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1. Introduction

1.1 Topics and Organization of the Lecture Course

1.1.1 Prerequisites
This lecture course presupposes a basic knowledge of magnetic resonance, including de-
scription by spin Hamiltonians and their expression in terms of Pauli matrices. At ETH
Zurich, these topics are covered in the lecture course PC IV - Magnetic Resonance. A good
textbook for closing gaps is Malcolm Levitt’s "Spin Dynamics" [Lev08]. Somewhat more
"old school", but also fully adequate for this purpose, is the book on pulse EPR by Arthur
Schweiger and the author of these lecture notes [SJ01]. Both these books also cover density
operator and product operator formalism, which we use in this lecture course and introduce
only briefly.

1.1.2 Topics
These lecture notes cover the first part of a combined course on electron paramagnetic
resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). Thus, our main
interest is in electron-nuclear spin systems. We consider the measurement of nuclear
spin frequencies by detection of electron spins, transfer of polarization from electron to
nuclear spins, and the decoupling of the hyperfine interaction for increasing resolution of
EPR or NMR experiments. Finally, we also treat the special case where tunnel states of
methyl groups couple to nuclear and electron spins. To these ends, we first discuss the
computational description of spin dynamics via density operator formalism Chatper 2).
Going beyond standard textbook treatments, we consider excitation of the spin system by
arbitrary waveforms, as it is nowadays feasible in both NMR and EPR spectroscopy. In
this context, and as a preparation for the DNP part of the lecture course, we briefly touch
instrumental aspects of excitation and detection.

Many aspects of arbitrary waveform excitation can be understood in terms of sweeps
of the excitation frequency. Such sweeps lead to adiabatic or fast passage of transitions
and to interference effects upon subsequent passage of two transitions that share a level
(Chapter 3). Another interesting aspect is the selective excitation of spin packets in an
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inhomoegenously broadened line. Such excitation leads to hole burning and subsequent
excitation of connected transitions leads to frequency shifts of the hole. If two transitions
that share a level are both at least weakly allowed, burning a hole on one of these transitions
creates a side hole on the other transition. This effect underlies solid-effect DNP and
electron electron double resonance (ELDOR) detected NMR. Phenomena related to hole
burning and hole shifting are discussed in Chapter 4, which concludes the block on general
description of spin dynamics.

The second block is devoted to control of the hyperfine interaction. In Chapter 5 we
treat hyperfine decoupling, which differs from typical decoupling schemes in NMR because
of the large ratio between the gyromagnetic ratios of electron and nuclear spins. Therefore,
irradiation of electron spins is much more efficient for decoupling, even in situations where
the final detection is again on the electron spin. The situation, where an electron spin
is weakly coupled to a large bath of nuclear spins, which are in turn coupled among
themselves, is of special interest for both DNP and pulsed EPR. In DNP, the weak hyperfine
coupling is used for transferring polarization from the electron spin to nuclear spins, whereas
the couplings between nuclear spins cause spin diffusion and thus redistribution of this
polarization among the nuclei. Such nuclear spin diffusion also leads to coherence loss of
the electron spins (short: decoherence). This decoherence can be partially suppressed by
dynamical decoupling, which we discuss in Chapter 6.

1.2 Literature & Software
As an advanced course, this series of lectures contains much material which is not covered
by textbooks. However, most of the formalism for describing spin dynamics is very well
explained by Levitt’s book [Lev08]. Where necessary, we will complement references to this
book by references to reviews or even original research articles. Many of the concepts are
easier to understand by actually running spin dynamics simulations and analyzing their
results. Our toolbox SPIn DYnamics ANalysis (SPIDYAN) [PDJ16] is integrated into the
development version of the popular EasySpin package [SS06] for simulation of EPR spectra
and experiments. Our examples were tested with version 6.0.0-dev.33, which comes as a
compiled Matlab toolbox. It is instructive to view the source code, which is available at
GitHub. Where appropriate, we will refer to this source code.

References lists for sections have the form

L [Lev08]:11.1; [SJ01]4.2.2; sop

meaning that the concepts are treated in more detail in sections 11.1 and 4.2.2 of the
books by Levitt and Schweiger/Jeschke, respectively and that the source code of EasySpin
function sop is instructive for understanding computational implementation.

https://easyspin.org/
https://easyspin.org/easyspin-6.0.0-dev.33.zip
https://github.com/StollLab/EasySpin
https://github.com/StollLab/EasySpin
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EasySpin

2. Basics of Spin Dynamics Computations

This Chapter starts with a brief repetition of the basic mathematical concepts for computing
transition frequencies, transition moments, and time evolution of a quantum ensemble in a
mixed state. We then relate the spin operator treatment to the physics and instrumentation
for excitation and detection of spins. On this basis, we discuss excitation by arbitrary
waveforms, digital filtering, and digital downconversion. The Chapter concludes with a brief
treatment of the system consisting of an electron spin S = 1/2 and a nuclear spin I = 1/2.
This system serves as a basis for discussing multi-level systems in the following Chapters.

2.1 Spin Operators
2.1.1 Spin Wavefunction

Usually, spins couple so weakly to their environment that magnetic resonance experiments
can be well approximated in a spin-only quantum subspace. Except for Chapter ??, we
shall consider only quantum subspaces that arise from coupled electron spins Sj and nuclear
spins Ik. Most of the time, we will restrict ourselves to spins of one unpaired electron
(Sj = 1/2) and of nuclei with spin quantum number Ik = 1/2. A spin S = 1/2 has two
eigenstates |α〉 and |β〉. Hence, its wavefunction is generally given by

|ψ〉 = cα |α〉+ cβ |β〉 . (2.1)

The two coefficients cα and cβ are complex and we can normalize the wavefunction

|cα|2 + |cβ|2 = 1 . (2.2)

As usual, absolute phase of the wavefunction is not experimentally accessible. However,
unless the spin is in an eigenstate (cα = 1, cβ = 0 or cα = 0, cβ = 1), there is a relative
phase of the superposition of the two eigenstates. Each of the complex coefficients has
phase φi = arctan[=(ci),<(ci)]

1 and phase φ = φα − φβ is, in principle, observable.

1The arc tangent with the two arguments imaginary and real part of ci has a codomain of width 2π.
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2.1.2 Pauli Matrices
If we define a Cartesian frame, we can perform three possible measurements on the spin,
providing components along x, y, and z. The three observables correspond to operators
Ŝx, Ŝy, and Ŝz. Let us consider a wavefunction with cα = 1/

√
2 and cβ = −1/

√
2. The

expectation value of Ŝx is given by

〈Ŝx〉 = 〈ψ|Ŝx|ψ〉 . (2.3)

We can express the wavefunction bra by a two-element row vector, the spin operator by a
2× 2 matrix, and the wavefunction ket by a two-element column vector

〈Ŝx〉 =
(
cα cβ

)( 0 1/2
1/2 0

)(
cα
cβ

)
. (2.4)

where the 2× 2 matrix is the Pauli matrix for Ŝx. We easily ascertain 〈Ŝx〉 = −1 for the
case at hand. The other two Pauli matrices are

Ŝy =

(
0 −ı/2
ı/2 0

)
(2.5)

and

Ŝz =

(
1/2 0
0 −1/2

)
. (2.6)

For our wavefunction, they both have expectation values of 0.
The electron group spin S > 1/2 of a high-spin species has 2S+1 eigenstates; this applies

in analogy to quadrupole nuclei. It follows that their wavefunctions must be represented
by vectors with 2S + 1 elements and their spin operators by (2S + 1)× (2S + 1) matrices.
Details can be found in the following literature and source code:

L [Lev08]:7.9; [SJ01]:B.2.2; sop

EasySpin example 2.1.1 — Verify that the commutator of Ŝx and Ŝy is ıŜz.
Sx = sop(1/2,'x');
Sy = sop(1/2,'y');
Sz = sop(1/2,'z');
commutator = Sx*Sy - Sy*Sx;
disp(max(max(commutator - 1i*Sz)));

2.1.3 Spin Ensembles in a Mixed State - The Density Operator
We now consider a large ensemble of spins of the same type as we need it to describe a
magnetic resonance experiment on a macroscopic sample. What we did in the previous
section will still work, if and only if all spins have the same wavefunction. Such a state
of the ensemble is called pure state. This is very hard to achieve because energies of spin
interactions are so small. Therefore, we usually cannot reach temperatures where all spin
(systems) are in their ground state before the start of the experiment. The ensemble is in a
mixed state from the very beginning and will remain in a mixed stated upon excitation.
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The mixed state can no longer be characterized by a vector with 2S + 1 components.
Instead of averaging the ket and bra separately, which would destroy normalization, we can
take the ensemble average over their outer product to obtain the density operator ρ̂

ρ̂ =
∑
i

|ψi〉〈ψi| . (2.7)

Because of the mathematical relationship between the ket and bra vectors, ρ̂ must be
represented by a Hermitian density matrix

ρ̂ =

(
|cα|2 cαc∗β
c∗αcβ |cβ|2

)
, (2.8)

where the overbar denotes the ensemble average and the asterisk the complex conjugate.
We can generally express the two off-diagonal elements for spin 1/2 by a linear combination
of Ŝx and Ŝy, since the lower off-diagonal element is the complex conjugate of the upper one.
However, we cannot generally write the diagonal elements as a multiple of Ŝz. Therefore,
we need to complete our operator basis by the unit operator

1̂ =

(
1 0
0 1

)
. (2.9)

For spins higher than 1/2, products and powers of the Cartesian spin operators are required
for expressing the density operator by a linear combination of spin operators.

EasySpin example 2.1.2 — Compute the matrix representation of Ŝ2
x− Ŝ2

y for spin S = 1.
Sx = sop(1,'x');
Sy = sop(1,'y');
disp(Sx^2-Sy^2);

The density operator contains the full information on an ensemble that is experimentally
accessible. Any observable can be associated with an operator Ô and its expectation value
is computed by

〈Ô〉 = Tr{Ôρ̂} . (2.10)

This equation applies to Hermitian operators. The ladder operator Ŝ+ = Ŝx + ıŜy used
to model quadrature detection is not Hermitian.

EasySpin example 2.1.3 — Compute the "expectation value" of Ŝ−.
Sp = sop(1/2,'+'); % this generates S^+
Sm = sop(1/2,'-'); % this generates S^-
rho = sop(1/2,'x') + 1i*sop(1/2,'y'); % this sets the density

operator to S^-
detected1 = trace(Sp*rho);
detected2 = trace(Sm*rho);
fprintf(1,'Density operator artificially set to S^+\n');
fprintf(1,'Computed with S^+: %6.3f\n',detected1);
fprintf(1,'Computed with S^-: %6.3f\n',detected2);
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2.1.4 Systems with Coupled Spins
For computational efficiency, we define the spin system as small as possible. Where the
border can be drawn depends on the total time tmax of the observation and the couplings
cj,k in pairs (Sj , Sk) of spins. If we observe or excite spin Sj , we must include spin Sk
unless cj,ktmax � 1. The coupling is expressed as an angular frequency. This consideration
propagates: For every spin that we have already included, we need to apply the same
reasoning to all its coupling partners that we have not yet included. Sometimes, this makes
the problem intractable. In this case, spins that are remote from the spin of interest but
that still contribute on the time scale of the experiment are treated collectively as a spin
bath.

For the spins that are treated explicitly, each state of each spin can be combined with
each state of each other spin. In other words, the total number of states in a system with
E electron spins Sj and N nuclear spins Ik is given by

nHilbert =

E∏
j=1

(2Sj + 1)

N∏
k=1

(2Ik + 1) . (2.11)

This exponential growth of the Hilbert space dimension nHilbert for a linear increase in the
number of explicitly treated spins is a major problem for computational spin dynamics,
especially in the solid state.

Since state space is the outer product of the subspaces, matrix representations of the
required product operators can also be expressed as outer products (Kronecker products)
of the subspace operators. For example, the product operator Ŝz Îx in a system S = 1/2,
I = 1/2 is given by

Ŝz Îx =

(
1/2 0
0 −1/2

)
⊗
(

0 1/2
1/2 0

)
=


0 1/4 0 0

1/4 0 0 0
0 0 0 −1/4
0 0 −1/4 0

 . (2.12)

Matrix representations of single-spin operators are computed as outer products with the
identity operators of all other spins in the proper sequence. For example,

Ŝz =

(
1/2 0
0 −1/2

)
⊗
(

1 0
0 1

)
=


1/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −1/2

 (2.13)

and

Îz =

(
1 0
0 1

)
⊗
(

1/2 0
0 −1/2

)
=


1/2 0 0 0
0 −1/2 0 0
0 0 1/2 0
0 0 0 −1/2

 . (2.14)

EasySpin example 2.1.4 — Construction of operators for a system S = 1/2, I = 1/2.
Sz = sop ([1/2 1/2],'ze');
Iz = sop ([1/2 1/2],'ez');
SzIz = sop ([1/2 1/2],'zz');
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SzIx = sop ([1/2 ,1/2] ,'zx');

2.1.5 Spin Hamiltonian
The spin subspace of a large quantum system has its own Hamiltonian Ĥspin that can be
derived by projecting the total Hamiltonian to this subspace. We need this spin Hamiltonian
in order to compute the time evolution of the spin wavefunction by the time-dependent
Schrödinger equation

ı
∂

∂t
ψ = Ĥspinψ . (2.15)

For simplicity, we have expressed the spin Hamiltonian in angular frequency units. In
general, Ĥspin is time-dependent. This time dependence arises from spatial reorientation of
the spin system in an external magnetic field, electromagnetic fields used by the experimenter
for excitation, and environmental fluctuations that cause fluctuating magnetic fields at the
spins. We express this Hamiltonian by a sum of three terms

Ĥspin = Ĥ0 + Ĥ1 + Ĥ2 . (2.16)

The term Ĥ0 is the time-independent part, except that we may include into it macroscopic
sample reorientation imposed by the experimenter, such as magic-angle sample spinning in
solid-state NMR. In this part of the lecture course, we consider only experiments without
such macroscopic sample reorientation. The term Ĥ1 describes excitation by electromagnetic
fields and is deterministically time-dependent in the laboratory frame. Sometimes, the
time-dependence can be removed by imposing a time-dependent frame transformation, such
as going to the rotating frame for irradiation with a fixed frequency. In general, this is
called an interaction frame transformation. The term Ĥ2 is stochastically time-dependent
due to stochastic reorientation of the spin system or fluctuations in the environment of
the spin system. It is either neglected or treated by relaxation theory. The reorientation
component can be neglected in the fast motion limit, where instead an isotropic orientation
average of Ĥ0 can be used. Spin relaxation is usually dominated by Ĥ2. It is not always
possible to model Ĥ2 or to predict the relaxation times even if a plausible mechanism is
known. In such cases the effect of Ĥ2 is accounted for by empirical relaxation times, which
can be experimentally determined. One often assumes exponential relaxation decay, but as
we shall see later, this is not always a good approximation.

