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General Remarks
Suggested Reading & Electronic Resources

1 — Introduction

1.1 General Remarks

Electron Paramagnetic Resonance (EPR) spectroscopy is less well known and less widely applied
than NMR spectroscopy. The reason is that EPR spectroscopy requires unpaired electrons and,
usually, electron pairing is energetically favorable. Hence, only a small fraction of pure substances
exhibit EPR signals, whereas NMR spectroscopy is applicable to almost any compound one can
think of. On the other hand, unpaired electrons are associated with reactivity, since electron
pairing underlies the chemical bond. Accordingly, EPR spectroscopy is a very important technique
for understanding radical reactions, electron transfer processes, and transition metal catalysis,
which are all related to the ’reactivity of the unpaired electron’. Some species with unpaired
electrons are chemically stable and can be used as spin probes to study systems where NMR
spectroscopy runs into resolution limits or cannot provide sufficient information for complete
characterization of structure and dynamics. This lecture course introduces the basics for applying
EPR spectroscopy on reactive or catalytically active species as well as on spin probes, without
going into application aspects.

Many concepts in EPR spectroscopy are related to similar concepts in NMR spectroscopy.
Hence, the lectures on EPR spectroscopy build on material that has been introduced before in the
lectures on NMR spectroscopy. This material is briefly repeated. It is enhanced in this script and
similarities as well as differences are pointed out. Such a linked treatment of the two techniques is
not found in introductory textbooks. By emphasizing this link, the course focuses on the physics
that underlies NMR and EPR spectroscopy, instead of focusing on individual application fields.
We aim for understanding of spectra at a fundamental level and for understanding how parameters
of the spin Hamiltonian can be measured with the best possible sensitivity and resolution.

Chapter 2 of the script introduces electron spin, relates it to nuclear spin, and discusses,
which interactions contribute to the spin Hamiltonian of a paramagnetic system. Chapter 3 treats
the electron Zeeman interaction, the deviation of the g value of a bound electron from the g value
of a free electron, and the manifestation of g anisotropy in solid-state EPR spectra. Chapter 4
introduces the hyperfine interaction between electron and nuclear spins, which provides most
information on electronic and spatial structure of paramagnetic centers. Spectral manifestation
in the liquid and solid state is considered for spectra of the electron spin and of the nuclear
spins. Chapter 5 discusses how the coupling between electron spins is described in the spin
Hamiltonian, depending on its size. Throughout Chapters 3-6, the introduced interactions of the
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electron spin are related to electronic and spatial structure.
Chapter 6 discusses phenomena that occur when the hyperfine interaction is so large

that the high-field approximation is violated for the nuclear spin. In this situation, formally
forbidden transitions become partially allowed and mixing of energy levels leads to changes
in resonance frequencies. The two most important experiments based on such forbidden
transitions are explained, three-pulse electron spin echo envelope modulation (ESEEM) and the
two-dimensional hyperfine sublevel correlation (HYSCORE) experiment.

Chapter 7 introduces spin-echo double resonance (SEDOR), which is applied in solid-state
NMR and EPR spectroscopy in order to measure dipole-dipole couplings. Spin-spin distances
can be inferred from such couplings. In EPR, this experiment is termed double electron electron
resonance (DEER) and is applied to measure distance distributions.

At some points this lecture script overlaps with the NMR part of the lecture script. This is
intended, in order to make the EPR script reasonably self-contained. Note also that this lecture
script serves two purposes. First, it should be a help in studying the subject and preparing for the
examination. Second, it is reference material when you later encounter paramagnetic species in
your own research and need to obtain information on them by EPR spectroscopy.

1.2 Suggested Reading & Electronic Resources
There is no textbook on EPR spectroscopy that treats all material of this course on a basic level.
However, some of the concepts are covered by a title from the Oxford Chemistry Primer series
by Chechik, Carter, and Murphy [CCM16]. Physically minded students may also appreciate
the older standard textbook by Weil, Bolton, and Wertz [WBW94]. On a deeper level, many
concepts are treated in an Encyclopedia of Magnetic Resonance volume edited by Goldfarb and
Stoll [GE18].

For some of the simulated spectra andworked examples in these lecture notes, Matlab scripts or
Mathematica notebooks are provided on the lecture homepage. Part of the numerical simulations
is based on EasySpin by Stefan Stoll (http://www.easyspin.org/) and another part on
SPIDYAN by Stephan Pribitzer (http://www.epr.ethz.ch/software.html). Computations
with product operator formalism require the Mathematica package SpinOp.m by Serge Boentges,
which is available on the course homepage. An alternative larger package for such analytical
computations is SpinDynamica by Malcolm Levitt (http://www.spindynamica.soton.ac.
uk/). Last but not least, the most extensive package for numerical simulations of magnetic
resonance experiments is SPINACH by Ilya Kuprov et al. (http://spindynamics.org/
Spinach.php). For quantum-chemical computations of spin Hamiltonian parameters, the
probably most versatile program is the freely available package ORCA (https://orcaforum.
cec.mpg.de/).
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2 — Electron spin

2.1 Magnetic resonance of the free electron
2.1.1 The magnetic moment of the free electron

As an elementary particle, the electron has intrinsic angular momentum called spin. The spin
quantum number is S = 1/2. Hence, in an external magnetic field along z, only two possible
values can be observed for the z component of angular momentum, +~/2, corresponding to
magnetic quantum numbermS = +1/2 (α state) and−~/2, corresponding to magnetic quantum
numbermS = −1/2 (β state). The energy difference between the corresponding two states of
the electron results from the magnetic moment associated with spin. For a classical rotating
particle with elementary charge q, angular momentum J = ~S and mass m, this magnetic
moment computes to

~µclassical =
q

2m
~J . (2.1)

The charge-to-mass ratio for an electron spin is e/me, where e is the elementary charge andme

is electron mass. This ratio is much larger for the electron than for a nucleus, where it is of the
order of −e/mp, withmp being the proton mass andmp/me ≈ 1836. By introducing the Bohr
magneton µB = ~e/(2me) = 9.27400915(23) × 10−24 J T−1 and the quantum-mechanical
correction factor g, we can rewrite Eq. (2.1) as

~µe = gµB
~S . (2.2)

Dirac-relativistic quantum mechanics provides g = 2.1. Exact measurements have shown that the
g value of a free electron deviates slightly from g = 2 The necessary correction can be derived
by quantum electrodynamics, leading to ge = 2.00231930437378(2). The energy difference
between the two spin states of a free electron in an external magnetic field B0 is given by

~ωS = geµBB0 , (2.3)

so that the gyromagnetic ratio of the free electron is γe = −geµB/~. This gyromagnetic ratio
corresponds to a resonance frequency of 28.025 GHz at a field of 1 T, which is by a factor of
about 658 larger than the nuclear Zeeman frequency of a proton.

1This correction can also be found by a non-relativistic derivation
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2.1.2 Differences between EPR and NMR spectroscopy

The main two differences between NMR and EPR spectroscopy result from this much larger
magnetic moment of the electron.

• Boltzmann polarization of electron spins is larger than for nuclear spins by a factor of at
least 658

• relaxation times of electron spins are shorter by roughly five to six orders of magnitude
(square of γe/γn)

Faster relaxation broadens lines, which reduces sensitivity, but it also allows for faster
repetition of the experiment, which, together with larger Boltzmann polarization and higher
energy of microwave photons leads to higher sensitivity of EPR spectroscopy. Standard
instrumentation, with an electromagnet working at a field of about 0.35 T and at microwave
frequencies of about 9.5 GHz (X band) can detect about 1010 spins within a few seconds. This
applies to samples with negligible dielectric microwave losses. In aqueous solution, organic
radicals can be detected at concentrations down to 10 nM in a measurement time of a few minutes.

