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General Remarks
Suggested Reading & Electronic Resources

1 — Introduction

1.1 General Remarks

Electron Paramagnetic Resonance (EPR) spectroscopy is less well known and less widely applied
than NMR spectroscopy. The reason is that EPR spectroscopy requires unpaired electrons and
electron pairing is usually energetically favorable. Hence, only a small fraction of pure substances
exhibit EPR signals, whereas NMR spectroscopy is applicable to almost any compound one can
think of. On the other hand, as electron pairing underlies the chemical bond, unpaired electrons
are associated with reactivity. Accordingly, EPR spectroscopy is a very important technique
for understanding radical reactions, electron transfer processes, and transition metal catalysis,
which are all related to the ’reactivity of the unpaired electron’. Some species with unpaired
electrons are chemically stable and can be used as spin probes to study systems where NMR
spectroscopy runs into resolution limits or cannot provide sufficient information for complete
characterization of structure and dynamics. This lecture course introduces the basics for applying
EPR spectroscopy on reactive or catalytically active species as well as on spin probes.

Many concepts in EPR spectroscopy are related to similar concepts in NMR spectroscopy.
Hence, the lectures on EPR spectroscopy build on material that has been introduced before
in the lectures on NMR spectroscopy. This material is briefly repeated and enhanced in this
script and similarities as well as differences are pointed out. Such a linked treatment of the
two techniques is not found in introductory textbooks. By emphasizing this link, the course
emphasizes understanding of the physics that underlies NMR and EPR spectroscopy instead of
focusing on individual application fields. We aim for understanding of spectra at a fundamental
level and for understanding how parameters of the spin Hamiltonian can be measured with the
best possible sensitivity and resolution.

Chapter 2 of the script introduces electron spin, relates it to nuclear spin, and discusses,
which interactions contribute to the spin Hamiltonian of a paramagnetic system. Chapter 3 treats
the electron Zeeman interaction, the deviation of the g value of a bound electron from the g value
of a free electron, and the manifestation of g anisotropy in solid-state EPR spectra. Chapter 4
introduces the hyperfine interaction between electron and nuclear spins, which provides most
information on electronic and spatial structure of paramagnetic centers. Spectral manifestation in
the liquid and solid state is considered for spectra of the electron spin and of the nuclear spins.
Chapter 5 discusses phenomena that occur when the hyperfine interaction is so large that the
high-field approximation is violated for the nuclear spin. In this situation, formally forbidden
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transitions become partially allowed and mixing of energy levels leads to changes in resonance
frequencies. Chapter 6 discusses how the coupling between electron spins is described in the
spin Hamiltonian, depending on its size. Throughout Chapters 3-6, the introduced interactions of
the electron spin are related to electronic and spatial structure.

Chapter 7-9 are devoted to experimental techniques. In Chapter 7, continuous-wave (CW)
EPR is introduced as the most versatile and sensitive technique for measuring EPR spectra. The
requirements for obtaining well resolved spectra with high signal-to-noise ratio are derived from
first physical principles. Chapter 8 discusses two techniques for measuring hyperfine couplings in
nuclear frequency spectra, where they are better resolved than in EPR spectra. Electron nuclear
double resonance (ENDOR) experiments use electron spin polarization and detection of electron
spins in order to enhance sensitivity of such measurements, but still rely on direct excitation
of the nuclear spins. Electron spin echo envelope modulation (ESEEM) experiments rely on
the forbidden electron-nuclear spin transitions discussed in Chapter 5. Chapter 9 treats the
measurement of distance distributions in the nanometer range by separating the dipole-dipole
coupling between electron spins from other interactions.

The final Chapter 10 introduces spin probing and spin trapping and, at the same time,
demonstrates the application of concepts that were introduced in earlier Chapters.

At some points (dipole-dipole coupling, explanation of CW EPR spectroscopy in terms of
the Bloch equations) this lecture script significantly overlaps with the NMR part of the lecture
script. This is intended in order to make the EPR script reasonably self-contained. Note also that
this lecture script serves two purposes. First, it should serve as a help in studying the subject
and preparing for the examination. Second, it is reference material when you later encounter
paramagnetic species in your own research and need to obtain information on them by EPR
spectroscopy.

1.2 Suggested Reading & Electronic Resources
There is no textbook on EPR spectroscopy that treats all material of this course on a basic level.
However, many of the concepts are covered by a title from the Oxford Chemistry Primer series
by Chechik, Carter, and Murphy [CCM16]. Physically minded students may also appreciate the
older standard textbook by Weil, Bolton, and Wertz [WBW94].

For some of the simulated spectra andworked examples in these lecture notes, Matlab scripts or
Mathematica notebooks are provided on the lecture homepage. Part of the numerical simulations
is based on EasySpin by Stefan Stoll (http://www.easyspin.org/) and another part on
SPIDYAN by Stephan Pribitzer (http://www.epr.ethz.ch/software.html). Computations
with product operator formalism require the Mathematica package SpinOp.m by Serge Boentges,
which is available on the course homepage. An alternative larger package for such analytical
computations is SpinDynamica by Malcolm Levitt (http://www.spindynamica.soton.ac.
uk/). Last, but not least the most extensive package for numerical simulations of magnetic
resonance experiments is SPINACH by Ilya Kuprov et al. (http://spindynamics.org/
Spinach.php). For quantum-chemical computations of spin Hamiltonian parameters, the
probably most versatile program is the freely available package ORCA (https://orcaforum.
cec.mpg.de/).
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2 — Electron spin

2.1 Magnetic resonance of the free electron

2.1.1 The magnetic moment of the free electron
As an elementary particle, the electron has an intrinsic angular momentum called spin. The spin
quantum number is S = 1/2, so that in an external magnetic field along z, only two possible
values can be observed for the z component of this angular momentum, +~/2, corresponding to
magnetic quantum numbermS = +1/2 (α state) and−~/2, corresponding to magnetic quantum
numbermS = −1/2 (β state). The energy difference between the corresponding two states of
the electron results from the magnetic moment associated with spin. For a classical rotating
particle with elementary charge e, angular momentum J = ~S and mass me, this magnetic
moment computes to

~µclassical =
e

2me

~J . (2.1)

The charge-to-mass ratio e/me is much larger for the electron than the corresponding ratio for a
nucleus, where it is of the order of −e/mp, wheremp is the proton mass. By introducing the
Bohr magneton µB = ~e/(2me) = 9.27400915(23)×10−24 J T−1 and the quantum-mechanical
correction factor g, we can rewrite Eq. (2.1) as

~µe = gµB
~S . (2.2)

Dirac-relativistic quantum mechanics provides g = 2, a correction that can also be found
in a non-relativistic derivation. Exact measurements have shown that the g value of a free
electron deviates slightly from g = 2. The necessary correction can be derived by quantum
electrodynamics, leading to ge = 2.00231930437378(2). The energy difference between the
two spin states of a free electron in an external magnetic field B0 is given by

~ωS = geµBB0 , (2.3)

so that the gyromagnetic ratio of the free electron is γe = −geµB/~. This gyromagnetic ratio
corresponds to a resonance frequency of 28.025 GHz at a field of 1 T, which is by a factor of
about 658 larger than the nuclear Zeeman frequency of a proton.
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2.1.2 Differences between EPR and NMR spectroscopy
Most of the differences betweenNMR and EPR spectroscopy result from thismuch largermagnetic
moment of the electron. Boltzmann polarization is larger by this factor and at the same magnetic
field the detected photons have an energy larger by this factor. Relaxation times are roughly by a
factor 6582 shorter, allowing for much faster repetition of EPR experiments compared to NMR
experiments. As a result, EPR spectroscopy is much more sensitive. Standard instrumentation
with an electromagnet working at a field of about 0.35 T and at microwave frequencies of about
9.5 GHz (X band) can detect about 1010 spins, if the sample has negligible dielectric microwave
losses. In aqueous solution, organic radicals can be detected at concentrations down to 10 nM in
a measurement time of a few minutes.

Due to the large magnetic moment of the electron spin the high-temperature approximation
may be violated without using exotic equipment. The spin transition energy of a free electron
matches thermal energy kBT at a temperature of 4.5 K and a field of about 3.35 T corresponding
to a frequency of about 94 GHz (W band). Likewise, the high-field approximation may break
down. The dipole-dipole interaction between two electron spins is by a factor of 6582 larger than
between two protons and two unpaired electrons can come closer to each other than two protons.
The zero-field splitting that results from such coupling can amount to a significant fraction of the
electron Zeeman interaction or can even exceed it at the magnetic fields, where EPR experiments
are usually performed (0.1-10 T). The hyperfine coupling between an electron and a nucleus
can easily exceed the nuclear Zeeman frequency, which leads to breakdown of the high-field
approximation for the nuclear spin.

2.2 Interactions in electron-nuclear spin systems

2.2.1 General consideration on spin interactions
Spins interact with magnetic fields. The interaction with a static external magnetic field B0 is
the Zeeman interaction, which is usually the largest spin interaction. At sufficiently large fields,
where the high-field approximation holds, the Zeeman interaction determines the quantization
direction of the spin. In this situation, mS is a good quantum number and, if the high-field
approximation also holds for a nuclear spin Ii, the magnetic quantum number mI,i is also a
good quantum number. The energies of all spin levels can then be expressed by parameters that
quantify spin interactions and by the magnetic quantum numbers. The vector of all magnetic
quantum numbers defines the state of the spin system.

Spins also interact with the local magnetic fields induced by other spins. Usually, unpaired
electrons are rare, so that each electron spin interacts with several nuclear spins in its vicinity,
whereas each nuclear spin interacts with only one electron spin (Fig. 2.1). The hyperfine
interaction between the electron and nuclear spin is usually much smaller than the electron
Zeeman interaction, with exceptions for transition metal ions. In contrast, for nuclei in the close
vicinity of the electron spin, the hyperfine interaction may be larger than the nuclear Zeeman
interaction at the fields where EPR spectra are usually measured. In this case, which is discussed
in Chapter 6, the high-field approximation breaks down andmI,i is not a good quantum number.
Hyperfine couplings to nuclei are relevant as long as they are at least as large as the transverse
relaxation rate 1/T2n of the coupled nuclear spin. Smaller couplings are unresolved.

In some systems, two or more unpaired electrons are so close to each other that their coupling
exceeds their transverse relaxation rates 1/T2e. In fact, the isotropic part of this coupling
can by far exceed the electron Zeeman interaction and often even thermal energy kBT if two
unpaired electrons reside in different molecular orbitals of the same organic molecule (triplet state
molecule) or if several unpaired electrons belong to a high-spin state of a transition metal or rare
earth metal ion. In this situation, the system is best described in a coupled representation with an
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Figure 2.1: Scheme of interactions in electron-nuclear spin systems. All spins have a Zeeman interaction
with the external magnetic field B0. Electron spins (red) interact with each other by the dipole-dipole
interaction through space and by exchange due to overlap of the singly occupied molecular orbitals (green).
Each electron spin interacts with nuclear spins (blue) in its vicinity by hyperfine couplings (purple).
Couplings between nuclear spins are usually negligible in paramagnetic systems, as are chemical shifts.
These two interactions are too small compared to the relaxation rate in the vicinity of an electron spin.

electron group spin S > 1/2. The isotropic coupling between the individual electron spins does
not influence the sublevel splitting for a given group spin quantum number S. The anisotropic
coupling, which does lead to sublevel splitting, is called the zero-field or fine interaction. If
the electron Zeeman interaction by far exceeds the spin-spin coupling, it is more convenient to
describe the system in terms of the individual electron spins Si = 1/2. The isotropic exchange
coupling J , which stems from overlap of two singly occupied molecular orbitals (SOMOs), then
does contribute to level splitting. In addition, the dipole-dipole coupling through space between
two electron spins also contributes.

Concept 2.2.1 — Singly occupied molecular orbital (SOMO). Each molecular orbital can be
occupied by two electrons with opposite magnetic spin quantum numbermS . If a molecular
orbital is singly occupied, the electron is unpaired and its magnetic spin quantum number
can be changed by absorption or emission of photons. The orbital occupied by the unpaired
electron is called a singly occupied molecular orbital (SOMO). Several unpaired electrons can
exist in the same molecule or metal complex, i.e., there may be several SOMOs.

Nuclear spins in the vicinity of an electron spin relax much faster than nuclear spins in
diamagnetic substances.1 Their transverse relaxation rates 1/T2n,i thus exceed couplings between
nuclear spins and chemical shifts. These interactions, which are very important in NMR
spectroscopy, are negligible in EPR spectroscopy. For nuclear spins 1/2 no information on the
chemical identity of a nucleus can be obtained, unless its hyperfine coupling is understood.
The element can be identified via the nuclear Zeeman interaction. For nuclear spins Ii > 1/2,
information on the chemical identity is encoded in the nuclear quadrupole interaction, whose
magnitude usually exceeds 1/T2n,i.

An overview of all interactions and their typical magnitude in frequency units is given in Figure
2.2. This Figure also illustrates another difference between EPR and NMR spectroscopy. Several
interactions, such as the zero-field interaction, the hyperfine interaction, larger dipole-dipole
and exchange couplings between electron spins and also the anisotropy of the electron Zeeman
interaction usually exceed the excitation bandwidth of the strongest and shortest microwave pulses

1There is an exception. If the electron spin longitudinal relaxation rate exceeds the nuclear Zeeman interaction by
far, nuclear spin relaxation is hardly affected by the presence of the electron spin. In this situation, EPR spectroscopy
is impossible, however.



12 Electron spin

that are available. NMR pulses sequences that rely on the ability to excite the full spectrum of a
certain type of spins thus cannot easily be adapted to EPR spectroscopy.

2.2.2 The electron-nuclear spin Hamiltonian
Considering all interactions discussed in Section 2.2.1, the static spin Hamiltonian of an
electron-nuclear spin system in angular frequency units can be written as

Ĥ0 = ĤEZ + ĤNZ + ĤHFI + ĤZFI + ĤEX + ĤDD + ĤNQI

=
µB

~
∑
k

~BT
0 gk

~̂
Sk +

∑
i

ωI,iÎz,i +
∑
k

∑
i

~̂
ST
k Aki

~̂
Ii +

∑
Sk>1/2

~̂
ST
k Dk

~̂
Sk

+
∑
k

∑
l 6=k

JklŜz,kŜz,l +
∑
k

∑
l 6=k

~̂
ST
k Dkl

~̂
Sl +

∑
Ii>1/2

~̂
IT
i Pi

~̂
Ii , (2.4)

where index i runs over all nuclear spins, indices k and l run over electron spins and the symbol
T denotes the transpose of a vector or vector operator. Often, only one electron spin and one
nuclear spin have to be considered at once, so that the spin Hamiltonian simplifies drastically.
For electron group spins S > 1, terms with higher powers of spin operators can be significant.
We do not consider this complication here.

The electron Zeeman interaction ĤEZ is, in general, anisotropic and therefore parametrized
by g tensors gk. It is discussed in detail in Chapter 3. In the nuclear Zeeman interaction ĤNZ,
the nuclear Zeeman frequencies ωI,i depend only on the element and isotope and thus can
be specified without knowing electronic and spatial structure of the molecule. The hyperfine
interaction is again anisotropic and thus characterized by tensorsAki. It is discussed in detail
in Chapter 4. All electron-electron interactions are explained in Chapter 5. The zero-field
interaction ĤZFI is purely anisotropic and thus characterized by traceless tensors Dk. The
exchange interaction is often purely isotropic ĤEX and any anisotropic contribution cannot be
experimentally distinguished from the purely anisotropic dipole-dipole interaction ĤDD. Hence,
the former interaction is characterized by scalars Jkl and the latter interaction by tensors Dkl.
Finally, the nuclear quadrupole interaction ĤNQI is characterized by traceless tensors Pi.
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Figure 2.2: Relative magnitude of interactions that contribute to the Hamiltonian of electron-nuclear spin
systems.
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3 — Electron Zeeman Interaction

3.1 Physical origin of the g shift
Bound electrons are found to have g values that differ from the value ge for the free electron.
They depend on the orientation of the paramagnetic center with respect to the magnetic field
vector ~B0. The main reason for this g value shift is coupling of spin to orbital angular momentum
of the electron. Spin-orbit coupling (SOC) is a purely relativistic effect and is thus larger if
orbitals of heavy atoms contribute to the SOMO. In most molecules, orbital angular momentum
is quenched in the ground state. For this reason, SOC leads only to small or moderate g shifts
and can be treated as a perturbation. Such a perturbation treatment is not valid if the ground state
is degenerate or near degenerate.

The perturbation treatment considers excited states where the unpaired electron is not in the
SOMO of the ground state. Such excited states are slightly admixed to the ground state and the
mixing arises from the orbital angular momentum operator. For simplicity, we consider a case
where the main contribution to the g shift arises from orbitals localized at a single, dominating
atom and by single-electron SOC. To second order in perturbation theory, the matrix elements of
the g tensor can then be expressed as

gij = geδij + 2λΛij , (3.1)

where δij is a Kronecker delta, the factor λ in the shift term is the spin-orbit coupling constant
for the dominating atom, and the matrix elements Λij are computed as

Λij =
∑
n6=0

〈0|l̂i|n〉〈n|l̂j |0〉
ε0 − εn

, (3.2)

where indices i and j run over the Cartesian directions x, y, and z. The operators l̂x, l̂y, and l̂z
are Cartesian components of the angular momentum operator, |n〉 designates the orbital where
the unpaired electron resides in an excited-state electron configuration, counted from n = 0 for
the SOMO of the ground state configuration. The energy of that orbital is εn.

Since the product of the overlap integrals in the numerator on the right-hand side of Eq. (3.2)
is usually positive, the sign of the g shift is determined by the denominator. The denominator is
positive if a paired electron from a fully occupied orbital is promoted to the ground-state SOMO
and negative if the unpaired electron is promoted to a previously unoccupied orbital (Figure
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Figure 3.1: Admixture of excited states by orbital angular momentum operators leads to a g shift by
spin-orbit coupling. The energy difference in the perturbation expression is positive for excitation of a
paired electron to the ground-state SOMO and negative for excitation of the paired electron to a higher
energy orbital.

3.1). Because the energy gap between the SOMO and the lowest unoccupied orbital (LUMO) is
usually larger than the one between occupied orbitals, terms with positive numerator dominate
in the sum on the right-hand side of Eq. (3.2). Therefore, positive g shifts are more frequently
encountered than negative ones.

The relevant spin-orbit coupling constant λ depends on the element and type of orbital. It
scales roughly with Z4, where Z is the nuclear charge. Unless there is a very low lying excited
state (near degeneracy of the ground state), contributions from heavy nuclei dominate. If their
are none, as in organic radicals consisting of only hydrogen and second-row elements, g shifts
of only ∆g < 10−2 are observed, typical shifts are 1 . . . 3× 10−3. Note that this still exceeds
typical chemical shifts in NMR by one to two orders magnitude. For first-row transition metals,
g shifts are of the order of 10−1.

For rare-earth ions, the perturbation treatment breaks down. The Landé factor gJ can then be
computed from the term symbol for a doublet of levels

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (3.3)

where J is the quantum number for total angular momentum and L the quantum number for
orbital angular momentum. The principal values of the g tensor are εxgJ , εygJ , and εzgJ , where
the εi with i = x, y, z are differences between the eigenvalues of L̂i for the two levels.

If the structure of a paramagnetic center is known, the g tensor can be computed by quantum
chemistry. This works quite well for organic radicals and reasonably well for most first-row
transition metal ions. Details are explained in [KBE04].

The g tensor is a global property of the SOMO and is easily interpretable only if it is
dominated by the contribution at a single atom, which is often, but not always, the case for
transition metal and rare earth ion complexes. If the paramagnetic center has a Cn symmetry axis
with n ≥ 3, the g tensor has axial symmetry with principal values gx = gy = g⊥, gz = g||. For
cubic or tetrahedral symmetry the g value is isotropic, but not necessarily equal to ge. Isotropic
g values are also encountered to a very good approximation for transition metal and rare earth
metal ions with half-filled shells, such as in Mn(II) complexes (3d5 electron configuration) and
Gd(III) complexes (4f7).
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3.2 Electron Zeeman Hamiltonian
We consider a single electron spin S and thus drop the sum and index k in ĤEZ in Eq. (2.4).
In the principal axes system (PAS) of the g tensor, we can then express the electron Zeeman
Hamiltonian as

ĤEZ =
µB

~
B0

(
cosφ sin θ sinφ sin θ cos θ

)gx 0 0
0 gy 0
0 0 gz

ŜxŜy
Ŝz


=

µB

~
B0

(
gx cosφ sin θŜx + gy sinφ sin θŜy + gz cos θŜz

)
, (3.4)

where B0 is the magnetic field, gx, gy, and gz are the principal values of the g tensor and the
polar angles φ and θ determine the orientation of the magnetic field in the PAS.

This Hamiltonian is diagonalized by the Bleaney transformation, providing

ĤBTEZ =
µB

~
geffB0Ŝz , (3.5)

with the effective g value at orientation (φ, θ)

geff (φ, θ) =
√
g2
x sin2 θ cos2 φ+ g2

y sin2 θ sin2 φ+ g2
z cos2 θ . (3.6)

If anisotropy of the g tensor is significant, the z axis in Eq. (3.5) is tilted from the direction of
the magnetic field. This effect is negligible for most organic radicals, but not for transition metal
ions or rare earth ions. Eq. (3.6) for the effective g values describes an ellipsoid (Figure 3.2).

x

z

y

B0

®

Figure 3.2: Ellipsoid describing the orientation dependence of the effective g value in the PAS of the g
tensor. At a given direction of the magnetic field vector ~B0 (red), geff corresponds to the distance between
the origin and the point where ~B0 intersects the ellipsoid surface.