Each Hamiltonian term on the right-hand side of Eq. (2.16) can be expressed in the
following form

Ĥi =
∑
j

(
ωj,x ωj,y ωj,z

)Ŝj,xŜj,y
Ŝj,z

+
∑
j

∑
k

(
Ŝj,x Ŝj,y Ŝj,z

)
Cj,k

Ŝk,xŜk,y
Ŝk,z

 , (2.17)

where the ωj,ξ are in general time dependent and the Cj,k are 3× 3 interaction matrices
that describe spin-spin couplings, which can also be time dependent. Terms with j = k in
the double sum exist only for spins Sj > 1/2.

As an example, we consider the static Hamiltonian Ĥ0 for the system of an electron
spin S = 1/2 and a nuclear spin I = 1/2 with secular hyperfine coupling A, pseudo-secular
hyperfine coupling B, nuclear Zeeman frequency ωI , and electron Zeeman frequency ωS .

Ĥ0 = ωSŜz + ωI Îz +AŜz Îz +BŜz Îx . (2.18)

We have defined the required product operators for EasySpin computations in example
2.1.4. If we decide on units of Megahertz and microseconds for frequency and time, we can
construct the Hamiltonian as follows.
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EasySpin example 2.1.5 — Spin Hamiltonian for a system S = 1/2, I = 1/2.
mw_freq = 9500; % 9.5 GHz = 9500 MHz
wS = 2*pi *9500; % angular frequency
B0 = wS*1e6/(gfree*bmagn*hbar); % compute static field in T
gH = nucgval('1H'); % nuclear g value for proton
wI = -gH*nmagn*hbar*B0/1e6; % proton nuclear Zeeman frequency
A = 2*pi*6.3; % moderately coupled proton
B = 2*pi*3.7;
H0 = wS*Sz + wI*Iz + A*SzIz + B*SzIx;

2.2 Equations of Motion
2.2.1 Liouville-von-Neumann Equation

By applying the time-dependent Schrödinger equation to both the wavefunction ket and
bra and inserting the results into Eq. (2.7), one can derive the Liouville-von-Neumann
equation for the evolution of the density operator

∂

∂t
ρ̂ = −ı[Ĥspin, ρ̂] . (2.19)

This equation of motion can be formally integrated for time intervals where Ĥspin is time-
independent. If time dependence cannot be removed, such formal integration can still be
used for sufficiently short time intervals ∆t. We obtain

ρ̂ (t+ ∆t) = exp(−ıĤspin∆t)ρ̂ (t) exp(ıĤspin∆t) = Û ρ̂ (t) Û † , (2.20)

where Û is called a propagator and Û † is its adjoint, the latter being much more efficient
to compute than a matrix exponential.

As an example, we consider evolution of electron coherence that has initial phase x
under the spin Hamiltonian defined in examples 2.3.1 and 2.1.4. We apply the rotating-wave
approximation and add a resonance offset of 2 MHz in order to mimic heterodyne detection.

EasySpin example 2.2.1 — Evolution of electron coherence under hyperfine coupling.
det = sop ([1/2 1/2],'-e'); % detection operator
rho = sop ([1/2 1/2],'xe'); % electron spin coherence in phase
H0_RWA = H0 - wS*Sz; % rotating -wave approximation
H0_RWA = H0_RWA + 2*pi*2*Sz; % 2 MHz resonance offset
dt = 0.010; % time increment 10 ns
ndat = 1024; % number of data points
data = zeros(1,ndat); % complex data vector
t = 0:dt:(ndat -1)*dt; % time axis (microseconds)
U = expm(-1i*H0_RWA*dt); % propagator
for k = 1:ndat % detection loop

data(k) = trace(det*rho); % detection
rho = U*rho*U'; % time evolution for time dt

end
figure (1); clf; hold; % prepare plot
plot(t,real(data));
plot(t,imag(data));
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xlabel('time (\mus)');

Note the use of the matrix exponential function expm in computing the propagator.
Application of the elementwise exponential function exp leads to wrong results.

L [SJ01]:4.2.1

2.2.2 Superoperators and the Stochastic Liouville Equation
The Liouville-von-Neumann equation conserves entropy and cannot describe relaxation.
Thus, it corresponds to complete neglect of the environment term Ĥ2 in Eq. (2.16). In
general, relaxation can effect transfers from any element of the density matrix to any other
element. This is described by a relaxation superoperator ˆ̂

Γ. The effect of a superoperator
ˆ̂
O on the density operator is computed by(

ˆ̂
Oρ̂
)
kl

=
∑
m

∑
n

Oklmnρmn . (2.21)

We see that, while an matrix elements of an operator correspond to a pair of states in
Hilbert space, matrix elements of the superoperator correspond to pairs of state pairs. The
space of Hilbert space pairs is called Liouville space. The Liouville space dimension is thus
the square of the Hilbert space dimenison nHilbert. Instead of using two-dimensional arrays
(matrices) for operators and four-dimensional arrays for superoperators, it is more convenient
to reshape the operators to a vector, which corresponds to reshaping the superoperators to
a matrix.

The equation of motion including relaxation is the stochastic Liouville equation

∂

∂t
ρ̂ = −ı ˆ̂Hρ̂− ˆ̂

Γ (ρ̂− ρ̂ss) , (2.22)

where

ˆ̂Hklmn = Ĥkmδnl − δkmĤnl (2.23)

is the Hamiltonian superoperator with the Kronecker deltas δnl and δkm and Ĥ = Ĥ0 + Ĥ1,
Ĥ2 having been replaced by ˆ̂

Γ. The steady-state density operator ρ̂ss is often approximated
by the thermal equilibrium density operator ρ̂eq introduced in Section 2.3. This approxima-
tion is good only in the limit of weak irradiation where the experimental steady state is not
significantly perturbed from the equilibrium state. It follows that this approximation should
not be used during strong irradiation. The steady-state solution depends on irradiation,
i.e., on Ĥ1, and is thus best computed for each time interval where Ĥ1 can be considered
as constant. By setting the left-hand side of the stochastic Liouville equation zero and
replacing on the right-hand side ρ̂ss by ρ̂eq and ρ̂ by ρ̂ss, we find the approximation

ρ̂ss =
(
ı

ˆ̂H+
ˆ̂
Γ
)−1 ˆ̂

Γρ̂eq . (2.24)

It has been argued that this approximation is problematic because the Liouvillian

ˆ̂L = ı
ˆ̂H+

ˆ̂
Γ (2.25)
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is singular due to conservation of the total number of spins [RSB91]. The problem can be
solved by introducing invariance of the trace of ρ̂ in the equation. With ρ̂ss being known,
the stochastic Liouville equation can be formally integrated, giving

ρ̂(t+ ∆t) = ρ̂ss + (ρ̂(t)− ρ̂ss) exp(
ˆ̂L∆t) . (2.26)

The function spidyan of EasySpin treats relaxation by implementing Eqs. (2.24) and (2.26)
in its subfunction s_thyme.

The most general equation of motion for open quantum systems is the Lindblad equation.
We do not further discuss the Lindblad equation, since the stochastic Liouville equation
suffices for our purposes.

L [Pri18]2.3.3; s_thyme

2.3 Thermal Equilibrium
Most magnetic resonance experiments start from the thermal equilibrium state of the spin
system. For predicting the outcome, we thus need to know the thermal equilibrium density
operator ρ̂eq. Further, we need to know ρ̂eq in order to to compute the steady-state density
operator for application of the stochastic Liouville euation according to Eq. (2.24).

Because of the small interaction energies in spin systems, quantum symmetry restrictions
can usually be disregarded and ρ̂eq can be computed to a very good approximation by
Maxwell-Boltzmann statistics,

ρ̂eq =
e−~Ĥ/kBT

Tr
{
e−~Ĥ/kBT

} , (2.27)

where kB is the Boltzmann constant and T the sample temperature. The laboratory-frame
Hamiltonian must be used.

2.3.1 High-temperature Approximation
In the high-temperature approximation, where the difference between the largest and
smallest eigenvalue of Ĥ is much smaller than the thermal energy kBT , we can approximate
e−x = 1− x and obtain

ρ̂eq ≈ 1̂− ~Ĥ
kBT

. (2.28)

This approximation is very useful for analytical computations. Within the high-field
approximation for spins 1/2, it suffices to consider the Zeeman terms of Ĥ. If an electron
spin is present, the nuclear Zeeman terms can usually be dropped as well. For spins > 1/2,
it may be necessary to include the nuclear quadrupole or zero-field interactions, especially
if heavier elements than second-row elements are involved. For numerical computations,
the high-temperature and high-field approximations are unnecessary for computing ρ̂eq. We
discourage their use and recommend Eq.(2.27) instead.

The high-temperature approximation is usually good for systems consisting of only
nuclear spins at all accessible fields and at temperatures down to 1 K. It may be violated in
the mK regime. For electron spin 1/2, the high-temperature approximation can easily be
violated. The Zeeman energy of an electron spin with g ≈ 2 matches the thermal energy at
about 4.2 K and 3.35 T, corresponding to a W-band microwave frequency of about 94 GHz.
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The following example shows that it may be violated for Gd(III)-based polarizing agents for
DNP already at a temperature of 110 K with high-field NMR spectrometers. Polarization
of the six allowed transitions in this S = 7/2 system differs strongly under these conditions.

EasySpin example 2.3.1 — High-temperature approximation for Gd(III) complexes.
T = 110; % typical temperature for ssDNP
nu_1H = 1.2e9; % 1.2 GHz proton frequency
B0 = planck*nu_1H/( nucgval('1H')*nmagn); % magnetic field [T]
g = 2;
nu_EZ = g*bmagn*B0/planck; % electron Zeeman frequency
sz = sop(7/2,'z');
ham = 2*pi*nu_EZ*sz;
boltzmann_distr = expm(-hbar*ham/( boltzm*T));
rho_eq = boltzmann_distr/trace(boltzmann_distr);
for k = 1:6

p = rho_eq(7-k,7-k) - rho_eq(8-k,8-k);
fprintf(1,'Polarization of transition %i: %6.3f\n',k,p);

end

2.3.2 Quantum Symmetries
Electrons are Fermions (half-integer spin) and nuclei can be Fermions or Bosons (integer
spin). According to the generalized Pauli principle, the total wavefunction must be anti-
symmetric with respect to permutation for Fermions and symmetric for Bosons. This may
impose restrictions on the symmetry of the spin part of the wavefunction upon exchange
of nuclei. Since the electronic wavefunction, electron spin wavefunction, translational
wavefunction, and vibrational wavefunction are symmetric with respect to permutation of
nuclei, it is the product of the spin part and rotational part of the wavefunction that must
fulfil the generalized Pauli principle.

The best known example for such a symmetry restriction is para-hydrogen, which is
used for NMR signal enhancement in para-hydrogen induced polarization (PHIP). The
wavefunction for the rotational ground state (J = 0) is symmetric with respect to exchange
of the two hydrogen atoms in an H2 molecule. Accordingly, the spin wavefunction must
be antisymmetric in this state, i.e., it must be a singlet wavefunction |α1β2 − β1α2〉/

√
2.

While there is no net polarization, the states of the two spins are correlated. This can be
seen, for instance, after a hydrogenation reaction that introduces a chemical shift difference
between the two protons. The effect is readily observable. At 80 K, where hydrogen is still
gaseous, the rotational ground state is much more strongly populated than rotationally
excited states.

A similar, but somewhat more involved spin-correlation effect exists for methyl groups
with respect to permutation of three protons. This can lead to observable nuclear spin
polarization by the Haupt effect in solids, provided that the methyl tunnel splitting in the
quantum-rotor ground state is much larger than the nuclear Zeeman frequency.





0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t (µs)

-30

-20

-10

0

10

20

30

40
a
m

p
lit

u
d
e
 (

M
H

z)

I

Q

3. Passage Effects

This Chapter starts with a brief treatment of the excitation of spins by an electromagnetic
field that is treated classically. We consider resonant irradiation by the rotating-wave
approximation and the effect of non-resonant irradiation by computing the Bloch-Siegert
shift with Average Hamiltonian Theory. Then we discuss excitation by arbitrary waveforms,
in particular by frequency-swept pulses. Such pulses correspond to passage of transitions
by the electromagnetic field. We discuss quantitative description of adiabatic passage and
define a flip angle for fast passage. Offset-independent adiabaticity (OIA) is introduced as
as a concept for uniform excitation of spin packets over a wide frequency band. We discuss
echo refocusing by OIA pulses, including compensation of dynamic Bloch-Siegert phase. The
Chapter concludes with brief explanations of longitudinal and transverse interference effects
and of multi-photon excitation. These phenomena occur in spin systems with more than
two connected levels.

3.1 Excitation and Detection

3.1.1 Classical Description of the Excitation Field

Spins are excited through their interaction with the magnetic component ~B1(t) of an
electromagnetic field. If the quantization axis of the spin system is set by an external static
magnetic field B0 and is chosen along z,1, the excitation Hamiltonian can be written as

Ĥ1 = γB1,x(t)Ŝx + γB1,y(t)Ŝy , (3.1)

where γ = g⊥µB/~ is the gyromagnetic ratio of the electron spin with g⊥ being an effective
g value in the xy plane that is perpendicular to the static magnetic field. For nuclei, g⊥ is
replaced by the negative nuclear g value −gn and the Bohr magneton µB is replaced by the
nuclear magneton µn.

1For strong g anisotropy, the quantizaion axis can be tilted with respect to the direction of the external
static magnetic field, but we still call it the z axis.
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In order to apply circularly polarized electromagnetic fields one needs to work with
cross-coil setups in NMR or special resonators in EPR. This is very rarely done. In most
experiments, the field is linearly polarized. We associate the direction of linear polarization
with the x axis of the laboratory frame and redefine B1 by including a factor of two. The
reason for this factor will soon become apparent. Further, we combine sign, gyromagnetic
ratio, and time-dependent magnetic field into a field amplitude a(t) in angular frequency
units.