Due to the large magnetic moment of the electron spin the high-temperature approximation is
violated already at a temperature of 4.5 K in a field of about 3.35 T corresponding to a frequency
of about 94 GHz (W band). The high-field approximation may break down for a nuclear spin
close to an electron spin (Chapter 6), since the hyperfine coupling between the two spins may be
of the same order of magnitude as the nuclear Zeeman interaction at the magnetic fields where
EPR is usually performed (0.1-10 T).

DB0

DB  =pp

DV

DV magnetic field B0

gm TB 2

2Ñ

Ö3

Figure 2.1: CW-EPR lineshape. We consider the situation at the instantaneous field during a field sweep
(vertical dashed line). Modulation of the magnetic field with amplitude ∆B0 (blue) causes modulation
of the output signal V (red) with the same frequency and an amplitude ∆V . Phase-sensitive detection
measures ∆V , which is proportional to the derivative of the absorption lineshape (grey) if ∆B0 is much
smaller than the peak-to-peak linewidth ∆Bpp.

The dipole-dipole interaction between two electron spins is by a factor of 6582 larger than
between two protons. Furthermore, two unpaired electrons can come closer to each other than
two protons. If the two unpaired electrons both reside in a small organic molecule or are localized
at the same transition or rare earth metal ion, a zero-field splitting results. This splitting can
amount to a significant fraction of the electron Zeeman interaction or can even exceed it (Chapter
5).
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Another important difference between EPR and NMR spectroscopy is the survival of
continuous-wave (CW) detection of spectra in EPR, whereas this technique has become almost
extinct in NMR. The main reason for this difference is that ratio of both line width and total
spectral width to the resonance frequency is much larger in EPR spectroscopy, which cancels the
sensitivity advantage in detecting the free induction decay and obtaining the spectrum by Fourier
transformation. Due to the larger linewidth, most or even all of the signal is lost within receiver
deadtime after the excitation pulse. Due to larger total spectral width, it is usually impossible to
excite the whole spectrum by a single rectangular pulse.

CW EPR spectroscopy is performed at constant microwave frequency by sweeping the
external magnetic field. The detector diode collects noise over frequency band much broader
than the resonance signal. Noise outside this band is suppressed by modulating the magnetic
field and acquiring only the signal at the modulation frequency using a lock-in detector. This
approach records the derivative of the absorption lineshape as explained in Figure 2.1.

2.2 Interactions in electron-nuclear spin systems

2.2.1 General consideration on spin interactions
Spins interact with magnetic fields. The interaction with a static external magnetic field B0 is the
Zeeman interaction, which is usually the largest spin interaction. At sufficiently large fields, where
the high-field approximation holds, the Zeeman interaction determines the quantization direction
of the spin. In this situation,mS is a good quantum number. If the high-field approximation also
holds for a nuclear spin Ii, the magnetic quantum numbermI,i is also a good quantum number.
The energies of spin levels can then be expressed by parameters that quantify spin interactions
and by the magnetic quantum numbers. The vector of all magnetic quantum numbers defines the
state of the spin system.

Spins also interact with the local magnetic fields induced by other spins. Usually, unpaired
electrons are rare. Hence, each electron spin interacts with several nuclear spins in its vicinity,
whereas each nuclear spin interacts with only one electron spin (Fig. 2.2). The hyperfine
interaction between the electron and nuclear spin is usually much smaller than the electron
Zeeman interaction, with exceptions for transition and rare earth metal ions. In contrast, for
nuclei in the close vicinity of the electron spin, the hyperfine interaction may be comparable to
the nuclear Zeeman interaction. This leads to breakdown of the high-field approximation and
mI,i is then no longer a good quantum number. Hyperfine couplings to nuclei are relevant if they
are at least as large as the transverse relaxation rate 1/T2n of the coupled nuclear spin. Smaller
couplings are unresolved and can be treated as a contribution to linewidths.

In some systems, two or more unpaired electrons are so close to each other that their coupling
exceeds their transverse relaxation rates 1/T2e. The isotropic part of this coupling, called
exchange coupling J , can exceed the electron Zeeman interaction by far. It can even exceed
thermal energy kBT , if two unpaired electrons reside in different molecular orbitals of the same
organic molecule (triplet state molecule) or if several unpaired electrons reside on the same
transition or rare earth metal ion. In this situation, the system is best described in a coupled
representation with an electron group spin S > 1/2. In the coupled representation, the isotropic
coupling between the individual electron spins only contributes to the energy differences between
states with different group spin S, but not to the sublevel splittings for given S. The anisotropic
coupling does lead to sublevel splitting and is thus a contribution to the zero-field interaction,
which is sometimes called fine interaction.

In the opposite case, where the electron Zeeman interaction by far exceeds the spin-spin
coupling, it is more convenient to describe the system in terms of the individual electron spins
Si = 1/2. In this representation, the isotropic exchange coupling J , which stems from overlap of
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Figure 2.2: Scheme of interactions in electron-nuclear spin systems. All spins have a Zeeman interaction
with the external magnetic field B0. Electron spins (red) interact with each other by the dipole-dipole
interaction through space and by exchange due to overlap of the singly occupied molecular orbitals (green).
Each electron spin interacts with nuclear spins (blue) in its vicinity by hyperfine couplings (purple).
Couplings between nuclear spins are usually negligible in paramagnetic systems, as are chemical shifts.
These two interactions are too small compared to the relaxation rate of nuclear spins in the vicinity of an
electron spin.

two singly occupied molecular orbitals (SOMOs, see below), does contribute to level splitting. In
addition, the dipole-dipole coupling through space between two electron spins also contributes.

Concept 2.2.1 — Singly occupied molecular orbital (SOMO). Each molecular orbital (MO) can
be occupied by two electrons with opposite magnetic spin quantum numbermS = ±1/2. If
a molecular orbital is singly occupied, the electron is unpaired. Its magnetic spin quantum
number can then be changed by absorption or emission of photons. The orbital occupied by
the unpaired electron is called a singly occupied molecular orbital (SOMO). Several unpaired
electrons can exist in the same molecule or metal complex, i.e., there may be several SOMOs.

Nuclear spins in the vicinity of an electron spin relax much faster than nuclear spins in
diamagnetic substances.2 Their transverse relaxation rates thus exceed couplings between nuclear
spins and chemical shifts. These interactions, which are very important in NMR spectroscopy,
are negligible in EPR spectroscopy. As a consequence, for nuclear spins 1/2 information on
the chemical identity of a nucleus cannot be obtained directly without analyzing hyperfine
couplings. The element can be identified by the nuclear Zeeman interaction. Note, however,
that nuclear Zeeman interaction does not contribute to first order to electron spin transitions.
Hence, identification of nuclear spins often requires measurement of nuclear frequencies. For
nuclear spins Ii > 1/2, information on the chemical identity is encoded in the nuclear quadrupole
interaction, whose magnitude usually exceeds the transverse relaxation rate.

An overview of all interactions and their typical magnitude in frequency units is given in Figure
2.3. This Figure also illustrates another difference between EPR and NMR spectroscopy. Several
interactions, such as the zero-field interaction, the hyperfine interaction, larger dipole-dipole
and exchange couplings exceed the excitation bandwidth of the strongest and shortest available
microwave pulses. The same applies to the anisotropy of the electron Zeeman interaction. Thus,
NMR pulses sequences, which rely on the ability to excite the full spectrum of a certain type of
spins, cannot easily be adapted to EPR spectroscopy.

2There is an exception. If the electron spin longitudinal relaxation rate exceeds the nuclear Zeeman interaction by
far, nuclear spin relaxation is hardly affected by the presence of the electron spin. In this situation, EPR spectroscopy
is impossible, but paramagnetic NMR becomes possible. Chemical shift then acquires a large contribution from
incomplete averaging of hyperfine coupling.
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Figure 2.3: Relative magnitude of interactions that contribute to the Hamiltonian of electron-nuclear spin
systems.