Concept 3.2.1 — Energy levels in the high-field approximation. In the high-field approximation
the energy contribution of a Hamiltonian term to the level with magnetic quantum numbers
mS,k and mI,i can be computed by replacing the Ĵz,j operators (J = S, I , j = k, i) by the
corresponding magnetic quantum numbers. This is because the magnetic quantum numbers
are the eigenvalues of the Ĵz,j operators, all Ĵz,j operators commute with each other, and
contributions with all other Cartesian spin operators are negligible in this approximation. For
the electron Zeeman energy contribution ismSgeffµBB0/~. If the high-field approximation is
slightly violated, this expression corresponds to a first-order perturbation treatment.
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The selection rule for transitions in EPR spectroscopy is |∆mS | = 1, |∆mI | = 0 and it
applies strictly as long as the high-field approximation applies strictly to all spins. This selection
rule results from conservation of angular momentum on absorption of a microwave photon and
from the fact that the microwave photon interacts with electron spin transitions. It follows that
the first-order contribution of the electron Zeeman interaction to the frequencies of all electron
spin transitions is the same, namely geffµBB0/~. As we shall see in Chapter 7, EPR spectra are
usually measured at constant microwave frequency νmw by sweeping the magnetic field B0. The
resonance field is then given by

B0,res =
hνmw

geffµB
. (3.7)

For nuclear spin transitions, |∆mS | = 0, |∆mI | = 1, the electron Zeeman interaction does
not contribute to the transition frequency.

3.3 Spectral manifestation of the electron Zeeman interaction
3.3.1 Liquid solution

In liquid solution, molecules tumble due to Brownian rotational diffusion. The time scale of this
motion can be characterized by a rotational correlation time τrot that in non-viscous solvents
is of the order of 10 ps for small molecules, and of the order of 1 ns to 100 ns for proteins and
other macromolecules. For a globular molecule with radius r in a solvent with viscosity η, the
rotational correlation time can be roughly estimated by the Stokes-Einstein law

τr =
4πηr3

3kBT
. (3.8)

If this correlation time and the maximum difference ∆ω between the transition frequencies
of any two orientations of the molecule in the magnetic field fulfill the relation τr∆ω � 1,
anisotropy is fully averaged and only the isotropic average of the transition frequencies is observed.
For somewhat slower rotation, modulation of the transition frequency by molecular tumbling
leads to line broadening as it shortens the transverse relaxation time T2. In the slow-tumbling
regime, where τr∆ω ≈ 1, anisotropy is incompletely averaged and line width attains a maximum.
For τr∆ω � 1, the solid-state spectrum is observed. The phenomena can be described as a
multi-site exchange between the various orientations of the molecule (see Section 10.1.4), which
is analogous to the chemical exchange discussed in the NMR part of the lecture course.

For the electron Zeeman interaction, fast tumbling leads to an average resonance field

B0,res =
hνmw

gisoµB
, (3.9)

with the isotropic g value giso = (gx + gy + gz) /3. For small organic radicals in non-viscous
solvents at X-band frequencies around 9.5 GHz, line broadening from g anisotropy is negligible.
At W-band frequencies of 94 GHz for organic radicals and already at X-band frequencies for
small transition metal complexes, such broadening can be substantial. For large macromolecules
or in viscous solvents, solid-state like EPR spectra can be observed in liquid solution.

3.3.2 Solid state
For a single-crystal sample, the resonance field at any given orientation can be computed by Eq.
(3.7). Often, only microcrystalline powders are available or the sample is measured in glassy
frozen solution. Under such conditions, all orientations contribute equally. With respect to the
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Figure 3.3: Powder line shape for a g tensor with axial symmetry. (a) The probability density to find an
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Schematic powder line shape. The pattern corresponds to g⊥ > g|| for a field sweep and to g⊥ < g|| for a
frequency sweep. Because of the frame tilting, the isotropic value giso = (2g⊥+ g||)/3 is not encountered
at the magic angle, although the shift is small if ∆g = 2(g|| − g⊥)/3� giso.

polar angles, this implies that φ is uniformly distributed, whereas the probability to encounter a
certain angle θ is proportional to sin θ (Figure 3.3). The line shape of the absorption spectrum is
most easily understood for axial symmetry of the g tensor. Transitions are observed only in the
range between the limiting resonance fields at g|| and g⊥. The spectrum has a global maximum
at g⊥ and a minimum at g||.

In CW EPR spectroscopy we do not observe the absorption line shape, but rather its first
derivative (see Chapter 7). This derivative line shape has sharp features at the line shape
singularities of the absorption spectrum and very weak amplitude in between (Figure 3.4).

Concept 3.3.1 — Orientation selection. The spread of the spectrum of a powder sample or
glassy frozen solution allows for selecting molecules with a certain orientation with respect to
the magnetic field. For an axial g tensor only orientations near the z axis of the g tensor PAS
are selected when observing near the resonance field of g||. In contrast, when observing near
the resonance field for g⊥, orientations withing the whole xy plane of the PAS contribute. For
the case of orthorhombic symmetry with three distinct principal values gx, gy, and gz , narrow
sets of orientations can be observed at the resonance fields corresponding to the extreme g
values gx and gz (see right top panel in Figure 3.4). At the intermediate principal value gy
a broad range of orientations contributes, because the same resonance field can be realized
by orientations other than φ = 90◦ and θ = 90◦. Such orientation selection can enhance the
resolution of ENDOR and ESEEM spectra (Chapter 8) and simplify their interpretation.
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4 — Hyperfine Interaction

4.1 Physical origin of the hyperfine interaction
The magnetic moments of an electron and a nuclear spin couple by the magnetic dipole-dipole
interaction; similar to the dipole-dipole interaction between nuclear spins discussed in the NMR
part of the lecture course. The main difference to the NMR case is that, in many cases, a
point-dipole description is not a good approximation for the electron spin, as the electron is
distributed over the SOMO. The nucleus under consideration can be considered as well localized
in space. We now picture the SOMO as a linear combination of atomic orbitals. Contributions
from spin density in an atomic orbital of another nucleus (population of the unpaired electron
in such an atomic orbital) can be approximated by assuming that the unpaired electron is a
point-dipole localized at this other nucleus.

For spin density in atomic orbitals on the same nucleus, we have to distinguish between
types of atomic orbitals. In s orbitals, the unpaired electron has finite probability density for
residing at the nucleus, at zero distance rSI to the nuclear spin. This leads to a singularity of
the dipole-dipole interaction, since this interaction scales with r−3

SI . The singularity has been
treated by Fermi. The contribution to the hyperfine coupling from spin density in s orbitals
on the nucleus under consideration is therefor called Fermi contact interaction. Because of the
spherical symmetry of s orbitals, the Fermi contact interaction is purely isotropic.

For spin density in other orbitals (p, d, f orbitals) on the nucleus under consideration, the
dipole-dipole interaction must be averaged over the spatial distribution of the electron spin in
these orbitals. This average has no isotropic contribution. Therefore, spin density in p, d, f
orbitals does not influence spectra of fast tumbling radicals or metal complexes in liquid solution
and neither does spin density in s orbitals of other nuclei. The isotropic couplings detected in
solution result only from the Fermi contact interaction.

Since the isotropic and purely anisotropic contributions to the hyperfine coupling have
different physical origin, we separate these contributions in the hyperfine tensor Aki that
describes the interaction between electron spin Sk and nuclear spin Ii:

Aki = Aiso,ki

1 0 0
0 1 0
0 0 1

+ Tki , (4.1)

where Aiso,ki is the isotropic hyperfine coupling and Tki the purely anisotropic coupling. In the
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following, we drop the electron and nuclear spin indices k and i.

4.1.1 Dipole-dipole hyperfine interaction
The anisotropic hyperfine coupling tensorT of a given nucleus can be computed from the ground
state wavefunction ψ0 by applying the correspondence principle to the classical interaction
between two point dipoles

Tij =
µ0

4π~
geµBgnµn

〈
ψ0

∣∣∣∣3rirj − δijr2

r5

∣∣∣∣ψ0

〉
. (4.2)

Such computations are implemented in quantum chemistry programs such as ORCA, ADF, or
Gaussian. If the SOMO is considered as a linear combination of atomic orbitals, the contributions
from an individual orbital can be expressed as the product of spin density in this orbital with a
spatial factor that can be computed once for all. The spatial factors have been tabulated [KM85].
In general, nuclei of elements with larger electronegativity have larger spatial factors. At the same
spatial factor, such as for isotopes of the same element, the hyperfine coupling is proportional to
the nuclear g value gn and thus proportional to the gyromagnetic ratio of the nucleus. Hence, a
deuterium coupling can be computed from a known proton coupling or vice versa.

A special situation applies to protons, alkali metals and earth alkaline metals, which have no
significant spin densities in p-, d-, or f -orbitals. In this case, the anisotropic contribution can
only arise from through-space dipole-dipole coupling to centers of spin density at other nuclei.
In a point-dipole approximation the hyperfine tensor is then given by

T =
µ0

4π~
geµBgnµn

∑
j 6=i

ρj
3~nij~n

T
ij −~1

R3
ij

, (4.3)

where the sum runs over all nuclei j with significant spin density ρj (summed over all orbitals
at this nucleus) other than nucleus i under consideration. The Rij are distances between the
nucleus under consideration and the centers of spin density, and the ~nij are unit vectors along
the direction from the considered nucleus to the center of spin density. For protons in transition
metal complexes it is often a good approximation to consider spin density only at the central
metal ion. The distance R from the proton to the central ion can then be directly inferred from
the anisotropic part of the hyperfine coupling.

Hyperfine tensor contributions T computed by any of these ways must be corrected for the
influence of SOC if the g tensor is strongly anisotropic. If the dominant contribution to SOC
arises at a single nucleus, the hyperfine tensor at this nucleus1 can be corrected by

T(g) =
gT

ge
. (4.4)

The product gT may have an isotropic part, although T is purely anisotropic. This isotropic
pseudocontact contribution depends on the relative orientation of the g tensor and the spin-only
dipole-dipole hyperfine tensor T. The correction is negligible for most organic radicals, but not
for paramagnetic metal ions. If contributions to SOC arise from several centers, the necessary
correction cannot be written as a function of the g tensor.

4.1.2 Fermi contact interaction
The Fermi contact contribution takes the form

Aiso = ρs ·
2

3

µ0

~
geµBgnµn |ψ0(0)|2 , (4.5)

1Most literature holds that the correction should be done for all nuclei. As pointed out by Frank Neese, this is not
true. An earlier discussion of this point is found in [Lef67]
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where ρs is the spin density in the s orbital under consideration, gn the nuclear g value and
µn = βn = 5.05078317(20) · 10−27 J T−1 the nuclear magneton (gnµn = γn~). The factor
|ψ0(0)|2 denotes the probability to find the electron at this nucleus in the ground state with wave
function ψ0 and has been tabulated [KM85].
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Figure 4.1: Transfer of spin density by the spin polarization mechanism. According to the Pauli principle,
the two electrons in the C-H bond orbital must have opposite spin state. If the unpaired electron resides in
a pz orbital on the C atom, for other electrons on the same C atom the same spin state is slightly favored,
as this minimizes electrostatic repulsion. Hence, for the electron at the H atom, the opposite spin state
(left panel) is slightly favored over the same spin state (right panel). Positive spin density in the pz orbital
on the C atom induces some negative spin density in the s orbital on the H atom.

4.1.3 Spin polarization
The contributions to the hyperfine coupling discussed up to this point can be understood and
computed in a single-electron picture. Further contributions arise from correlation of electrons
in a molecule. Assume that the pz orbital on a carbon atom contributes to the SOMO, so that the
α spin state of the electron is preferred in that orbital (Fig. 4.1). Electrons in other orbitals on
the same atom will then also have a slight preference for the α state (left panel), as electrons with
the same spin tend to avoid each other and thus have less electrostatic repulsion.2 In particular,
this means that the spin configuration in the left panel of Fig. 4.1 is slightly more preferable
than the one in the right panel. According to the Pauli principle, the two electrons that share the
s bond orbital of the C-H bond must have antiparallel spin. Thus, the electron in the s orbital
of the hydrogen atom that is bound to the spin-carrying carbon atom has a slight preference for
the β state. This corresponds to a negative isotropic hyperfine coupling of the directly bound α
proton, which is induced by the positive hyperfine coupling of the adjacent carbon atom. The
effect is termed "spin polarization", although it has no physical relation to the polarization of
electron spin transitions in an external magnetic field.

Spin polarization is important, as it transfers spin density from p orbitals, where it is invisible
in liquid solution and from carbon atoms with low natural abundance of the magnetic isotope 13C
to s orbitals on protons, where it can be easily observed in liquid solution. This transfer occurs,
both, in σ radicals, where the unpaired electron is localized on a single atom, and in π radicals,
where it is distributed over the π system. The latter case is of larger interest, as the distribution
of the π orbital over the nuclei can be mapped by measuring and assigning the isotropic proton
hyperfine couplings. This coupling can be predicted by theMcConnell equation

Aiso,H = QHρπ , (4.6)

where ρπ is the spin density at the adjacent carbon atom and QH is a parameter of the order of
−2.5 mT, which slightly depends on structure of the π system.

2This preference for electrons on the same atom to have parallel spin is also the basis of Hund’s rule.
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Figure 4.2: Mapping of the LUMO and HOMO of an aromatic molecule via measurements of hyperfine
couplings after one-electron reduction or oxidation. Reduction leads to an anion radical, whose SOMO is
a good approximation to the lowest unoccupied molecular orbital (LUMO) of the neutral parent molecule.
Oxidation leads to an cation radical, whose SOMO is a good approximation to the highest occupied
molecular orbital (HOMO) of the neutral parent molecule.

The McConnell equation is mainly applied for mapping the LUMO and HOMO of aromatic
molecules (Figure 4.2). An unpaired electron can be put into these orbitals by one-electron
reduction or oxidation, respectively, without perturbing the orbitals too strongly. The isotropic
hyperfine couplings of the hydrogen atom directly bound to a carbon atom report on the
contribution of the pz orbital of this carbon atom to the π orbital. The challenges in this mapping
are twofold. First, it is hard to assign the observed couplings to the hydrogen atoms unless a
model for the distribution of the π orbital is already available. Second, the method is blind to
carbon atoms without a directly bonded hydrogen atom.

4.2 Hyperfine Hamiltonian

We consider the interaction of a single electron spin S with a single nuclear spin I and thus
drop the sums and indices k and i in ĤHFI in Eq. (2.4). In general, all matrix elements of the
hyperfine tensor A will be non-zero after the Bleaney transformation to the frame where the
electron Zeeman interaction is along the z axis (see Eq. 3.5). The hyperfine Hamiltonian is then
given by

ĤHFI =
(
Ŝx Ŝy Ŝz

)Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

ÎxÎy
Îz


= AxxŜxÎx +AxyŜxÎy +AxyŜxÎz

+AyxŜy Îx +AyyŜy Îy +AyzŜy Îz

+AzxŜz Îx +AzyŜz Îy +AzzŜz Îz . (4.7)

Note that the z axis of the nuclear spin coordinate system is parallel to the magnetic field vector
~B0 whereas the one of the electron spin system is tilted, if g anisotropy is significant. Hence, the
hyperfine tensor is not a tensor in the strict mathematical sense, but rather an interaction matrix.

In Eq. (4.7), the term AzzŜz Îz is secular and must always be kept. Usually, the high-field
approximation does hold for the electron spin, so that all terms containing Ŝx or Ŝy operators are
non-secular and can be dropped. The truncated hyperfine Hamiltonian thus reads

ĤHFI,trunc = AzxŜz Îx +AzyŜz Îy +AzzŜz Îz . (4.8)
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The first two terms on the right-hand side can be considered as defining an effective transverse
coupling that is the sum of a vector with length Azx along x and a vector of length Azy along
y. The length of the sum vector is B =

√
A2
zx +A2

zy. The truncated hyperfine Hamiltonian
simplifies if we take the laboratory frame x axis for the nuclear spin along the direction of this
effective transverse hyperfine coupling. In this frame we have

ĤHFI,trunc = AŜz Îz +BŜz Îx , (4.9)

where A = Azz quantifies the secular hyperfine coupling and B the pseudo-secular hyperfine
coupling. The latter coupling must be considered if and only if the hyperfine coupling violates
the high-field approximation for the nuclear spin (see Chapter 6).

If g anisotropy is very small, as is the case for organic radicals, the z axes of the two spin
coordinate systems are parallel. In this situation and for a hyperfine tensor with axial symmetry,
A and B can be expressed as

A = Aiso + T (3 cos2 θHFI − 1)

B = 3T sin θHFI cos θHFI , (4.10)

where θHFI is the angle between the static magnetic field ~B0 and the symmetry axis of the
hyperfine tensor and T is the anisotropy of the hyperfine coupling. The principal values of the
hyperfine tensor areAx = Ay = A⊥ = Aiso−T andAz = A|| = Aiso +2T . The pseudo-secular
contribution B vanishes along the principal axes of the hyperfine tensor, where θHFI is either 0◦

or 90◦ or for a purely isotropic hyperfine coupling. Hence, the pseudo-secular contribution can
also be dropped when considering fast tumbling radicals in the liquid state. We now consider
the point-dipole approximation, where the electron spin is well localized on the length scale of
the electron-nuclear distance r and assume that T arises solely from through-space interactions.
This applies to hydrogen, alkali and earth alkali ions. We then find

T =
1

r3

µ0

4π~
geµBgnµn . (4.11)

For the moment we assume that the pseudo-secular contribution is either negligible or can be
considered as a small perturbation. The other case is treated in Chapter 6. To first order, the
contribution of the hyperfine interaction to the energy levels is then given bymSmIA. In the EPR
spectrum, each nucleus with spin I generates 2I + 1 electron spin transitions with |∆mS | = 1
that can be labeled by the values ofmI = −I,−I + 1, . . . I . In the nuclear frequency spectrum,
each nucleus exhibits 2S + 1 transitions with |∆mI | = 1. For nuclear spins I > 1/2 in the solid
state, each transition is further split into 2I transitions by the nuclear quadrupole interaction.
The contribution of the secular hyperfine coupling to the electron transition frequencies ismIA,
whereas it ismSA for nuclear transition frequencies. In both cases, the splitting between adjacent
lines of a hyperfine multiplet is given by A.

4.3 Spectral manifestation of the hyperfine interaction
4.3.1 Liquid-solution EPR spectra

Since each nucleus splits each electron spin transition into 2I + 1 transitions with different
frequencies, the number of EPR transitions is

∏
i(2Ii + 1). Some of these transitions may

coincide if hyperfine couplings are the same or integer multiples of each other. An important case,
where hyperfine couplings are exactly the same are chemically equivalent nuclei. For instance,
two nuclei I1 = I2 = 1/2 can have spin state combinations α1α2, α1β2, β1α2, and β1β2. The
contributions to the transition frequencies are (A1 +A2)/2, (A1 −A2)/2, (−A1 +A2)/2, and
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Figure 4.3: Hyperfine splitting in the EPR spectrum of the phenyl radical. The largest hyperfine coupling
for the two equivalent ortho protons generates a triplet of lines with relative intensities 1:2:1. The medium
coupling to the two equivalent meta proton splits each line again into a 1:2:1 pattern, leading to 9 lines
with an intensity ratio of 1:2:1:2:4:2:1:2:1. Finally, each line is split into a doublet by the small hyperfine
coupling of the para proton, leading to 18 lines with intensity ratio 1:1:2:2:1:1:2:2:4:4:2:2:1:1:2:2:1.

(−A1 − A2)/2. For equivalent nuclei with A1 = A2 = A only three lines are observed with
hyperfine shifts of A, 0, and −A with respect to the electron Zeeman frequency. The unshifted
center line has twice the amplitude than the shifted lines, leading to a 1:2:1 pattern with splitting
A. For k equivalent nuclei with Ii = 1/2 the number of lines is k + 1 and the relative intensities
can be inferred from Pascal’s triangle. For a group of ki equivalent nuclei with arbitrary spin
quantum number Ii the number of lines is 2kiIi + 1. The multiplicities of groups of equivalent
nuclei multiply. Hence, the total number of EPR lines is

nEPR =
∏
i

(2kiIi + 1) , (4.12)

where index i runs over the groups of equivalent nuclei.
Figure 4.3 illustrates on the example of the phenyl radical how the multiplet pattern arises.

For radicals with more extended π systems, the number of lines can be very large and it may
become impossible to fully resolve the spectrum. Even if the spectrum is fully resolved, analysis
of the multiplet pattern may be a formidable task. An algorithm that works well for analysis of
patterns with a moderate number of lines is given in [CCM16].

4.3.2 Liquid-solution nuclear frequency spectra
As mentioned in Section 4.2 the secular hyperfine coupling A can be inferred from nuclear
frequency spectra as well as from EPR spectra. Line widths are smaller in the nuclear frequency
spectra, since nuclear spins have longer transverse relaxation times T2,i. Another advantage of
nuclear frequency spectra arises from the fact that the electron spin interacts with all nuclear
spins whereas each nuclear spin interacts with only one electron spin (Figure 4.4). The number
of lines in nuclear frequency spectra thus grows only linearly with the number of nuclei, whereas
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a b

Figure 4.4: Topologies of an electron-nuclear spin system for EPR spectroscopy (a) and of a nuclear spin
system typical for NMR spectroscopy (b). Because of the much larger magnetic moment of the electron
spin, the electron spin "sees" all nuclei, while each nuclear spin in the EPR case sees only the electron
spin. In the NMR case, each nuclear spin sees each other nuclear spin, giving rise to very rich, but harder
to analyze information.

it grows exponentially in EPR spectra. In liquid solution, each group of equivalent nuclear spins
adds 2S + 1 lines, so that the number of lines for Neq such groups is

nNMR = (2S + 1)Neq . (4.13)

The nuclear frequency spectra in liquid solution can be measured by CW ENDOR, a technique
that is briefly discussed in Section 8.1.2.
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Figure 4.5: Energy level schemes (a,c) and nuclear frequency spectra (b,d) in the weak hyperfine
coupling (a,b) and strong hyperfine coupling (c,d) cases for an electron-nuclear spin system S = 1/2,
I = 1/2. Here, ωI is assumed to be negative and A is assumed to be positive. (a) In the weak-coupling
case, |A|/2 < |ωI |, the two nuclear spin transitions (green) have frequencies |ωI | ± |A|/2. (b) In the
weak-coupling case, the doublet is centered at frequency |ωI | and split by |A|. (c) In the strong-coupling
case, |A|/2 > |ωI |, levels cross for one of the electron spin states. The two nuclear spin transitions (green)
have frequencies |A|/2± |ωI |. (d) In the strong-coupling case, the doublet is centered at frequency |A|/2
and split by 2|ωI |.