Ĥ1 = a(t)Ŝx . (3.2)

The simplest case is monochromatic irradiation a(t) = 2ω1 cos(ωirrt), where ωirr is the
frequency of the irradiation field. Such a linearly polarized field at a given frequency can
be separated in two circulary polarized components that rotate clockwise (first line on the
right-hand side of Eq. (3.3) and anti-clockwise (second line):

Ĥ(mc)
1 = γB1

[
cos(ωirrt)Ŝx + sin(ωirrt)Ŝy

]
+

γB1

[
cos(ωirrt)Ŝx − sin(ωirrt)Ŝy

]
. (3.3)

Magnetization of nuclear spins with positive γ precesses clockwise with Larmor frequency
ω0, whereas magnetization of nuclear spins with negative gyromagnetic ratio, as well as of
electron spins, precesses anti-clockwise. Without loosing generality, we proceed with the
electron spin case, which corresponds to ω0 > 0, since the mathematical sense of rotation
is anti-clockwise. The component of the excitation field with the same sense of rotation
becomes time-independent in a frame that rotates with frequency ωirr. We can transfer to
this rotating frame by the product operator expression

Ĥ(mc)
1

−ωirrtŜz−→ Ĥ1 (3.4)

and obtain

Ĥ1 = γB1Ŝx + γB1 cos(2ωirrt)Ŝx − γB1 sin(2ωirrt) , (3.5)

where the second and third term on the right-hand side correspond to the non-resonant
circularly polarized component. For the moment, we drop this component, which corresponds
to the rotating-wave approximation (RWA). This nicely approximates excitation as long
as ω1 = γB1 � 2ωirr. Problems can arise in zero-field magnetic resonance or for very
small g values along the static field when g⊥ is large. Even if the RWA is permissible,
the component counterrotating with frequency 2ωirr causes a Bloch-Siegert shift of the
resonance frequency that we will consider in Section 3.1.2.

The rotating-frame transformation is not a transformation between inertial frames.
Hence, the static Hamiltonian does not remain invariant. We have

Ĥ(RWA)
0 = Ĥ0 − ωirrŜz . (3.6)

If ωirr changes with time, as we shall consider later on, one can use an accelerating frame.
That way the time dependence is shifted from Ĥ1 to Ĥ0, which can sometimes be convenient.

In the rotating frame, transition frequencies are reduced by the frequency of the
irradiation field. Following Cohen-Tannoudji, we can consider this as a dressing of the spin
by an irradiation photon. Note that the spin is dressed only as long as the irradiation
is switched on. In contrast, we can use the rotating frame also when the irradiation is
switched off, i.e., during free evolution and field-free detection. In the case of detection,
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the rotating frame corresponds to downconversion of the signal by ωirr, which is usually
achieved in magnetic resonance by an IQ mixer. An IQ mixer generates a quadrature signal

V (t) = 〈Ŝ(RWA)
x (t)〉+ ı〈Ŝ(RWA)

y (t)〉 . (3.7)

Quadrature mixers split the original linearly polarized signal into two components and thus
entail some sensitivity loss compared to a simple mixer that detects only Ŝx(t). However, if
the sign of transition frequencies in the rotating frame is not known a priori, use of an IQ
mixer for detection is mandatory. This is because a real signal does not carry information
on the sign of the frequency.

3.1.2 Bloch-Siegert Shift
The counter-rotating circularly polarized component of the linearly polarized irradiation
field is non-resonant. We treat the more general case of the effect of non-resonant irradiation
by any frequency ωnonres on a spin with Zeeman frequency ωZeeman = γB0. To this end, we
can apply Average Hamiltonian Theory (AHT) in the laboratory frame. AHT is the simplest
way of computing the effect of a periodically time-dependent perturbation Hamiltonian,
if we can be content with stroboscopic detection (after full periods of length T ) or if the
effect is integrated over a time much longer than the period of the perturbation. The latter
is the case here, since the time increment in detection is much longer than 2π/ωnonres.

AHT is based on the Magnus expansion. For a time interval [0, T ], the average

Hamiltonians Ĥ
(o)

with orders o = 1 . . . 3 are computed as

Ĥ
(1)

=
1

T

∫ T

0
Ĥ(t)dt , (3.8)

Ĥ
(2)

=
1

2ıT

∫ T

0
dt2

∫ t2

0

[
Ĥ(t2), Ĥ(t1)

]
dt1 , (3.9)

Ĥ
(3)

= − 1

6T

∫ T

0
dt3

∫ t3

0
dt2

∫ t2

0

{[
Ĥ(t3),

[
Ĥ(t2), Ĥ(t1)

]]
+
[[
Ĥ(t3), Ĥ(t2)

]
, Ĥ(t1)

]}
dt1 .

(3.10)

The Hamiltonian for non-resonant irradiation is

Ĥ = ω1 cos(ωnonrest)Ŝx + ω1 sin(ωnonrest)Ŝy (3.11)

with T = 2π/ωnonres. One easily ascertains

Ĥ
(1)

= 0 . (3.12)

This is the RWA result. With [Ŝx, Ŝy] = ıŜz, we find

Ĥ
(2)

= − ω2
1

ωnonres
Ŝz . (3.13)

For the special case of the counter-rotating component of the linearly polarized field, we
obtain the Bloch-Siegert shift

∆BS = ∆
(2)
BS = − ω2

1

2ωirr
. (3.14)
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Typical values for electron spins at X-band frequencies are ν1 = 40 MHz and νirr = 9600
MHz, where we have converted to frequencies νi = ωi/(2π). The Bloch-Siegert shift is then
∆BS = −0.083 MHz, which is not usually detectable. Now consider an electron-electron
double resonance experiment, where the second frequency is off-resonant by 100 MHz and
ν1 = 10 MHz. Here, we find ∆BS = −1 MHz. If we apply such a pulse for a time tp = 25 ns
(π/2 pulse), we induce a phase shift ∆φBS = tp∆BS = 9◦ on coherence of the off-resonant
spins, which is noticeable. This is called a dynamic Bloch-Siegert shift.

If we go beyond second order in AHT and use Eq. (3.10), we obtain as the next
Bloch-Siegert shift term,

Ĥ
(3)

= −π
2

ω3
1

ω2
nonres

Ŝx . (3.15)

If ω1 � ωnonres, this term is negligible compared to Ĥ
(2)

. On the other hand, if ω1 is
comparable to or larger than ωnonres, then the Magnus expansion does not converge. We
shall come back to this problem when discussing dynamic Bloch-Siegert shift upon passage
of a transition.

L [Bri16]

3.1.3 Arbitrary Waveform Excitation and Frequency Sweeps
The excitation arm of a magnetic resonance spectrometer generally acts as a low-pass filter.
In other words, there is an upper cutoff frequency νmax beyond which excitation power
decreases dramatically. Usually the excitation arm even acts as a bandpass, imposing in
addition a lower cutoff frequency νmin. Modern spectrometers use Direct Digital Synthesizers
(DDS) or Arbitrary Waveform Generators (AWG) as excitation sources. The devices have
an upper limit corresponding to about 80% of the Nyquist frequency 1/(2∆t) that results
from their shortest possible time step ∆t. Usually, such devices are characterized by their
sampling rate. For instance, a 2 GSa/s AWG has an upper cutoff frequency of approximately
800 MHz. If a signal from such an AWG with at least two output channels is upconverted
with an IQ mixer, using a local oscillator (LO) frequency νLO, the available excitation band
is approximately νLO ± 800 MHz. We shall discuss bandwidth limitations in more detail in
Section 3.1.4.

Any real, bandwidth-limited waveform y(t) can be expressed with an amplitude modu-
lation (AM) function ν1(t) = ω1(t)/(2π), a frequency modulation (FM) function f(t), and
an initial phase φ0

y(t) = ν1(t) cos

(∫ t′

0
f(t′)dt′ + φ0

)
. (3.16)

Alternatively, the waveform can be specified with a phase modulation (PM) function
φ(t) =

∫ t′
0 f(t′)dt′+φ0 as y(t) = ν1(t) cos[φ(t)]. If upconversion by an IQ mixer is intended,

the corresponding quadrature component is obtained by replacing the cos function by a sin
function.

In passage experiments, we are concerned with a special type of arbitrary waveforms,
where the FM function f(t) is monotonous. Such waveforms are called frequency sweeps . If
f(t) is monotonously increasing, it is an upward sweep, if it is monotonously decreasing,
it is a downward sweep. Frequency sweeps are simpler to treat than general arbitrary
waveforms, because each transition in a spin system is passed only once during a single
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sweep. Among all frequency sweeps, the simplest one is a linear sweep or chirp with rate
rsweep, where f(t) = f0 + rsweept.

For any frequency sweep, Fourier transformation of f(t) and computation of the
magnitude spectrum provides an estimate of the excitation band and of uniformity of
excitation within this band. Note that excitation of spins is nonlinear in ω1. Hence, the
excitation band provided by Fourier transformation is not quantitatively correct, unless
small ω1 in the linear regime are used. The linear regime is usually associated with β < 30◦,
corresponding to sinβ < 1/2. Merely considering the excitation band neglects phase
dispersion of the excited spin packets, which we will discuss in Section 3.2.4.

L [DJ17]

3.1.4 Bandwidth Limitations and Deadtime
Bandwidth limitations arise upon generation, amplification, and transmission of high-
frequency electromagnetic waves. In the microwave range, low-loss transmission is usually
possible only in an octave band. Hence, the upper cutoff frequency is twice the lower cutoff
frequency. High-power microwave amplifiers operate in even narrower bands. The most
bandwidth-limiting element of a magnetic resonance spectrometer is usually the probehead.
Because magnetic interaction is weak, the electromagnetic field is amplified by a resonance
circuit (NMR) or microwave resonator (EPR). At its centre frequency f0, the resonator
enhances the amplitude B1 of the electromagnetic field by the square toot of its loaded
quality factor QL

2 quality factor .

B1 =

√
2µ0P0QL

Vrf0
, (3.17)

where P0 is the incident power and Vr the effective resonator volume. The enhancement
is reciprocal, i.e. the detected voltage at given spin magnetization also increases with the
square root of QL. This would suggest to increase the quality factor as much as possible,
which is achieved by reducing losses in the resonator. However, the larger QL, the lower is
the bandwidth ∆freson

∆freson =
f0

QL
. (3.18)

At ±∆f , power enhancement is reduced by 3 dB. Hence, B1 and of the voltage detected
at given spin magnetization can depend strongly on frequency difference ∆f from the
resonator centre frequency. This dependence can be estimated as

B1(Ω)

B1(0)
≈ V (Ω)

V (0)
= 1/

√
1 +

(
2∆f QL

f0

)2

(3.19)

In applications, it may be useful to determine B1(Ω)/B1(0) for a given resonator and sample
by measuring the dependence of nutation frequency on ∆f .

Bandwidth limitation of the resonator is important because it changes the AM function
ν1(t) as compared to the amplitude function of the excitation source. Another problem
arises, because power stored in the resonator subsides more slowly at lower resonator

2The qualifier "loaded" means that the resonator is connected to a transmission line, not that it is
loaded with a sample.
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bandwidth. This limits detection, since excitation power is by many orders of magnitude
larger than signal power. Hence, detection is possible only after a deadtime that is related
to the resonator rise time trise = QL/f0. For distortion-free detection, we require that the
power P0 initially incident at the resonator decays to below noise power Pnoise. For that,
we need to wait for a ringdown time

tringdown =
QL

f0
ln

P0

Pnoise
. (3.20)

For these reasons, microwave resonators are overcoupled for pulsed excitation, which reduces
the quality factor below QL of the critically coupled resonator. Such overcoupling is not
usually required in NMR, where both the critically coupled QL and the maximum ∆f/f0

are lower. In EPR, one usually aims at a compromise between enhancement of the excitation
field and resonator bandwidth. Precise spin control then requires resonator compensation
of the AM function (Section 3.2.5).

3.2 Passage of a Single Transition
3.2.1 Linear Frequency Sweep with Constant Amplitude

We consider a linear frequency sweep with constant amplitude ω1 from far below resonance
(−Ω � ω1) to far above resonance (Ω � ω1). The situation is best pictured in an
accelerating frame that rotates with instantaneous frequency f(t) = f0 +rsweept. We further
assume φ0 = 0. The accelerating-frame Hamiltonian is then given by

Ĥ(acc) = Ω(t)Ŝz + ω1Ŝx . (3.21)

It is diagonalized by a transformation

Ĥ(acc) θŜy−→ Ĥ(acc)
EB (3.22)

with

θ = θ(t) = arctan
ω1

Ω(t)
(3.23)

yielding

Ĥ(acc)
EB = ωeff Ŝ

′
z , (3.24)

where the instantaneous z′ axis is in the original xz plane and includes angle θ with the
original z axis. The effective field is ωeff =

√
Ω2(t) + ω2

1. This situation is illustrated in
Fig. 3.1a.

If relaxation is sufficiently slow, the magnetization vector always precesses with frequency
ωeff around the instantaneous z′ axis. If the change of orientation of the z′ axis is always
slow compared to ωeff , opening of the precession cone will remain small. In other words, to
a good approximation the magnetization vector will follow the effective field. Such adiabatic
passage is illustrated in Fig. 3.1b. If, on the other hand, the frequency sweep and thus
the orientation change is faster, then a precession cone will open up. Such fast passage is
illustrated in Fig. 3.1c. The same passages are visualized in Fig. 3.2 in a frame rotating
with the resonance frequency of the passed transition. In this case, the magnetization
vector becomes stationary at the end of the fast-passage sweep although coherence was
generated. This is because the frame rotates with the resonance frequency of the transition,
so that coherence on this transition does not gain phase in this frame.
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Figure 3.1: Passage of a single transition during a constant-amplitude linear frequency sweep
visualized in an accelerated frame. Simulations are for a sweep from -100 MHz below reso-
nance to 100 MHz above resonance in 25 µs. An electron spin with 〈Ŝz〉(0) = −1 is assumed.
Panels b and c can be generated with Matlab script passage_accelerated_frame.m (a)
Accelerated-frame representation of local fields. (b) Adiabatic passage with ν1 = 5 MHz.
(c) Fast passage with ν1 = 1 MHz.

3.2.2 Adiabaticity and Flip Angle upon Passage
For prediction of experimental outcomes, we need to quantify the concepts of adiabatic and
fast passage. Adiabaticity Q(t) is defined as the ratio between the effective field ωeff and
the rate of change of orientation of this field in the accelerated frame, dθ/dt.