2.2.2 The electron-nuclear spin Hamiltonian
We now consider all interactions discussed above in Section 2.2.1 and formulate the static spin
Hamiltonian of an electron-nuclear spin system in angular frequency units:

Ĥ0 = ĤEZ + ĤNZ + ĤHFI + ĤZFI + ĤEX + ĤDD + ĤNQI

=
µB

~
∑
k

~BT
0 gk

~̂
Sk +

∑
i

ωI,iÎz,i +
∑
k

∑
i

~̂
ST
k Aki

~̂
Ii +

∑
Sk>1/2

~̂
ST
k Dk

~̂
Sk

+
∑
k

∑
l 6=k

JklŜz,kŜz,l +
∑
k

∑
l 6=k

~̂
ST
k Dkl

~̂
Sl +

∑
Ii>1/2

~̂
IT
i Pi

~̂
Ii . (2.4)
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Note that index i runs over all nuclear spins, indices k and l run over electron spins and the
symbol T denotes the transpose of a vector or vector operator. Often, only one electron spin and
one nuclear spin have to be considered at once, so that the spin Hamiltonian simplifies drastically.
For electron group spins S > 1, terms can be significant that are not linear, bilinear, or quadratic
in the spin operators. Such terms feature higher powers of spin operators. We do not consider
this complication here.

The electron Zeeman interaction ĤEZ is, in general, anisotropic. Therefore, it is parametrized
by g tensors gk. We discuss this in detail in Chapter 3. In the nuclear Zeeman interaction terms
ĤNZ, the nuclear Zeeman frequencies ωI,i depend only on the element and isotope. Thus, they
can be specified without knowing electronic and spatial structure of the molecule. The hyperfine
interaction is again anisotropic and thus characterized by tensors Aki. We discuss it in detail in
Chapter 4.

All electron-electron interactions are explained in Chapter 5. The zero-field interaction ĤZFI

is purely anisotropic. Thus, it is characterized by traceless tensors Dk. The exchange interaction
is often purely isotropic ĤEX. Any anisotropic contribution to it cannot be experimentally
distinguished from the purely anisotropic dipole-dipole interaction ĤDD. Hence, the former
interaction is represented by scalars Jkl and the latter interaction by tensors Dkl. Finally, the
nuclear quadrupole interaction ĤNQI is characterized by traceless tensors Pi.

2.2.3 Hamiltonian of the S = 1/2, I = 1/2 spin system
We now consider the Hamiltonian of the simplest non-trivial spin system in EPR, which consists
of an electron spin S = 1/2 and a nuclear spin I = 1/2. In this situation, Eq. (2.4) simplifies to

Ĥ0 = ĤEZ + ĤNZ + ĤHFI

=
µB

~
~BT

0 g
~̂
S + ωI Îz +

~̂
STA

~̂
I . (2.5)

We now assume that the high-field approximation applies for the electron spin and that
anisotropy of the g value is negligible. The latter assumption is a good approximation for most
organic radicals. We call the isotropic g value giso. With the magnetic field along z as usual, this
Hamiltonian further simplifies to

Ĥ0 =
µB

~
gisoB0Ŝz + ωI Îz +

~̂
STA

~̂
I (2.6)

=
µB

~
B0gisoŜz + ωI Îz +AzxŜz Îx +AzyŜz Îy +AzzŜz Îz . (2.7)

In the last line of Eq. (2.7), we have dropped terms of the form AxiŜxÎi and AyiŜy Îi with
i = x, y, z, as they are negligible if the high-field approximation applies to the electron spin.

We first consider the case, where the high-field approximation also applies for the nuclear
spin, |ωI | � |Azx| , |Azy| , |Azz| and abbreviate ωS = (µB/~)gisoB0. We can now also drop the
terms AzxŜz Îx and AzyŜz Îy, which gives

Ĥ0 = ωSŜz + ωI Îz +AzzŜz Îz . (2.8)

The spin system has four states. If the high-field approximation applies to both spins
(weak-coupling case), the magnetic quantum numbers mS = ±1/2 of the electron spin and
mI = ±1/2 of the nuclear spin are both good quantum numbers. As usual, we assign the symbol
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|α〉 tom = +1/2 and |β〉 tom = −1/2. The four eigenstates are then |αSαI〉, |αSβI〉, |βSαI〉,
and |βSβI〉.

We obtain their energies from Eq. (2.8) by replacing the spin operators Ŝz and Îz by
their respective eigenvalues mS = ±1/2 and mI = ±1/2. Hence, the level energies are
ωS/2 + ωI/2 +A/4, ωS/2− ωI/2−A/4, −ωS/2 + ωI/2−A/4, and −ωS/2− ωI/2 +A/4.

Allowed electron spin (EPR) transitions have ∆mS = ±1. This corresponds to |αSαI〉 ↔
|βSαI〉 with angular frequency ωEPR,α = |ωS +Azz/2| and |αSβI〉 ↔ |βSβI〉 with angular
frequency ωEPR,β = |ωS −Azz/2|. Likewise, allowed nuclear spin (NMR) transitions are
|αSαI〉 ↔ |αSβI〉 with angular frequency ωNMR,α = |ωI +Azz/2| and |βSαI〉 ↔ |βSβI〉 with
angular frequency ωNMR,β = |ωI −Azz/2|.

The NMR transitions can be indirectly detected via the electron spin by electron nuclear
double resonance (ENDOR) experiments. The hyperfine splitting Azz is the same in the EPR
and NMR spectrum. However, it is usually much better resolved in the NMR spectrum, since
transverse relaxation is much faster for electron than for nuclear spins, causing much broader
lines in EPR than NMR spectra. Hence, the ENDOR experiments combine better sensitivity
than in direct NMR with higher resolution than in EPR spectroscopy. The two lines are found at
|ωI | ±Azz/2.

The same treatment can be applied for hyperfine couplings ωS � |Azz| � |ωI | (strong-
coupling case), since mI is also a good quantum number in that case. However, now the two
lines are found at |Azz|/2± ωI . Usually, more than one nucleus contributes to ENDOR spectra.
Line assignment may become complicated if different elements (isotopes) contribute, some of
them in the weak-coupling and some of them in the strong-coupling regime.

We now consider the case where neither the weak-coupling nor the strong-coupling regime
applies. In this situation, we cannot drop the terms the terms AzxŜz Îx and AzyŜz Îy. However,
if we excite and detect only the electron spin, we do not need a radiofrequency coil. Hence, the x
direction in the nuclear spin laboratory frame is undefined. We can thus choose the x axis freely.
If we rotate the nuclear spin Hamiltonian by an angle arctan(−Azy/Azx), we have

Ĥ0 = ωSŜz + ωI Îz +AŜz Îz +BŜz Îx , (2.9)

with A = Azz and B =
√
A2
zx +A2

zy. For the electron spin, we can still go into the rotating
frame,

Ĥ0 = ΩSŜz + ωI Îz +AŜz Îz +BŜz Îx , (2.10)

where ΩS = ωS − ωmw and ωmw is the microwave (excitation) frequency. It is inconvenient to
go to the rotating frame for the nuclear spin, since the term BŜz Îx is not negligible, but would
become time-dependent in the rotating frame.