A complication in interpretation of nuclear frequency spectra can arise from the fact that the
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hyperfine interaction may be larger than the nuclear Zeeman interaction. This is illustrated in
Figure 4.5. Only in the weak-coupling case with |A|/2 < |ωI | the hyperfine doublet in nuclear
frequency spectra is centered at |ωI | and split by |A|. In the strong-coupling case, hyperfine
sublevels cross for one of the electron spin states and the nuclear frequency |ωI |− |A|/2 becomes
negative. As the sign of the frequency is not detected, the line is found at frequency |A|/2− |ωI |
instead, i.e., it is "mirrored" at the zero frequency. This results in a doublet centered at frequency
|A|/2 and split by 2|ωI |. Recognition of such cases in well resolved liquid-state spectra is
simplified by the fact that the nuclear Zeeman frequency |ωI | can only assume a few values that
are known if the nuclear isotopes in the molecule and the magnetic field are known. Figure 4.6
illustrates how the nuclear frequency spectrum of the phenyl radical is constructed based on such
considerations. The spectrum has only 6 lines, compared to the 18 lines that arise in the EPR
spectrum in Figure 4.3.
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Figure 4.6: Schematic ENDOR (nuclear frequency) spectrum of the phenyl radical at an X-band frequency
where ωI/(2π) ≈ 14 MHz. (a) Subspectrum of the two equivalent ortho protons. The strong-coupling
case applies. (b) Subspectrum of the two equivalent meta protons. The weak-coupling case applies. (c)
Subspectrum of the para proton. The weak-coupling case applies. (d) Complete spectrum.

4.3.3 Solid-state EPR spectra
In the solid state, construction of the EPR spectra is complicated by the fact that the electron
Zeeman interaction is anisotropic. At each individual orientation of the molecule, the spectrum
looks like the pattern in liquid state, but both the central frequency of the multiplet and the
hyperfine splittings depend on orientation. As these frequency distributions are continuous,
resolved splittings are usually observed only at the singularities of the line shape pattern of
the interaction with the largest anisotropy. For organic radicals at X-band frequencies, often
hyperfine anisotropy dominates. At high frequencies or for transition metal ions, often electron
Zeeman anisotropy dominates. The exact line shape depends not only on the principal values of
the g tensor and the hyperfine tensors, but also on relative orientation of their PASs. The general
case is complicated and requires numerical simulations, for instance, by EasySpin.

However, simple cases, where the hyperfine interaction of only one nucleus dominates and
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the PASs of the g and hyperfine tensor coincide, are quite often encountered. For instance, Cu(II)
complexes are often square planar and, if all four ligands are the same, have a C4 symmetry axis.
The g tensor than has axial symmetry with the C4 axis being the unique axis. The hyperfine
tensors of 63Cu and 65Cu have the same symmetry and the same unique axis. The two isotopes
both have spin I = 3/2 and very similar gyromagnetic ratios. The spectra can thus be understood
by considering one electron spin S = 1/2 and one nuclear spin I = 3/2 with axial g and
hyperfine tensors with a coinciding unique axis.

In this situation, the subspectra for each of the nuclear spin statesmI = −3/2,−1/2,+1/2,
and +3/2 take on a similar form as shown in Figure 3.3. The resonance field can be computed
by solving

~ωmw =
µB

B0,res

(
2g2
⊥ sin2 θ + g2

|| cos2 θ
)

+mI

[
Aiso + T

(
3 cos2 θ − 1

)]
, (4.14)

where θ is the angle between the C4 symmetry axis and the magnetic field vector ~B0. The
singularities are encountered at θ = 0◦ and θ = 90◦ and correspond to angular frequencies
µBB0g|| +mIA|| and µBB0g⊥ +mIA⊥.
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Figure 4.7: Construction of a solid-state EPR spectrum for a copper(II) complex with four equivalent
ligands and square planar coordination. The g|| and A|| principal axes directions coincide with the C4

symmetry axis of the complex (inset). (a) Subspectra for the four nuclear spin states with different
magnetic spin quantum numbermI . (b) Absorption spectrum. (c) Derivative of the absorption spectrum.

The construction of a Cu(II) EPR spectrum according to these considerations is shown in
Figure 4.7. The values of g|| and A|| can be inferred by analyzing the singularities near the
low-field edge of the spectrum. Near the high-field edge, the hyperfine splitting A⊥ is usually
not resolved. Here, g⊥ corresponds to the maximum of the absorption spectrum and to the zero
crossing of its derivative.

4.3.4 Solid-state nuclear frequency spectra
Again, a simpler situation is encountered in nuclear frequency spectra, as the nuclear Zeeman
frequency is isotropic and chemical shift anisotropy is negligibly small compared to hyperfine
anisotropy. Furthermore, resolution is much better for the reasons discussed above, so that
smaller hyperfine couplings and anisotropies can be detected. If anisotropy of the hyperfine
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coupling is dominated by through-space dipole-dipole coupling to a single center of spin density,
as is often the case for protons, or by contribution from spin density in a single p or d orbital, as
is often the case for other nuclei, the hyperfine tensor has nearly axial symmetry. In this case, one
can infer from the line shapes whether the weak- or strong-coupling case applies and whether
the isotropic hyperfine coupling is positive or negative (Figure 4.8). The case with Aiso = 0
corresponds to the Pake pattern discussed in the NMR part of the lecture course.
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Figure 4.8: Solid-state nuclear frequency spectra for cases with negative nuclear Zeeman frequency
ωI . (a) Weak-coupling case with Aiso > 0 and Aiso > T . (b) Weak-coupling case with Aiso < 0 and
|Aiso| > T . (a) Strong-coupling case with Aiso > 0 and Aiso > T . (b) Strong-coupling case with
Aiso < 0 and |Aiso| > T .
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5 — Electron-Electron Interactions

5.1 Exchange interaction
5.1.1 Physical origin and consequences of the exchange interaction

If two unpaired electrons occupy SOMOs in the same molecule or in spatially close molecules,
the wave functions ψ1 and ψ2 of the two SOMOs may overlap. The two unpaired electrons can
couple either to a singlet state or to a triplet state. The energy difference between the singlet and
triplet state is the exchange integral

J = −2e2

∫ ∫
ψ∗1 (r1)ψ∗2 (r2)ψ1 (r2)ψ2 (r1)

|~r1~r2|
d~r1d~r2 (5.1)

There exist different conventions for the sign of J and the factor 2 may be missing in parts of the
literature. With the sign convention used here, the singlet state is lower in energy for positive
J . Since the singlet state S with spin wave function (|αβ〉 − |βα〉)/

√
2 is antisymmetric with

respect to exchange of the two electrons and electrons are Fermions, it corresponds to the situation
where the two electrons could also occupy the same orbital. This is a bonding orbital overlap,
corresponding to an antiferromagnetic spin ordering. Negative J correspond to a lower-lying
triplet state, i.e., antibonding orbital overlap and ferromagnetic spin ordering. The triplet state
has three substates with wave functions |αα〉 for the T+ state, (|αβ〉+ |βα〉)/

√
2 for the T0 state,

and |ββ〉 for the T− state. The T+ and T− state are eigenstates both in the absence and presence
of the J coupling. The states S and T0 are eigenstates for J � ∆ω, where ∆ω is the difference
between the electron Zeeman frequencies of the two spins. For the opposite case of ∆ω � J ,
the eigenstates are |αβ〉 and |βα〉. The latter case corresponds to the high-field approximation
with respect to the exchange interaction.

For strong exchange, J � ∆ω, the energies are approximately −(3/4)J for the singlet state
and J/4−ωS , J/4 and J/4 +ωS for the triplet substates T−, T0, and T+, respectively, where ωS
is the electron Zeeman interaction, which is the same for both spins within this approximation. If
J � 2πνmw, microwave photons with energy hνmw cannot excite transitions between the singlet
and triplet subspace of spin Hilbert space. It is then convenient to use a coupled representation
and consider the two subspaces separately from each other. The singlet subspace corresponds to
a diamagnetic molecule and does not contribute to EPR spectra. The triplet subspace can be
described by a group spin S = 1 of the two unpaired electrons. In the coupled representation, J
does not enter the spin Hamiltonian, as it shifts all subspace levels by the same energy.
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For J < 0, the triplet state is the ground state and is always observable by EPR spectroscopy.
However, usually one has J > 0 and the singlet state is the ground state. As long as ~J does not
exceed thermal energy kBT by a large factor, the triplet state is thermally excited and observable.
In this case, EPR signal amplitude may increase rather than decrease with increasing temperature.
For organic molecules, this case is also rare. If ~J � kBT , the compound does not give an EPR
signal. It may still be possible to observe the triplet state transiently after photoexcitation to an
excited singlet state and intersystem crossing to the triplet state.

Weak exchange coupling is observed in biradicals with well localized SOMOs that are
separated on length scales between 0.5 and 1.5 nm. In such cases, exchange coupling J decreases
exponentially with the distance between the two electrons or with the number of conjugated bonds
that separate the two centers of spin density. If the two centers are not linked by a continuous
chain of conjugated bonds, exchange coupling is rarely resolved at distances larger than 1.5 nm.
In any case, at such long distances exchange coupling is much smaller than the dipole-dipole
coupling between the two unpaired electrons if the system is not conjugated. For weak exchange
coupling, the system is more conveniently described in an uncoupled representation with two
spins S1 = 1/2 and S2 = 1/2.

Exchange coupling is also significant during diffusional encounters of two paramagnetic
molecules in liquid solution. Such dynamic Heisenberg spin exchange can be pictured as physical
exchange of unpaired electrons between the colliding molecules. This causes a sudden change of
the spin Hamiltonian, which leads to spin relaxation. A typical example is line broadening in
EPR spectra of radicals by oxygen, which has a paramagnetic triplet ground state. If radicals of
the same type collide, line broadening is also observed, but the effects on the spectra can be more
subtle, since the spin Hamiltonians of the colliding radicals are the same. In this case, exchange
of unpaired electrons between the radicals changes only spin state, but not the spin Hamiltonian.

5.1.2 Exchange Hamiltonian
The spin Hamiltonian contribution by weak exchange coupling is

ĤEX = J
(
Ŝ1xŜ2x + Ŝ1yŜ2y + Ŝ1zŜ2z

)
. (5.2)

This Hamiltonian is analogous to the J coupling Hamiltonian in NMR spectroscopy. If the two
spins have different g values and the field is sufficiently high (gµBB0/~ � J), the exchange
Hamiltonian can be truncated in the same way as the J coupling Hamiltonian in heteronuclear
NMR:

ĤEX,trunc = JŜ1zŜ2z . (5.3)

5.1.3 Spectral manifestation of the exchange interaction
In the absence of hyperfine coupling, the situation is the same as for J coupling in NMR
spectroscopy. Exchange coupling between like spins (same electron Zeeman frequency) does not
influence the spectra. For radicals in liquid solution, hyperfine coupling is usually observable. In
this case, exchange coupling does influence the spectra even for like spins, as illustrated in Figure
5.1 for two exchange-coupled electron spins S1 = 1/2 and S2 = 1/2 with each of them coupled
exclusively to only one nuclear spin (I1 = 1 and I2 = 1, respectively) with the same hyperfine
coupling Aiso. If the exchange coupling is much smaller than the isotropic hyperfine coupling,
each of the individual lines of the hyperfine triplet further splits into three lines. If the splitting
is very small, it may be noticeable only as a line broadening. At very large exchange coupling,
the electron spins are uniformly distributed over the two exchange-coupled moieties. Hence,
each of them has the same hyperfine coupling to both nuclei. This coupling is half the original
hyperfine coupling, since, on average, the electron spin has only half the spin density in the
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orbitals of a given nucleus as compared to the case without exchange coupling. For intermediate
exchange couplings, complex splitting patterns arise that are characteristic for the ratio between
the exchange and hyperfine coupling.

335 335340 340345 345

Magnetic field [mT] Magnetic field [mT]
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J/A = 2
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Figure 5.1: Influence of the exchange coupling J on EPR spectra with hyperfine coupling in liquid
solution (simulation). Spectra are shown for two electron spins S1 = 1/2 and S2 = 1/2 with the same
isotropic g value and the same isotropic hyperfine coupling to a nuclear spin I1 = 1 or I2 = 1, respectively.
In the absence of exchange coupling, a triplet with amplitude ratio 1:1:1 is observed. For small exchange
couplings, each line splits into a triplet. At intermediate exchange couplings, complicated patterns with
many lines result. For very strong exchange coupling, each electron spin couples to both nitrogen nuclei
with half the isotropic exchange coupling. A quintuplet with amplitude ratio 1:2:3:2:1 is observed.

5.2 Dipole-dipole interaction
5.2.1 Physical picture

The magnetic dipole-dipole interaction between two localized electron spins with magnetic
moments µ1 and µ2 takes the same form as the classical interaction between two magnetic point
dipoles. The interaction energy

E = −µ0

4π
· µ1µ2 ·

1

r3
· (2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ) . (5.4)

generally depends on the two angles θ1 and θ2 that the point dipoles include with the vector
between them and on the dihedral angle φ (Figure 5.2). The dipole-dipole interaction scales with
the inverse cube of the distance between the two point dipoles.

In general, the two electron spins are spatially distributed in their respective SOMOs. The
point-dipole approximation is still a good approximation if the distance r is much larger than the
spatial distribution of each electron spin. Further simplification is possible if g anisotropy is
much smaller than the isotropic g value. In that case, the two spins are aligned parallel to the
magnetic field and thus also parallel to each other, so that θ1 = θ2 = θ and φ = 0. Eq. (5.4)
then simplifies to

E = −µ0

4π
· µ1µ2 ·

1

r3
·
(
3 cos2 θ − 1

)
, (5.5)

which is the form known from NMR spectroscopy.
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Figure 5.2: Geometry of two magnetic point dipoles in general orientation. Angles θ1 and θ2 are included
between the respective magnetic moment vectors ~µ1 or ~µ2 and the distance vector ~r between the point
dipoles. Angle φ is the dihedral angle.

5.2.2 Dipole-dipole Hamiltonian
For two electron spins that are not necessarily aligned parallel to the external magnetic field, the
dipole-dipole coupling term of the spin Hamiltonian assumes the form

Ĥdd = ŜT
1 DŜ2 =

1

r3
· µ0

4π~
· g1g2µ

2
B

[
Ŝ1Ŝ2 −

3

r2

(
Ŝ1~r
)(

Ŝ2~r
)]

. (5.6)

If the electrons are distributed in space, the Hamiltonian has to be averaged (integrated) over the
two spatial distributions, since electron motion proceeds on a much faster time scale than an EPR
experiment.

If the two unpaired electrons are well localized on the length scale of their distances and their
spins are aligned parallel to the external magnetic field, the dipole-dipole Hamiltonian takes the
form

Ĥdd =
1

r3
· µ0

4π~
· g1g2µ

2
B

[
Â+ B̂ + Ĉ + D̂ + Ê + F̂

]
. (5.7)

with the terms of the dipolar alphabet

Â = Ŝz Îz
(
1− 3 cos2 θ

)
, (5.8)

B̂ = −1

4

[
Ŝ+Î− + Ŝ−Î+

] (
1− 3 cos2 θ

)
, (5.9)

Ĉ = −3

2

[
Ŝ+Îz + Ŝz Î

+
]

sin θ cos θe−iφ , (5.10)

D̂ = −3

2

[
Ŝ−Îz + Ŝz Î

−
]

sin θ cos θeiφ , (5.11)

Ê = −3

4
Ŝ+Î+ sin2 θe−2iφ , (5.12)

F̂ = −3

4
Ŝ−Î− sin2 θe2iφ . (5.13)

Usually, EPR spectroscopy is performed at fields where the electron Zeeman interaction
is much larger than the dipole-dipole coupling, which has a magnitude of about 50 MHz at a
distance of 1 nm and of 50 kHz at a distance of 10 nm. In this situation, the terms Ĉ, D̂, Ê, and
F̂ are non-secular and can be dropped. The B̂ term is pseudo-secular and can be dropped only if
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Figure 5.3: Explanation of dipole-dipole coupling between two spins in a local field picture. At the
observer spin (blue) a local magnetic field is induced by the magnetic moment of the coupling partner
spin (red). In the secular approximation only the z component of this field is relevant, which is parallel or
antiparallel to the external magnetic field ~B0. The magnitude of this z component depends on angle θ
between the external magnetic field and the spin-spin vector ~r. For the α (left) and β (right) states of
the partner spin, the local field at the observer spin has the same magnitude, but opposite direction. In
the high-temperature approximation, both these states are equally populated. The shift of the resonance
frequency of the observer spin thus leads to a splitting of the observer spin transition, which is twice the
product of the local field with the gyromagnetic ratio of the observer spin.

the difference between the electron Zeeman frequencies is much larger than the dipole-dipole
coupling1. In electron electron double resonance (ELDOR) experiments, the difference of
the Larmor frequencies of the two coupled spins can be selected via the difference of the two
microwave frequencies. It is thus possible to excite spin pairs for which only the secular part of
the spin Hamiltonian needs to be considered,

Ĥdd = ω⊥
(
1− 3 cos2 θ

)
Ŝz Îz , (5.14)

with

ω⊥ =
1

r3
· µ0

4π~
· g1g2µ

2
B . (5.15)

The dipole-dipole coupling then has a simple dependence on the angle θ between the external
magnetic field ~B0 and the spin-spin vector ~r and the coupling can be interpreted as the interaction
of the spin with the z component of the local magnetic field that is induced by the magnetic
dipole moment of the coupling partner (Figure 5.3). Since the average of the second Legendre
polynomial

(
1− 3 cos2 θ

)
/2 over all angles θ vanishes, the dipole-dipole interaction vanishes

under fast isotropic motion. Measurements of this interaction are therefore performed in the solid
state.

The dipole-dipole tensor in the secular approximation has the eigenvalues (ω⊥, ω⊥,−2ω⊥).
The dipole-dipole coupling d at any orientation θ is given by

d = ω⊥
(
1− 3 cos2 θ

)
. (5.16)

5.2.3 Spectral manifestation of the dipole-dipole interaction
The energy level scheme and a schematic spectrum for a spin pair with fixed angle θ are shown in
Figure 5.4a and b, respectively. The dipole-dipole couplings splits the transition of either coupled
spin by d. If the sample is macroscopically isotropic, for instance a microcrystalline powder or a
glassy frozen solution, all angles θ occur with probability sin θ. Each line of the dipolar doublet

1Hyperfine coupling of the electron spins can modify this condition.
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Figure 5.4: Energy level scheme (a) and schematic spectrum (b) for a dipole-dipole coupled spin pair
at fixed orientation θ with respect to the magnetic field. The electron Zeeman frequencies of the two
spins are ωA and ωB, respectively. Weak coupling d� |ωA − ωB| is assumed. The dipolar splitting d is
the same for both spins. Depending on homogeneous linewidth 1/T2, the splitting may or may not be
resolved. If ωA and ωB are distributed, for instance by g anisotropy, resolution is lost even for d > 1/T2.

is then broadened to a powder pattern as illustrated in Figure 3.3. The powder pattern for the β
state of the partner spin is a mirror image of the one for the α state, since the frequency shifts by
the local magnetic field have opposite sign for the two states. The superposition of the two axial
powder patterns is called Pake pattern (Figure 5.5). The center of the Pake pattern corresponds
to the magic angle θmagic = arccos

√
1/3 ≈ 54.7◦. The dipole-dipole coupling vanishes at this

angle.
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Figure 5.5: Pake pattern observed for a dipole-dipole coupled spin pair. (a) The splitting of the dipolar
doublet varies with angle θ between the spin-spin vector and the static magnetic field. Orientations have
a probability sin θ. (b) The sum of all doublets for a uniform distribution of directions of the spin-spin
vector is the Pake pattern. The "horns" are split by ω⊥ and the "shoulders" are split by ω|| = 2ω⊥. The
center of the pattern corresponds to the magic angle.

The Pake pattern is very rarely observed in an EPR spectrum, since usually other anisotropic
interactions are larger than the dipole-dipole interaction between electron spins. If the weak-
coupling condition d� |ωA − ωB| is fulfilled for the vast majority of all orientations, the EPR
lineshape is well approximated by a convolution of the Pake pattern with the lineshape in the
absence of dipole-dipole interaction. If the latter lineshape is known, for instance from measuring



5.3 Zero-field interaction 37

analogous samples that carry only one of the two electron spins, the Pake pattern can be extracted
by deconvolution and the distance between the two electron spins can be inferred from the
splitting ω⊥ by inverting Eq. (5.15).

5.3 Zero-field interaction

5.3.1 Physical picture
If several unpaired spins are very strongly exchange coupled, then they are best described by
a group spin S. The concept is most easily grasped for the case of two electron spins that we
have already discussed in Section 5.1.1. In this case, the singlet state with group spin S = 0 is
diamagnetic and thus not observable by EPR. The three sublevels of the observable triplet state
with group spin S = 1 correspond to magnetic quantum numbersmS = −1, 0, and +1 at high
field. These levels are split by the electron Zeeman interaction. The transitionsmS = −1↔ 0
andmS = 0↔ +1 are allowed electron spin transitions, whereas the transitionmS = −1↔ +1
is a forbidden double-quantum transition.

At zero magnetic field, the electron Zeeman interaction vanishes, yet the three triplet sublevels
are not degenerate, they exhibit zero-field splitting. This is because the unpaired electrons are
also dipole-dipole coupled. Integration of Eq. (5.6) over the spatial distribution of the two
electron spins in their respective SOMOs provides a zero-field interaction tensorD that can be
cast in a form where it describes coupling of the group spin S = 1 with itself [Rie07]. At zero
field, the triplet sublevels are not described by the magnetic quantum number mS , which is a
good quantum number only if the electron Zeeman interaction is much larger than the zero-field
interaction. Rather, the triplet sublevels at zero field are related to the principal axes directions of
the zero-field interaction tensor and are therefore labeled Tx, Ty, and Tz , whereas the sublevels
in the high-field approximation are labeled T−1, T0, and T+1.