Q(t) =
ωeff

|dθ/dt|
=

√
ω2

1 + Ω2

|dθ/dt|
=

√
ω2

1 + Ω2

|ω1 (dΩ/dt)− Ω (dω1/dt)|
. (3.25)

Adiabatic passage corresponds to Q� 1. In practice, Q ≥ 5 provides a good approximation,
as we shall see shortly. An adiabatic pulse inverts the spin state. For polarization, this is
visualized in Fig. 3.1 and 3.2. The concept applies beyond polarization. For coherence,
phase is inverted with respect to an axis in the xy plane. In operator notation, adiabatic
passage interconverts between Ŝ+ and Ŝ−. Thus, adiabatic passage is equivalent to a π
pulse or 180◦ degree pulse.

In general, adiabaticity Q according to Eq. (3.25) varies during the sweep. For a chirp
pulse with constant dΩ/dt and constant ω1, Q(t) is minimum at time t0 of passage (Ω = 0).
Adiabaticity upon passage is thus critical for determining the adiabaticity of the whole
sweep. Therefore, we refer to it as critical adiabaticity Qcrit. We find

Qcrit =
ω1

|dΩ/dt|

∣∣∣∣
t0

=
ω1

|dω/dt|

∣∣∣∣
t0

, (3.26)

where ω(t) = 2πf(t) is the FM function in angular frequency units.
We continue by considering a linear sweep with constant amplitude ω1 of the irradiation

and define the sweep rate rsweep = 2πdf/dt. With that we have

Qcrit =
ω2

1

rsweep
. (3.27)

The effect of such passage on a Zeeman eigenstate has been considered independently by
Landau, Zener, Stückelberg, and Majorana. Phrased for a initial state −Ŝz, their derivations
arrive at an inversion efficiency

ILZSM =
1

2
+ 〈Ŝz〉 = 1− e−πQcrit/2 . (3.28)
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a b

Figure 3.2: Passage of a single transition during a constant-amplitude linear frequency
sweep visualized in a frame rotating with the resonance frequency. Simulations are for a
sweep from -100 MHz below resonance to 100 MHz above resonance in 25 µs. An electron
spin with 〈Ŝz〉(0) = −1 is assumed. Panels b and c can be generated with Matlab script
passage_rotating_frame.m (a) Adiabatic passage with ν1 = 5 MHz. (b) Fast passage
with ν1 = 1 MHz.

Since the effect of passage is a state space rotation, the righmost expression for ILZSM

applies to any inversion of spin state, including coherence. We can thus define an equivalent
flip angle

βLZSM = arccos
(

2e−πQcrit/2 − 1
)
. (3.29)

Maximum coherence generation from a Zeeman eigenstate corresponds to βLZSM (90◦ pulse)
and thus to Qcrit = 2 ln (2) /π ≈ 0.4413. For Qcrit = 5, we find a flip angle of 177.7◦, which
is often sufficiently close to perfect inversion.

L [DJ17]

3.2.3 Offset-independent Adiabaticity
We still consider a spin system with a single transition, where now transition frequency ω0

is distributed. Such distribution can arise, for instance, for an electron spin S = 1/2 with
substantial g anisotropy. In this case, the distribution of ω0 results different orientations of
the principal axes frame of the g tensor with respect to the static field. All spins in the
sample with the same ω0 constitute a spin packet . In any rotating frame, different spin
packets have different offset frequencies. Upon passage, they will behave the same if and
only if they have the same Qcrit. For a linear, constant-amplitude sweep (chirp), this applies
according to Eq. (3.27), provided that the sweep starts well below the minimum resonance
frequency of all spin packets and ends well above their maximum resonance frequency.

For general FM and AM functions, Qcrit may vary among spin packets. This is usually
undesirable. Often, it is thus advantageous to employ FM/AM function pairs that lead to
offset-independent adiabaticity (OIA) [TG96]. In addition to the chirp, two OIA pulses are
of special interest.

Generalized Hyperbolic Secant Pulse
The generalized hyperbolic secant (HS) pulse has an AM function

νHSn
1 (t) = ν1,max sech

(
t̃n2n−1β

)
, (3.30)
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where n is the order of the HS pulse, t̃ = (t− tcentre)/tpulse is a normalized time variable
that ranges from -0.5 to 0.5, and β is an apodization parameter (see Section 3.2.3).The
normalized time variable is defined with the pulse length tpulse and the pulse centre time
tcentre. The corresponding FM function is given by

fHSn(t) = fmin + ∆f

∫ t̃
−0.5 sech

(
τn2n−1βdτ

)∫ 0.5
−0.5 sech (τn2n−1βdτ)

, (3.31)

where fmin is the initial frequency of the sweep and ∆f is the width of the frequency sweep.
The most widely applied hyperbolic secant pulse has n = 1 and provides particularly

steep edges of the excitation band in frequency domain. In other words, spin packets in
the range (fmin, fmin + ∆f) are nearly uniformly excited, whereas spin packets outside this
range are nearly unexcited. This property is desirable if several non-overlapping excitation
bands are needed for an experiment. The HS pulse achieves it at the expense of a much
lower critical adiabaticity Qcrit than is obtained with a chirp pulse at the same maximum
excitation power. If the application is excitation-power limited, it may be advantageous to
use higher-order HS pulses (n ≥ 1). They lead to more gentle edges of the excitation band,
but higher Qcrit at given ν1,max and pulse length tpulse.

It is possible to apply different orders n to the two halves of a HS pulse (t̃ ≤ 0 and
t̃ > 0). This is useful if the facing excitation band edges need to be steep, whereas the
far-side edges can be more gentle.

Gaussian Pulse
Some experiments rely on very gently sloping excitation bands. Such excitation bands can
be achieved by a Gaussian AM function,

νGauss
1 (t) = ν1,max exp

(
−β2t̃2

2

)
. (3.32)

The corresponding FM function for achieving OIA is

fGauss(t) =
erf
(
βt̃
)

erf β
. (3.33)

Apodization of the AM Function
The AM functions of HS and Gaussian pulses decay to zero only at normalized times
t̃→= −∞ and t̃→=∞. The AM function of a chirp pulse does not decay at all. Since a
pulse necessarily has finite length tpulse, this leads to amplitude jumps at the beginning
and end of the pulse. At first sight, this does not appear to cause problems, since exactly
such jumps are the hallmark of rectangular monochromatic pulses. Such pulses were used
exclusively before the advent of frequency-swept pulses and they are still widely used in
magnetic resonance. However, frequency-swept pulses are often applied in a context where
the excitation band should be smooth. The jumps cause ripples both outside and inside
the intended frequency range. It is often desirable to reduce the amplitude of these ripples.

In the linear excitation regime, the problem is formally equivalent to filter design. It
is also equivalent to avoidance of ripples in discrete Fourier transformation when a signal
has not decayed at maximum observation time tmax. The standard solution for the latter
problem is multiplication of the experimental signal with an apodization window function
before applying Fourier transformation.

For HSn and Gaussian pulses, the parameter β governs such apodization. For HS pulses,
β = 10 strikes a good compromise between ripple avoidance and loss in steepness of the
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excitation band edges. Chirp pulses can be apodized with a quarter sine window function

w(t) = sin

(
πt

2trise

)
(t ≤ trise) (3.34)

at the leading pulse edge. An analogous quarter sine function is applied at the trailing edge.
The rise time trise determines quality of ripple suppression. The minimum and maximum
offset resonance frequencies of spin packets should be inside the constant-amplitude range
of the AM function (t ≥ trise and t ≤ tpulse − trise).

WURST Pulse
Instead of using quarter-sine apodization at the time-domain edges of the pulse, one can
apply a continuous envelope function to the whole pulse. This is the idea behind wideband,
uniform-rate smooth truncation (WURST)3 pulses. The AM function of WURST pulses is
defined as

νWURST
1 (t) = ν1,max

(
1− sinn

(
πt̃
))

, (3.35)

where larger n correspond to less apodization. Strictly speaking, WURST pulses do not
achieve OIA. However, at sufficiently large n, OIA is reasonably well approximated for a
large fraction of the sweep.

L [DJ17]

3.2.4 Phase Dispersion and Echo Refocusing
Whereas the concept of OIA can ensure uniform excitation of spin packets with respect
to flip angle, transverse magnetization after a frequency-swept pulse is not phase coherent
between spin packets. This is because spin packets are excited at different times during
the sweep and henceforth acquire phase according to their resonance frequency ω0. For an
upward chirp pulse, excitation of coherence can be referenced to the time t0 of passage.
The time between excitation and the end of the pulse is

∆t(ω0) = tpulse − t0(ω0) =
ffinal − ω0/(2π)

∆f
tpulse , (3.36)

where fcentre is the centre frequency of the sweep. The phase acquired until the end of the
pulse is the product of ω0 and ∆t(ω0), which leads to a parabolic dependence of phase on
ω0.

Coherence of all spin packets can be brought in phase by an echo experiment. Consider
an echo experiment that consists of two chirp pulses. After the second pulse, the dependence
of phase on ω0 must be linear, i.e., of the form φ(ω0) = −τ(ω0 − ωRF) with a positive
constant τ . Here, ωRF is the angular frequency of frame rotation that corresponds to
the frequency of downconversion. In the time t after the pulse, spin packets gain phase
(ω0 − ωRF)t, so that they all have phase 0 at time t = τ . In a frame rotating with another
fixed frequency, phase will not be zero, but it will still be the same for all spin packets.

How we can ensure such linear dependence of phase on frequency after the second pulse?
We can disregard the time that passes between the two chirp pulses, as phase gain during
free evolution is frequency-linear. If we assume that the two pulses sweep through the same
frequency range, the problem thus boils down to determining the length of the second pulse

3The envelope has the shape of a sausage, which in German is a "Wurst"
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that leads to linear dependence of phase on frequency. We parametrize the problem by a
ratio r between the length of the second pulse and and the length tpulse of the first pulse.
Before inversion during the second pulse, the spin packet gains phase

∆φ1 = ω0∆t(ω0) + rω0 (tpulse −∆t(ω0)) . (3.37)

Upon passage during the second pulse, the sign of ∆φ− is inverted. Until the end of this
pulse, the coherence gains new phase

∆φ2 = rω0∆t(ω0) . (3.38)

We find

−∆φ1 + ∆φ2 = −rω0tpulse − ω0∆t(ω0) (2r − 1) . (3.39)

The first term on the right-hand side of Eq. (3.39) is the wanted term with linear dependence
of a negative phase on frequency. The second term introduces a parabolic dependence and
must thus vanish for all ω0. This can be achieved only for r = 1/2.

For multi-pulse echoes, the refocusing condition for chirp pulses can be generalized to∑
l

sltpulse,l

(
o−l − o

+
l

)
= 0 , (3.40)

where index l runs over all pulses, sl is a sign factor that is positive for upward sweeps
and negative for downward sweeps, and o−l and o+

l are coherence orders before and after
the pulse with index l, respectively. For the two-pulse echo considered above, we have
s1 = s2 = 1, o−1 = 0, o+

1 = o−2 = 1, and o+
2 = −1. Hence, the condition is

−tpulse,l + tpulse,2 + tpulse,2 = 0 , (3.41)

which yields tpulse,2 = tpulse,1/2 as expected.

Bloch-Siegert Phase and ABSTRUSE Refocusing
Up to this point, our treatment neglected dynamic Bloch-Siegert shift (Section 3.1.2). Such
neglect is not a good approximation for passage. During the frequency sweep, we have
ωnonres = Ω, so that ω1/ωnonres can become large. In fact, this ratio becomes infinite upon
passage at t0. The AHT treatment of Bloch-Siegert shift thus breaks down near passage.
Fortunately, we can nevertheless estimate the dependence of phase accumulated due to
dynamic Bloch-Siegert shift, at least in the OIA case. To this end, we assume that in the
range of offsets Ω, where AHT breaks down, all spin packets gain the same Bloch-Siegert
phase ∆φBS

pass. This approximation is good if this breakdown range is well within the total
frequency sweep for all spin packets under consideration. Outside this breakdown range,
the dependence of Bloch-Siegert phase on spin packet frequency ω0 can be computed by
integrating Eq. (3.14). After a lengthy derivation [DJ17] this yields

∆φ
(2)
BS,OIA =

Qcrit

2

{
C − ln

[
1

4
−
(
ω0/(2π)− fcentre

∆f

)2
]}

, (3.42)

where C is an unknown constant. At given critical adiabaticity and at a given sweep range,
determined by ∆f and fcentre, the result does not depend on pulse length. This indicates
that Bloch-Siegert phase can be refocused without interfering with the condition put by Eq.
(3.40). However, since Bloch-Siegert phase depends linearly on critical adiabaticity Qcrit, it
may be necessary to adjust amplitude ratio of pulses.
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The simplest pulse sequence that refocuses Bloch-Siegert phase is the ABSTRUSE
scheme [CSS02], which realises a three-pulse refocused echo with OIA pulses. The pulse
length ratio of 2:2:1 for the π/2 excitation pulse and the two π inversion pulses fulfils Eq.
(3.40). Under the condition that Bloch-Siegert phase during the π/2 pulse is negligible, this
scheme also refocuses Bloch-Siegert phase. For a stimulated echo, refocusing of Bloch-Siegert
phase can be achieved with pulse length ratio 1:2:1 if the first two pulses are downward
sweeps and the last pulse is an upward sweep.

3.2.5 Resonator Compensation
Critical adiabaticity according to Eq. (3.27) depends quadratically on ω1,4 i.e., it is linear
in irradiation power. Hence, OIA and Bloch-Siegert phase depend on fidelity of the AM
function at the position of the excited spins. Spatial inhomogeneity of the irradiation field
often cannot be avoided and causes a distribution of flip angles. This does not interfere
with OIA nor with refocusing of Bloch-Siegert phase at a given position in the resonator.
For EPR experiments, the frequency-dependent attenuation of ν1 = γB1/2π, as described
by Eq. (3.19), is usually more damaging.