Now,mI is no longer a good quantum number. Neither can we simply infer the level energies
from Eq (2.10) by replacing spin operators by their eigenstates nor can we assume that the usual
selection rules apply. In fact, they do not and transitions with ∆mS = ±1,∆mI = ±1 become
weakly allowed. As a disadvantage, this complicates interpretation of the spectra. However,
there exist two advantages. First, the B term introduces additional information into the spectra.
Second, it enables measurement of nuclear frequencies without direct excitation or detection of
nuclear spins. This is discussed in Chapter 6.
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3 — Electron Zeeman Interaction

3.1 Physical origin of the g shift
The g values of bound electrons generally differ from the value ge of the free electron. Furthermore,
they often depend on the orientation of the paramagnetic center with respect to the magnetic field
vector ~B0. The main reason for this orientation-dependent g value shift is coupling of spin to
orbital angular momentum of the electron. This spin-orbit coupling (SOC) is a purely relativistic
effect. Therefore, it is larger if orbitals on heavy atoms contribute to the SOMO. For non-linear
molecules, orbital angular momentum is quenched in the ground state, i.e., the ground state has
orbital angular momentum L = 0 . In this situation, SOC can only occur in electronically excited
states. Thus, it leads to only small or moderate g shifts, which can be computed by perturbation
theory. Such a perturbation treatment is not valid if the electronic ground state is degenerate or
near degenerate.

The perturbation treatment considers excited states, where the unpaired electron is not in
the SOMO of the ground state (Figure 3.1). The orbital angular momentum operator slightly
admixes such excited states to the ground state. For simplicity, we consider only the case where
the main contribution to the g shift arises from orbitals localized at a single, dominating atom.
We also assume single-electron SOC. This case provides basic understanding of the relation of g
shifts to the SOC. To second order in perturbation theory, the matrix elements of the g tensor can
be expressed as

gij = geδij + 2λΛij , (3.1)

where δij is a Kronecker delta (δij = 1 for i = j and δij = 0 for i 6= j). The factor λ is the
spin-orbit coupling constant for the dominating atom, and the matrix elements Λij are computed
as

Λij =
∑
n6=0

〈0|l̂i|n〉〈n|l̂j |0〉
ε0 − εn

. (3.2)

Indices i and j run over the Cartesian directions x, y, and z. The operators l̂x, l̂y, and l̂z are
Cartesian components of the angular momentum operator, |n〉 designates the orbital where the
unpaired electron resides in an excited-state electron configuration. The energy of this orbital is
εn. Counting starts from n = 0 for the SOMO of the ground state configuration. Hence, n can
be positive or negative.
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Figure 3.1: Admixture of excited states by orbital angular momentum operators leads to a g shift by
spin-orbit coupling. The energy difference in the perturbation expression is positive for excitation of a
paired electron to the ground-state SOMO and negative for excitation of the unpaired electron to a higher
energy orbital.

The product of the overlap integrals in the numerator on the right-hand side of Eq. (3.2)
is usually positive. Hence, the sign of the g shift is determined by the denominator. The
denominator is positive, if a paired electron from a fully occupied orbital is promoted to the
ground-state SOMO (εn < ε0) and negative if the unpaired electron is promoted to a previously
unoccupied orbital (εn > ε0, Figure 3.1). Because the energy gap between the SOMO and the
lowest unoccupied orbital (LUMO) is usually larger than the one between occupied orbitals,
terms with positive numerator dominate in the sum on the right-hand side of Eq. (3.2). Therefore,
positive g shifts are more frequently encountered than negative ones.

The relevant spin-orbit coupling constant λ depends on the element and on the type of orbital.
It scales roughly with Z4, where Z is the nuclear charge. Unless there is a very low lying excited
state (near degeneracy of the ground state), contributions from heavy nuclei dominate. In organic
radicals consisting of only hydrogen and second-row elements, there are no heavy nuclei. In this
situation, g shifts of only ∆g < 10−2 are observed. Typical shifts are 1 . . . 3× 10−3. Note that
this still exceeds typical chemical shifts in NMR, which are measured in ppm (10−6), by one to
two orders of magnitude. For first-row transition metals, g shifts are of the order of 10−1.

For rare-earth ions, the perturbation treatment breaks down. The Landé factor gJ can then be
computed from the term symbol for a doublet of levels

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (3.3)

where J is the quantum number for total angular momentum and L the quantum number for
orbital angular momentum. The principal values of the g tensor are εxgJ , εygJ , and εzgJ , where
the εi with i = x, y, z are differences between the eigenvalues of L̂i for the two levels.

If the structure of a paramagnetic center is known, the g tensor can be computed by quantum
chemistry. This works quite well for organic radicals and reasonably well for most first-row
transition metal ions. Details are explained in [KBE04].

The g tensor is a global property of the SOMO. It is easily interpretable only if it is dominated
by the contribution at a single atom. This is often, but not always, the case for transition metal
and rare earth ion complexes. If the paramagnetic center has a Cn symmetry axis with n ≥ 3,
the g tensor has axial symmetry with principal values gx = gy = g⊥, gz = g||. For cubic or
tetrahedral symmetry, the g value is isotropic, but not necessarily equal to ge. Isotropic g values
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are also encountered to a very good approximation for transition metal and rare earth metal ions
with half-filled shells, such as in Mn(II) complexes (3d5 electron configuration) and Gd(III)
complexes (4f7).

3.2 Electron Zeeman Hamiltonian
We now consider a single electron spin S and thus drop the sum and index k in ĤEZ in Eq. (2.4).
In the principal axes system (PAS) of the g tensor, the electron Zeeman Hamiltonian now reads

ĤEZ =
µB

~
B0

(
cosφ sin θ sinφ sin θ cos θ

)gx 0 0
0 gy 0
0 0 gz

ŜxŜy
Ŝz


=

µB

~
B0

(
gx cosφ sin θŜx + gy sinφ sin θŜy + gz cos θŜz

)
. (3.4)

Where B0 is the magnetic field, gx, gy, and gz are the principal values of the g tensor and the
polar angles φ and θ determine the orientation of the magnetic field in the PAS.

This Hamiltonian is diagonalized by the Bleaney transformation, providing

ĤBTEZ =
µB

~
geffB0Ŝz , (3.5)

with the effective g value at orientation (φ, θ)

geff (φ, θ) =
√
g2
x sin2 θ cos2 φ+ g2

y sin2 θ sin2 φ+ g2
z cos2 θ . (3.6)

If anisotropy of the g tensor is significant, the z axis in Eq. (3.5) is tilted from the direction of
the magnetic field. This effect is negligible for most organic radicals, but not for transition metal
ions or rare earth ions. Eq. (3.6) for the effective g values describes an ellipsoid (Figure 3.2).

x

z

y

B0

®

q

f

Figure 3.2: Ellipsoid describing the orientation dependence of the effective g value in the PAS of the g
tensor. At a given direction of the magnetic field vector ~B0 (red), geff corresponds to the distance between
the origin and the point where ~B0 intersects the ellipsoid surface.

Concept 3.2.1 — Energy levels in the high-field approximation. In the high-field approximation,
the energy contribution of a Hamiltonian term to the level with magnetic quantum numbers
mS,k and mI,i can be computed by replacing the Ĵz,j operators (J = S, I , j = k, i) by the
corresponding magnetic quantum numbers. This is because the magnetic quantum numbers
are the eigenvalues of the Ĵz,j operators, all Ĵz,j operators commute with each other, and
contributions with all other Cartesian spin operators are negligible. For the electron Zeeman
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term, the energy contribution is mSgeffµBB0/~. If the high-field approximation is slightly
violated, this expression corresponds to a first-order perturbation treatment.

Note that we already used this concept in Section 2.2.3. It also applies to spin quantum
numbers S > 1/2, I > 1/2 and to any interaction that is linear or bilinear in the spin operators.

The selection rule for transitions in EPR spectroscopy is |∆mS | = 1, |∆mI | = 0. It applies
strictly as long as the high-field approximation applies strictly to all spins. This selection rule
results from conservation of angular momentum upon absorption of a microwave photon and
from the fact that the microwave photon interacts with electron spin transitions. It follows that
the first-order contribution of the electron Zeeman interaction to the frequencies of all electron
spin transitions is the same, namely geffµBB0/~. EPR spectra are usually measured at constant
microwave frequency νmw by sweeping the magnetic field B0. The resonance field is then given
by

B0,res =
hνmw

geffµB
. (3.7)

For nuclear spin transitions, |∆mS | = 0, |∆mI | = 1, the electron Zeeman interaction does
not contribute to the transition frequency to first order.