This concept can be extended to an arbitrary number of strongly coupled electron spins.
Cases with up to 5 strongly coupled unpaired electrons occur for transition metal ions (d shell)
and cases with up to 7 strongly coupled unpaired electrons occur for rare earth ions (f shell).
According to Hund’s rule , in the absence of a ligand field the state with largest group spin S is
the ground state. Kramers ions with an odd number of unpaired electrons have a half-integer
group spin S. They behave differently from non-Kramers ions with an even number of electrons
and integer group spin S. This classification relates to Kramers’ theorem, which states that
for a time-reversal symmetric system with half-integer total spin, all eigenstates occur as pairs
(Kramers pairs) that are degenerate at zero magnetic field. As a consequence, for Kramers ions
the ground state at zero field will split when a magnetic field is applied. For any microwave
frequency there exists a magnetic field where the transition within the ground Kramers doublet
is observable in an EPR spectrum. The same does not apply for integer group spin, where the
ground state may not be degenerate at zero field. If the zero-field interaction is larger than
the maximum available microwave frequency, non-Kramers ions may be unobservable by EPR
spectroscopy although they exist in a paramagnetic high-spin state. Typical examples of such
EPR silent non-Kramers ions are high-spin Ni(II) (3d8, S = 1) and high-spin Fe(II) (3d6, S = 2).
In rare cases, non-Kramers ions are EPR observable, since the ground state can be degenerate
at zero magnetic field if the ligand field features axial symmetry. Note also that "EPR silent"
non-Kramers ions can become observable at sufficiently high microwave frequency and magnetic
field.

For transition metal and rare earth ions, zero-field interaction is not solely due to the
dipole-dipole interaction between the electron spins. Spin-orbit coupling also contributes, in
many cases even stronger than the dipole-dipole interaction. Quantum-chemical prediction of the
zero-field interaction is an active field of research. Quite reasonable predictions can be obtained
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for transition metal ions, whereas only order-of-magnitude estimates are usually possible for rare
earth ions.

5.3.2 Zero-field interaction Hamiltonian
The zero-field interaction Hamiltonian is often given as

ĤZFI =
~̂
STD

~̂
S , (5.17)

where T denotes the transpose of the spin vector operator. In the principal axes system of the
zero-field splitting (ZFS) tensor, the Hamiltonian simplifies to

ĤZFI = DxŜ
2
x +DyŜ

2
y +DzŜ

2
z

= D

[
S2
z −

1

3
S (S + 1)

]
+ E

(
S2
x − S2

y

)
. (5.18)

where D = 3Dz/2 and E = (Dx −Dy)/2. The reduction to two parameters is possible, since
D is a traceless tensor. In other words, the zero-field interaction is purely anisotropic. The
D,E notation presumes that Dz is the principal value with the largest absolute value (D can be
negative). Together with the absence of an isotropic component, this means that Dy, which is
always the intermediate value, is either closer to Dx than to Dz or exactly in the middle between
these two values. Accordingly, |E| ≤ |D/3|. At axial symmetryE = 0. Axial symmetry applies
if the system has a Cn symmetry axis with n ≥ 3. At cubic symmetry, both D and E are zero.
For group spin S ≥ 2, the leading term of the ZFS is then a hexadecapolar contribution that
scales with the fourth power of the spin operators (Ŝ4

x, Ŝ
4
y , Ŝ

4
z ).

In the high-field approximation the ZFS contribution to the Hamiltonian is a ωDS2
z term.

In other words, to first order in perturbation theory the contribution of the ZFS to the energy
of a spin level with magnetic quantum numbermS scales withm2

S . For an allowed transition
mS ↔ mS + 1, this contribution is ωD (2mS + 1). This contribution vanishes for the central
transitionmS = −1/2↔ 1/2 of Kramers ions. More generally, because of the scaling of the
level energies withm2

S to first-order, the contribution of ZFS to transition frequencies vanishes
for all −mS ↔ +mS transitions.
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Figure 5.6: Schematic CW EPR spectra for triplet states (S = 1) at high field. Simulations were
performed at an X-band frequency of 9.6 GHz. (a) Axial symmetry (D = 1 GHz, E = 0). The spectrum
is the derivative of a Pake pattern. (b) Orthorhombic symmetry (D = 1 GHz, E = 0.1 GHz).
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5.3.3 Spectral manifestation of zero-field splitting
Spectra are most easily understood in the high-field approximation. Quite often, deviations from
this approximation are significant for the ZFS (see Fig. 2.2), and such deviations are discussed
later. The other limiting case, where the ZFS is much larger than the electron Zeeman interaction
(Fe(III) and most rare earth ions), is discussed in Section 5.3.4.

For triplet states (S = 1) with axial symmetry of the ZFS tensor, the absorption spectrum is
a Pake pattern (see Section 5.2.3). With continuous-wave EPR, the derivative of the absorption
spectrum is detected, which has the appearance shown in Fig. 5.6(a). A deviation from axial
symmetry leads to a splitting of the "horns" of the Pake pattern by 3E, whereas the "shoulders"
of the pattern are not affected (Fig. 5.6(b)). Triplet states of organic molecules are often observed
after optical excitation of a singlet state and intersystem crossing. Such intersystem crossing
generally leads to different population of the zero-field triplet sublevels Tx, Ty, and Tz . In this
situation the spin system is not at thermal equilibrium, but spin polarized. Such spin polarization
affects relative intensity of the lineshape singularities in the spectra and even the sign of the
signal may change. However, the singularities are still observed at the same resonance fields, i.e.,
the parameters D and E can still be read off the spectra as indicated in Fig. 5.6.

Even if the populations of the triple sublevels have relaxed to thermal equilibrium, the
spectrum may still differ from the high-field approximation spectrum, as is illustrated in Fig. 5.7
for the excited naphtalene triplet (simulation performed with an example script of the software
package EasySpin http://www.easyspin.org/). For D = 3 GHz at a field of about 160 mT
(electron Zeeman frequency of about 4.8 GHz) the high-field approximation is violated andmS

is no longer a good quantum number. Hence, the formally forbidden double-quantum transition
mS = −1↔ +1 becomes partially allowed. To first order in perturbation theory, this transition
is not broadened by the ZFS. Therefore it is very narrow compared to the allowed transitions and
appears with higher amplitude.

magnetic field (mT)
0 100 200 300 400 500

Figure 5.7: CW EPR spectrum of the excited naphtalene triplet at thermal equilibrium (simulation at an
X-band frequency of 9.6 GHz). D ≈ 3 GHz, E ≈ 0.41 GHz). The red arrow marks the half-field signal,
which corresponds to the formally forbidden double-quantum transitionmS = −1↔ +1.

For Kramers ions, the spectra are usually dominated by the central mS = −1/2 ↔ 1/2
transition, which is not ZFS-broadened to first order. To second order in perturbation theory,
the ZFS-broadening of this line scales inversely with magnetic field. Hence, whereas systems
with g anisotropy exhibit broadening proportional to the magnetic field B0, central transitions of
Kramers ions exhibit narrowing with 1/B0. The latter systems can be detected with exceedingly
high sensitivity at high fields if they do not feature significant g anisotropy. This applies to
systems with half-filled shells (e.g. Mn(II), 3d5; Gd(III), 4f7). In the case of Mn(II) (Figure
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5.8) the narrow central transition is split into six lines by hyperfine coupling to the nuclear spin
of 55Mn (nuclear spin I = 5/2, 100% natural abundance). Because of the |2mS + 1| scaling
of anisotropic ZFS broadening of mS ↔ mS + 1 transitions, satellite transitions become the
broader the larger |mS | is for the involved levels. In the high-temperature approximation, the
integral intensity in the absorption spectrum is the same for all transitions. Hence, broader
transitions make a smaller contribution to the amplitude in the absorption spectrum and in its
first derivative that is acquired by CW EPR.

3.2 3.25 3.3 3.35 3.4 3.45 3.5

magnetic field [T]

Figure 5.8: CW EPR spectrum of a Mn(II) complex (simulation at a W-band frequency of 94 GHz).
D = 0.6 GHz, E = 0.05 GHz, A(55Mn) = 253 MHz. The six intense narrow lines are the hyperfine
multiplet of the central transitionmS = −1/2↔ +1/2.

The situation can be further complicated by D and E strain, which is a distribution of the
D and E parameters due to a distribution in the ligand field. Such a case is demonstrated in
Fig. 5.9 for Gd(III) at a microwave frequency of 34 GHz where second-order broadening of the
central transition is still rather strong. In such a case, lineshape singularities are washed out and
ZFS parameters cannot be directly read off the spectra. In CW EPR, the satellite transitions
may remain unobserved as the derivative of the absorption lineshape is very small except for the
central transition.

5.3.4 Effective spin 1/2 in Kramers doublets
For some systems, such as Fe(III), ZFS is much larger than the electron Zeeman interaction at
any experimentally attainable magnetic field. In this case, the zero-field interaction determines
the quantization direction and the electron Zeeman interaction can be treated as a perturbation
[Cas+60]. The treatment is simplest for axial symmetry (E = 0), where the quantization axis is
the z axis of the ZFS tensor. The energies in the absence of the magnetic field are

ω (mS) = Dm2
S , (5.19)

which for high-spin Fe(III) with S = 5/2 gives three degenerate Kramers doublets corresponding
to mS = ±5/2, ±3/2, and ±1/2. If the magnetic field is applied along the z axis of the
ZFS tensor, mS is a good quantum number and there is simply an additional energy term
mSgµBB0 with g being the g value for the half-filled shell, which can be approximated as g = 2.
Furthermore, in this situation only themS = −1/2↔ 1/2 transition is allowed. The Zeeman
term leads to a splitting of the mS = ±1/2 Kramers doublet that is proportional to B0 and
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Figure 5.9: Echo-detected EPR spectrum (absorption spectrum) of a Gd(III) complex with D ≈ 1.2
GHz, a Gaussian distribution of D with standard deviation of 0.24 GHz and a correlated distribution of E
(simulation at a Q-band frequency of 34 GHz courtesy of Dr. Maxim Yulikov). (a) Total spectrum (black)
and contributions of the individual transitions (see legend). The signal from the central transition (blue)
dominates. (b) Contributions of the satellite transitions scaled vertically for clarity.

corresponds to g = 2. This Kramers doublet can thus be described as an effective spin S′ = 1/2
with geff = 2.

If the magnetic field is perpendicular to the ZFS tensor z axis, the mS = ±5/2 and
±3/2 Kramers doublets are not split, since the Sx and Sy operator does not connect these
levels. The Sx operator has an off-diagonal element connecting the mS = ±1/2 levels that
is
√
S(S + 1) + 1/4/2 = 3/2. Since the levels are degenerate in the absence of the electron

Zeeman interaction, they become quantized along the magnetic field and mS is again a good
quantum number of this Kramers doublet. The energies are mS3gµBB0 + D/4, so that the
transition frequency is again proportional to B0, but now with an effective g value geff = 6.
Intermediate orientations can be described by assuming an effective g tensor with axial symmetry
and g⊥ = 6, g|| = 2. This situation is encountered to a good approximation for high-spin Fe(III)
in hemoglobins (g⊥ ≈ 5.88, g|| = 2.01).

For the non-axial case (E 6= 0), the magnetic field B0 will split all three Kramers doublets.
To first order in perturbation theory the splitting is proportional toB0, meaning that each Kramers
doublet can be described by an effective spin S′ = 1/2 with an effective g tensor. Another
simple case is encountered for extreme rhombicity, E = D/3. By reordering principal axes
(exchanging z with either x or y) one can the get rid of the S2

z term in Eq. (5.18), so that the ZFS
Hamiltonian reduces to E′ =

(
S2
x − S2

y

)
with E′ = 2E. The level pair corresponding to the

new z direction of the ZFS tensor has zero energy at zero magnetic field and it can be shown that
it has an isotropic effective g value geff = 30/7 ≈ 4.286. Indeed, signals near g = 4.3 are very
often observed for high-spin Fe(III).
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6 — Forbidden Electron-Nuclear Transitions

6.1 Physical picture
6.1.1 The S = 1/2, I = 1/2 spin system

The basic phenomena can be well understood in the simplest possible electron-nuclear spin
system consisting of a single electron spin S = 1/2 with isotropic g value that is hyperfine
coupled to a nuclear spin I = 1/2 with a magnitude of the hyperfine coupling that is much
smaller than the electron Zeeman interaction. In this situation the high-field approximation is
valid for the electron spin, so that the hyperfine Hamiltonian can be truncated to the form given
by Eq. (4.9). Because of the occurrence of an Ŝz Îx operator in this Hamiltonian, we cannot
simply transform the Hamiltonian to the rotating frame for the nuclear spin I . However, we don’t
need to, as we shall consider only microwave irradiation. For the electron spin S, we transform
to the rotating frame where this spin has a resonance offset ΩS . Hence, the total Hamiltonian
takes the form

Ĥ0 = ΩSŜz + ωI Îz +AŜz Îz +BŜz Îx . (6.1)

in the rotating frame for the electron spin and the laboratory frame for the nuclear spin. Such a
Hamiltonian is a good approximation, for instance, for protons in organic radicals.

The Hamiltonian deviates from the Hamiltonian that would apply if the high-field approxi-
mation were also fulfilled for the nuclear spin. The difference is the pseudo-secular hyperfine
coupling term BŜz Îx. As can be seen from Eq. (4.10), this term vanishes if the hyperfine
interaction is purely isotropic, i.e. for sufficiently fast tumbling in liquid solution,1 and along the
principal axes of the hyperfine tensor. Otherwise, theB term can only be neglected if ωI � A,B,
corresponding to the high-field approximation of the nuclear spin. Within the approximate range
2|ωI |/5 < |A| < 10|ωI | the pseudo-secular interaction may affect transition frequencies and
makes formally forbidden transitions with ∆mS = 1, ∆mI = 1 partially allowed, asmI is no
longer a good quantum number.

6.1.2 Local fields at the nuclear spin
The occurrence of forbidden transitions can be understood in a semi-classical magnetization
vector picture by considering local fields at the nuclear spin for the two possible states αS and

1The product of rotational correlation time τr and hyperfine anisotropy must be much smaller than unity
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Figure 6.1: Local fields (multiplied by the gyromagnetic ratio γI of the nuclear spin) at the nuclear spin
in the two states αS and βS of an electron spin S = 1/2. The quantization axes are along the effective
fields ~ωα/γI and ~ωβ/γI and are, thus, not parallel.

βS of the electron spin. These local fields are obtained from the parameters ωI , A, and B of
the Hamilton operator terms that act on the nuclear spin. When divided by the gyromagnetic
ratio of the nuclear spin these terms have the dimension of a local magnetic field. The local
field corresponding to the nuclear Zeeman interaction equals the static magnetic field B0 and is
the same for both electron spin states, since the expectation value of Îz does not depend on the
electron spin state. It is aligned with the z direction of the laboratory frame (blue arrow in Figure
6.1). Both hyperfine fields arise from Hamiltonian terms that contain an Ŝz factor, which has the
expectation valuemS = +1/2 for the αS state andmS = −1/2 for the βS state. The A term is
aligned with the z axis and directed towards +z in the αS state and towards −z in the βS state,
assuming A > 0 (violet arrows). The B term is aligned with the x axis and directed towards +x
in the αS state and towards −x in the βS state, assuming B > 0 (green arrows).

The effective fields at the nuclear spin in the two electron spins states are vector sums of the
three local fields. Because of the B component along x, they are tilted from the z direction by
angle ηα in the αS state and by angle ηβ in the βS state. The length of the sum vectors are the
nuclear transition frequencies in these two states and are given by

ωα =

√
(ωI +A/2)2 +B2/4

ωβ =

√
(ωI −A/2)2 +B2/4 . (6.2)

For |ωI | > 2|A|, the hyperfine splitting is given by

ωhfs = |ωα − ωβ| (6.3)

and the sum frequency is given by

ωsum = ωα + ωβ . (6.4)

For |ωI | > 2|A|, the nuclear frequency doublet is centered at ωsum/2 (Fig. 6.2(c)). The sum
frequency is always larger than twice the nuclear Zeeman frequency. None of the nuclear
frequencies can become zero, the minimum possible value B/2 is attained in one of the electron
spin states for matching of the nuclear Zeeman and hyperfine interaction at 2|ωI | = |A|. For
|ωI | < 2|A| the nuclear frequency doublet is split by ωsum and centered at ωhfs/2 (Fig. 6.2(d))).
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The tilt angles ηα and ηβ (Figure 6.1) can be inferred from trigonometric relations and are
given by

ηα = arctan

(
−B

2ωI +A

)
ηβ = arctan

(
−B

2ωI −A

)
. (6.5)

Consider now a situation where the electron spin is in its αS state. The nuclear magnetization
from all radicals in this state at thermal equilibrium is aligned with ~ωα. Microwave excitation
causes transitions to the βS state. In this state, the local field at the nuclear spin is directed
along ~ωβ . Hence, the nuclear magnetization vector from the radicals under consideration is
tilted by angle 2η (Figure 6.1) with respect to the current local field. It will start to precess
around this local field vector. This corresponds to excitation of the nuclear spin by flipping the
electron spin, which is a formally forbidden transition. Obviously, such excitation will occur
only if angle 2η differs from 0◦ and from 180◦. The case of 0◦ corresponds to the absence of
pseudo-secular hyperfine coupling (B = 0) and is also attained in the limit |A| � |ωI |. The
situation 2η → 180◦ is attained in the limit of very strong secular hyperfine coupling, |A| � |ωI |.
Forbidden transitions are observed for intermediate hyperfine coupling. Maximum excitation of
nuclear spins is expected when the two quantization axes are orthogonal with respect to each
other, 2η = 90◦.
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Figure 6.2: Electron-nuclear spin system S = 1/2, I = 1/2 in the presence of pseudo-secular hyperfine
coupling. (a) Level scheme. In EPR, ∆mS = 1, ∆mI = 0 transitions are allowed (red), in NMR
∆mS = 0, ∆mI = 1 transitions are allowed (blue), and the zero- and double-quantum transitions with
∆mS = 1, ∆mI = 1 are formally forbidden. (b) EPR stick spectrum. Allowed transitions have transition
probability cos2 η and forbidden transitions probability sin2 η. The spectrum is shown for |ωI | > 2|A|.
For |ωI | < 2|A|, the forbidden transitions lie inside the allowed transition doublet. (c) NMR spectrum for
|ωI | > 2|A|. (d) NMR spectrum for |ωI | < 2|A|.

6.2 Product operator formalism with pseudo-secular interactions
6.2.1 Transformation of Ŝx to the eigenbasis

Excitation and detection in EPR experiments are described by the Ŝx and Ŝy operators in the
rotating frame. These operators act only on electron spin transitions and thus formalize the
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spectroscopic selection rules. If the spin Hamiltonian contains off-diagonal terms, such as the
pseudo-secular BŜz Îx term in Eq. (6.1), the eigenbasis deviates from the basis of the electron
spin rotating frame/nuclear spin laboratory frame in which the Hamiltonian is written and in
which the excitation and detection operators are linear combinations of Ŝx and Ŝy. In order to
understand which transitions are driven and detected with what transition moment, we need to
transform Ŝx to the eigenbasis (the transformation of Ŝy is analogous). This can be done by
product operator formalism and can be understood in the local field picture.

The Hamiltonian in the eigenbasis has no off-diagonal elements, meaning that all quantization
axes are along z. Thus, we can directly infer from Fig. 6.1 that, in the αS state, we need a
counterclockwise (mathematically positive) rotation by tilt angle ηα about the y axis, which is
pointing into the paper plane. In the βS state, we need a clockwise (mathematically negative)
rotation by tilt angle ηβ about the y axis. The electron spin states can be selected by the projection
operators Ŝα and Ŝβ , respectively. Hence, we have to apply rotations ηαŜαÎy and −ηβŜβ Îy.
These two rotations commute, as the αS and βS subspaces are distinct when mS is a good
quantum number. For the rotation into the eigenbasis, we can write a unitary matrix

ÛEB = exp
{
−i
(
ηαŜ

αÎy − ηβŜβ Îy
)}

= exp
{
−i
(
ξÎy + η2Ŝz Îy

)}
, (6.6)

where ξ = (ηα − ηβ)/2 and η = (ηα + ηβ)/2. Note that the definition of angle η corresponds to
the one given graphically in Fig. 6.1.2 The two new rotations about Îy and Ŝz Îy also commute.
Furthermore, Îy commutes with Ŝx (and Ŝy), so that the transformation of Ŝx to the eigenbasis
reduces to

Ŝx
η2Ŝz Îy−→ cos η Ŝx + sin η 2Ŝy Îy . (6.7)

The transition moment for the allowed transitions that are driven by Ŝx is multiplied by a
factor cos η ≤ 1, i.e. it becomes smaller when η 6= 0. In order to interpret the second term, it is
best rewritten in terms of ladder operators Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy. We find

2Ŝy Îy =
1

2

(
Ŝ+Î− + Ŝ−Î+ − Ŝ+Î+ − Ŝ−Î−

)
. (6.8)

In other words, this term drives the forbidden electron-nuclear zero- and double-quantum
transitions (Fig. 6.2(a)) with a transition proportional to sin η.

In a CW EPR experiment, each transition must be both excited and detected. In other words,
the amplitude is proportional to the square of the transition moment, which is the transition
probability. Allowed transitions thus have an intensity proportional to cos2 η and forbidden
transitions a transition probability proportional to sin2 η (Fig. 6.2(b)).

6.2.2 General product operator computations for a non-diagonal Hamiltonian
In a product operator computation, terms of the Hamiltonian can be applied one after the other
if and only if they pairwise commute. This is not the case for the Hamiltonian in Eq. (6.1).
However, application of ÛEB diagonalizes the Hamiltonian:

Ĥ0
ηŜz Îy−→ ΩSŜz + ωsum/2 Îz + ωhfi Ŝz Îz . (6.9)

This provides a simple recipe for product operator computations in the presence of the pseudo-
secular hyperfine coupling. Free evolution and transition-selective pulses are computed in the

2We have used Ŝα = 1̂/2 + Ŝz and Ŝβ = 1̂/2− Ŝz .
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eigenbasis, using the Hamiltonian on the right-hand side of relation (6.9). For application of
non-selective pulses, the density operator needs to be transformed to the electron spin rotating
frame/nuclear spin laboratory frame basis by applying Û †EB. In product operator formalism this

corresponds to a product operator transformation
−ηŜz Îy−→ . After application of non-selective

pulses, the density operator needs to be backtransformed to the eigenbasis. Detection also needs
to be performed in the electron spin rotating frame/nuclear spin laboratory frame basis.