The fidelity of the AM function can be restored by compensating the waveform for
resonator effects. To this end, one first determines the dependence ν̃1(f) of the amplitude
at the sample for frequency-independent irradiation power. This can be done by measuring
the frequency of Rabi oscillations, for instance by a nutation echo experiment. The function
ν̃1(f) is proportional to the magnitude response M(f) of the resonator.5 With the AM
function ν1(t) at infinite resonator bandwidth, we can then estimate the AM function ν̃1(t)
inside the resonator

ν̃1(t) = ν1(t) M(f)|f=f(t) . (3.43)

If we intend OIA excitation, we can compensate this attenuation by either dividing the input
AM function by M(f) or by adjusting the FM function. The first approach often reduces
critical adiabaticity substantially, if Qcrit is limited by maximum available irradiation power.
It may, however, be advantageous if the AM function has some similarity to the shape of
the resonator profile.

Compensation by an Adapted FM Function
If an excitation bandwidth beyond resonator bandwidth is desired, it is advantageous to
compensate the FM function. This is achieved by sweeping more slowly at low M(f)
and sweeping faster at high M(f). For a discrete FM function ~f with N elements fi
(i = 1 . . . N), we can compute the time of passage of an element fi as[DJ17]

t(fi) =
Qcrit,corr

2

i∑
k=1

[
M(fk) · ν1(t)|t=t(fk)

]−2
. (3.44)

The corrected critical adiabaticity is given by

Qcrit,corr =
2πtpulse∑N

k=1

[
ν1,maxM(fk) · ν1(t)|t=t(fk)

]−2 . (3.45)

The compensated FM function is then found by inverting t(fi) to f(tj) and the AM function
is provided by interpolating ν1(t) to the tj .

4While Eq. (3.27) applies strictly only to chirp pulses, the quadratic scaling applies to other frequency
sweeps, too.

5M(f) = ν̃1(f)/max(ν̃1)
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3.3 Passage in Multi-level Systems

3.3.1 Sequential Single-passage Approximation
Passage of a pair of transitions in a multi-level system can lead to interference. Such
interference will generally occur if the two transitions share a level. If this is not the
case, interference may still occur if before passage levels the two transitions are connected
by coherence. If neither of these conditions is met, the transitions are independent. For
independent transitions, it does not matter in which sequence they are passed. Even
simultaneous passage can then be treated as two independent passage events on the two
transitions. In the other cases, we can apply our understanding of passage of a single
transition if passage of the first transition at ω(1)

0 is complete before the second transition at
ω

(2)
0 is affected. This is the case if max(ω1)� ω

(2)
0 − ω

(1)
0 , where max(ω1) is the maximum

irradiation amplitude during passage of both transitions. In this regime, we can treat the
passage of the two transitions as two sequential passages of single transitions.

|1ñ

|2ñ

|3ñ

adiabatic

ideal

adiabatic

passage

p pulse

passage

a b

Figure 3.3: Difference between ideal-pulse and adiabatic-passage inversion of a spin-1 system.
(a) Longitudinal interference leading to polarization transfer during adiabatic passage of the
two transitions of a spin-1 system. Passage of the first transition doubles polarization of
the second transition. Upon passage of the second transition, this polarization is inverted
and original polarization on the first transition is restored. (b) Application of an ideal
(infinitely short monochromatic) pulse affects both transitions equally.

3.3.2 Longitudinal Interference
Longitudinal interference arises because passage of the first transition (transition |1〉 ↔ |2〉)
in Figure 3.3a) changes the population of the common level of the two transitions (level
|2〉) in Figure 3.3a). In contrast, polarization of both transitions is inverted by an ideal π
pulse (Figure 3.3b). One easily confirms that, for the frequency-swept pulse, the result of
upward and downward sweeps is different.

Numerical simulation of chirp pulse excitation well in the sequential passage regime
(ω1/(ω

(2)
0 − ω

(1)
0 ) ≈ 0.018 confirms this simple picture of longitudinal interference (Figure

3.4a). Unexpectedly, subsequent inversion of the two transitions is no longer perfect at
ω1/(ω

(2)
0 − ω

(1)
0 ) ≈ 0.056 (Figure 3.4b) where the sequential passage approximation should

still hold. As marked by the arrows, the distortion occurs at the centre of the sweep where
none of the two transitions is resonant. We defer discussion of the reason to Section 3.3.4.
Already at ω1/(ω

(2)
0 − ω

(1)
0 ) ≈ 0.18 (Figure 3.4c), the sequential passage approximation is



34 Chapter 3. Passage Effects

significantly violated. If ω1 is of the order of the difference of the two resonance frequencies,
neither the individual transitions nor the whole system are properly inverted (Figure 3.4d).
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Figure 3.4: Effects of simultaneous excitation of connected transitions during a chirp
pulse with Qcrit = 5. An S = 1 system with zero-field splitting of -250 MHz is assumed
and frequency range from -500 MHz to 500 MHz around the centre frequency of the two
transitions is swept. The polarization on transition |1〉 ↔ |2〉 (blue) and |2〉 ↔ |3〉 (brickred)
is plotted as function of time after begin of the pulse. (a) Pulse length tpulse = 10 µs
corresponding to ν1 = 8.9 MHz. (b) tpulse = 1 µs, ν1 = 28.2 MHz. Arrows denote an
effect due to two-photon excitation of the double-quantum transition. (c) tpulse = 100 ns,
ν1 = 89.2 MHz. (d) tpulse = 10 ns, ν1 = 282 MHz.

3.3.3 Transverse Interference
Interference between subsequent passages becomes more complicated if coherence is gen-
erated. Passage of the first transition proceeds as in a two-level system, converting all
polarization on the transition to coherence and equalizing the populations of the two levels
(Figure 3.5a, left). This leads to larger polarization of the second transition and subsequently
to larger coherence on this transition after it has been passed. In the high-temperature
approximation, where the two polarizations are equal before the sweep, coherence on the
second transition is 1.5 times as large as after passage of a single transition.

Coherence on the first transition is reduced when the second transition is passed. This is
because, in a three-level system, a pulse applied to transition |2〉 ↔ |3〉 transfers coherence
on transition |1〉 ↔ |2〉 to coherence on the double-quantum transition |1〉 ↔ |3〉. This
transfer is complete at flip angle π, i.e., for adiabatic passage of transition |2〉 ↔ |3〉.
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In Figure 3.5 we assume a flip angle of π/2 on the single-quantum transitions. In this
situation, only half of the coherence on transition |1〉 ↔ |2〉 is transferred to double-quantum
coherence. Note that, in the S = 1 system that we assumed for the simulation in Figure
3.5b, a π/2 pulse at single-quantum transitions requires Qcrit = ln 2/π. This is only half the
value of Qcrit that effects a π/2 pulse in an S = 1/2 system. The difference arises because
the transition moment on individual transitions is larger by a factor of

√
2 in the S = 1

system.
In Figure 3.5b only amplitude of the coherence is plotted, disregarding phase. Prediction

of the phase is complicated by dynamical Bloch-Siegert shift (see Section 3.2.4). Details
can be found in [DJ17].
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Figure 3.5: Transverse interference upon passage of two transitions that share a level. (a)
Passage of the first transition excites coherence on this transition as expected. At the same
time, polarization of transition |2〉 ↔ |3〉 is increased. Passage of the second transition
thus creates more coherence on this transition. In addition, this passage transfers part
of the coherence on transition |1〉 ↔ |2〉 to double-quantum coherence on the forbidden
transition |1〉 ↔ |3〉. (b) A chirp pulse with Qcrit = ln 2/π is applied, corresponding to a
π/2 pulse on individual allowed transitions. The amplitude of coherence is plotted versus
time, disregarding phase. An S = 1 system with zero-field splitting of -250 MHz is assumed
and a frequency range from -500 MHz to 500 MHz around the centre frequency of the
two transitions is swept. Coherence is generated also on the double-quantum transition
|1〉 ↔ |3〉 (yellow).

3.3.4 Multi-photon Transitions
As seen in Figure 3.4b (arrows), resonant state changes may occur in multi-level systems
at frequencies that do not correspond to transitions. In the case at hand, the two single-
quantum transitions have frequencies of 33.25 GHz and 33.75 GHz and the double-quantum
transition has a frequency of 67 GHz. The centre of the sweep, where the state change
occurs, is at 33.5 GHz. It follows that the spin system absorbs two photons when the
double-quantum transition is passed at half its frequency. With an effective nutation
frequency ω1,DQ = 2ω2

1/ |ω12 − ω23| for the double-quantum transition and an effective
sweep rate ∆mSk, one finds [DJ17]

Qcrit,DQ =
ω2

1,DQ

∆mSk
=

4w4
1

∆mSk |ω12 − ω23|2
=

2kQ2
crit

|ω12 − ω23|2
. (3.46)

where we have substituted ∆mS = 2. Similar expressions apply to transitions that involve
absorption of more than two photons [Haa+94].

Note that such excitation of forbidden transitions does not require violation of the
high-field approximation. If the splitting between two allowed transitions is of the order of
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ω1 or smaller and the two transitions share a level, the process becomes very effective and
contributes to breakdown of the sequential single-passage approximation.
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4. Hole Burning and Shifting

4.1 Inhomogeneous Line and Selective Inversion
In the solid state, resonance frequency depends on orientation of the sample with respect to
the magnetic field. For electron spins, this dependence arises from g and hyperfine anisotropy.
In high-spin species (S > 1/2), anisotropic zero-field splitting also contributes and for
electron spin pairs at distances closer than about 20 Å, anisotropy of the dipole-dipole
coupling may contribute to the distribution of resonance frequencies. For nuclear spins,
the main contributions are chemical shift anisotropy and nuclear dipole-dipole coupling.
For nuclear spins I > 1/2, the main contribution is nuclear quadrupole coupling and for
nuclear spins in the vicinity of slowly relaxing electron spins, the main contribution is
hyperfine anisotropy. These distributions of resonance frequencies lead to inhomogeneous
line broadening , as illustrated in Figure 4.1a. Whereas the homogeneous line of a spin packet
has Lorentzian shape1, the inhomogeneous line shape is determined by the distribution
function of the resonance offset, which in turn depends on the anisotropies of all relevant
interactions and relative orientation of the principal axes frames of the tensors that describe
these asymmetries.

Coming back to the electron spin, the appearance of an inhomogeneous line can even
arise in isotropic systems if a sufficiently large number of nuclei with unresolved hyperfine
couplings exist. In this case, the role of the spin packets is taken over by individual lines of
a hyperfine multiplet of multiplets. Such broadening is called heterogeneous broadening. For
electron spins in the solid state, usually both inhomogemeous and heterogeneous broadening
are relevant. For the following discussion. we do not need to distinguish between these
two types of broadening. We use the language of inhomogeneous broadening, where the
component at a given resonance frequency is called a spin packet. For simplicity, we assume
a Gaussian lineshape with full width at half maximum (FWHM) Γinh for the inhomogeneous
line and a Lorentzian lineshape with uniform FWHM Γhom for the spin packets. In practice,
Γhom can be anisotropic and can thus vary between spin packets and the inhomogeneous
lineshape is rarely Gaussian.

1We assume monoexponential transverse relaxation
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Figure 4.1: Inhomogeneous line and spectral hole burning. (a) Inhomogeneous line (black)
resulting from a superposition of 50 spin packets with Lorentzian lines (gray) whose intensity
distribution follows Pascal’s triangle. (b) Upon selective irradiation at offset -2, spin packets
are excited with a efficiency related to their resonance offset. An on-resonance flip angle of
π was assumed. Spin packets far off-resonance remain nearly unaffected. As a result, a hole
is burned into the inhomogeneous line.

We now assume monochromatic excitation with ω1 � Γinh for time tpulse at some
frequency within the inhomogeneously broadened line (Figure 4.1b). This is a typical
situation in EPR experiments. For an on-resonant flip angle ω1tpulse = π, spin packets close
to the irradiation frequency are almost perfectly inverted. Spin packets with a resonance
offset that is much larger than ω1 remain nearly unaffected. The result is selective inversion
in a narrow range around the irradiation frequency. Quite obviously, this is a means for
increasing resolution, since further manipulations can be performed on only the excited spin
packets, which correspond to a much narrower line. This resolution enhancement comes at
the expense of sensitivity loss, since only a small fraction of all spin packets is excited and
detected. The higher the resolution, the lower the sensitivity.

4.1.1 Width and Shape of the Spectral Hole
As is intuitively clear from Figure 4.1, the spectral hole cannot be narrower than the
homogeneous line. This limiting linewidth can be achieved only if a single spin packet
is excited, which requires ω1 � Γhom. With our assumptions, Γhom = 2/T2, where T2

is the transverse relaxation time. Thus, the limiting linewidth can only be achieved for
ω1T2 � 1, which implies that inversion is impossible. If the longitudinal relaxation time T1

is sufficiently long, a saturation hole can be burnt at the limiting linewidth. This implies
a further loss in sensitivity by a factor of two. Even under these conditions, the limiting
linewidth of the hole can be achieved only if spectral diffusion2 is negligible during tpulse.

In many cases one is not prepared to accept the sensitivity loss associated with achieving
the limiting linewidth. Instead, one strikes a compromise between resolution and sensitivity
by selecting an appropriate strength ω1 of the irradiation field. The broadening that arises
with respect to the limiting hole width is called power broadening .3. The width and the

2Spectral diffusion is a change of the resonance frequency that arises mostly from flip-flop processes of
spin pairs with similar, but not exactly the same resonance frequency of the two spins. The flip-flops are
enabled by the B term of the dipole-dipole coupling between the two spins

3We discourage the term "saturation broadening", since saturation can be achieved at the limiting hole
width



4.1 Inhomogeneous Line and Selective Inversion 39

shape of the hole under power broadening depend on pulse shape, i.e., on the AM function.
To a first approximation, which is very good in the linear regime ω1tpulse < π/6, the shape of
the hole corresponds to the Fourier transform of the pulse shape. Hence, rectangular pulses
lead to sinc-function-like hole shapes, which include weak side holes. This is detrimental
if the the hole pattern is later analysed in order to obtain information on Hamiltonian
parameters. In such experiments, one seeks smooth hole shapes without side holes, which
can be attained by Gaussian-shaped hole-burning pulses. In general, the shape and width of
the whole can be sculpted by selecting the AM and FM function. However, if an experiment
depends on the observation of frequency shifts or of broadening of individual holes, a
monochromatic Gaussian pulse appears to be the optimal choice.