3.3 Spectral manifestation of the electron Zeeman interaction
3.3.1 Liquid solution

In liquid solution, molecules tumble due to Brownian rotational diffusion. The time scale of this
motion can be characterized by a rotational correlation time τrot that in non-viscous solvents
is of the order of 10 ps for small molecules, and of the order of 1 ns to 100 ns for proteins and
other macromolecules. For a globular molecule with radius r in a solvent with viscosity η, the
rotational correlation time can be roughly estimated by the Stokes-Einstein law

τr =
4πηr3

3kBT
. (3.8)

The effect of such tumbling on spectral lineshapes depends on the difference ∆ω between the
transition frequencies at any two orientations of the molecule. In the fast limit, τrmax (∆ω)� 1,
anisotropy is fully suppressed and only the isotropic average of the transition frequencies is
observed. This is analogous to the fast chemical exchange limit discussed in the NMR part of the
lecture course. For somewhat slower rotation, the transition frequency is modulated by molecular
tumbling on the time scale of the experiment. This leads to line broadening as it shortens
the transverse relaxation time T2. In the slow-tumbling regime, where τr∆ω ≈ 1, anisotropy
is incompletely averaged and line width attains a maximum. For τr∆ω � 1, the solid-state
spectrum is observed. Lineshapes can be quantitatively simulated in a framework of multi-site
exchange between the various orientations of the molecule. This is again analogous to two-site
chemical exchange, but more complicated to implement. The effects depend on magnetic field,
since ∆ω depends on magnetic field if g anisotropy contributes significantly to total anisotropy
of the transition frequency.

For the electron Zeeman interaction, fast tumbling leads to an average resonance field

B0,res =
hνmw

gisoµB
, (3.9)

with the isotropic g value giso = (gx + gy + gz) /3. Line broadening from g anisotropy is
almost negligible for small organic radicals in non-viscous solvents at X-band frequencies around
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9.5 GHz. At W-band frequencies of 94 GHz, such broadening can be substantial for organic
radicals. For transition metal complexes, this applies already at X-band frequencies. For large
macromolecules or in viscous solvents, solid-state like EPR spectra can be observed in liquid
solution.
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Figure 3.3: Powder line shape for a g tensor with axial symmetry. (a) The probability density to find an
orientation with polar angle θ is proportional to the circumference of a circle a angle θ on a unit sphere.
(b) Probability density P (θ). The effective g value at angle θ is
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Schematic powder line shape. The pattern corresponds to g⊥ > g|| for a field sweep and to g⊥ < g|| for a
frequency sweep. Because of the frame tilting, the isotropic value giso = (2g⊥ + g||)/3 is not encountered
at the magic angle, although the shift is small if ∆g = 2(g|| − g⊥)/3� giso.

3.3.2 Solid state
For a single-crystal sample, the resonance field at any given orientation can be computed by
Eq. (3.7). However, in most cases only microcrystalline powders are available or the sample is
measured in glassy frozen solution. Under such conditions, all orientations contribute equally.
With respect to the polar angles, this implies that φ is uniformly distributed, whereas the
probability to encounter a certain angle θ is proportional to sin θ (Figure 3.3). The line shape of
the absorption spectrum is most easily understood for axial symmetry of the g tensor. Transitions
are observed only in the range between the limiting resonance fields at g|| and g⊥. The spectrum
has a global maximum at g⊥, where sin (θ) attains its maximum of 1, and a minimum at g||,
where sin (θ) = 0.

In CW EPR spectroscopy we do not observe the absorption line shape, but rather its first
derivative.1 This derivative line shape has sharp features at the line shape singularities of the
absorption spectrum and very weak amplitude in between (Figure 3.4).

1This results from applying field modulation and detecting the signal at the modulation frequency by a lock-in
amplifier. Such a setup can provide sensitive narrow-band detection with an inherently broadband detector.
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Figure 3.4: Simulated X-band EPR spectra for systems with only g anisotropy. The upper panels show
absorption spectra as they can be measured by echo-detected field-swept EPR spectroscopy. The lower
panels show the first derivative of the absorption spectra as they are detected by continuous-wave EPR. The
unit-sphere pictures in the right upper panel visualize the orientations that are selected at the resonance
fields corresponding to the principal values of the g tensor.

Concept 3.3.1 — Orientation selection. For a powder sample or glassy frozen solution, different
resonance fields within the powder pattern correspond to different sets of orientations with
respect to the magnetic field. For an axial g tensor, near the resonance field of g|| only
orientations close to the z axis of the g tensor PAS are observed. In contrast, near the resonance
field for g⊥, orientations within the whole xy plane of the PAS contribute. For the case of
orthorhombic symmetry with three distinct principal values gx, gy, and gz , narrow sets of
orientations can be observed at the resonance fields corresponding to the extreme g values gx
and gz (see right top panel in Figure 3.4). At the intermediate principal value gy, a broad range
of orientations contributes, because the same resonance field can be realized by orientations
other than φ = 90◦ and θ = 90◦. Such orientation selection can enhance the resolution of
ESEEM and HYSCORE spectra (Chapter 6) and simplify their interpretation. It can complicate
interpretation of DEER data in terms of distance distributions (Chapter 7).



H
s

pz

C

Physical origin of the hyperfine interaction
Dipole-dipole hyperfine interaction
Fermi contact interaction
Spin polarization

Hyperfine Hamiltonian
Spectral manifestation of the hyperfine
interaction

Liquid-solution EPR spectra
Liquid-solution NMR spectra of paramagnetic
species
Solid-state EPR spectra
Solid-state NMR spectra of paramagnetic species

4 — Hyperfine Interaction

4.1 Physical origin of the hyperfine interaction

The magnetic moments of an electron and a nuclear spin couple by the magnetic dipole-dipole
interaction. This interaction is analogous to the dipole-dipole interaction between nuclear spins
discussed in the NMR part of the lecture course. The main difference to the NMR case is that,
in many cases, the point-dipole approximation for the electron spin is poor, as the electron is
distributed over the SOMO. In contrast, the nucleus can be considered as well localized in space.
We now picture the SOMO as a linear combination of atomic orbitals. Contributions from
spin density in an atomic orbital of another nucleus can be approximated by assuming that the
unpaired electron is a point-dipole localized at this other nucleus. The contributions from the
individual atomic orbitals that contribute to the SOMO simply add up (Section 4.1.1, Eq. (4.3)).
However, they must be added as tensors. The resulting sum tensor does not necessarily feature
the axial symmetry that applies to the tensor of two interacting point dipoles.

Complications arise for spin density in atomic orbitals on the same nucleus. Here, we have
to distinguish between different types of atomic orbitals. In s orbitals, the unpaired electron
has finite probability density for residing at the nucleus, at zero distance rSI to the nuclear spin.
Since the dipole-dipole interaction scales with r−3

SI , zero distance causes a singularity. This
singularity occurs in only a single point and can thus be treated mathematically, as has been done
by Fermi. The contribution of spin density in s orbitals on the nucleus under consideration is
therefore called Fermi contact interaction. Because of the spherical symmetry of s orbitals, the
Fermi contact interaction is purely isotropic.

For spin density in other orbitals (p, d, f orbitals) of the atom, the dipole-dipole interaction
with the nucleus of this atom must be averaged over the spatial distribution of the electron in these
orbitals. This average has no isotropic contribution. Therefore, spin density in p, d, f orbitals
does not influence resonance fields of fast tumbling paramagnetic species in liquid solution.
Neither does spin density in orbitals on other nuclei. Thus, the isotropic coupling results solely
from Fermi contact interaction with the nucleus under consideration. Hyperfine anisotropy can,
however, contribute to linewidth unless tumbling attains the fast limit τr∆ω � 1.