This concept can be extended to any non-diagonal Hamiltonian as long as one can find a
unitary transformation that transforms the Hamiltonian to its eigenbasis and can be expressed by
a single product operator term or a sum of pairwise commuting product operator terms.

6.3 Generation and detection of nuclear coherence by electron spin excitation

6.3.1 Nuclear coherence generator (π/2)− τ − (π/2)

We have seen that a single microwave pulse can excite coherence on forbidden electron-nuclear
zero- and double-quantum transitions. In principle, this provides access to the nuclear frequencies
ωα and ωβ , which are differences of frequencies of allowed and forbidden electron spin
transitions, as can be inferred from Fig. 6.2(a,b). Indeed, the decay of an electron spin Hahn echo
(π/2)− τ − (π)− τ − echo as a function of τ is modulated with frequencies ωα and ωβ (as well
as with ωhfi and ωsum). Such modulation arises from forbidden transitions during the refocusing
pulse, which redistribute coherence among the four transitions. The coherence transfer echoes
are modulated by the difference of the resonance frequencies before and after the transfer by
the π pulse, in which the resonance offset ΩS cancels, while the nuclear spin contributions do
not cancel. This two-pulse ESEEM experiment is not usually applied for measuring hyperfine
couplings, as the appearance of the combination frequencies ωhfi and ωsum complicates the
spectra and linewidth is determined by electron spin transverse relaxation, which is much faster
the nuclear spin transverse relaxation.

Better resolution and simpler spectra can be obtained by indirect observation of the evolution
of nuclear coherence. Such coherence can be generated by first applying a π/2 pulse to the
electron spins, which will generate electron spin coherence on allowed transitions with amplitude
proportional to cos η and on forbidden transitions with amplitude proportional to sin η. After
a delay τ a second π/2 pulse is applied. Note that the block (π/2)− τ − (π/2) is part of the
EXSY and NOESY experiments in NMR. The second π/2 pulse will generate an electron spin
magnetization component along z for half of the existing electron spin coherence, i.e., it will
"switch off" half the electron spin coherence and convert it to polarization. However, for the
coherence on forbidden transitions, there is a chance cos η that the nuclear spin is not flipped, i.e.
that the coherent superposition of the nuclear spin states survives. For electron spin coherence
on allowed transitions, there is a chance sin η that the "switching off" of the electron coherence
will lead to a "switching on" of nuclear coherences. Hence, in both these pathways there is a
probability proportional to sin η cos η = sin(2η)/2 that nuclear coherence is generated. The
delay τ is required, since at τ = 0 the different nuclear coherence components have opposite
phase and cancel.

The nuclear coherence generated by the block (π/2)−τ − (π/2) can be computed by product
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operator formalism as outlined in Section 6.2.2. We find〈
ŜαÎx

〉
= − sin (ΩSτ) sin (2η) sin

(ωβ
2
τ
)

cos (ωατ)〈
ŜαÎy

〉
= − sin (ΩSτ) sin (2η) sin

(ωβ
2
τ
)

sin (ωατ)〈
Ŝβ Îx

〉
= − sin (ΩSτ) sin (2η) sin

(ωα
2
τ
)

cos (ωβτ)〈
Ŝβ Îy

〉
= − sin (ΩSτ) sin (2η) sin

(ωα
2
τ
)

sin (ωβτ) . (6.10)

This expression can be interpreted in the following way. Nuclear coherence is created with a
phase as if it had started to evolve as Îx at time τ = 0 (last cosine factors on the right-hand
side of each line). It is modulated as a function of the electron spin resonance offset ΩS and
zero exactly on resonance (first factor on each line). The integral over an inhomogeneously
broadened, symmetric EPR line is also zero, since

∫∞
−∞ sin (ΩSτ) DΩS = 0 . However, this can

be compensated later by applying another π/2 pulse. The amplitude of the nuclear coherence
generally scales with sin 2η, since one allowed and one forbidden transfer are required to excite
it and sin (η) cos (η) = sin (2η) /2 (second factor). The third factor on the right-hand side of
lines 1 and 2 tells that the amplitude of the coherence with frequency ωα is modulated as a
function of τ with frequency ωβ . Likewise, the amplitude of the coherence with frequency ωβ
is modulated as a function of τ with frequency ωα (lines 3 and 4). At certain values of τ no
coherence is created at the transition with frequency ωα, at other times maximum coherence is
generated. Such behavior is called blind-spot behavior. In order to detect all nuclear frequencies,
an experiment based on the (π/2)− τ − (π/2) nuclear coherence generator has to be repeated
for different values of τ .
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7 — CW EPR Spectroscopy

7.1 Why and how CW EPR spectroscopy is done

7.1.1 Sensitivity advantages of CW EPR spectroscopy
In NMR spectroscopy, CW techniques have been almost completely displaced by Fourier
transform (FT) techniques, except for a few niche applications. FT techniques have a sensitivity
advantage if the spectrum contains large sections of baseline and the whole spectrum can be
excited simultaneously by the pulses. Neither condition is usually fulfilled in EPR spectroscopy.
For two reasons, FT techniques lose sensitivity in EPR spectroscopy compared to the CW
experiment. First, while typical NMR spectra comfortably fit into the bandwidth of a well-
designed critically coupled radiofrequency resonance circuit, EPR spectra are much broader than
the bandwidth of a microwave resonator with high quality factor. Broadening detection bandwidth
and proportionally lowering the quality factor Q of the resonator reduces signal-to-noise ratio
unless the absorption lineshape is infinitely broad. A quality factor of the order of 10’000, which
can be achieved with cavity resonators, corresponds to a bandwidth of roughly 1 MHz at X-band
frequencies around 9.6 GHz. The intrinsic high sensitivity of detection in such a narrow band can
be used only in a CW experiment. Second, even if the resonator is overcoupled to a much lower
quality factor or resonators with intrinsically lower Q are used (the sensitivity loss can partially
be compensated by a higher filling factor of such resonators), residual power from a high-power
microwave pulse requires about 100 ns in order to decay below the level of an EPR signal. This
dead time is often a significant fraction of the transverse relaxation time of electron spins, which
entails signal loss by relaxation. In contrast, in NMR spectroscopy the dead time is usually
negligibly short compared to relaxation times. In many cases, the dead time in pulsed EPR
spectroscopy even strongly exceeds T2. In this situation FT EPR is impossible, even with echo
refocusing, while CW EPR spectra can still be measured. This case usually applies to transition
metal complexes at room temperature and to many rare earth metal complexes and high-spin
Fe(III) complexes even down to the boiling point of liquid helium at normal pressure (4.2 K).
For these reasons, any unknown potentially paramagnetic sample should first be characterized
by CW EPR spectroscopy. Pulsed EPR techniques are required if the resolution of CW EPR
spectroscopy provides insufficient information to assign a structure. This applies mainly to small
hyperfine couplings in organic radicals and of ligand nuclei in transition metal complexes (see
Chapter 8) and to the measurement of distances between electron spins in the nanometer range
(see Chapter 9). At temperatures where pulse EPR signals can be obtained, measurement of
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relaxation times is also easier and more precise with pulsed EPR techniques.
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Figure 7.1: Scheme of a CW EPR spectrometer. Microwave from a fixed-frequency source is passed
through an attenuator for adjusting its power and then through a circulator to the sample. Microwave that
comes back from the sample passes on a different way through the same circulator and is combined with
reference microwave of adjustable power (bias) and phase before it is detected by a microwave diode. The
output signal of this diode enters a phase-sensitive detector (PSD) where it is demodulated with respect to
the field modulation frequency (typically 100 kHz) and at the same time amplified. The output signal of
the PSD is digitized and further processed in a computer. The spectrum is obtained by sweeping the static
magnetic field B0 at constant microwave frequency.

7.1.2 The CW EPR experiment

Since the bandwidth of an optimized microwave resonator is much smaller than the typical width
of EPR spectra, it is impractical to sweep the frequency at constant magnetic field in order to
obtain a spectrum. Instead, the microwave frequency is kept constant and coincides with the
resonator frequency at all times. The resonance condition for the spins is established by sweeping
the magnetic field B0. Another difficulty arises from the weak magnetic coupling of the spins to
the exciting electromagnetic field. Only a very small fraction of the excitation power is therefore
observed. This problem is solved as follows. First, direct transmission of excitation power to the
detector is prevented by a circulator (Figure 7.1). Power that enters port 1 can only leave to the
sample through port 2. Power that comes from the sample through port 2 can only leave to the
detector diode through port 3. Second, the resonator is critically coupled. This means that all
microwave power coming from the source that is incident to the resonator enters the resonator
and is converted to heat by the impedance (complex resistance) of the resonator. If the sample
is off resonant and thus does not absorb microwave, no microwave power leaves the resonator
through port 3. If now the magnetic field B0 is set to the resonance condition and the sample
resonantly absorbs microwave, this means that the impedance of resonator + sample has changed.
The resonator is no longer critically coupled and some of the incoming microwave is reflected.
This microwave leaves the circulator through port 3 and is incident on the detector diode.

This reflected power at resonance absorption can be very weak at low sample concentration.
It is therefore important to detect it sensitively. A microwave diode is only weakly sensitive to a
change in incident power at low power (Fig. 7.2, input voltage is proportional to the square root of
power). The diode is most sensitive to amplitude changes near its operating point, marked green
in Fig. 7.2. Hence, the diode must be biased to its operating point by adding constant power from
a reference arm. The phase of the reference arm must be adjusted so that microwave coming
from the resonator and microwave coming from the reference arm interfere constructively.
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Figure 7.2: Characteristic curve of a microwave detection diode. At small input voltage, the diode is
rather insensitive to changes in input voltage. At the operating point (green), dependence of output current
on input voltage is linear and has maximum slope. This corresponds to 200 µA output current. If input
voltage is too large, the diode is destroyed (red point).

A further problem arises from the fact that microwave diodes are broadband detectors. On
the one hand, this is useful, since samples can significantly shift resonator frequency. On
the other hand, broadband detectors also collect noise from a broad frequency band. This
decreases signal-to-noise ratio and must be countered by limiting the detection bandwidth to
the signal bandwidth or even below. Such bandwidth limitation can be realized most easily
by effect modulation and phase sensitive detection. By applying a small sinusoidal magnetic
field modulation with typical frequency of 100 kHz and typical amplitude of 0.01-1 mT, the
signal component at detector diode output becomes modulated with the same frequency, whereas
noise is uncorrelated to the modulation. Demodulation with a reference signal from the field
modulation generator (Figure 7.1) by a phase-sensitive detector amplifies the signal and limits
bandwidth to the modulation frequency.

Effect modulation with phase-sensitive detection measures the derivative of the absorption
lineshape, as long as the modulation amplitude ∆B0 is much smaller than the width of the EPR
line (Fig. 7.3). Since signal-to-noise ratio is proportional to ∆B0, one usually measures at
∆B0 ≈ ∆Bpp/3, where lineshape distortion is tolerable for almost all applications. Precise
lineshape analysis may require ∆B0 ≤ ∆Bpp/5, whereas maximum sensitivity at the expense
of significant artificial line broadening is obtained at ∆B0 = ∆Bpp. The modulation frequency
should not be broader than the linewidth in frequency units. However, with the standard
modulation frequency of 100 kHz that corresponds on a magnetic field scale to only 3.6 µT at
g = ge, this is rarely a problem.

7.1.3 Considerations on sample preparation

Since electron spins have a much larger magnetic moment than nuclear spins, electron-electron
couplings lead to significant line broadening in concentrated solutions. Concentrations of
paramagnetic centers should not usually exceed 1 mM in order to avoid such broadening. For
organic radicals in liquid solution it may be necessary to dilute the sample to 100 µM in order to
achieve ultimate resolution. For paramagnetic metal dopants in diamagnetic host compounds,
at most 1% of the diamagnetic sites should be substituted by paramagnetic centers. Such
concentrations can be detected easily and with good signal-to-noise ratio. For most samples,
good spectra can be obtained down to the 1 µM range in solution and down to the 100 ppm
dopant range in solids.

Line broadening in liquid solution can also arise from diffusional collision of paramagnetic
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Figure 7.3: Detection of the derivative lineshape by field modulation. The situation is considered at the
instantaneous field during a field sweep (vertical dashed line) that is slow compared to the field modulation
frequency of 100 kHz. Modulation of the magnetic field with amplitude ∆B0 (blue) causes a modulation
of the output signal V (red) with the same frequency and an amplitude ∆V . Phase-sensitive detection
measures this amplitude ∆V , which is proportional to the derivative of the grey absorption lineshape and
to ∆B0, as long as ∆B0 is much smaller than the peak-to-peak linewidth ∆Bpp of the line. In practice,
∆B0 < ∆Bpp/3 is usually acceptable. For precise lineshape analysis, ∆B0 < ∆Bpp/5 is recommended.
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Figure 7.4: Relaxation enhancement by collisional exchange with oxygen in solution. (a) Situation before
diffusional encounter. As an example, triplet oxygen is assumed to be in a T− state (red), whereas the
spin of a nitroxide radical is assumed to be α (green). (b) The oxygen molecule and nitroxide radical
have collided during diffusional encounter. Their wavefunctions overlap and the three unpaired electrons
cannot be distinguished from each other (grey). (c) After separation, the three unpaired electrons have
been redistributed arbitrarily to the two molecules. For example, oxygen may now be in the T0 state (red)
and the nitroxide in the β state (green). The electron spin of the nitroxide radical has flipped.

species with paramagnetic triplet oxygen (Figure 7.4). During such a collision, wavefunctions
of the two molecules overlap and, since electrons are undistinguishable particles, spin states of
all unpaired electrons in both molecules are arbitrarily redistributed when the two molecules
separate again. The stochastic diffusional encounters thus lead to additional flips of the observed
electron spins, which corresponds to relaxation and shortens longitudinal relaxation time T1.
Since the linewidth is proportional to T2 and T2 cannot be longer than 2T1, frequent collisional
encounters of paramagnetic species lead to line broadening. Such line broadening increases
with decreasing viscosity (faster diffusion) and increasing oxygen concentration. The effect is
stronger in apolar solvents, where oxygen solubility is higher than in polar solvents, but it is
often significant even in aqueous solution. Best resolution is obtained if the sample is free of
oxygen. The same mechanism leads to line broadening at high concentration of a paramagnetic
species in liquid solution. In the solid state, line broadening at high concentration is mainly due
to dipole-dipole coupling.
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Often, the anisotropically broadened EPR spectrum in the solid state is of interest, as it
provides information on g anisotropy and anisotropic hyperfine couplings. This may require
freezing of a solution of the species of interest. Usually, the species will precipitate if the
solvent crystallizes, which may cause line broadening and, in extreme cases, even collapse of the
hyperfine structure and averaging of g anisotropy by exchange between neighboring paramagnetic
species. These problems are prevented if the solvent forms a glass, as is often the case for
solvents that have methyl groups or can form hydrogen bonds in very different geometries.
Typical glass-forming solvents are toluene, 2-methyltetrahydrofuran, ethanol, ethylene glycol,
and glycerol. Aqueous solutions require addition of at least 25% glycerol as a cryoprotectant. In
most cases, crystallization will still occur on slow cooling. Samples are therefore shock frozen by
immersion of the sample tube into liquid nitrogen. Glass tubes would break on direct immersion
into liquid nitrogen, but EPR spectra have to be measured in fused silica sample tubes anyway,
since glass invariably contains a detectable amount of paramagnetic iron impurities.

7.2 Theoretical description of CW EPR

This section overlaps with Section 2.7 of the NMR lecture notes.

7.2.1 Spin packet lineshape

All spins in a sample that have the same resonance frequency form a spin packet. In the following
we also assume that all spins of a spin packet have the same longitudinal and transverse relaxation
times T1 and T2, respectively. If the number of spins in the spin packet is sufficiently large, we
can assign a magnetization vector to the spin packet. Dynamics of this magnetization vector with
equilibrium magnetizationM0 during microwave irradiation is described by the Bloch equations
in the rotating frame. In EPR spectroscopy, it is unusual to use the gyromagnetic ratio. Hence,
we shall denote the resonance offset by

ΩS =
gµB

~
B0 − 2πνmw , (7.1)

where νmw is the microwave frequency in frequency units. The rotating-frame Bloch equations
for the three components of the magnetization vector can then be written as

dMx

dt
= −ΩSMy −

Mx

T2
,

dMy

dt
= ΩSMx − ω1Mz −

My

T2
,

dMz

dt
= ω1My −

Mz −M0

T1
, (7.2)

where ω1 = g⊥µBB1/~ is the microwave field amplitude in angular frequency units and g⊥
is the mean g value in the plane perpendicular to the static magnetic field. The apparent sign
difference for the ΩS and ω1 terms arises from the different sense of spin precession for electron
spins compared to nuclear spins with a positive gyromagnetic ratio.

If the spin packet is irradiated at constant microwave frequency, constant microwave power,
and constant static magnetic fieldB0 for a sufficiently long time (roughly 5T1), the magnetization
vector attains a steady state. Although the static field is swept in a CW EPR experiment, assuming
a steady state is a good approximation, since the field sweep is usually slow compared to T2 and
T1. Faster sweeps correspond to the rapid scan regime that is not treated in this lecture course.
In the steady state, the left-hand sides of the differential equations (7.2) for the magnetization
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vector components must all be zero,

0 = −ΩSMy −
Mx

T2
,

0 = ΩSMx − ω1Mz −
My

T2
,

0 = ω1My −
Mz −M0

T1
. 〈stationary state〉 (7.3)

This linear system of equations has the solution

Mx = M0ω1
ΩT 2

2

1 + Ω2T 2
2 + ω2

1T1T2
,

My = −M0ω1
T2

1 + Ω2T 2
2 + ω2

1T1T2
,

Mz = M0
1 + Ω2T 2

2

1 + Ω2T 2
2 + ω2

1T1T2
, 〈stationary state〉 (7.4)

whereMz is not usually detected,Mx is in phase with the exciting microwave irradiation and
corresponds to the dispersion signal, andMy is out of phase with the exciting irradiation and
corresponds to the absorption line. Unperturbed lineshapes are obtained in the linear regime,
where the saturation parameter

S = ω2
1T1T2 (7.5)

fulfills S � 1. One can easily ascertain from Eq. (7.4) that in the linear regimeMy increases
linearly with increasing ω1, which corresponds to proportionality of the signal to the square root
of microwave power. Mz is very close to the equilibrium magnetization. Within this regime,
a decrease of 6 dB in microwave attenuation, i.e., a power increase by 6 dB, increases signal
amplitude by a factor of 2. Lineshape does not depend on ω1 in the linear regime. Therefore, it is
good practice to measure at the highest microwave power that is still well within the linear regime,
as this corresponds to maximum signal-to-noise ratio. For higher power the line is broadened.

Within the linear regime,My takes the form of a Lorentzian absorption line

My (Ω) = M0ω1T2
1

1 + Ω2T 2
2

, 〈linear regime〉 (7.6)

with linewidth 1/T2 in angular frequency units. The peak-to-peak linewidth of the first derivative
of the absorption line is Γpp = 2/

√
3T2. Since CW EPR spectra are measured by sweeping

magnetic field, we need to convert to magnetic field units,

Γpp,field sweep =
2√
3T2

· ~
gµB

. (7.7)

The linewidth of a spin packet is called homogeneous linewidth. If T2 is the same for all spin
packets, this homogeneous linewidth is proportional to 1/g, a fact that needs to be taken into
account in lineshape simulations for systems with large g anisotropy. For most samples, additional
line broadening arises from unresolved hyperfine couplings and, in the solid state, g anisotropy.
Therefore, T2 cannot usually be obtained by applying Eq. (7.7) to the experimentally observed
peak-to-peak linewidth.
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7.2.2 Saturation
For microwave power larger than in the linear regime, the peak-to-peak linewidth increases by
a factor 1 + S. If a weak signal needs to be detected with maximum signal-to-noise ratio it is
advantageous to increase power beyond the linear regime, but not necessarily to the maximum
available level. For very strong irradiation, S � 1, the term 1 can be neglected in the denominator
of Eqs. (7.4) for the magnetization vector components. The on-resonance amplitude of the
absorption line is then given by

My(Ω = 0) = M0/ω1T1 , 〈ω2
1T1T2 � 1〉 (7.8)

i.e., it is inversely proportional to ω1. In this regime, the amplitude decreases with increasing
power of the microwave irradiation.
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Figure 7.5: Progressive saturation measurement on the membrane protein LHCII solubilized in detergent
micelles in nitrogen atmosphere. ResidueV229wasmutated to cysteine and spin-labelled by iodoacetamido-
PROXYL. Experimental data points (red) were obtained at microwave attenuations of 23, 20, 17, 11, and
8 dB with a full power (0 dB) of 200 mW. The fit by Eq. (7.9) (black line) provides P1/2 = 3 mW and
ε = 1.24.

Semi-quantitative information on spin relaxation can be obtained by the progressive power
saturation experiment, where the EPR spectrum is measured as a function of microwave power
Pmw. Usually, the peak-to-peak amplitude of the larges signal in the spectrum is plotted as a
function of

√
Pmw. Such saturation curves can be fitted by the equation

A (Pmw) =
I
√
Pmw[

1 +
(
21/ε − 1

)
Pmw/P1/2

]ε , (7.9)

where the inhomogeneity parameter ε takes the value 1.5 in the homogeneous limit and 0.5 in
the inhomogeneous limit. Usually, ε is not known beforehand and is treated as a fit parameter.
The other fit parameters are I , which is the slope of the amplitude increase with the square root
of microwave power in the linear regime, and P1/2, which is the half-saturation power. More
precisely, P1/2 is the incident mw power where A is reduced to half of its unsaturated value.
Figure 7.5 shows experimental data from a progressive saturation measurement on spin-labelled
mutant V229C of major plant light harvesting complex LHCII solubilized in detergent micelles
in a nitrogen atmosphere and a fit of this data by Eq. (7.9).