Spectral holes can be detected by application of a π/2 pulse and subsequent observation
of their free induction decay (FID-detected hole burning or by a selective echo experiment.
In the former case, it is obvious that in the Fourier transform of the FIF, the hole shape
is convoluted with a Lorentzian line whose FWHM on a linear frequency scale is set by
1/(πT2)

L [WSS92]

4.1.2 Spectral Grating

The smaller width of the spin packets can also be utilized without the large sensitivity
loss due to highly selective excitation. To that end, one creates resonance-offset dependent
inversion using the pulse sequence π/2− τ − π/2, where the excitation bandwidth of the
π/2 pulses either exceeds Γinhom or is selected as large as possible. At resonance offsets,
where Ωτ is an integer multiple of 2π, the phase of magnetization of the spin packet is the
same after interpulse delay as directly after the first π/2 pulse. Consequently, if the π/2
pulses have the same phase, magnetization of the spin packet is inverted. In contrast, if Ωτ
is an odd multiple of π, the spin packet has gained phase π before the second π/2 pulse. In
the absence of relaxation, this pulse then restores the magnetization that existed before the
first π/2 pulse.
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Figure 4.2: Spectral grating in an inhomogeneous line resulting from a superposition of
50 spin packets with Lorentzian lines (gray) whose intensity distribution follows Pascal’s
triangle. A pulse sequence π/2− τ − π/2 with τ∆ν = 0.3 was simulated, where Deltaν is
the frequency difference between the discrete spin packets.
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Figure 4.2 illustrates the result for the same discrete distribution of spin packets that
we assumed in Figure 4.1. The pulse sequence generates a cosinuoidal polarization grating
across the inhomogeneously broadened line. For a continuous distribution of spin packets,
the envelope function of the grating is given by the inhomogeneous lineshape and the linear
frequency difference between two minima (or maxima) in the grating is 1/(2πτ). Finesse of
the grating is limited by transverse relaxation, since τ cannot exceed T2 by a large factor
without loosing the magnetization. It can be shown that the optimal interpulse delay for
detecting small frequency shifts is given by τ ≈ T2 [ZJG05].

4.2 Hole Burning in Multi-Level Systems
4.2.1 Enhanced Hole Burning for Weakly Allowed Transitions

Hole burning allows for enhancing transitions with a small transition moment with respect
to transitions with a large transition moment. Small transition moments can arise for
formally forbidden transitions in regimes where the magnetic quantum numbers are not
strictly good quantum numbers. The transitions are strictly forbidden in the high-field
limit, where the Zeeman interactions of all spins exceed all other interactions by a large
factor. In this limit, all interactions in the spin Hamiltonian can be truncated to the terms
that contain only Ŝz,i and Îz,j operators. For interactions between two spins, the limit is
only attained if also the difference between their Zeeman interactions - or chemical shift
terms - exceeds the interaction strength by far. Notably, this condition is violated for proton
pairs in NMR even at the highest magnetic fields that can be attained. If the high-field
limit is not attained, some terms that contain spin x or y operators are no longer negligible.
These terms are referred to as pseudo-secular terms. Pseudo-secular terms admix spin
states with different sets of magnetic quantum numbers. The corresponding state-space
rotation generates off-diagonal elements of the excitation operator, for instance of Ŝx, that
connect formally forbidden transitions.

A case in hand are the electron-nuclear transitions with ∆mS = 1, ∆mI = 1 in the
system introduced in example 2.3.1. As demonstrated in the basic magnetic resonance
course, the Hamiltonian

Ĥ0 = ΩSŜz + ωI Îz +AŜZ Îz +BŜz Îx (4.1)

is diagonalized by the transform T̂EB = exp
{
−ı
(
ξÎy + η 2Ŝz Îy

)}
with ξ = (ηα − ηβ)/2

and η = (ηα + ηβ)/2, where ηα = arctan[−B/(2ωI +A)] and ηβ = arctan[−B/(2ωI −A)].
In order to assess the effect of excitation in the eigenbasis, we need to apply the same
transformation to the excitation term ω1Ŝx. We find

ω1Ŝx
T̂EB−→ cos(η)Ŝx + sin(η) 2Ŝy Îy . (4.2)

The term sin(η) 2Ŝy Îy drives electron-nuclear zero and double-quantum transitions. In
most cases, sin η � cos η, i.e., the formally forbidden zero- and double-quantum transitions
become only weakly allowed.

High Turning-angle Pulses
A pulse with nominal flip angle β = ω1tpulse,0 results in smaller flip angles cos(η)β and
sin(η)β for formally allowed and forbidden transitions, respectively. This can be compen-
sated by either increasing ω1 or prolonging the pulse. Since ω1 is limited, one often uses
the latter strategy. If tpulse is prolonged beyond tpulse,0/ cos(η), the allowed transitions are
"overflipped", i.e., they experience a flip angle larger than β. In the context of hole burning,
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the hole due to excitation of allowed transitions reached maximum depth at tpulse,0/ cos(η).
In contrast, the depth of the hoe due to excitation of forbidden transitions increases for
pulse lengths up to tpulse,0/ sin(η), if relaxation can be neglected. Power broadening for
these holes also scales with sin η. Because usually sin η � 1, optimal hole-burning pulses
for forbidden transitions have flip angle much larger than π. We refer to them as high
turning-angle pulses (HTA pulses).

4.2.2 Side Holes

In a multi-level system, hole burning on one transition will affect polarization of all
transitions that share one level with the excited transition. This effect is illustrated in
Figure 4.3. We consider a three-level system with energy increasing from level |1〉 to |3〉.
The frequencies of transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 are assumed to be very similar (the
difference is exaggerated for clarity in Figure 4.3a), so that the frequency of transition
|1〉 ↔ |3〉 is about twice as large. In the high-temperature approximation, transitions
|1〉 ↔ |2〉 and |2〉 ↔ |3〉 then have about the same thermal equilibrium polarization p,
whereas thermal equilibrium polarization of transition |1〉 ↔ |3〉 is about twice as large.
The populations of the three levels can be assigned as 1 + p, 1 and 1− p.
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Figure 4.3: Generation of a side hole and antihole in a three-level system. Equal polarization
of transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 is assumed. (a) Upon inversion of transition |1〉 ↔ |2〉
(blue), polarization of transition |2〉 ↔ |3〉 (red) doubles, whereas polarization of transition
|1〉 ↔ |3〉 (yellow) halves. Energy differences in the level scheme are exaggerated for clarity.
(b) In addition to the central inversion hole at the irradiation frequency (blue), a saturation
side hole at the offset frequency of transition |1〉 ↔ |3〉 (yellow) and an antihole at the
offset frequency of transition |2〉 ↔ |3〉 (red) are generated. In practice, transition |1〉 ↔ |3〉,
whose frequency is the sum of the frequencies of the two other transitions, may be outside
the detection window and may not even be part of the same inhomogeneously broadened
line.

Upon inversion of transition |1〉 ↔ |2〉, the population of level |1〉 decreases by p to 1,
whereas the population of level |2〉 increases by p to 1 + p. This inverts the polarization on
this transition from p to −p. As a result, transition |2〉 ↔ |3〉 now has a polarization 2p,
which is twice as large as thermal equilibrium polarization. The signal of this transition is
enhanced, leading to an antihole as illustrated by the red line in Figure 4.3b. At the same
time, the polarization of transition |1〉 ↔ |3〉, which originally was 2p, is reduced to p. This
generates a side hole as illustrated by the yellow line in Figure 4.3b.
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Depending on the structure of the spin system, only the side hole or only the antihole
may be observable. This is because one of the two transitions can be forbidden or in a
frequency range outside the detection window or both. For instance, if the three-level system
corresponds to a triplet state (S = 1) in the high-field approximation, transition |1〉 ↔ |3〉
is at about twice the microwave frequency and forbidden. If the high-field approximation is
slightly violated, this transition is weakly allowed.

L [WJ18]

4.2.3 ELDOR-detected NMR
The concepts of enhanced hole burning at forbidden transitions and of generation of side
holes are combined in the ELDOR-detected NMR experiment. The situation at thermal
equilibrium before the start of the experiment is illustrated in Figure 4.4a. Since the electron
Zeeman frequency is much larger that the nuclear Zeeman frequency and the hyperfine
couplings, polarization of nuclear-spin transitions (blue) can be neglected. Polarization of
both electron-spin transitions (red) is approximately equal. By application of a HTA pulse,
the forbidden transition |βSαI〉 ↔ |αSβI〉 can be significantly excited unless sin(η)ω1 � T2.

| ñbSaI | ñbSaI | ñbSaI

| ñaSaI | ñaSaI | ñaSaI| ñaSbI | ñaSbI | ñaSbI

| ñbSbI | ñbSbI | ñbSbI

a

d e

b c

w w

Figure 4.4: Principle of ELDOR-detected NMR. (a) Energy level scheme with box filling
corresponding to populations. Electron spin transitions are marked by red solid lines,
nuclear spin transitions by blue solid lines, and forbidden electron-nuclear transitions by
yellow dashed lines. (b) Inversion of the forbidden transition |βSαI〉 ↔ |αSβI〉 (bold yellow
dashed line) equalizes populations on both allowed electron spin transitions. (c) Likewise,
inversion of the forbidden transition |βSβI〉 ↔ |αSαI〉 (bold yellow dashed line) equalizes
populations on both allowed electron spin transitions. (d) Stick spectrum after inversion of
transition |βSαI〉 ↔ |αSβI〉. Zero signal on the allowed transition corresponds to saturation
side holes. (d) Stick spectrum after inversion of transition |βSβI〉 ↔ |αSαI〉.

In Figure 4.4b we assume that this transition can be inverted. Such inversion equalizes
populations in the two level pairs that correspond to the allowed electron spin transitions.
The signal of these transitions vanishes (Figure 4.4d). In a hole-burning picture, this
corresponds to creation of saturation sideholes that are offset from the excited forbidden
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transition by the frequency diferences between the forbidden transition and these allowed
transitions. One easily ascertains that the frequency differences are the NMR frequencies
ωα and ωβ . The situation is analogous for the other forbidden transition, as illustrated in
Figure 4.4c,e. Because the transitions are allowed, the side holes can be detected with high
sensitivity.

As discussed above, ELDOR-detected NMR cannot achieve resolution better than
twice the homogeneous EPR linewidth. Methods that generate nuclear coherence, such as
electron spin echo enveloppe modulation (ESEEM), or electron nuclear double resonance
(ENDOR) techniques can have resolution as good as the homogeneous NMR linewidth.
However, if the NMR lines are themselves strongly inhomogeneously broadened, sensitivity
of ELDOR-detected NMR can be much better than sensitivity of any of the other techniques.

4.2.4 Solid-effect DNP
The same excitation principle as in ELDOR-detected NMR is used in solid-effect DNP.
Figure 4.4a-c illustrates the concept. At thermal equilibrium (panel a), polarization
of the nuclear transitions (blue) is negligible compared to polarization of the electron
transitions (red). If the electron-nuclear zero-quantum transition is excited (panel b),
emissive nuclear-spin polarization is generated for nuclei with positive gyromagnetic ratio,
where the αI state is the ground state. If the electron-nuclear double-quantum transition
is excited (panel c), enhanced absorptive nuclear-spin polarization is generated. If one
scans the microwave frequency through the EPR line, sign of the enhanced NMR lines
changes. The emissive and absorptive enhancement maxima are split by ωalpha + ωβ =√

(ωI +A/2)2 +B2/4 +
√

(ωI −A/2)2 +B2/4 ≈ 2ωI .

4.3 Hole Shifting

In a multi-level systems, spectral holes can be shifted by applying non-selective or selective
pulses to other transitions. We consider three cases for four-level systems.

4.3.1 Non-selective Hole Shifting
We consider a system of two coupled electron spins S1 = 1/2 and S2 = 1/2. The thermal
equilibrium spectrum of a single spin packet (bottom of Figure 4.5a) consists of two doublets
with the same splitting. This splitting is the coupling between the two spins. In a disordered
solid, the centre of the four-line spectrum and the spacing between the two doublets are
usually distributed due to anisotropic Zeeman and hyperfine interactions of S1 and S2.
Their coupling is also distributed, but this distribution may be much narrower. The latter
distribution contains information on the dipole-dipole interaction between S1 and S2 as
well on their exchange interaction, if present.

If the coupling between the two spins exceeds 1/T2 of spin S1, we can selectively
excite one of the two transitions of S1 (Figure 4.5a). In the limit of ideal selectivity, the
other transition of S1 is unaffected. Due to the population changes of the two levels, the
connected transitions of spin S2 are affected, as we discussed in general for multi-level
systems in Section 4.2.2. The polarization of one of the transitions of the S2 doubled is
double (antihole) and the polarization of the other transition is zeroed (saturation hole).
If the frequency difference between the centres of the S1 and S2 double were fixed, we
could thus resolve the coupling between the two spins as an antiphase hole pattern for
spin S2. Unfortunately, this frequency difference is usually broadly distributed, leading to
cancellation of the antiphase pattern.

We now assume that we can invert the two S2 transitions without affecting the S1
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Figure 4.5: Hole shifting by a non-selective pulse. (a) Thermal equilibrium populations
(top) and stick spectrum (bottom) for a system of two coupled electron spins S1 = 1/2
(blue transitions) and S2 = 1/2 (red transitions). The bold blue line denotes the transition
where a hole is burnt. (b) Situation after hole burning on one transition of spin S1. The
other transition of spin S1 is unaffected. Of the two transitions of spin S2 one exhibits
enhanced absorption (antihole), whereas for the other one the two populations are equalised,
corresponding to a saturation hole. Spin S2 is now non-selectively inverted (bold red lines).
(c) Situation after non-selective inversion of S2 transitions. The hole on spin S1 has been
shifted by the splitting of the two S1 transitions, which corresponds to the coupling between
spins S1 and S2.

transitions (Figure 4.5c). This is possible if we have a microwave amplitude ω1 that exceeds
the spin-spin coupling and if there is a sufficient number of spin packets where the frequency
difference between the S1 and S2 doubles strongly exceeds the spin-spin coupling. In this
situation, non-selective excitation of spin S2 shifts the inversion hole on spin S1 from one
of the doublet transitions to the other one. In other words, frequency of the spectral hole is
changed by the spin-spin coupling.

As in the case of ELDOR-detected NMR that we discussed above, other experiments
can be used for measuring the spin-spin coupling with better resolution. However, if
the spins-pin coupling exceeds 1/T2 of spin S1 by far, non-selective hole shifting may be
more robust and more sensitive than these experiments. To the best of my knowledge,
experimental proof is still missing.