Since the isotropic and purely anisotropic contributions have different physical origin, we
separate them in the hyperfine tensor Aki that describes the interaction between electron spin Sk
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and nuclear spin Ii:

Aki = Aiso,ki

1 0 0
0 1 0
0 0 1

+ Tki , (4.1)

where Aiso,ki is the isotropic hyperfine coupling and Tki the purely anisotropic coupling. In the
following, we drop the electron and nuclear spin indices k and i.

4.1.1 Dipole-dipole hyperfine interaction
The anisotropic hyperfine coupling tensorT can be computed from the ground state wavefunction
ψ0 by applying the correspondence principle to the classical interaction between two point dipoles

Tij =
µ0

4π~
geµBgnµn

〈
ψ0

∣∣∣∣3rirj − δijr2

r5

∣∣∣∣ψ0

〉
. (4.2)

Such computations are implemented in quantum chemistry programs such as ORCA, ADF, or
Gaussian.

If the SOMO is considered as a linear combination of atomic orbitals, the contributions
from an individual orbital can be expressed as the product of spin density in this orbital with a
spatial factor. This spatial factor can be computed once for all. This may be less precise than a
numerical quantum-chemical computation, but provides more insight. The spatial factors have
been tabulated [KM85]. In general, nuclei of elements with larger electronegativity have larger
spatial factors. At the same spatial factor, as applies to isotopes of the same element, the hyperfine
coupling is proportional to the nuclear g value gn and thus proportional to the gyromagnetic ratio
of the nucleus. Hence, a deuterium coupling can be computed from a known proton coupling or
vice versa.

A special situation applies to protons, alkali metals and alkaline earth metals, which have
no significant spin densities in p-, d-, or f -orbitals. In this case, the anisotropic contribution
can only arise from through-space coupling to centers of spin density at other nuclei. In such a
distributed point-dipole approximation, the hyperfine tensor is given by

T =
µ0

4π~
geµBgnµn

∑
j 6=i

ρj
3~nij~n

T
ij −~1

R3
ij

, (4.3)

where the sum runs over all nuclei j with significant spin density ρj (summed over all orbitals
at this nucleus) other than nucleus i under consideration. The Rij are distances between the
nucleus under consideration and the centers of spin density, and the ~nij are unit vectors along
the direction from the considered nucleus to the center of spin density. For protons in transition
metal complexes, it is often a good approximation to consider spin density only at the central
metal ion. To a good approximation, the distance R from the proton to the central ion can then
be directly inferred from the anisotropic part of the hyperfine coupling.

Hyperfine tensor contributions T computed in any of these ways must be corrected for the
influence of SOC, if the g tensor is strongly anisotropic. If the dominant contribution to SOC
arises at a single nucleus, the hyperfine tensor at this nucleus1 can be corrected by

T(g) =
gT

ge
. (4.4)

1Most literature holds that the correction should be done for all nuclei. As pointed out by Frank Neese, this is not
true. An earlier discussion of this point is found in [Lef67]
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Usually, this is a good correction for the hyperfine coupling of the transition metal ion in a
mononuclear transition metal complex. The product gT may have an isotropic part, even though
T is purely anisotropic. This isotropic pseudocontact contribution depends on the relative
orientation of the g tensor and the spin-only dipole-dipole hyperfine tensor T. The correction
is negligible for most organic radicals, but not for paramagnetic metal ions. If significant SOC
arises at several centers, a correction is still necessary, but cannot be written as a function of the
g tensor.

4.1.2 Fermi contact interaction
The Fermi contact contribution takes the form

Aiso = ρs ·
2

3

µ0

~
geµBgnµn |ψ0(0)|2 , (4.5)

where ρs is the spin density in the s orbital under consideration, gn the nuclear g value and
µn = βn = 5.05078317(20) · 10−27 J T−1 the nuclear magneton (gnµn = γn~). The factor
|ψ0(0)|2 denotes the probability to find the electron at this nucleus in the ground state with wave
function ψ0 and has been tabulated [KM85].

H H
s s

pz pz

Pauli 
principle

electrostatic 
repulsion

C C

Figure 4.1: Transfer of spin density by the spin polarization mechanism. According to the Pauli principle,
the two electrons in the C-H bond orbital must have opposite spin state. If the unpaired electron resides in
a pz orbital on the C atom, the same spin state is slightly favored for other electrons on the same C atom,
as this minimizes electrostatic repulsion. Hence, for the electron at the H atom, the opposite spin state
(left panel) is slightly favored over the same spin state (right panel). It follows that positive spin density in
the pz orbital on the C atom induces some negative spin density in the s orbital on the H atom.

4.1.3 Spin polarization
Up to this point, the contributions to the hyperfine coupling could be understood in a single-
electron picture. Hartree-Fock methods in quantum chemistry would suffice to compute them.
Further contributions arise from correlation of electrons in a molecule. Assume that the pz orbital
on a carbon atom contributes to the SOMO, so that the α spin state of the electron is preferred in
that orbital (Fig. 4.1). Electrons in other orbitals on the same atom will then also have a slight
preference for the α state (left panel). This is because electrons with the same spin tend to avoid
each other, which reduces electrostatic repulsion.2 In particular, the spin configuration in the left
panel of Fig. 4.1 is slightly more preferable than the one in the right panel. According to the
Pauli principle, the two electrons in the s bond orbital of the C-H bond must have opposite spin.
Thus, the electron in the s orbital of the hydrogen atom directly bound to the spin-carrying carbon
atom has a slight preference for the β state. This corresponds to a negative isotropic hyperfine
coupling of the directly bound proton (α proton). This negative isotropic hyperfine coupling is

2Hund’s rule is also based on this preference of electrons on the same atom to have parallel spin.
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induced by and proportional to the positive hyperfine coupling of the adjacent carbon atom. The
effect is termed "spin polarization", although it has no physical relation to the polarization of
electron spin transitions in an external magnetic field.

Spin polarization is important, as it transfers spin density from p orbitals, where it is invisible
in liquid solution, to s orbitals of protons, where it is visible. Note also that carbon atoms have
low natural abundance of the magnetic isotope 13C, so that 13C hyperfine couplings lead to only
weak "satellite lines". The transfer of spin density occurs, both, in σ radicals, where the unpaired
electron is localized on a single atom, and in π radicals, where it is distributed over the π system.
The latter case is of larger interest, as the distribution of the π orbital over the nuclei can be
mapped by measuring and assigning the isotropic proton hyperfine couplings. This coupling can
be predicted by the McConnell equation

Aiso,H = QHρπ , (4.6)

where ρπ is the spin density at the adjacent carbon atom and QH is a parameter of the order of
−2.5 mT, which slightly depends on structure of the π system.
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e-2

e1

HOMO

LUMO SOMO

SOMO

Anion radicalNeutral molecule Cation radical

Figure 4.2: Mapping of the LUMO and HOMO of an aromatic molecule via measurements of hyperfine
couplings after one-electron reduction or oxidation. Reduction leads to an anion radical, whose SOMO is
a good approximation to the lowest unoccupied molecular orbital (LUMO) of the neutral parent molecule.
Oxidation leads to an cation radical, whose SOMO is a good approximation to the highest occupied
molecular orbital (HOMO) of the neutral parent molecule.

The McConnell equation is mainly applied for mapping the LUMO and HOMO of aromatic
molecules (Figure 4.2). An unpaired electron can be put into these orbitals by one-electron
reduction or oxidation, respectively, without perturbing the orbitals too strongly. The isotropic
hyperfine couplings of the hydrogen atom directly bound to a carbon atom report on the
contribution of the pz orbital of this carbon atom to the π orbital. The challenges in this mapping
are twofold. First, it is hard to assign the observed couplings to the hydrogen atoms unless a
model for the distribution of the π orbital is already available. Second, the method is blind to
carbon atoms without a directly bonded hydrogen atom.