ENDOR
Advantages of electron-spin based detection of
nuclear frequency spectra
Types of ENDOR experiments
Davies ENDOR

ESEEM and HYSCORE
ENDOR or ESEEM?
Three-pulse ESEEM
HYSCORE

8 — Measurement of Small Hyperfine Couplings

8.1 ENDOR
8.1.1 Advantages of electron-spin based detection of nuclear frequency spectra

Nuclear frequency spectra in the liquid (Section 4.3.2) and solid states (4.3.4) exhibit much better
hyperfine resolution than EPR spectra, because the former spectra feature fewer and narrower lines.
In fact, small hyperfine couplings to ligand nuclei in metal complexes are not usually resolved in
EPR spectra and only the largest hyperfine couplings may be resolved in solid-state EPR spectra.
The nuclear frequency spectra cannot be measured by a dedicated NMR spectrometer because
they extend over several Megahertz to several tens of Megahertz, whereas NMR spectrometers
are designed for excitation and detection bandwidths of a few tens of kilohertz. Furthermore,
electron spin transitions have 660 times more polarization than proton transitions and more than
that for other nuclei. Their larger magnetic moment also leads to higher detection sensitivity. It is
thus advantageous to transfer polarization from electron spins to nuclear spins and to backtransfer
the response of the nuclear spins to the electron spins for detection. Two classes of experiments
can achieve this, electron nuclear double resonance (ENDOR) experiments, discussed in Section
8.1 and electron spin echo envelope modulation (ESEEM) experiments discussed in Section 8.2.

8.1.2 Types of ENDOR experiments
An ENDOR experiment can be performed with strong CW irradiation of both electron and
nuclear spins. In this CW ENDOR experiment, an electron spin transition is partially saturated,
S � 1 in Eq. (7.5). By driving a nuclear spin transition that shares an energy level with the
saturated transition, additional relaxation pathways are opened up. The electron spin transition
under observation is thus partially desaturated, and an increase in the EPR signal is observed.
The experiment is performed at constant magnetic field with strong microwave irradiation at a
maximum of the first-derivative absorption spectrum (i.e. the CW EPR spectrum) and the EPR
signal is recorded as a function of the frequency of additional radiofrequency irradiation, which
must fulfill the saturation condition S � 1 for the nuclear spins. Usually, the radiofrequency
irradiation is frequency modulated and the response is detected with another phase-sensitive
detector, which leads to observation of the first derivative of the nuclear frequency spectrum. The
CW ENDOR experiment depends critically on a balance of relaxation times, so that in the solid
state sufficient sensitivity may only be achieved in a certain temperature range. Furthermore,
simultaneous strong continuous irradiation by both microwave and radiofrequency, while keeping
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resonator frequency and temperature constant, is experimentally challenging. Therefore, CW
ENDOR has been largely replaced by pulsed ENDOR techniques. However, for liquid solution
samples CW ENDOR is usually the only applicable ENDOR technique.

The conceptually simplest pulsed ENDOR experiment is Davies ENDOR (Section 8.1.3),
where saturation of the EPR transition is replaced by inversion by a π pulse (Fig. 8.1(a)). A
subsequent radiofrequency π pulse, which is on-resonant with a transition that shares a level with
the inverted EPR transition, changes population of this level and thus polarization of the EPR
observer transition. This polarization change as a function of the radiofrequency is observed by a
Hahn echo experiment on the observer transition. The approach works well for moderately large
hyperfine couplings (> 3 MHz), in particular for 14N nuclei directly coordinated to a transition
metal ion or for protons at hydrogen-bonding distance or distances up to about 4 Å. As we shall
see in Section 8.1.3, the experiment is rather insensitive for very small hyperfine couplings.
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Figure 8.1: Pulsed ENDOR sequences. (a) Davies ENDOR. A selective inversion π pulse on the electron
spins is followed by a delay T and Hahn echo detection (red). During microwave interpulse delay T , a
frequency-variable radiofrequency π pulse is applied (blue). If this pulse is on resonant with a nuclear
transition, the inverted echo recovers (pale blue). (b) Mims ENDOR. An non-selective stimulated echo
sequence with interpulse delays τ and T is applied to the electron spins (red). During microwave interpulse
delay T , a frequency-variable radiofrequency π pulse is applied (blue). If this pulse is on resonant with a
nuclear transition, the stimulated echo is attenuated (pale blue).

The smallest hyperfine couplings can be detected with the Mims ENDOR experiment that is
based on the stimulated echo sequence (π/2)− τ − (π/2)−T − (π/2)− τ − echo (Fig. 8.1(b)).
The preparation block (π/2)− τ − (π/2) creates a polarization grating of the functional form
A(ΩS) cos (ΩSτ), where A(ΩS) is the EPR absorption spectrum as a function of the resonance
offset ΩS and τ is the delay between the two π/2 microwave pulses. A radiofrequency π pulse
with variable frequency is applied during time T when the electron spin magnetization is aligned
with the z axis. If this pulse is on resonant with a nuclear transition that shares a level with
the observer EPR transition, half of the polarization grating is shifted by the hyperfine splitting
Aeff , as will also become apparent in Section 8.1.3. For Aeffτ = 2(k + 1)π with integer k the
polarization grating is destroyed by destructive interference. Since the stimulated echo is the free
induction decay (FID) of this polarization grating, it is canceled by a radiofrequency pulse that
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is on resonant with a nuclear transition. It is apparent that the radiofrequency π pulse has no
effect for Aeffτ = 2kπ with integer k, where the original and frequency-shifted gratings interfere
constructively. Hence, the Mims ENDOR experiment features blind spots as a function of
interpulse delay τ . These blind spots are not a serious problem for very small hyperfine couplings
Aeff � π/τ . Note however that the first blind spot corresponds to Aeff = 0. Hence, long
interpulse delays τ are required in order to detect very small hyperfine couplings, and this leads
to strong echo attenuation by a factor exp (−2τ/T2) due to electron spin transverse relaxation. It
can be shown that maximum sensitivity for very small couplings is attained approximately at
τ = T2.
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Figure 8.2: Polarization transfer in Davies ENDOR. (a) Level populations at thermal equilibrium,
corresponding to green label 0 in Fig. 8.1(a). The electron transitions (red, pale red) are much more
strongly polarized than the nuclear transitions (blue, pale blue). (b) Level populations after a selective mw
inversion pulse on resonance with the |βα〉 ↔ |αα〉 transition (dark red), corresponding to green label 1
in Fig. 8.1(a). A state of two-spin order is generated, where the two electron spin transitions are polarized
with opposite sign and the same is true for the two nuclear spin transitions. (c) Level populations after a
selective rf inversion pulse on resonance with the |αα〉 ↔ |αβ〉 transition (dark blue), corresponding to
green label 2 in Fig. 8.1(a). The electron spin observer transition |βα〉 ↔ |αα〉 is no longer inverted, but
only saturated.

8.1.3 Davies ENDOR
The Davies ENDOR experiment is most easily understood by looking at the polarization transfers.
At thermal equilibrium the electron spin transitions (red and pale red) are much more strongly
polarized than the nuclear spin transitions (Fig. 8.2(a)). Their frequencies differ by an effective
hyperfine splitting Aeff to a nuclear spin I = 1/2 that is color-coded blue. The first microwave
π pulse is transition-selective, i.e., it has an excitation bandwidth that is smaller than Aeff .
Accordingly, it inverts only one of the two electron spin transitions. We assume that the
|βα〉 ↔ |αα〉 transition (red) is inverted and the |ββ〉 ↔ |αβ〉 transition (pale red) is not
inverted; the other case is analogous. Such transition-selective inversion leads to a state of
two-spin order, where all individual transitions in the two-spin system are polarized. However,
the two electron spin transitions are polarized with opposite sign and the two nuclear transitions
are also polarized with opposite sign (Fig. 8.2(b)). Now a radiofrequency π pulse is applied.
If this pulse is not resonant with a nuclear transition, the state of two-spin order persists and
the observer electron spin transition (red) is still inverted. The radiofrequency pulse is also
transition-selective. We now assume that this pulse inverts the |αα〉 ↔ |αβ〉 transition (blue);
the other case is again analogous. After such a resonant radiofrequency pulse, the two nuclear
transitions are polarized with equal sign and the two electron spin transitions are saturated with no
polarization existing on them (Fig. 8.2(c)). After the radiofrequency π pulse a microwave Hahn
echo sequence is applied resonant with the observer transition (Fig. 8.1(a)). If the radiofrequency
pulse was off resonant (situation as in Fig. 8.2(b)), an inverted echo is observed. If, on the



60 Measurement of Small Hyperfine Couplings

other hand, the radiofrequency pulse was on resonant (situation as in Fig. 8.2(c)) no echo is
observed. In practice, polarization transfers are not complete and a weak echo is still observed.
However, an on-resonant radiofrequency pulse causes some recovery of the inverted echo. If the
radiofrequency is varied, recovery of the inverted echo is observed at all frequencies where the
radiofrequency pulse is resonant with a nuclear transition.

Ginh

Ghom

wEPR

wEPR

wEPR

wEPR

Aeff Aeff

mwa

c

b

d

Figure 8.3: Spectral hole burning explanation of Davies ENDOR. (a) An inhomogeneously broadened
EPR line with width Γinhom (red) consists of many narrower homogeneously broadened lines with
linewidth Γhom. (b) Long weak microwave irradiation saturates the on-resonant spin packet and does not
significantly affect off-resonant spin packets. A spectral hole is burnt into the inhomogeneously broadened
line, which can be as narrow as Γhom. (c) A selective microwave π pulse burns an inversion hole into
the EPR line whose width is approximately the inverse width of the pulse. (d) Situation after applying
an on-resonant radiofrequency pulse. For the spin packet, where the microwave pulse was on-resonant
with the |βα〉 ↔ |αα〉 transition, half of the spectral hole is shifted by Aeff to lower EPR frequencies.
For the spin packet where the microwave pulse was on-resonant with the |ββ〉 ↔ |αβ〉 transition, half of
the spectral hole is shifted by Aeff to higher EPR frequencies. Considering both cases, half of the hole
persists, corresponding to saturation. Two side holes with a quarter of the depth of the inversion hole are
created at ωmw ±Aeff . These side holes do not contribute to the echo signal, as long as they are outside
the detection window (pale red) whose width is determined by the excitation bandwidth of the Hahn echo
detection sequence.

Further understanding of Davies ENDOR is gained by considering an inhomogeneously
broadened EPR line (Fig. 8.3). In such a line with width Γinhom, each individual spin packet
with much narrower width Γhom can, in principle, be selectively excited. A long rectangular
π pulse inverts the on-resonant spin packet and partially inverts spin packets roughly over a
bandwidth corresponding to the inverse length of the pulse. In Davies ENDOR, pulse lengths
between 50 and 400 ns, corresponding to excitation bandwidths between 20 and 2.5 MHz are
typical. Such a pulse creates an inversion hole centered at the microwave frequency ωmw. In
an S = 1/2, I = 1/2 electron-nuclear spin system, two on-resonant spin packets exist, those
where ωmw is the frequency of the |βα〉 ↔ |αα〉 transition and those where it is the frequency
of the |ββ〉 ↔ |αβ〉 transition. For the former spin packet, inversion of the nuclear spin from
the |β〉 to the |α〉 state increases the EPR frequency by the effective hyperfine splitting Aeff ,
whereas for the latter packet, inversion from the |α〉 to the |β〉 state decreases it by Aeff . In both
cases half of the inversion hole is shifted to a side hole, leaving a saturation hole at ωmw and
creating a saturation side hole. The saturation center holes of the two spin packets coincide in
frequency and combine to a saturation hole in the inhomogeneously broadened line. At the side
hole frequencies ωmw ±Aeff , only one of the two spin packets contributes to the hole, so that the
side holes are only half as deep. The Hahn echo subsequence in the Davies ENDOR sequence
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must have a detection bandwidth that covers only the central hole (pale red in Fig. 8.3(d)), since
no ENDOR effect would be observed if the side hole would also be covered. For this purpose,
the detection bandwidth of the Hahn echo sequence can be limited either by using sufficiently
long microwave pulses or by using a sufficiently long integration gate for the inverted echo.

In any case, a Davies ENDOR effect is only be observed if Aeff exceeds the width of the
original inversion hole. The smaller Aeff , the longer the first inversion pulse needs to be and the
fewer spin packets contribute to the signal. In general, hyperfine splittings much smaller than
the homogeneous linewidth Γhom = 1/T2 in the EPR spectrum cannot be detected. In practice,
Davies ENDOR becomes very insensitive for π pulse lengths exceeding 400 ns. If broadening of
the inversion hole by electron spin relaxation is negligible, the suppression of signals with small
hyperfine couplings in Davies ENDOR can be described by a selectivity parameter

ηS =
Aefft

(1)
π

2π
, (8.1)

where t(1)
π the length of the first mw π pulse. Maximum absolute ENDOR intensity Vmax is

obtained for ηS =
√

2/2. As a function of ηS, the absolute ENDOR intensity is given by

V (ηS) = Vmax

( √
2ηS

η2
S + 1/2

)
. (8.2)

The hyperfine contrast selectivity described by Eq. (8.2) can be used for spectral editing. For
instance, 14N ENDOR signals of directly coordinated ligand nitrogen atoms in transition metal
complexes with Aeff of the order of 20-40 MHz overlap with 1H ENDOR signals of weakly
coupled ligand protons at X-band frequencies. At an inversion pulse length of about 50 ns the 1H
ENDOR signals are largely suppressed.

The sensitivity advantage of Mims ENDOR for very small hyperfine couplings can also
be understood in the hole burning picture. Instead of a single center hole, a preparation block
(π/2)− τ − (π/2) with nonselective microwave pulses creates a polarization grating that can be
imagined as a comb of many holes that are spaced by frequency difference 1/τ . The width of
each hole is approximately 1/2τ . The width of the comb of holes is determined by the inverse
length of the non-selective π/2 pulses, which are typically 10 ns long. For small couplings,
where t(1)

π in Davies ENDOR needs to be very long, more than an order of magnitude more spin
packets take part in a Mims ENDOR experiment than in a Davies ENDOR experiment. The
Mims ENDOR effect arises from the shift of one quarter of the polarization grating by frequency
difference +Aeff and one quarter of the grating by −Aeff . The shifted gratings interfer with the
grating at the center frequency. Depending on Aeff and on the periodicity 1/τ of the grating, this
interference is destructive (ENDOR effect) or constructive (no ENDOR effect).

8.2 ESEEM and HYSCORE
8.2.1 ENDOR or ESEEM?

In ESEEM experiments, polarization transfer from electron spins to nuclear spins and detection
of nuclear frequencies on electron spin transitions are based on the forbidden electron-nuclear
transitions discussed in Chapter 6. Much of the higher polarization of the electron spin transitions
is lost in such experiments, since the angle 2η between the quantization axes of the nuclear spin in
the two electron spin states is usually small and the depth of nuclear echo modulations is sin2 2η.
Furthermore, modulations vanish along the principal axes of the hyperfine tensor, where B = 0
and thus η = 0. Therefore, lineshape singularities are missing in one-dimensional ESEEM
spectra, which significantly complicates lineshape analysis. For this reason, one-dimensional
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ESEEM experiments are not usually competitive with ENDOR experiments, at least if the
ENDOR experiments can be performed at Q-band frequencies (≈ 34 GHz) or even higher
frequencies. An exception arises for weakly coupled "remote" 14N nuclei in transition metal
complexes where exact cancellation between the nuclear Zeeman and the hyperfine interactions
can be achieved for one of the electron spin states at X-band frequencies or slightly below. In this
situation, pure nuclear quadrupole frequencies are observed, which leads to narrow lines and
easily interpretable spectra. One-dimensional ESEEM data are also useful for determining local
proton or deuterium concentrations around a spin label, which can be used as a proxy for water
accessibility (Section 10.1.6).

The main advantage of ESEEM compared to ENDOR spectroscopy is the easier extension
of ESEEM to a two-dimensional correlation experiment. Hyperfine sublevel correlation
(HYSCORE) spectroscopy 8.2.3 resolves overlapping signal from different elements, simplifies
peak assignment, and allows for direct determination of hyperfine tensor anisotropy even if the
lineshape singularities are not observed.

8.2.2 Three-pulse ESEEM
The HYSCORE experiment is a two-dimensional extension of the three-pulse ESEEM experiment
that we will treat first. In this experiment, the amplitude of a stimulated echo after is observed
with the pulse sequence (π/2)− τ − (π/2)− t− (π/2)− τ − echo as a function of the variable
interpulse delay t at fixed interpulse delay τ (Fig. 8.4). The block (π/2) − τ − (π/2) serves
as a nuclear coherence generator, as discussed in Section 6.3.1 and, simultaneously, creates the
polarization grating discussed in the context of the Mims ENDOR experiment (Section 8.1.2). In
fact, most of the thermal equilibrium magnetization is converted to the polarization grating whose
FID after the final π/2 pulse is the stimulated echo, while only a small fraction is transferred to
nuclear coherence. The phase of the nuclear coherence determines how much of it contributes
to the stimulated echo after back transfer to electron spin coherence by the last π/2 pulse. For
an electron-nuclear spin system S = 1/2, I = 1/2 this phase evolves with frequencies ωα or
ωβ if during interpulse delay t the electron spin is in its α or β state, respectively. Hence, the
part of the stimulated echo that arises from back transferred nuclear coherence is modulated as a
function of t with frequencies ωα and ωβ .

An expression for the echo envelope modulation can be derived by product operator formalism
using the concepts explained in Section 6.2. Disregarding relaxation, the somewhat lengthy
derivation provides

V3p(τ, t) =
1

2
[Vα(τ, t) + Vβ(τ, t)] , (8.3)

where the terms Vα(τ, t) and Vβ(τ, t) correspond to contributions with the electron spin in its α
or β state, respectively, during interpulse delay t. These terms are given by

Vα(τ, t) = 1− k

2
{1− cos [ωβτ ]} {1− cos [ωα (t+ τ)]}

Vβ(τ, t) = 1− k

2
{1− cos [ωατ ]} {1− cos [ωβ (t+ τ)]} . (8.4)

The factors cos [ωβτ ] for the Vα term and cos [ωατ ] for the Vβ term describe the blind spot
behavior of three-pulse ESEEM. The modulation depth k is given by

k = sin2 2η =

(
BωI
ωαωβ

)2

. (8.5)

For small hyperfine couplings, A,B � ωI , we have ωα ≈ ωβ ≈ ωI , so that Eq. (8.5) reduces to

k =
B2

ω2
I

, (8.6)
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i.e., the modulation depth is inversely proportional to the square of the magnetic field. Using Eqs.
(4.10) and (4.11) we find for protons not too close to a well localized unpaired electron

k =
9

4

(µ0

4π

)2
(
gµB
B0

)2 sin2 (2θHFI)

r6
, (8.7)

where θHFI is the angle between the electron-proton axis and the static magnetic field B0.
Because of the star topology of electron-nuclear spin systems (Fig. 4.4(a)), Eq. (8.3) can be

easily extended by a product rule to multiple nuclei with spins Il = 1/2, where l is an index that
runs over all nuclei. One finds

V3p(τ, t) =
1

2

[∏
l

Vα,l(τ, t) +
∏
l

Vβ,l(τ, t)

]
. (8.8)

In the weak modulation limit, where all modulation depths kl fulfill the condition kl � 1, the
ESEEM spectrum due to several coupled nuclei is the sum of the spectra of the individual nuclei.
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Figure 8.4: Pulse sequences for three-pulse ESEEM (a) and HYSCORE (b). In three-pulse ESEEM, time
t is varied and time τ is fixed. In HYSCORE, times t1 and t2 are varied independently in order to obtain a
two-dimensional data set.

8.2.3 HYSCORE
The HYSCORE experiment is derived from the three-pulse ESEEM experiment by inserting a
microwave π pulse midway through the evolution of nuclear coherence. This splits the interpulse
delay t into two interpulse delays t1 and t2 (Fig. 8.4(b)), which are varied independently to
provide a two-dimensional data set V (t1, t2) that depends parametrically on fixed interpulse
delay τ . The inserted π pulse inverts the electron spin state. Hence, coherence that has evolved
with frequency ωα during interpulse delay t1 evolves with frequency ωβ during interpulse
delay t2 and vice versa. In the weak modulation limit, the HYSCORE experiment correlates
only frequencies ωα and ωβ of the same nuclear spin. The full modulation expression for the
HYSCORE experiment contains a constant contribution and contributions that vary only with
respect to either t1 or t2. These contributions can be removed by background correction with
low-order polynomial functions along both dimensions. The remaining modulation corresponds
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to only cross peaks and can be expressed as

V4p(t1, t2; τ) =
k

2
sin
(ωατ

2

)
sin
(ωβτ

2

) [
V (αβ)(t1, t2; τ) + V (βα)(t1, t2; τ)

]
(8.9)

with
V (αβ)(t1, t2; τ) = cos2 η cos

(
ωαt1 + ωβt2 + ωsum

τ

2

)
− sin2 η cos

(
ωαt1 − ωβt2 + ωhfi

τ

2

)
V (βα)(t1, t2; τ) = cos2 η cos

(
ωβt1 + ωαt2 + ωsum

τ

2

)
− sin2 η cos

(
ωβt1 − ωαt2 + ωhfi

τ

2

)
. (8.10)

In this representation with unsigned nuclear frequencies, one has η < 45◦ for the weak coupling
case (|A| < 2|ωI |) and η > 45◦ for the strong coupling case (|A| > 2|ωI |), as can be inferred
from Fig. 6.1. Hence, cos2 η > sin2 η in the weak coupling case and sin2 η > cos2 η in the
strong coupling case. In the weak coupling case, the cross peaks that correlate nuclear frequencies
with the same sign (cos2 η terms) are much stronger than those that correlate frequencies with
opposite sign (sin2 η terms) whereas it is the other way around in the strong coupling case.
Therefore, the two cases can be easily distinguished in HYSCORE spectra, since the cross peaks
appear in different quadrants (Fig. 8.5). Furthermore, disregarding a small shift that arises from
the pseudo-secular part B of the hyperfine coupling (see below), the cross peaks of a given
isotope with spin I = 1/2 are situated on parallels to the anti-diagonal that corresponds to the
nuclear Zeeman frequency νI . This frequency in turn can be computed from the nuclear g
value (or gyromagnetic ratio γ) and the static magnetic field B0. Peak assignment for I = 1/2
nuclei is thus straightforward. For nuclei with I > 1/2 the peaks are further split by the nuclear
quadrupole interaction. Unless this splitting is much smaller than both the hyperfine interaction
and the nuclear Zeeman interaction (2H, 6Li), numerical simulations are required to assign the
peaks and extract the hyperfine and nuclear quadrupole coupling.
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Figure 8.5: Schematic HYSCORE spectrum for the phenyl radical (compare Fig. 4.6). Note that hyperfine
couplings are given here in frequency units, not angular frequency units. Signals from weakly coupled
nuclei appear in the right (+,+) quadrant. To first order, these peaks are situated on a line parallel to the
anti-diagonal that intersects the ν2 axis at 2νI . The doublets are centered at νI and split by the respective
hyperfine couplings. Signals from strongly coupled nuclei appear in the (-,+) quadrant. To first order,
these peaks are situated on two lines parallel to the anti-diagonal that intersect the ν2 axis at −2νI and
2νI . The doublets are centered at half the hyperfine coupling and split by 2νI .