4.3.2 Selective Hole Shifting

Selective hole shifting is the basis of the well established Davies ENDOR experiment. In
this case, the excitation field ω1 must be smaller than the hyperfine coupling A between an
electron spin S and a nuclear spin I in order to selectively invert one of the two transitions
of the hyperfine doublet in the EPR spectrum. This step also requires A > 1/T2, where T2

is the transverse relaxation time of the electron spin. Figure 4.6a,b shows the effect of such
an inversion pulse. You may want to draw the stick spectra of the electron and nuclear spin
analogous to the spectrum shown for the case of two electron spins in Figure 4.5 (bottom).

We now consider application of a radiofrequency π pulse to the nuclear spin. In a
situation, where A > 1/T2 for the electron spin, such a radiofrequency pulse is almost
invariably transition selective. This is because the pulse amplitude in angular frequency
units ω2 is the product of the pulse amplitude in magnetic field units with the gyromagnetic
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ratio, which is much smaller for nuclear spins. Without loss of generality, we assume that
the radiofrequency pulse is resonant with the |αSαI〉 ↔ |αSβI〉 transition (bold blue line in
Figure 4.6b). Inversion of this transition creates nuclear spin polarization (Figure 4.6c).
However, this experiment is not suited for DNP, since the first step of selective EPR hole-
burning is impossible for nuclear spins that are well resolved in the NMR spectrum. Instead,
the NMR spectrum can be detected on the electron spin by sweeping the radiofrequency and
observing the originally burnt hole by EPR echo or FID detection. If the radiofrequency
pulse is on-resonant, the original inversion hole is reduced to a saturation hole.

| ñbSaI

| ñaSaI | ñaSbI

| ñbSbI

a b c

Figure 4.6: Population changes by selective hole shifting in Davies ENDOR. (a) Thermal
equilibrium populations with electron-spin transitions marked red and nuclear-spin tran-
sitions marked blue. The bold red line denotes the transition where a hole is burnt. (b)
Situation after electron-spin hole burning. Two-spin order is generated. The two nuclear
transitions are strongly polarised, albeit with different sign. The bold blue line denotes
the NMR transition that is inverted in the following step. (c) Situation after selective
inversion of one NMR transition. The nuclear spin is now net polarized. Polarization on
both electron spin transitions is zeroed. This corresponds to shifting half of the spectral
hole depth to a side hole separated by the hyperfine splitting.

Saturation also occurs for the electron spin transition |βSβI〉 ↔ |αSβI〉 that was not
originally inverted. In other words, the radiofrequency pulse splits the original inversion
hole into two saturation holes, one of which has a resonance offset A. By observing this side
hole, one can correlate the hyperfine coupling to the NMR frequency, which is of interest
if transition of different isotopes or elements occur in the same frequency range. This is
generally the case at fields where the hyerfine couplings are comparable to nuclear Zeeman
frequencies. Resolution in the hyperfine dimension is poor. Therefore, this experiment is
rarely performed.

4.3.3 Shifting a Spectral Grating
The same principle as in Davies ENDOR can be applied to the spectral grating discussed in
Section 4.1.2 instead to a spectral hole. The spectral grating can be conveniently detected
by applying a non-selective microwave π/2 pulse. This pulse generates a stimulated echo,
which can also be considered as the FID of the grating. The radiofrequency pulse, applied
between the π/2− τ − π/2 preparation sequence and the π/2 recall pulse, splits the grating
into two subgratings, similar to splitting an inversion hole into two saturation holes. The
two subgratings are shifted with respect to each other by the hyperfine coupling A. In
general, this leads to destructive interference of the subgratings and thus to attenuation of
the stimulated echo. This experiment is called Mims ENDOR.

The advantage of Mims ENDOR is a higher sensitivity due to utilization of more spin
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packets. However, destructive interference is complete only if Aτ is an odd multiple of π. In
the case where Aτ is an even multiple of τ , the two subgratings superimpose constructively.
The stimulated echo is then not attenuated in the limit of an infinitely broad inhomogeneous
line and of ideal π/2 pulses. In practice, some attenuation of the stimulated echo still
occurs, but sensitivity is very low in this situation. Mims ENDOR thus features blind spots
for hyperfine couplings A = 2πk/tau with integer k. The problem can be alleviated by
adding spectra measured at different interpulse delays τ or even turned into an advantage
by storing spectra at various τ separately and performing a Fourier transformation with
respect to τ . Such a 2D Mims ENDOR experiment also correlates the hyperfine coupling
to the NMR frequencies. In practice, Mims ENDOR is usually applied for small hyperfine
couplings A < 2π/tau. For hyperfine couplings that exceed this magnitude with the shortest
possible interpulse delay τ , given by receiver deadtime tdead, Davies ENDOR is usually
sufficiently sensitive and easier to perform and analyse.
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5. Hyperfine Decoupling

5.1 Secular Hyperfine Interaction
We consider a system of an electron spin S = 1/2 and a nuclear spin I = 1/2 in the presence
of microwave irradiation. For the moment, we truncate the hyperfine Hamiltonian to only
its secular term AŜz Îz, which is a good approximation at very high fields where the nuclear
Zeeman interaction dominates the hyperfine interaction. The total Hamiltonian in the
electron-spin rotating, nuclear-spin laboratory frame is given by

Ĥ = Ĥ0 + Ĥ1 = ΩSŜz + ωI Îz +AŜz Îz + ω1Ŝx . (5.1)

In order to understand the effect of the microwave irradiation term ω1Ŝx on the hyperfine
term, we need to transform this Hamiltonian into its eigenbasis. As seen in Figure 5.1a,
Ĥ can be separated into two 2× 2 blocks, marked blue and red, which are not connected
by off-diagonal elements. Such a Hamiltonian is called block diagonal. By considering
the assignment of states (kets and bras on the left side and on the top of the matrix
representation), we can associate the two blocks with the αI (blue) and βI (red) states of
the nuclear spin. They can thus be selected by the Îα and Îβ projection operators.

In the product operator representation, we introduce the projection operators by the
substitutions Îz = Îα/2− Îβ/2 and 1̂ = Îα+ Îβ . We thus obtain separate spin Hamiltonians
for the two blocks

Ĥα = ΩSŜz + ωI/2 1̂ +A/2 Ŝz + ω1Ŝx

Ĥβ = ΩSŜz − ωI/2 1̂−A/2 Ŝz + ω1Ŝx . (5.2)

The terms ±ωI/2 1̂ are not of interest for the transformation, as the unit operator 1̂
is invariant under any rotation. The Ŝx operator can be rotated to Ŝz by applying a
transformation θŜy. We do this separately for the two subspace Hamiltonians. For the Îα

subspace, we find

Ĥα θαŜy−→ cos(θα) (ΩS +A/2) Ŝz + sin(θα) (ΩS +A/2) Ŝx + ωI/2 1̂

+ cos(θα)ω1Ŝx − sin(θα)ω1Ŝz . (5.3)
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The Hamiltonian become diagonal, if and only if the Ŝx terms cancel. This leads to the
condition

sin(θα) (ΩS +A/2) + cos(θα)ω1 = 0 . (5.4)

By solving for θα we obtain

θα = arctan
−ω1

ΩS +A/2
. (5.5)

The analogous steps for the Îβ subspace yield

θβ = arctan
−ω1

ΩS −A/2
. (5.6)
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Figure 5.1: Matrix representation of the spin Hamiltonian for an S = 1/2, I = 1/2 system
with electron spin resonance offset ΩSŜz, and nuclear Zeeman interaction ωI Îz during
microwave irradiation ω1Ŝx. (a) Only secular hyperfine coupling AŜz Îz is considered. The
Hamiltonian is block-diagonal with the two blocks indicated by dashed light blue (Îα

manifold) and dashed light red (Îβ manifold) lines. (b) Pseudo-secular coupling BŜz Îx is
also considered. The Hamiltonian is no longer block-diagonal.

Using sin2 θ + cos2 θ = 1, we can identify

cos θα =
ΩS +A/2√

(ΩS +A/2)2 + ω2
1

=
ΩS +A/2

ωαeff

sin θα =
−ω1√

(ΩS −A/2)2 + ω2
1

=
−ω1

ωαeff

. (5.7)

We insert theses values into Eq. (5.3) and obtain

ĤαEB =
(ΩS +A/2)2

ωαeff

Ŝz + ωI/2 1̂ +
ω2

1

ωαeff

ω1Ŝz

=
(ΩS +A/2)2 + ω2

1

ωαeff

Ŝz + ωI/2 1̂

= ωαeff Ŝz + ωI/2 1̂ . (5.8)



5.1 Secular Hyperfine Interaction 51

Analogously, we find for the Îβ subspace

ĤβEB = ωβeff Ŝz + ωI/2 1̂ . (5.9)

The longish derivation confirms the expectation that, in each subspace, we rotated the
effective field towards the new z axis. This effective field can be computed by vector
addition of the two components along z and x in the original frame. Likewise, θα and
θβ can be inferred easily from a vector picture, as we did it for ηα and ηβ in the basic
magnetic resonance course. Using the formal product operator computations, as we did
here, is convenient when deriving expressions with programs like Mathematica, as it may
save us from explicitly picturing all rotations.

We are now in a position to combine the two subspace Hamiltonians to the total
Hamiltonian

ĤEB = Îα ĤαEB + Îβ ĤβEB

=
ωαeff + ωβeff

2
Ŝz + ωI Îz +

(
ωαeff − ω

β
eff

)
Ŝz Îz . (5.10)

We find that the hyperfine coupling is reduced from A to
(
ωαeff − ω

β
eff

)
.

This is still a complicated result, because the residual hyperfine coupling depends on
the ratios between three quantities, the resonance offset ΩS , the microwave field amplitude
ω1, and the unperturbed hyperfine coupling A. We first discuss the two limiting cases with
respect to resonance offset. On resonance (ΩS = 0), we find ωαeff = ωβeff =

√
A2/4 + ω2

1.
Hence,

lim
ΩS→0

ωαeff − ω
β
eff = 0 . (5.11)

For on-resonant spin packets hyperfine decoupling is perfect even at very small microwave
field amplitudes ω1. For ΩS → ∞, we can neglect ω2

1 in the expressions for ωα/βeff with
respect to (Ωs ±A/2)2. It follows that

lim
ΩS→∞

ωαeff − ω
β
eff = A . (5.12)

For ΩS � ω1, the hyperfine coupling remains practically unperturbed.
The transition between the two limits is most easily assessed by plotting the ratio

between the residual coupling ωαeff − ω
β
eff and the unperturbed coupling A versus the ratio

between the microwave field amplitude ω1 and the resonance offset ΩS . As the result
also depends on the ratio between ω1 and A, the plot is two-dimensional. We represent
(ωαeff − ω

β
eff)/A as a decadic logarithm (Figure 5.2). Efficient decoupling in this simple

experiment requires that the microwave field amplitude ω1 exceeds the resonance offset ΩS

by far. For ω1 ≈ ΩS decoupling is poor even if ω1 is much larger than the unperturbed
hyperfine coupling A. For observation of nuclear frequencies via the electron spin, this
problem can be compensated by an observer sequence that limits the resonance offset
of spin packets that contribute to the signal. The easiest way of doing so is by using a
spin-locked echo sequence π/2− τ −HTA = τ − echo, where HTA denotes a high-turning
angle pulse with the maximum available microwave field amplitude ω1,max. The amplitude
or even the waveform of the π/2 pulse can then be adjusted in a way that guarantees
ΩS � ω1,max for all spin packets that strongly contribute to the observer echo. There are
two ways for observing the hyperfine-decoupled NMR spectrum via the electron spin [JS97].
First, radiofrequency can be irradiated during the HTA pulse. If the frequency matches a
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Figure 5.2: Hyperfine decoupling efficiency log10

[
(ωαeff − ω

β
eff)/A

]
as a function of the ratios

between microwave field amplitude ω1 and unperturbed hyperfine coupling A (horizontal)
as well as between ω1 and resonance offset ΩS (vertical).

decoupled nuclear spin transition, the spin-locked echo is attenuated (hyperfine-decoupled
ENDOR). Second, the length of the HTA pulse can be varied. This hyperfine-decoupled
ESEEM experiment depends on generation of nuclear coherence, which in turn requires a
substantial pseudo-secular contribution BŜz Îx of the hyperfine coupling. In the following
Section, we consider the behaviour of this term under hyperfine decoupling.

5.2 Effect of the Pseudosecular Hyperfine Interaction
The pseudo-secular hyperfine coupling term BŜz Îx introduces off-diagonal elements that mix
the Îα and Îβ subspaces (Figure 5.1b). Thus, the Hamiltonian is no longer block-diagonal
and cannot be transformed to its eigenbasis by the procedure discussed in Section 5.1. In
principle, any 4 × 4 Hamiltonian matrix can be analytically diagonalized. However, the
resulting expressions are too complicated for being of practical use. Therefore, we first
apply the transformation discussed above to the pseudo-secular term and discuss the result.

We start by observing that

θαŜy Î
α + θβŜy Î

β =
θα + θβ

2
Ŝy +

θα − θβ
2

2Ŝy Îz = θ+Ŝy + θ− 2Ŝy Îz (5.13)

Of the two Cartesian product operator terms, 2Ŝy Îz commutes with Ŝz Îx. Thus, we find
for the pseudo-secular term in the eigenbasis of the secular part of the spin Hamiltonian

BŜz Îx
θ+Ŝy−→ cos(θ+)BŜz Îx + sin(θ+)BŜxÎx . (5.14)

The term with factor cos(θ+) can be treated as shown in the basic magnetic resonance
lecture. Hence, the transformation T̂psec = ξ′Îy + η′ 2Ŝz Îy removes this term. The angles ξ′

and η′ can be computed in analogy to ξ and η in the absence of decoupling by replacing
A by (ωαeff − ω

β
eff) and B by cos(θ+)B. This transformation also provides the (partially)

hyperfine-decoupled nuclear frequencies ω′α and ω′β for substantial pseudo-secular hyperfine
coupling, disregarding for the moment the term sin(θ+)BŜxÎx. We now transform this term
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to the frame that includes the effects of, both, the microwave irradiation and the remaining
part of the pseudo-secular hyperfine coupling

sin(θ+)BŜxÎx
ξ′Îy−→ cos(ξ′)BŜxÎx − sin(ξ′)BŜxÎz . (5.15)

We have made use of the fact that ŜxÎx commutes with Ŝz Îy.
Of the remaining two terms, ŜxÎz connects levels that differ in their electron spin

magnetic quantum number mS and agree in their nuclear spin magnetic quantum number
mS . Such levels are split by at least ω1. If we define hyperfine decoupling as a situation
where the microwave field is much larger than the pseudo-secular coupling B, this term can
be neglected irrespective of the magnitude of other interactions. The same does not apply to
the term cos(ξ′)BŜxÎx, which acts on electron-nuclear zero- and double-quantum transitions.
Among these, the zero-quantum transition has a frequency of roughly |

√
Ω2
S + ω2

1 − |ωI ||.
If this frequency tends to zero, the off-diagonal element cos(ξ′)BŜxÎx causes additional
mixing of levels. For on-resonant spin packets (ΩS = 0), such mixing occurs at the NOVEL
DNP condition ω1 ≈ |ωI |.

