3.2	Three main types of theoretical models applicable to the eval-
	uation of single-ion solvation free energies, as well as derivative
	thermodynamic solvation parameters
3.3	Types of boundary conditions and electrostatic schemes com-
	monly employed in classical atomistic simulations 69
3.4	Common types of non-polarizable water models used in atom-
	istic simulations
3.5	Intrinsic electric potential at the center of an uncharged cavity
	within a pure liquid recalculated using P- or M-summation 113
3.6	External or internal intrinsic bulk electric potentials calculated
	based on a spherical region using P- or M-averaging 118
3.7	Air-liquid interfacial potential of a planar slab of a pure liquid
	calculated using P- or M-integration
3.8	Solvent structuring and polarization around an ion as obtained
	from atomistic simulations
4.1	Thermodynamic reactions relevant to ionic solvation 197
4.2	Thermodynamic cycles relevant to ionic solvation 200
4.3	Schematic illustrations regarding the properties of a system of
	phases at equilibrium
4.4	Schematic classification of different types of phases in terms of
	their (di)electric properties

Figure index 645

4.5	Results of illustrative two-dimensional electrostatics calcula- tions involving square or rectangular conductors surrounded	
	by vacuum.	240
4.6	Results of illustrative two-dimensional electrostatics calcula-	
	tions involving square or rectangular conductors surrounded	
	by vacuum.	242
4.7	Results of illustrative two-dimensional electrostatics calcula-	
	tions involving square conductors surrounded by vacuum	244
4.8	Definitions of the lateral and frontal Volta and surface poten-	
	tials and potential differences for conducting phases	249
4.9	Definition of the standard vacuum, real and intrinsic absolute	
	potentials of an electrode	265
4.10	Illustration of the connection between real and intrinsic abso-	
	lute electrode potentials and corresponding real and intrinsic	
	single-ion solvation free energies.	271
4.11	Potentials in a hypothetical fluid of hard spheres bearing isotropic	
	quadrupole charge distributions	278
4.12	External and internal Galvani potentials within a spherical	
	sample of non-polarizable liquid argon	280
4.13	Analogs of the SPC water model with altered charge distribu-	
	tions	287
4.14	Schematic representation of an electrochemical equilibrium mea-	
	surement.	291
4.15	Example of a Galvanic cell	295
4.16	Schematic representation of Voltaic cell measurements	301
4.17	Practical implementation of the Kenrick cell	304
4.18	Summary of the relationships connecting key quantities related	
	to single-ion solvation	321
5.1	Available sets of effective ionic radii for the alkali and halide	
	ions	339
5.2	Standard electrode (redox) potentials and first isothermal tem-	
	perature derivatives for the alkali and halide element-ion cou-	
	ples in water, along with contributions of more fundamental	
	thermodynamic parameters to these quantities	348
5.3	Standard thermodynamic parameters of dissolution for the alkali-	
	halide salts in water	362
5.4	Available estimates for the real absolute potential $\hat{\mathcal{V}}_H^{\ominus}$ of the	40.4
	reference hydrogen electrode in water	404
5.5	Available estimates for the real single-ion solvation free energy	100
	$\hat{\mathcal{G}}_H^{ igopha}$ of the proton in water	409
5.6	Available estimates for the standard air-liquid interfacial po-	405
	tential χ_{wat}° of water	435

646 Figure index

5.7	Estimates for the standard intrinsic hydration parameters of
	the proton and intrinsic partial molar variables of the aqueous
	proton
5.8	Recommended data for the single-ion intrinsic hydration pa-
	rameters of the gas-phase proton and alkali and halide ions,
	and the single-ion intrinsic partial molar variables of the aque-
	ous proton and alkali and halide ions 479
6.1	Correction terms to raw ionic solvation free energies calculated
	using atomistic simulations
6.2	Illustration of the ion sizes corresponding to the three opti-
	mized ion-water Lennard-Jones interaction parameter sets 521
6.3	Properties that could in principle be used for the (in)validation
	of a specific ion-water (and ion-ion) Lennard-Jones interaction
	parameter set
6.5	Thermodynamic cycles involved in the quantum-mechanical
	calculation of single-ion solvation free energies using quasi-
	chemical theory