The small pseudo-secular shift of the correlation peaks with respect to the anti-diagonal
contains information on the anisotropy T of the hyperfine interaction (Fig. 8.5). In the solid
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state, the cross peaks from different orientations θHFI form curved ridges. For a hyperfine tensor
with axial symmetry, as it is encountered for protons not too close to a well-localized unpaired
electron, the maximum shift in the diagonal direction corresponds to θHFI = 45◦ and is given by
9T 2/32|ωI |. Since ωI is known, T , and thus the electron-proton distance r can be computed
from this maximum shift. IfAiso � ωI , which is usually the case, the orientation with maximum
shift is at the same time the orientation with maximum modulation depth.

The curved ridges end at their intersection with the parallel to the anti-diagonal. These points
correspond to the principal values of the hyperfine tensor and modulation depth is zero at these
points. However, it is usually possible to fit the theoretical ridge to the experimentally observed
ridge, as the curvature near θHFI = 45◦ together with the position of the θHFI = 45◦ point fully
determines the problem.

2T+A
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T+A
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9T32 Iw
II 

2

w2
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Figure 8.6: Schematic HYSCORE spectrum for a proton with an axial hyperfine tensor with anisotropy T
and isotropic component Aiso. The correlation peaks from different orientations form curved ridges (red).
Curvature is the stronger the larger the anisotropy is and the ratio of squared anisotropy to the nuclear
Zeeman frequency determines the maximum shift with respect to the 2ωI anti-diagonal.

Analysis of HYSCORE spectra requires some precaution due to the blind-spot behavior
(factor sin

(
ωατ

2

)
sin
(ωβτ

2

)
in Eq. (8.9)) and due to orientation selection by the limited bandwidth

of the microwave pulses that is much smaller than spectral width for transition metal complexes.
It is therefore prudent to measure HYSCORE spectra at several values of τ and at several observer
positions within the EPR spectrum.
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9 — Distance Distribution Measurements

At a distance of 1 nm between two localized unpaired electrons, splitting ω⊥ between the "horns"
of the Pake pattern is about 52 MHz for two electron spins. Even strongly inhomogeneously
broadened EPR spectra usually have features narrower than that (about 2 mT in a magnetic field
sweep). Depending on the width of the narrowest features in the EPR spectrum and on availability
of an experimental spectrum or realistic simulated spectrum in the absence of dipole-dipole
coupling, distances up to 1.5 . . . 2.5 nm can be estimated from dipolar broadening by lineshape
analysis. At distances below 1.2 nm, such analysis becomes uncertain due to the contribution
from exchange coupling between the two electron spins, which cannot be computed by first
principles and cannot be predicted with sufficient accuracy by quantum-chemical computations.
If the two unpaired electrons are linked by a continuous chain of conjugated bonds, exchange
coupling can be significant up to much longer distances.

Distance measurements are most valuable for spin labels or native paramagnetic centers in
biomolecules or synthetic macromolecules and supramolecular assemblies. In such systems, if
the two unpaired electrons are not linked by a π-electron system, exchange coupling is negligible
with respect to dipole-dipole coupling for distances longer than 1.5 nm. Such systems can often
assume different molecular conformations, i.e. their structure is not perfectly defined. Structural
characterization thus profits strongly from the possibility to measure distance distributions on
length scales that are comparable to the dimension of these systems. This dimension is of the
order of 2 to 20 nm, corresponding to ω⊥ between 7 MHz and 7 kHz. In order to infer the distance
distribution, this small dipole-dipole coupling needs to be separated from larger anisotropic
interactions.

This separation of interactions is possible by observing the resonance frequency change for
one spin in a pair (blue in Fig. 5.3) that is induced by flipping the spin of its coupling partner
(red). In Fig. 9.1 the resonance frequency of the observer spin before the flip of its coupling
partner is indicated by a dashed line. If the coupling partner is in its |α〉 state before the flip (left
panel in Fig. 5.3), the local field at the observer spin will increase by ∆B upon flipping the
coupling partner. This causes an increase of the resonance frequency of the observer spin by the
dipole-dipole coupling d (see Eq. (5.16)). If the coupling partner is in its |β〉 state before the flip
(right panel in Fig. 5.3), the local field at the observer spin will decrease by ∆B upon flipping
the coupling partner. This causes an decrease of the resonance frequency of the observer spin by
the dipole-dipole coupling d. In the high-temperature approximation, both these cases have the
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Figure 9.1: Resonance frequency shift of an observer spin (blue transitions) by the change ±∆B in local
magnetic field that arises upon a flip of a second spin that is dipole-dipole coupled to the observer spin.
Compare Fig. 5.3 for the local field picture.

same probability. Hence, half of the observer spins will experience a frequency change +d and
the other half will experience a frequency change −d. If the observer spin evolves with changed
frequency for some time t, phases ±d t will be gained compared to the situation without flipping
the coupling partner. The additional phase can be observed as a cosine modulation cos (d t) for
both cases, as the cosine is an even function.

9.1 DEER

9.1.1 The four-pulse DEER experiment
The most commonly used experiment for distance distribution measurements in the nanometer
range is the four-pulse double electron electron resonance (DEER) experiment (Figure 9.2),
which is sometimes also referred to as pulsed electron electron double resonance (PELDOR)
experiment. All interactions of the observer spin are refocused twice by two π pulses at times 2τ1

and 2τ1 + 2τ2 after the initial π/2 pulse. Repeated refocusing is necessary since all spin packets
must be in phase at t = 0 and overlap of the pump π pulse with the π/2 observer pulse would
lead to signal distortion. The first refocusing with interpulse delay τ1 restores the situation ¬

immediately after the π/2 pulse with phase x, where the magnetization vectors of all spin packets
are aligned with the −y axis.1 In practice, coherence is excited on both observer spin transitions
(blue in the energy level panels), but for clarity we consider only observer spin coherence that is
on the upper transition and is symbolized by a wavy line in panel ¬.

During time t after the first refocusing, magnetization vectors of spin packets with different
resonance offset dephase (panel ­). Only the on-resonant spin packet, marked dark blue, is still
aligned with the −y direction. The pump pulse flips the coupling partner and thus transfers the
coherence to the lower observer spin transition. The resonance frequency of this transition is
shifted by the dipole-dipole coupling d in all spin packets. Observer spin magnetization further
dephases until the time just before application of the second observer π pulse (®) and, in addition,
the whole bundle of spin packet magnetization vectors precesses counterclockwise with the
frequency shift d. The originally on-resonant spin packet thus gains phase d (τ2 − t) before the
second observer π pulse is applied. The second observer π pulse with phase x corresponds to a
180◦ rotation about the x axis. This mirrors the bundle of magnetization vectors with respect to
the y axis, inverting phase of the observer spin coherence (panel ¯). The bundle, which still

1This assumes that the observer π pulse has phase y. If it has phase x, the magnetization vector is along +y after
the first refocusing and all following magnetization panels are mirrored with respect to the x axis.
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Figure 9.2: Four-pulse DEER sequence, coherence transfers, and evolution of the observer spin
magnetization. Pulses shown in blue are applied to the observer spin, the pump pulse shown in red is
applied to its coupling partner. The echo at time 2τ1 (dashed blue line) is not observed. Interpulse delays
τ1 and τ2 are fixed, time t is varied, and the echo amplitude is observed as a function of t.

precesses counterclockwise with angular frequency d now lags the +y axis by phase d (τ2 − t).
During the final interpulse delay of length τ2 the bundle as a whole gains phase dτ2 (grey arrow
in panel ¯) and simultaneously realigns along its center due to echo refocusing. However, the
center corresponding to the originally on-resonant spin packet does not end up along +y, as it
would have in the absence of the pump pulse. Rather, this spin packet has gained phase d t with
respect to the +y direction (panel °). The magnetization vector component along +y, which
corresponds to the echo signal, is given by cos (d t).

The distance range of the DEER experiment is limited towards short distances by the
requirement that, for echo refocusing, the observer pulses must excite both observer transitions,
which are split by d and, for coherence transfer, the pump pulse must excite both transitions
of the coupling partner, which are also split by d. In other words, both the observer refocused
echo subsequence and the pump pulse must have an excitation bandwidth that exceeds d. This
requirement sets a lower distance bound of about 1.8 nm at X-band frequencies and of about
1.5 nm at Q-band frequencies. A limit towards long distances arises, since several dipolar
oscillations need to be observed for inferring the width or even shape of a distance distribution
and at least one oscillation needs to be observed for determining the mean distance. This requires
t > 2π/d. On the other hand, we have t < τ2 and the fixed interpulse delay τ2 cannot be much
longer than the transverse relaxation time T2, since otherwise coherence has completely relaxed
and no echos is observed. Electron spin transverse relaxation times are of the order of a few
microseconds. Depending on sample type (see Section 9.1.2), τ2 can be chosen between 1.5 and
20 µs, corresponding to maximum observable distances between 5 and 12 nm.
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9.1.2 Sample requirements
In the wanted coherence transfer pathway of the DEER experiment, observer pulses exclusively
excite observer spins and the pump pulse exclusively excites the coupling partner. The excitation
bandwidth must be sufficiently large to cover the dipole-dipole coupling d at all orientations, i.e.,
larger than ω|| − 2ω⊥. If the two coupled spins have the same EPR spectrum, this spectrum
must be broader than twice this minimum excitation bandwidth. This condition is fulfilled for
nitroxide spin labels (Chapter 10) and transition metal ions at all EPR frequencies, whereas
some organic radicals, such as trityl radicals, have spectra that are too narrow at X-band or even
Q-band frequencies. Furthermore, T2 must be sufficiently long for at least the observer spins.
This condition can be fulfilled for almost all S = 1/2 species at temperatures of 10 K (transition
metal complexes) or 50 · · · 80 K (organic radicals), but may require cooling below 4.2 K for
some high-spin species. For high-spin species with a half-filled valence shell, such as Mn(II)
(S = 5/2) or Gd(III) (S = 7/2) measurement temperatures of 10 K are also sufficient.

Sample concentration should be sufficiently low for intermolecular distances to be much
longer than intramolecular distances. For short distances, concentrations up to 200 µM are
possible, but concentrations of 10 · · · 50 µM provide better results, if a spectrometer with
sufficient sensitivity is available. Depending on distance and T2, measurements can be performed
down to concentrations of 10 · · · 1 µM. For membrane proteins reconstituted into liposomes, data
quality is not only a function of bulk spin concentration, but also of lipid-to-protein ratio. This
parameter needs to be optimized for each new protein. Required sample volume varies between
a few microliters (W-band frequencies) and 150 µL with 50 µL at Q-band frequencies usually
being optimal.

If concentration is not too high and the low-temperature limit of transverse relaxation can
be attained, T2 depends on the concentration and type of protons around the observer spin.
Deuteration of the solvent and cryoprotectant (usually glycerol) usually dramatically improve
data quality. If the matrix can be perdeuterated, deuteration of the protein or nuclei acid may
further prolong T2 and extend distance range or improve signal-to-noise ratio.

Complications arise if more than two unpaired electrons are found in the same molecule,
but these complications can usually be solved. However, none of the spin pairs should have a
distance shorter than the lower limit of the accessible distance range.

9.2 Conversion of dipolar evolution data to distance distributions
9.2.1 Expression for the DEER signal

In Section 9.1.1 we have seen that the echo is modulated with cos (d t). Usually, this applies only
to a fraction λ of the echo, because the pump pulse excites only a fraction λ of all spin packets
of the coupling partner of the observer spin. Therefore, the echo signal for an isolated pair of
electron spins in a fixed orientation θ with respect to the magnetic field is described by

F (t, r, θ) = F (0) {1− λ (θ) [1− cos (2d (r, θ) t)]} , (9.1)

where the dependence d (θ) is given by Eqs. (5.16) and (5.15). The dependence λ (θ) cannot be
expressed in closed form, but often λ is so weakly correlated with θ that it can be assumed as a
constant, empirical parameter. In this situation, Eq. (9.1) can be integrated over all orientations

F (t, r) =

∫ π/2

0
F (t, r, θ) sin θdθ . (9.2)

The pump pulse inverts not only the coupling partner of the observer spin in the same
molecule, but also electron spins in remote other molecules. If these neighboring spins are
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homogeneously distributed in space, the background factor B(t) that arises from them assumes
the form

B (t) = exp

(
−

2πg2µ2
Bµ0NA

9
√

3~
λ′ct

)
, (9.3)

where the orientation-averaged inversion efficiency λ′ is the fraction of spins excited by the
pump pulse, g is an average g value, and c is the total concentration of spins. For subtle
reasons, λ′ differs significantly from the empirical two-spin modulation depth λ. Homogeneous
distributions of neighboring spins that are nearly confined to a plane or a line give rise to a
stretched exponential background function B(t) = exp

[
− (kt)D/3

]
, where D is a fractional

dimension of the distribution that is usually somewhat larger than 2 or 1 for nearly planar or
linear distributions, respectively. The total DEER signal is given by

V (t, r) = F (t, r)B (t) . (9.4)

If distance r is distributed with normalized probability density P (r) (
∫∞

0 P (r)dr = 1), the form
factor F (t) needs to be replaced by FP (t) =

∫∞
0 P (r)F (t, r) dr.
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Figure 9.3: Background correction in DEER spectroscopy. (a) Primary data V (t) (simulation) normalized
to V (0). Dipolar modulation decays until a time tdec. An exponentially decay function (red) is fitted to
the data in the range tdec ≤ t ≤ tmax, where tmax < τ2 is the maximum dipolar evolution time. This
background function b(t) is extrapolated to the range 0 ≤ t < tdec (ochre). (b) The form factor F (t) is
obtained by normalizing the background function, B(t) = b(t)/b(0) and dividing the normalized primary
data V (t)/V (0) by B(t). It decays to a constant level 1− λ, where λ is the modulation depth. The red
curve is a simulation corresponding to the distance distribution extracted by Tikhonov regularization with
optimum regularization parameter α.

9.2.2 Background correction
The information on the distance distribution P (r) is contained in F (t), which must thus be
separated from B(t). Often, the distribution is sufficiently broad for dipolar oscillations to
decay within a time tdec shorter than the maximum dipolar evolution time tmax (Fig. 9.3(a)).
For tdec ≤ t ≤ tmax, the primary signal is then given by b(t) = (1− λ) exp

[
− (kt)D/3

]
plus

noise. The expression for b(t) is fitted to the primary data in this range (red line in Fig. 9.3(a)).
In some cases, for instance for soluble proteins, a homogeneous distribution of molecules in
three dimensions can be assumed, so that D = 3 can be fixed. Otherwise, D is treated as a fit
parameter, as are k and λ. The background function B(t) is obtained by extrapolating b(t) to the
range 0 ≤ t ≤ tdec (ochre line) and dividing it by b(0) = 1 − λ. According to Eq. (9.4), the
form factor F (t)/F (0) results by dividing V (t)/V (0) by B(t).
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For narrow distance distributions, oscillations in V (t)/V (0) may endure until the longest
attainable tmax. This does not create a problem if at least the first oscillation is completed well
before tmax. All the following oscillations have very similar amplitude and do not bias the
background fit. As a rule of thumb, a good estimate for B(t) can be obtained by fitting data
at t ≥ tmax/2 if d tmax ≥ 4π, i.e., if two full oscillations can be observed. If the data trace is
shorter than that, background fitting is fraught with uncertainty. Wrong background correction
may suppress long distances or create artificial peaks at long distances.

9.2.3 Tikhonov regularization with non-negativity constraint
In order to extract the distance distribution P (r) from the experimental form factor F (t)/F (0),
we need to remove the constant contribution and renormalize to the dipolar evolution function

D(t) =
F (t)/F (0)− (1− λ)

λ
(9.5)

and invert the integral equation D(t) =
∫∞

0 P (r)K (t, r) dr, where the kernelK (t, r) is given
by

K (t, r) =

∫ 1

0
cos
[(

3z2 − 1
)
ω⊥(r)t

]
dz . (9.6)

Here, we have substituted cos θ by z, sin θdθ by−d cos θ and reversed direction of the integration,
which compensated for the negative sign in −d cos θ.

In practice, D(t) is digitized and given as a vector at sampling times ti. Likewise, it is
sufficient to compute P (r) as a vector at sampling distances rk. The integral equation is thus
transformed to a matrix equation

~D = K~P . (9.7)

Unfortunately, this matrix equation cannot easily be inverted, since the rows of kernel K are not
orthogonal, i.e., the scalar product of dipolar evolution function vectors at different rk is not
zero. The weak linear dependence of the rows makes the problem ill-posed. Small deviations of
the experimental ~D from the "true" ~Dideal, for instance due to noise, cause large deviations of
~P from the true distance distribution. This problem can be solved only by taking into account
additional information.

First, we know that, as a probability density, P (r) ≥ 0 at all r. Hence, we can impose a
non-negativity constraint on ~P . It turns out that this is not sufficient for stabilizing the solution.
Noise can be fitted by ragged distance distributions with many narrow peaks, although we know
that the distance distribution must be smooth, as it arises from a continuous distribution of
molecular conformations. Tikhonov regularization imposes a smoothness restraint by minimizing

Gα = ρ+ αη , (9.8)

where

ρ =
∣∣∣∣∣∣K~P − ~D

∣∣∣∣∣∣2 (9.9)

is the mean square deviation between experimental and simulated data and

η =
∣∣∣∣∣∣L̂(2) ~P

∣∣∣∣∣∣2 (9.10)

is the square norm of the second derivative, which can be computed from ~P by multiplication
with the second derivative operator L̂(2). The regularization parameter α determines the relative
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Figure 9.4: Tikhonov regularization of the data shown in Fig. 9.3. (a) L curve. The optimum
regularization parameter corresponds to the corner (green circle) and provides the simulation shown in Fig.
9.3(b) as well as the extracted distance distribution shown as a black line in panel (c) of the current Figure.
The red circle marks a too large regularization parameter that leads to oversmoothing. (b) Input form
factor (black) and simulation for the too large regularization parameter corresponding to the red circle
in the L curve. (c) Theoretical distance distribution used for simulating a noiseless form factor (green)
and distance distribution extracted from the noisy form factor with optimum regularization parameter
corresponding to the green circle in the L curve (black). (d) (c) Theoretical distance distribution used for
simulating a noiseless form factor (green) and distance distribution extracted from the noisy form factor
with a too large regularization parameter corresponding to the red circle in the L curve (black).

weight of the smoothing restraint with respect to mean square deviation between experimental
and simulated data. A parametric plot of log η versus log ρ as a function of α is approximately
L-shaped (Fig. 9.4). For very small α, roughness η of the distance distribution can be decreased
strongly without increasing mean square deviation ρ very much. For large α, ~P is already
smooth and a further increase of α will lead only to a small decrease in roughness η, but to a
large increase in ρ, since the overly broadened distance distribution no longer fits the dipolar
oscillations. Hence, in a mathematical sense, the optimum regularization parameter corresponds
to the corner of the L curve. At this regularization parameter the extracted distance distribution
(black line in Fig. 9.4(c)) is only slightly broader than the true distance distribution (green line)
and the simulated form factor (red line in Fig. 9.3(b)) agrees with the experimental form factor
(black line), except for the white noise contribution. If the regularization parameter is too large
(red circle in Fig. 9.4(a)), the simulated form factor is overdamped (red line in Fig. 9.4(b))
and the distance distribution unrealistically broad (black line in Fig. 9.4(d)). For a too small
regularization parameter the distance distribution unrealistically splits into several narrow peaks
and the simulated form factor fits part of the noise (not shown). This error cannot be as clearly
discerned in the simulated form factor as overdamping can be discerned. Undersmoothing is
apparent only in the L curve.
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10 — Spin Probes and Spin Traps

10.1 Nitroxide spin probes and labels

10.1.1 Spin probes and labels
Spin probes are stable paramagnetic species that are admixed to a sample in order to obtain
structural or dynamical information on their environment and, thus, indirectly on the sample.
Spin labels are spin probes that are covalently attached to a molecule of interest, often at a specific
site. As compared to more direct characterization of structure and dynamics by other techniques,
EPR spectroscopy on spin probes may be able to access other length and time scales or may
be applicable in aggregation states or environments where these other techniques exhibit low
resolution or do not yield any signal. Site-directed spin labeling (SDSL) has the advantage that
assignment of the signal to primary molecular structure is already known and that a specific site
in a complex system can be studied without disturbance from signals of other parts of the system.
This approach profits from the rarity of paramagnetic centers. For instance, many proteins and
most nucleic acids and lipids are diamagnetic. If a spin label is introduced at a selected site, EPR
information is specific to this particular site.

In principle, any stable paramagnetic species can serve as a spin probe. Some paramagnetic
metal ions can substitute for diamagnetic ions native to the system under study, as they have
similar charge and ionic radius or with similar complexation properties as the native ions. This
applies to Mn(II), which can often substitute for Mg(II) without affecting function of proteins or
nucleic acids, or Ln(III) lanthanide ions, which bind to Ca(II) sites. Paramagnetic metal ions can
also be attached to proteins by engineering binding sites with coordinating amino acids, such as
histidine, or by site-directed attachment of a metal ligand to the biomolecule. Such approaches
are used for lanthanide ions, in particular Gd(III), and Cu(II).