The same situation can be treated by other sequences of transformations [JS96]. The
general approach is to apply simple transformations and analyse the remaining off-diagonal
terms for their significance. If the levels connected by an off-diagonal term are split by
a frequency much larger than the term itself, then this term can be safely neglected. A
series of simple transformations can thus lead to an analytical solution that is a good
approximation.
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6. Dynamical Decoupling

In the low-temperature limit, electron spin decoherence is driven by interaction with the
nuclear spin bath. Such decoherence can be suppressed by dynamical decoupling, a term that
refers to multiple refocusing of the coherence, for instance, by the Carr-Purcell sequence.
We briefly cluster correlation expansion, which has been used for simplifying the problem
of an infinite coupled network of nuclear spins. Cluster correlation up to cluster size 2
corresponds to describing the coherence decay as a product of echo modulation functions
of three-spin systems that consist of the electron spin and two nuclear spins. We discuss
a simple analytical treatment of this three-spin system and derive an expression for echo
modulation by product operator formalism.

6.1 Phenomenological Aspects of Dynamical Decoupling
Decay kinetics of the Hahn echo of dilute electron spins attains a low-temperature limit near
50 K for organic radicals and near 10 K for transition metal ions with spin 1/2. In most
samples, decay does not conform to first-order kinetics in this regime, i.e., it is not described
by a single exponential. Instead, this decay can be modelled by a stretched exponential
function, V (τ) = exp

[
−(2τ/Tm)ξ

]
, where 2τ is the total length of the Hahn echo with

interpulse delay τ and Tm the phase memory time. Precise measurements show that in
many cases a sum of two stretched exponentials is required for such modeling [Soe+18;
Soe+21]. Echo decay with ξ = 2 is expected for diffusive processes, such as nuclear spin
diffusion, and can be suppressed by Carr-Purcell multiple refocusing [HEE03]. Experimental
results for a bulky nitroxide radical in a glassy water:glycerol matrix (1:1 v/v) are shown
in Figure 6.1. On the simplest level, the effect can be understood by observing that

exp
[
−(Nt/Tm)ξ

]
< exp

[
−(t/Tm)ξ

]N
(for ξ > 1) . (6.1)

Because the number of nuclear spins coupled to the electron spin and among themselves
is very large, the problem is usually treated by a spin-bath approach. Excitation of the
electron spin changes the hyperfine fields at the nuclei, thus disturbing equilibrium of the
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Figure 6.1: Prolongation of electron spin decoherence time by dynamical decoupling for a
nitroxide radical (inset) in water:glycerol 1:1 v/v. The plot shows the Hahn echo decay
(black) and decays of the final echo after Carr-Purcell sequences with n = 2 . . . 5 refocusing
pulses. The pulse sequence at the top is the Carr-Purcell experiment with n = 5 and a
total time 2τ . Adapted from [Soe+21].

nuclear spin bath. Dipole-dipole coupling between nuclear spins then causes magnetization
exchange between nuclei. This requires that nuclear-nuclear coupling is of the same order of
magnitude as the difference between their hyperfine couplings. The resulting backaction on
the electron spin was historically considered as a fluctuating hyperfine field due to the spin
bath at the electron spin. Such fluctuating fields lead to stochastic defocusing of coherence
and thus to coherence loss (decoherence). An early quantitative treatment by Milov et al.
provided ξ = 7/4.

6.2 Cluster Correlation Expansion

The problem of nuclear spin-diffusion driven electron spin decoherence attracted new interest
in the context of quantum information processing. Witzel and Das Sarma realized that
the inhomogeneous spatial distribution of nuclear spins simplifies the problem [WS07].
Couplings between nuclei need to be considered only within disjoint sets of nuclei (clusters),
but not between such sets. For instance, the proton-proton distance in a water molecule is
1.51 Å, whereas the hydrogen-bond distance to the oxygen atom in a neighbouring water
molecule is 2.8 Å. Dipole-dipole couplings between protons in different water molecules are
thus much smaller than those within water molecules. As suggested by this consideration,
it has been found by numerical computations that a correlated cluster expansion up to
order two (pairs of protons) provides reasonable predictions for nitroxide and trityl radicals
in glassy frozen water:glycerol mixtures, even though the predictions were made on the
basis of molecular dynamics simulations for pure water [CJS20].

To a first approximation, contributions of individual clusters to the logarithm lnV (t)
of the decoherence function add [WS07] because contributions to the decay function V (t)
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multiply. Hence, we should be able to understand the basics of dynamical decoupling by
considering spin dynamics of a system consisting of one electron spin and two nuclear spins.

6.3 Three-spin Model of Dynamical Decoupling
6.3.1 Defining a Minimal System

It is useful to distinguish between numerical spin dynamics simulations that aim at quanti-
tative prediction for an experimentally accessible system and computations that aim at
understanding the physics of a phenomenon. In the latter case, it is useful to work with
the minimal system that reproduces the phenomenon. Later on, one can still study how
the outcome changes for more realistic assumptions on the Hamiltonian and interaction
parameters.

In the case at hand, we know that nuclear spin-diffusion driven decoherence depends on
homonuclear dipole-dipole coupling. The nuclear spin part of the Hamiltonian is thus given
by

Ĥnuc = ωI

(
Î1,z + Î2,z

)
+ ωdip

(
1− 3 cos2 θnn

) [
Î1,z Î2,z −

1

4

(
Î+

1 Î
−
2 + Î−1 Î

+
2

)]
, (6.2)

where θnn is the angle between the static magnetic field B0 and the nuclear-nuclear vector
and the dipole-dipole coupling ωdip is

ωdip =
1

r3
nn

µ0~
4π

γ2
I (6.3)

with the internuclear distance rnn. We have neglected chemical shift, which is much
smaller than nuclear dipole-dipole coupling within clusters and much smaller than hyperfine
couplings that can lead to decoherence on the time scale of electron spin echo experiments.
For the same reason, we can neglect J coupling in the nuclear spin pair.

If the two nuclear spins have the same hyperfine coupling, they are magnetically
equivalent and back action of nuclear flip-flops on the electron spin is suppressed. Hence,
we need to assume a difference in hyperfine coupling to the electron spin between the two
nuclear spins,

Ĥhfi = A1Ŝz Î1,z +A2Ŝz Î2,z , (6.4)

with A1 6= A2. When considering evolution of coherence during a block τ − (π)x − τ , we
can set the resonance offset ΩS of the electron spin to zero as it is refocused by the π pulse.
Although the pseudo-secular hyperfine coupling B1Ŝz Î1,x + B2Ŝz Î2,x may be significant,
we neglect it for our analytical treatment, because the effect under consideration does not
require this pseudo-secular coupling.

6.3.2 Product Operator Formalism for the Refocusing Block
Without loosing generality, we can consider evolution of electron spin coherence Ŝx (zero
phase) during a refocusing block of total duration T = 2τ . In product operator formalism,
this is written as

Ŝx
Ĥ0τ−→ πŜx−→ Ĥ0τ−→ . . . , (6.5)

where Ĥ0 = Ĥhfi + Ĥnuc. However, product operator formalism cannot be applied without
precautions, since the two terms of Ĥnuc do not commute.
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The off-diagonal flip-flop term of Ĥnuc with operator Î+
1 Î
−
2 + Î−1 Î

+
2 = 2(Î1,xÎ2,x+ Î1,y Î2,y)

connects two pairs of levels. These are the pairs (ŜαÎα1 Î
β
2 , Ŝ

αÎβ1 Î
α
2 ) with secular splitting

(A1 − A2)/2 and (Ŝβ Îα1 Î
β
2 , Ŝ

β Îβ1 Î
α
2 ) with secular splitting (A2 − A1)/2. Accordingly, the

Hamiltonian can be diagonalized by the transformation

Ĥ ηT̂EB−→ ĤEB (6.6)

with the rotation angle

η = arctan
ωnn

A1 −A2
(6.7)

with ωnn = ωdip

(
1− 3 cos2 θnn

)
where the arctan function is understood as four quadrant

inverse tangent. The state-space rotation is effected by the operator

T̂EB = 2Ŝz Î1,y Î2,x − 2Ŝz Î1,xÎ2,y (6.8)

With the nuclear zero-quantum splitting of the level pairs in the eigenbasis,

ωnZQ =
1

2

√
(A1 −A2)2 + ω2

nn , (6.9)

the Hamiltonian in its eigenbasis becomes

ĤEB = ωI

(
Î1,z + Î2,z

)
+ ωnnÎ1,z Î2,z +A′1Ŝz Î1,z +A′2Ŝz Î2,z , (6.10)

where

A′1,2 =
A1 +A2

2
± ωnZQ . (6.11)

Hence, the product operator expression ρ̂(τ) after one refocusing block can be computed
as

Ŝx
ηT̂EB−→ ĤEBτ−→ −ηT̂EB−→ πŜx−→ηT̂EB−→ ĤEBτ−→ −ηT̂EB−→ ρ̂(2τ) . (6.12)

In ρ̂(2τ), we can neglect all product operator terms that do not correspond to electron
coherence Ŝx or Ŝy. After a lengthy product operator computation,1 we find that 〈Ŝy〉(2τ) =
0 and

〈Ŝx〉(2τ) = 1− sin2 η cos2 η

[
3

2
− 2 cos (ωnZQτ) +

1

2
cos (2ωnZQτ)

]
. (6.13)

Using Eq. (6.7), we further obtain a modulation depth factor

λ = sin2 η cos2 η =
(A1 −A2)2 ω2

nn[
(A1 −A2)2 + ω2

nn

]2 . (6.14)

The coherence loss term is proportional to the modulation depth factor and thus
approaches zero if A1 −A2 � ωnn. This applies to nuclear pairs very close to the electron
spin. Modulation depth also approaches zero for A1 −A2 � ωnn, which applies to nuclear
pairs very far from the electron spin. In the three-spin system, coherence completely

1The Mathematica package Spinop_guje.wl and the Mathematica notebook dyndec_three_spin.nb in
the course Moodle demonstrate this
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recurs at τ = 2π/ωnZQ. However, if the electron spin is coupled to many spin pairs, ωnZQ

is distributed due to the orientation dependence of ωnn and the dependence of A1 − A2

on electron-nuclear distance and orientation of the electron-nuclear vectors. Destructive
interference then leads to coherence loss with increasing time T .

Further, the modulations due to the various nuclear spin pairs combine multiplicatively.
If we index these pairs by j and define the unmodulated fraction fu,j for a single nuclear
spin pair, then the unmodulated fraction after considering all pairs is

∏
j fu,j . Since all

the fu,j are smaller than unity and the number of contributing nuclear spin pairs is huge,
the total unmodulated fraction tends to zero. This consideration also shows that electron
decoherence will be incomplete if the number of nuclear spin pairs is small, as can happen
for a protonated molecule in a deuterated matrix on time scales where decoherence due to
deuteron pairs is still negligible.
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Figure 6.2: Principle of dynamical decoupling illustrated on a three-spin system consisting
of an electron spin S = 1/2 and two protons I1 = I2 = 1/2. A proton-proton distance of
1.51 Å and an angle between the proton-proton vector and the static magnetic field of 25◦

were assumed. The difference between the hyperfine couplings A1 and A2 of the two protons
was matched to their dipole-dipole interaction ωnn. The maximum time corresponds to
2π/ωnZQ, where electron coherence is lost completely with a single refocusing pulse (n = 1).
For an increasing number of refocusing pulses, coherence loss reduces at the same total
evolution time.

Dynamical decoupling can now be understood from the τ -dependence of 〈Ŝx〉(2τ) in
Eq (6.13). As long as 2ωnZQτ is very small, the cosine factors can be approximated by
1− x2

i /2 with x1 = ωnZQτ and x2 = ωnZQτ . Now consider the replacement of a single block
with interpulse delay τ by two blocks with interpulse delays τ/2. In the latter case, the
remaining coherence is[

1− (x/2)2

2

]2

= 1− x2

4
+
x4

64
> 1− x2

2
. (6.15)

For nuclear spin pairs that contribute to decoherence of the electron spin, ωnZQ cannot
be much larger than ωdip, as defined in Eq. (6.3). Otherwise, A1 −A2 would need to be
much larger than ωdip, which would imply vanishing modulation depth sin2 η cos2 η. Hence,
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the upper limit of the interpulse delay, where dynamical decoupling is still efficient, is
τmax ≈ 2π/ωdip. When τ is reduced below that value by inserting additional π refocusing
pulses, decoherence slows down.

This is illustrated in Fig. 6.2. We assume a proton-proton distance as in water and an
arbitrary angle between the proton-proton vector and the magnetic field (25◦). In order
to see the maximum effect, we matched the difference of the two hyperfine couplings to
ωnn. We set the maximum observation time to Tmax = 2π/ωnZQ. Since for one refocusing
pulse, the evolution time is τ = T/2, this corresponds to maximum coherence loss and,
because we have matched the two interactions, to complete loss of electron coherence. If
we increase the number n of refocusing pulses, coherence decays more slowly. In the case at
hand, n ≥ 3 suffices to avoid strong coherence loss up to Tmax.

Finally, we can ask the question where the lost coherence ends up. Analysis of the
complete product operator expression at time 2τ reveals that electron-nuclear-nuclear
triple-quantum coherence Ŝy Î1y Î2,x − Ŝy Î1xÎ2,y, electron spin coherence in single nuclear
spin antiphase Ŝy Î1z − Ŝy Î2z and electron spin coherence in double nuclear spin antiphase
ŜxÎ1z Î2z are generated. Hence, no net nuclear polarization is generated, not even if another
π/2 pulse is applied to the electron spin at the time of refocusing. The experiment
(π/2)S,x − τ − (π)S,x − τ − (π/2)S,x generates electron-nuclear two-spin order with different
sign on the two nuclear spins.
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