4.2 Hyperfine Hamiltonian

We consider the interaction of a single electron spin S with a single nuclear spin I and thus
drop the sums and indices k and i in ĤHFI in Eq. (2.4). In general, all matrix elements of the
hyperfine tensor A will be non-zero after the Bleaney transformation to the frame where the
electron Zeeman interaction is along the z axis (see Eq. 3.5). The hyperfine Hamiltonian is then
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given by

ĤHFI =
(
Ŝx Ŝy Ŝz

)Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

ÎxÎy
Îz


= AxxŜxÎx +AxyŜxÎy +AxyŜxÎz

+AyxŜy Îx +AyyŜy Îy +AyzŜy Îz

+AzxŜz Îx +AzyŜz Îy +AzzŜz Îz . (4.7)

Note that the z axis of the nuclear spin coordinate system is parallel to the magnetic field vector
~B0 whereas the one of the electron spin system is tilted, if g anisotropy is significant. Hence, the
hyperfine tensor is not a tensor in the strict mathematical sense, but rather an interaction matrix.

In Eq. (4.7), the term AzzŜz Îz is secular and must always be kept. Usually, the high-field
approximation does hold for the electron spin, so that all terms containing Ŝx or Ŝy operators
are non-secular and can be dropped, as we already discussed in Section 2.2.3. The truncated
hyperfine Hamiltonian thus reads

ĤHFI,trunc = AzxŜz Îx +AzyŜz Îy +AzzŜz Îz . (4.8)

The first two terms on the right-hand side can be considered as defining an effective transverse
coupling that is the sum of a vector with length Azx along x and a vector of length Azy along
y. The length of the sum vector is B =

√
A2
zx +A2

zy. The truncated hyperfine Hamiltonian
simplifies if we take the laboratory frame x axis for the nuclear spin along the direction of this
effective transverse hyperfine coupling. In this frame we have

ĤHFI,trunc = AŜz Îz +BŜz Îx , (4.9)

where A = Azz quantifies the secular hyperfine coupling and B the pseudo-secular hyperfine
coupling. The latter coupling must be considered if and only if the hyperfine coupling violates
the high-field approximation for the nuclear spin (see Chapter 6).

If g anisotropy is very small, as is the case for organic radicals, the z axes of the two spin
coordinate systems are parallel. In this situation, and for a hyperfine tensor with axial symmetry,
A and B can be expressed as

A = Aiso + T (3 cos2 θHFI − 1)

B = 3T sin θHFI cos θHFI , (4.10)

where θHFI is the angle between the static magnetic field ~B0 and the symmetry axis of the
hyperfine tensor. T is the anisotropy of the hyperfine coupling. The principal values of the
hyperfine tensor areAx = Ay = A⊥ = Aiso−T andAz = A|| = Aiso +2T . The pseudo-secular
contribution B vanishes along the principal axes of the hyperfine tensor, where θHFI is either 0◦

or 90◦. It generally vanishes for a purely isotropic hyperfine coupling. Hence, the pseudo-secular
contribution can also be dropped when considering fast tumbling radicals in the liquid state.

We now consider the point-dipole approximation, where the electron spin is well localized
on the length scale of the electron-nuclear distance r and assume that T arises solely from
through-space interaction. This applies to hydrogen, alkali and earth alkali ions. We then find

T =
1

r3

µ0

4π~
geµBgnµn . (4.11)

For the moment, we assume that the pseudo-secular contribution is either negligible or can
be considered as a small perturbation. The other case is treated in Chapter 6. To first order,
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the hyperfine contribution to the energy levels is then given bymSmIA. In the EPR spectrum,
each nucleus with spin I generates 2I + 1 electron spin transitions with |∆mS | = 1 that can
be labeled by the values of mI = −I,−I + 1, . . . I . In the nuclear frequency spectrum, each
nucleus exhibits 2S + 1 transitions with |∆mI | = 1. For nuclear spins I > 1/2 in the solid
state, each transition is further split into 2I transitions by the nuclear quadrupole interaction.
The contribution of the secular hyperfine coupling to the electron transition frequencies ismIA,
whereas it ismSA for nuclear transition frequencies. In both cases, the splitting between adjacent
lines of a hyperfine multiplet is given by A.
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Figure 4.3: Hyperfine splitting in the EPR spectrum of the phenyl radical. The largest hyperfine coupling
for the two equivalent ortho protons generates a triplet of lines with relative intensities 1:2:1. The medium
coupling to the two equivalent meta proton splits each line again into a 1:2:1 pattern, leading to 9 lines
with an intensity ratio of 1:2:1:2:4:2:1:2:1. Finally, each line is split into a doublet by the small hyperfine
coupling of the para proton, leading to 18 lines with intensity ratio 1:1:2:2:1:1:2:2:4:4:2:2:1:1:2:2:1.

4.3 Spectral manifestation of the hyperfine interaction

4.3.1 Liquid-solution EPR spectra
Each nucleus splits each electron spin transition into 2I + 1 transitions with different frequencies.
Hence, the number of EPR transitions is

∏
i(2Ii + 1). Some of these transitions may coincide, if

hyperfine couplings are the same or integer multiples of each other. An important case, where
hyperfine couplings are exactly the same, are chemically equivalent nuclei. For instance, two
nuclei I1 = I2 = 1/2 can have spin state combinations α1α2, α1β2, β1α2, and β1β2. The
contributions to the transition frequencies are (A1 +A2)/2, (A1 −A2)/2, (−A1 +A2)/2, and
(−A1 − A2)/2. For equivalent nuclei with A1 = A2 = A only three lines are observed with
hyperfine shifts of A, 0, and −A with respect to the electron Zeeman frequency. The unshifted
center line has twice the amplitude of the shifted lines, leading to a 1:2:1 pattern with splitting A.
For k equivalent nuclei with Ii = 1/2 the number of lines is k+ 1 and the relative intensities can
be inferred from Pascal’s triangle. In general, for a group of ki equivalent nuclei with arbitrary
spin quantum number Ii the number of lines (multiplicity) is 2kiIi + 1. Multiplicities of groups
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of equivalent nuclei multiply. Hence, the total number of EPR lines is

nEPR =
∏
i

(2kiIi + 1) , (4.12)

where index i runs over the groups of equivalent nuclei.
Figure 4.3 illustrates, on the example of the phenyl radical, how the multiplet pattern arises.

For radicals with more extended π systems, the number of lines can be very large and it may
become impossible to fully resolve the spectrum. Even if the spectrum is fully resolved, analysis
of the multiplet pattern may be a formidable task. An algorithm that works well for analysis of
patterns with a moderate number of lines, at sufficiently large signal-to-noise ratio for seeing the
outermost lines, is given in [CCM16].

a b

Figure 4.4: Topologies of an electron-nuclear spin system for EPR spectroscopy (a) and of a nuclear spin
system typical for NMR spectroscopy (b). Because of the much larger magnetic moment of the electron
spin, the electron spin "sees" all nuclei, while each nuclear spin in the EPR case sees only the electron
spin. In the NMR case, each nuclear spin sees all other nuclear spins. This gives rise to very rich, but
harder to analyze spectra, especially in the solid state.

4.3.2 Liquid-solution NMR spectra of paramagnetic species
The situation that we discuss here corresponds to the regime where EPR spectra can be taken. In
this regime, NMR lines are strongly broadened and are best detected indirectly via the electron
spin. If electron spin longitudinal relaxation rate is much higher than hyperfine couplings,
hyperfine interaction manifests as a temperature-dependent chemical shift contribution. In this
regime, paramagnetic NMR can be performed with standard NMR spectrometers. This is beyond
the scope of our lecture course.