For many spin probe approaches, organic radicals are better suited than metal ions, since in
radicals the unpaired electron has closer contact to its environment (ligands screen environmental
access of metal ions, in particular for lanthanide ions) and the EPR spectra are narrower, which
allows for some experiments that cannot be performed on species with very broad spectra.
Among organic radicals, nitroxides are the most versatile class of spin probes, mainly because of
their relatively small size, comparable to an amino acid side group or nucleobase, and because
of hyperfine and g tensor anisotropy of a magnitude that is convenient for studying dynamics
(Section 10.1.4). Triarylmethyl (TAM) radicals are chemically even more inert than nitroxide
radicals and have slower relaxation times in liquid solution. Currently they are much less in use
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than nitroxide radicals, mainly because they are not commercially available and much harder to
synthesize than nitroxide radicals.
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Figure 10.1: Structures of nitroxide probes. 1 TEMPO derivatives. 2 PROXYL derivatives. 3
pH-sensitive imidazolidine nitroxide. 4 DOXYL derivatives. 5 Methanethiosulfonate spin label (MTSL)

10.1.2 Nitroxide radicals
The nitroxide radical is defined by the N-O• group, which is isoelectronic with the carbonyl
group (C=O) and can thus be replaced in approximate force field and molecular dynamics
computations by a C=O group. The unpaired electron is distributed over both atoms, which
contributes to radical stability, with a slight preference for the oxygen atom. Nitroxide radicals
become stable on the time scale of months or years if both α positions are sterically protected, for
instance by attaching two methyl groups to each of the α C atoms (Fig. 10.1). Nitroxides of this
type are thermally stable up to temperatures of about 140◦C, but they are easily reduced to the
corresponding hydroxylamines, for instance by ascorbic acid, and are unstable at very low and
very high pH. Nitroxides with five-membered rings (structures 2, 3, and 5) tend to be chemically
more stable than those with six-membered rings (6). The five-membered rings also have less
conformational freedom than the six-membered rings.

Spin probes can be addressed to certain environments in heterogeneous systems by choice
of appropriate substituents R (Fig. 10.1). The unsubstituted species (R = H) are hydrophobic
and partition preferably to nonpolar environments. Preference for hydrogen bond acceptors is
achieved by hydroxyl derivatives (R = OH), whereas ionic environments can be addressed by a
carboxylate group at sufficiently high pH (R = COO−) or by a trimethyl ammonium group (R =
N(CH3)+3 ). Reactive groups R are used for SDSL, such as the methanethiosulfonate group in the
dehydro-PROXYL derivative MTSL 5, which selectively reacts with thiol groups under mild
conditions. Thiol groups can be introduced into proteins by site-directed point mutation of an
amino acid to cysteine and to RNA by replacement of a nucleobase by thiouridine. In DOXYL
derivatives 4, a six-membered ring is spiro-linked to an alkyl chain, which can be part of stearic
acid or of lipid molecules. The N-O• group in DOXYL derivatives is rigidly attached to the alkyl
chain and nearly parallel to the axis of a hypothetical all-trans chain.

10.1.3 The nitroxide EPR spectrum
To a good approximation, the spin system of a nitroxide radical can be considered as an electron
spin S = 1/2 coupled to the nuclear spin I = 1 of the 14N atom of the N-O• group. Hyperfine



10.1 Nitroxide spin probes and labels 77

E

B0

+1/2

-1/2

hnmw

-1
0
+1

+1 0 -1

+1
0
-1

mS m
I

 

H

N

R

O
.

z

y

x

14A ( N)||

14
A ( N)^

a b

Figure 10.2: The EPR spectrum and molecular frame of nitroxide radicals. (a) The hyperfine sublevels
corresponding to the three possible 14N magnetic quantum numbers mI = −1, 0, 1 are shifted by
mSmIA(14N). Allowed transitions are those with ∆mS = 1 and ∆mI = 1. The microwave quantum
hνmw has constant energy, since the microwave frequency νmw is constant. During a magnetic field
sweep, resonance is observed when the energy hνmw matches the energy difference of the levels of an
allowed transition. The three transitions correspond to the three possible 14N magnetic quantum numbers
mI = −1, 0, 1. (b) In a solid, each orientation gives a three-line spectrum, but the splitting A(14N) and
the center field hνmw/gµB depend on orientation, sinceA and g are anisotropic. To a good approximation,
the hyperfine tensor has axial symmetry with the unique z axis corresponding to the direction of the
pπ orbital lobes on the 14N atom. The g tensor is orthorhombic, i.e., the spectra in the xy plane of the
molecular frame, which all have the same hyperfine splitting, have different center fields. The N-O bond
direction, which corresponds to the maximum g value, is the molecular frame x axis.

couplings to other nuclei, such as the methyl protons, are not usually resolved and contribute
only to line broadening. The hyperfine coupling to the sp2 hybridized 14N atom has a significant
isotropic Fermi contact contribution from spin density in the 2s orbital and a significant anisotropic
contribution from spin density in the pπ orbital that combines with a pπ orbital on the oxygen
atom to give the N-O bond partial double bond character. The direction of the lobes of the pπ
orbital is chosen as the molecular z axis (Fig. 10.2(b)). The 14N hyperfine tensor has nearly axial
symmetry with z being the unique axis. The hyperfine coupling is much larger along z (on the
order of 90 MHz) than in the xy plane (on the order of 15 MHz).

The spin-orbit coupling, which induces g anisotropy, arises mainly at the O atom, where
a lone pair energy level is very close to the SOMO. The g tensor is orthorhombic with nearly
maximal asymmetry. The largest g shift is positive and observed along the N-O bond, which
is the molecular frame x axis (gx ≈ 2.009). An intermediate g shift is observed along the y
axis (gy ≈ 2.006), whereas the gz value is very close to ge = 2.0023. At X-band frequencies,
where νmw ≈ 9.5 GHz, g anisotropy corresponds to only 1.13 mT dispersion in resonance fields,
while hyperfine anisotropy corresponds to 6.5 mT dispersion. At W-band frequencies, where
νmw ≈ 95 GHz, hyperfine anisotropy is still the same but g anisotropy contributes a ten times
larger dispersion of 11.3 mT, which now dominates.

The field-swept CW EPR spectrum for a single orientation can be understood by considering
the selection rule that the magnetic quantum number mS of the electron spin must change
by 1, whereas the magnetic quantum number mI of the 14N nuclear spin must not change.
Each transition can thus be assigned to a value of mI . For I = 1 there are three such values,
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mI = −1, 0, and 1 (Fig. 10.2(a)). The microwave frequency νmw is fixed and resonance is
observed at fields where the energy of the microwave quantum hνmw matches the energy of a
transition.
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Figure 10.3: Construction of the solid-state EPR spectrum of a nitroxide at X band. (a) The absorption
spectrum of each transition is considered separately. FormI = 0, the hyperfine contribution vanishes and
only g anisotropy contributes. This line is the narrowest one at X band. FormI = +1 the dispersion by g
anisotropy subtracts from the larger dispersion by hyperfine anisotropy. This line has intermediate width.
FormI = −1 the dispersion from g anisotropy adds to the dispersion from hyperfine anisotropy. This
line has the largest width. (b) The three contributions from individual mI values add to the total EPR
absorption spectrum (top). In CW EPR, the derivative of this absorption spectrum is observed (bottom).
Because hyperfine anisotropy dominates, the separation between the outer extremities is 2Azz .

In order to construct the solid-state spectrum, orientation dependence of the three transitions
must be considered (Fig. 10.3(a)). At each individual orientation, themI = 0 line is the center
line. Since the hyperfine contributions scales with mI , it vanishes for this line and only g
anisotropy is observed. At X band, where hyperfine anisotropy dominates by far, this line is the
narrowest one. The lineshape is the one for pure g anisotropy (see Fig. 3.4). For mI = +1,
the orientation with the largest g shift of the resonance field coincides with the one of smallest
hyperfine shift. Hence, the smaller resonance field dispersion by g anisotropy subtracts from
the larger dispersion by hyperfine anisotropy. For mI = −1, the situation is opposite and the
two dispersions add. Hence, the mI = −1 transition, which at any given orientation is the
high-field line, has the largest resonance dispersion, whereas the low-fieldmI = +1 transition
has intermediate resonance field dispersion. The central feature in the total absorption spectrum
(Fig. 10.3(b)) is strongly dominated by the mI = 0 transition, whereas the outer shoulders
correspond to themI = +1 (low field) andmI = −1 (high field) transitions at the z orientation.
Therefore, the splitting between the outer extremities in the CW EPR spectrum, which correspond
to these shoulders in the absorption spectrum, is 2Azz .

10.1.4 Influence of dynamics on the nitroxide spectrum
In liquid solution, molecules tumble stochastically due to Brownian rotational diffusion. In the
following we consider isotropic rotational diffusion, where the molecule tumbles with the same
average rate about any axis in its molecular frame. This is a good approximation for nitroxide spin
probes with small substituents R. For instance, TEMPO (1 with R = H) is almost spherical with a
van-der-Waals radius of 3.43 Å. In water at ambient temperature, the τr rotational correlation
time for TEMPO is of the order of 10 ps. The product τr∆ω with the maximum anisotropy ∆ω
of the nitroxide EPR spectrum on an angular frequency axis is much smaller than unity. In this
situation, anisotropy averages and three narrow lines of equal width and intensity are expected.
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The spectrum in Fig. 10.2(a) corresponds to this situation and a closer look reveals that the
high-field line has somewhat lower amplitude. This can be traced back to a larger linewidth than
for the other two lines, which indicates a shorter T2 for themI = −1 transition than for the other
transitions. Indeed, transverse relaxation is dominated by the effect from combined hyperfine
and g anisotropy, which is largest for the mI = −1 transition that has the largest anisotropic
dispersion of resonance frequencies. With increasing rotational correlation time τr, one expects
this relaxation process to become stronger, which should lead to more line broadening that is
strongest for the high-field line and weakest for the central line. This is indeed observed in the
simulation for τr = 495 ns shown in the bottom trace of Fig. 10.4.
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Figure 10.4: Simulation of X-band CW EPR spectra of an isotropically tumbling nitroxide radical for
different rotational correlation times τr. A rotational correlation time of 1 µs at 190 K and an activated
process with activation energy of 22.9 kJ mol−1 were assumed, close to parameters observed for TEMPO
in a synthetic polymer.

According to Kivelson relaxation theory, the ratio of the line width of one of the outer lines
to the line width of the central line is given by

T−1
2 (mI)

T−1
2 (0)

= 1 +BmI + Cm2
I , (10.1)
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where

B = − 4

15
b∆γB0T2 (0) τr (10.2)

and

C =
1

8
b2T2 (0) τr , (10.3)

with the hyperfine anisotropy parameter

b =
4π

3

[
Azz −

Axx +Ayy
2

]
(10.4)

and the electron Zeeman anisotropy parameter ∆γ

∆γ =
µB

~

[
gzz −

gxx + gyy
2

]
. (10.5)

The relaxation time T2(0) for the central line can be computed from the corresponding peak-to-
peak linewidth in field domain ∆Bpp(0) as

T2(0) =
2√

3gisoµB∆Bpp(0)
. (10.6)

Thus, Eqs. (10.1-10.3) can be solved for the only remaining unknown τr. In practice, ratios of
peak-to-peak line amplitudes I(mI) are analyzed rather than linewidth ratios, as they can be
measured with higher precision. The linewidth ratio is related to the amplitude ratio I (0) /I (−1)
(see bottom trace in Fig. 10.4) in a first derivative spectrum by

T−1
2 (mI)

T−1
2 (0)

=

√
I (0)

I (mI)
(10.7)

since the integral intensity of the absorption line (double integral of the derivative lineshape) is
the same for each of the three transitions. The rotational correlation time can thus be determined
by, e.g.,

τr =

√
3

2b

[
b

8
− 4∆γB0

15

]−1 gisoµB

~
∆Bpp (0)

[√
I (0)

I (−1)
− 1

]
, (10.8)

where ∆B0 is the peak-to-peak linewidth of the central line. This equation can be applied in
the fast tumbling regime, where the three individual lines formI = −1, 0, and +1 can still be
clearly recognized and have the shape of symmetric derivative absorption lines.

For slower tumbling with τr > 1.5 ns, the line shape becomes more complex and approaches
the rigid limit (solid-state spectrum) at about τr = 1µs (Fig. 10.4). These lineshapes can be
simulated by considering multi-site exchange between different orientations of the molecule with
respect to the magnetic field. Unlike for two-site exchange, which is discussed in the NMR part
of the lecture course (see Section 3 of the NMR lecture notes), no closed expressions can be
obtained for multi-site exchange. Nevertheless we can estimate the time scale where the spectral
features are broadest and transverse relaxation times are shortest. Coalescence for two-site
exchange is observed at ∆Ω/k = 2

√
2. By substituting k by 1/τr and ∆Ω by the maximum

anisotropy of 7.6 mT, corresponding to 213 MHz, we find a "coalescence time" 2
√

2/∆Ω ≈ 2.1
ns. The simulations in Fig. 10.4 show indeed that around this rotational correlation time, the
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Figure 10.5: Plot of the outer extrema separation 2A′zz as a function of temperature T for nitroxide
spectra simulated under the same assumptions as in Fig. 10.4.

character of the spectrum changes from fast orientation exchange (liquid-like spectrum with three
distinct peaks) to slow orientation exchange (solid-like spectrum).

A simple way of analyzing a temperature dependence, such as the one shown in Fig. 10.4,
is to plot the outer extrema separation 2A′zz as a function of temperature (Fig. 10.5). The
"coalescence time" in such a plot corresponds to the largest gradient dA′zz/dT , which coincides
with the mean between the 2A′zz values in the fast tumbling limit and rigid limit, which is 5 mT.
In the case at hand, this coalescence time is 3.5 ns and is observed at a temperature T5mT = 312
K. The T5mT temperature is the temperature where the material becomes "soft" and molecular
conformations can rearrange. Nitroxide spectra in the slow tumbling regime can reveal more
details on dynamics, for instance, whether there are preferred rotation axes, whether motion is
restricted due to covalent linkage of the nitroxide to a large molecule, or whether there is local
order, such as in a lipid bilayer.
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Figure 10.6: Influence of polarity of the environment and of hydrogen bonding on gxx shift and hyperfine
coupling. (a) In the mesomeric structure where the unpaired electron is on the oxygen atom (left), five
valence electrons are formally assigned to N and six to O, which corresponds to electroneutrality. In
the mesomeric structure where the unpaired electron is on the nitrogen atom (right), only four valence
electrons are formally assigned to N and seven to O, which corresponds to a positive charge at N and to a
negative charge at O. (b) Admixture of the charge-separated mesomeric structure generates partial charges
and is favored in a polar environment that screens Coulomb attraction of the two charges. Hydrogen
bonding to oxygen lowers energy of the lone pair, making excitation of a lone pair electron to the SOMO
less likely, and thus decreasing gxx shift.



82 Spin Probes and Spin Traps

10.1.5 Polarity and proticity
Delocalization of the unpaired electron in the N-O• group can be understood by considering
mesomeric structures (Fig. 10.6). If the unpaired electron resides on oxygen, the formal number
of valence electrons is five on nitrogen and six on oxygen, corresponding to the nuclear charge
that is not compensated by inner shell electrons. Hence, both atoms are formally neutral in this
limiting structure. If, on the other hand, the unpaired electron resides on the nitrogen atom, only
four valence electrons are assigned to this atom, whereas seven valence electrons are assigned
to the oxygen atom. This corresponds to charge separation with the formal positive charge on
nitrogen and the formal negative charge on oxygen. The charge-separated form is favored in polar
solvents, which screen Coulomb attraction between the two charges, whereas the neutral form is
favored in nonpolar solvents. Hence, for a given nitroxide radical in a series of solvents, the 14N
hyperfine coupling, which stems from spin density on the nitrogen atom, is expected to increase
with increasing solvent polarity. This effect has indeed been found. It is most easily seen in the
solid state for Azz but can also be discerned in the liquid state for Aiso.

The change in Azz is expected to be anti-correlated to the gxx shift, because this shift
arises from SOC at the oxygen atom and, the higher spin density on the nitrogen atom is, the
lower it is on the oxygen atom. This effect has also been found and is most easily detected by
high-field/high-frequency EPR at frequencies of W-band frequencies of≈ 95 GHz or even higher
frequencies. How Azz is correlated to gxx depends on proticity of the solvent. Protic solvents
form hydrogen bonds with the lone pairs on the oxygen atom of the N-O• group. This lowers
energy of the lone pair orbitals, making excitation of an electron from these orbitals to the SOMO
less likely. Since this excitation provides the main contribution to SOC and thus to gxx shift,
hydrogen bonding to oxygen reduces gxx shift. If two nitroxides have the same hyperfine coupling
Azz in an aprotic and protic environment, gxx will be lower in the protic environment. This effect
has also been found. In some cases it was possible to discern nitroxide labels with zero, one,
and two hydrogen bonds by resolution of their gxx features in W-band CW EPR spectra. Slopes
of -1.35 T−1 for aprotic at -2 T−1 for protic environments have been found for the correlation
between Azz and gxx for MTSL in spin-labeled bacteriorhodopsin in lipid bilayers [Ste+00].

10.1.6 Water accessibility
Polarity and proticity are proxy parameters for water accessibility of spin-labeled sites in proteins.
Two other techniques provide complementary information. First, water can be replaced by
deuterated water and the modulation depth of deuterium ESEEM can be measured. Because
of the r−6 dependence of modulation depth (see Eq. (8.7)) the technique is most sensitive to
deuterium nuclei in the close vicinity of the spin label. As long as k � 1, modulation depth
contributions of individual nuclei add, so that the total deuterium modulation depth is a measure
for local deuterium concentration close to the label. Data can be processed in a way that removes
the contribution from directly hydrogen-bonded nuclei. Strictly speaking, this technique measures
the concentration of not only water protons but also the one of any exchangeable protons near the
label, but only to the extent that these exchangeable protons are water accessible during sample
preparation or measurement.

A second, more direct technique that is applicable at ambient temperature measures the
proton NMR signal as a function of irradiated microwave power with the microwave frequency
being on-resonant with the central transition of a nitroxide spin label. Such irradiation transfers
electron spin polarization to water protons by the Overhauser effect. This Overhauser dynamic
nuclear polarization (DNP) is highly specific to water, as it critically depends on the water proton
NMR signal being narrow and on fast diffusion of water. In biomolecules, water accessibility of
spin labels is high at water-exposed surfaces of soluble and membrane proteins and low inside
the proteins and at lipid-exposed surfaces. For transporters, water accessibility can change with
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state in the transport process.
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Figure 10.7: Characterization of oxygen accessibility at spin-labeled site V229C in major plant light
harvesting complex LHCII by CW progressive power saturation. (a) Ribbon model of LHCII with green
with its carotenoid cofactors (yellow, violet) and space-filling model of residue 229 (red, marked by an
arrow). The pink planes correspond to the lipid headgroup layer of the thylakoid membrane in chloroplasts.
(b) Progressive power saturation curves in the absence (blue) and presence (red) of oxygen.

10.1.7 Oxygen accessibility
Since collision of paramagnetic triplet oxygen with spin probes enhances relaxation (Fig. 7.4),
the saturation parameter S = ω2

1T1T2 is smaller for oxygen-accessible spin labels than for
spin labels not accessible to oxygen. This change can be detected by CW progressive power
saturation measurements (Section 7.2.2). The experiment is most conveniently performed with
capillary tubes made of the gas permeable plastic TPX. A reference measurement is performed
in a nitrogen atmosphere, which causes deoxygenation of the sample on the time scale of 15
min. The gas stream is then changed to air (20% oxygen) or pure oxygen and the measurement
is repeated. Such data are shown in Fig. 10.7 for residue 229 in major plant light harvesting
complex LHCII. This residue is lipid exposed. As a nonpolar molecule, oxygen dissolves well
in the alkyl chain region of a lipid bilayer. Accordingly, the signal saturates at higher power in
an air atmosphere than in a nitrogen atmosphere. Oxygen accessibility can be quantified by a
normalized P1/2 parameter (Section 7.2.2).

10.1.8 Local pH measurements
The 14N hyperfine coupling of nitroxide spin probes becomes pH sensitive if the heterocycle that
contains the N-O• group also contains a nitrogen atom that can be protonated in the desired pH
range. This applies, for instance, to the imidazolidine nitroxide 3 in Fig. 10.1, which has a pKa

value of ≈ 4.7 and exhibits a change in isotropic 14N hyperfine coupling of 0.13 mT between the
protonated (1.43 mT) and deprotonated (1.56 mT) form, which can be resolved easily in liquid
solution. By modifying the probe to a label, local pH can be measured near a residue of interest
in a protein.

10.2 Spin traps
Many radicals are very reactive. This fact makes their detection during chemical reactions
and in living cells very important, but it also makes their concentration very low, since often
their formation reaction is slower than the reactions that destroy them again. For instance,
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concentration of the hydroxyl radical •OH, a reactive oxygen species (ROS) in living cells, is too
low for EPR detection even under conditions where •OH leads to cell damage or cell death. The
situation is somewhat better for the superoxide anion radical O2−•

2 , but physiologically relevant
concentrations are hard to detect also for this species.
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Figure 10.8: Reaction of the commonly used spin traps phenylbutylnitrone (PBN) and 5,5-dimethyl-1-
pyrroline N-oxide (DMPO) with unstable radicals R•. Hyperfine couplings of the 14N and Hα atom of the
formed nitroxide (red) as well as the g value of the nitroxide provide fingerprint information on the type of
radical R•.

ROS and some other highly reactive radicals of interest are most easily detected by spin
trapping. A spin trap (Fig. 10.8) is a diamagnetic compound that is primed to form a stable
radical by reaction with an unstable radical. The most frequently used spin traps are nitrones
that form nitroxide radicals by addition of the unstable radical to the C atom in α position of the
nitrone group. The formed nitroxide radicals are not as stable as the ones used as spin labels,
mainly because they contain a hydrogen atom in α position to the N-O• group. Their lifetime
is usually on the minute time scale, which is sufficient for detection. The hyperfine coupling
of the Hα atom is sensitive to the type of primary radical R•, i.e. to the nature of the other
substituent at the Cα atom. Furthermore, these nitrones are less sterically crowded than the ones
that would yield more stable nitroxides and thus the nitrones are more reactive and trap radicals
R• more easily. In addition to the Hα hyperfine coupling, the hyperfine coupling of the 14N atom
of the N-O• group is sensitive to the nature of R•. A database of experimental results supports
assignment of R• in difficult cases: http://tools.niehs.nih.gov/stdb/index.cfm1.

1Look a the "Hints for Using the Spin Trap Database" before you start your search. The keyword format is
powerful, but not very intuitive.
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