As mentioned in Section 2.2.3, the secular hyperfine coupling A can be inferred from either
EPR or NMR spectra, with lines being narrower in the NMR spectra. Another advantage of
NMR spectra arises from the fact that the electron spin interacts with all nuclear spins whereas
each nuclear spin interacts with only one electron spin (Figure 4.4). The number of lines in NMR
spectra thus grows only linearly with the number of nuclei,3 whereas it grows exponentially in
EPR spectra. In liquid solution, each group of equivalent nuclear spins adds 2S + 1 lines, so that
the number of lines for Neq such groups is

nNMR = (2S + 1)Neq . (4.13)

Most paramagnetic species that can be observed in liquid solution have S = 1/2, leading to NMR
spectra with one doublet per nucleus for I = 1/2. In solution, this also applies to quadrupolar
nuclei with I > 1/2.

3Nuclear-nuclear couplings change that, but are unresolved for paramagnetic species
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Figure 4.5: Energy level schemes (a,c) and nuclear frequency spectra (b,d) in the weak hyperfine
coupling (a,b) and strong hyperfine coupling (c,d) cases for an electron-nuclear spin system S = 1/2,
I = 1/2. Here, ωI is assumed to be negative and A is assumed to be positive. (a) In the weak-coupling
case, |A|/2 < |ωI |, the two nuclear spin transitions (green) have frequencies |ωI | ± |A|/2. (b) In the
weak-coupling case, the doublet is centered at frequency |ωI | and split by |A|. (c) In the strong-coupling
case, |A|/2 > |ωI |, levels cross for one of the electron spin states. The two nuclear spin transitions (green)
have frequencies |A|/2± |ωI |. (d) In the strong-coupling case, the doublet is centered at frequency |A|/2
and split by 2|ωI |.

A complication in interpretation of nuclear frequency spectra arises if the hyperfine interaction
of some nuclei is larger than the nuclear Zeeman interaction. For these nuclei, the doublet is
centered at A/2 and split by 2ωI , as explained in Section 2.2.3. This is illustrated in Figure 4.5.
In the weak-coupling case with |A|/2 < |ωI |, which applies to two of the three doublets of the
phenyl radical (Figure 4.6), the doublet is centered at |ωI | and split by |A|. In the strong-coupling
case, hyperfine sublevels cross for one of the electron spin states and the nuclear frequency
|ωI | − |A|/2 formally becomes negative. As the sign of the frequency is not detected, this line
is found at frequency |A|/2 − |ωI | instead. In other words, the line is "mirrored" at the zero
frequency. This results in the doublet centered at frequency |A|/2 and split by 2|ωI |.

In well resolved liquid-state spectra, this situation can often be recognized easily, since the
nuclear Zeeman frequency |ωI | can only assume a few values. If one has a hypotheis for the
structure of a radical, these values are known. Figure 4.6 illustrates how the NMR spectrum of
the phenyl radical is constructed based on such considerations. The spectrum has only 6 lines,
compared to the 18 lines that arise in the EPR spectrum in Figure 4.3. This spectrum cannot be
detected with a standard NMR spectrometer, as at is much broader than the bandwidth of the
electronic components used in such spectrometers. Furthermore, because of the large spectral
width and the large linewidth, sensitivity of direct NMR detection is very poor. Such spectra can
be indirectly detected by ENDOR techniques.

4.3.3 Solid-state EPR spectra
In the solid state, construction of the EPR spectra is complicated by the fact that the electron
Zeeman interaction is anisotropic. At each individual orientation of the molecule, the spectrum
looks like the pattern in liquid state, but both the central frequency of the multiplet and the
hyperfine splittings depend on orientation. As these frequency distributions are continuous,
resolved splittings are usually observed only at singularities of the line shape pattern, which



4.3 Spectral manifestation of the hyperfine interaction 29

1
w( H)

12w( H)

1w( H)

1w( H)

1w( H)

0

0

0

0

A3

A1

A2

A /23

wNMR

a

b

c

d

Figure 4.6: Schematic NMR (nuclear frequency) spectrum of the phenyl radical at an X-band frequency
where ωI/(2π) ≈ 14 MHz. (a) Subspectrum of the two equivalent ortho protons. The strong-coupling
case applies. (b) Subspectrum of the two equivalent meta protons. The weak-coupling case applies. (c)
Subspectrum of the para proton. The weak-coupling case applies. (d) Complete spectrum.

correspond to principal values of the interaction with the largest anisotropy. For organic radicals at
X-band frequencies, often hyperfine anisotropy dominates. At high frequencies, or for transition
metal ions, often electron Zeeman anisotropy dominates. The exact line shape depends not only
on the principal values of the g tensor and the hyperfine tensors, but also on relative orientation
of their PASs. The general case is complicated and requires numerical simulations, for instance,
by EasySpin.
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Figure 4.7: Construction of a solid-state EPR spectrum for a copper(II) complex with four equivalent
ligands and square planar coordination. The g|| and A|| principal axes directions coincide with the C4

symmetry axis of the complex (inset). (a) Subspectra for the four nuclear spin states with different
magnetic spin quantum numbermI . (b) Absorption spectrum. (c) Derivative of the absorption spectrum.

However, simple cases are quite often encountered, where the hyperfine interaction of only
one nucleus dominates and the PASs of the g and hyperfine tensor coincide. For instance, Cu(II)
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complexes are often square planar. If all four ligands are the same, they have a C4 symmetry
axis. For a Cn axis with n ≥ 3, the g tensor necessarily has axial symmetry and the Cn axis
is the unique axis. For the same reason, the hyperfine tensors of 63Cu and 65Cu have axial
symmetry and the same unique axis. The two isotopes both have spin I = 3/2 and very similar
gyromagnetic ratios. The spectra can thus be understood by considering one electron spin
S = 1/2 and one nuclear spin I = 3/2 with axial g and hyperfine tensors with a coinciding
unique axes.

In this situation, the subspectra for each of the nuclear spin statesmI = −3/2,−1/2,+1/2,
and +3/2 have the same shape as shown in Figure 3.3. They do have different width and different
centers. The resonance fields can be computed by solving

~ωmw = µBB0,res

√
2g2
⊥ sin2 θ + g2

|| cos2 θ +mI

[
Aiso + T

(
3 cos2 θ − 1

)]
, (4.14)

for B0,res, where θ is the angle between the C4 symmetry axis and the magnetic field vector ~B0.
The singularities are encountered at θ = 0◦ and θ = 90◦ and correspond to angular frequencies
µBB0g|| +mIA|| and µBB0g⊥ +mIA⊥.

The construction of a Cu(II) EPR spectrum according to these considerations is shown in
Figure 4.7. The values of g|| and A|| can be inferred by analyzing the singularities near the
low-field edge of the spectrum. Near the high-field edge, the hyperfine splitting A⊥ is usually
not resolved. Here, g⊥ corresponds to the maximum of the absorption spectrum and to the zero
crossing of its derivative.
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Figure 4.8: Solid-state nuclear frequency spectra for cases with negative nuclear Zeeman frequency
ωI . (a) Weak-coupling case with Aiso > 0 and Aiso > T . (b) Weak-coupling case with Aiso < 0 and
|Aiso| > T . (c) Strong-coupling case with Aiso > 0 and Aiso > T . (d) Strong-coupling case with
Aiso < 0 and |Aiso| > T .
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4.3.4 Solid-state NMR spectra of paramagnetic species
In NMR spectra, the situation is again simpler. This is because the nuclear Zeeman frequency
is isotropic and chemical shift anisotropy is negligibly small compared to hyperfine anisotropy.
Furthermore, resolution is much better than in EPR spectra for the reasons discussed above. As a
consequence, smaller hyperfine couplings and anisotropies can be detected. If anisotropy of the
hyperfine coupling is dominated by through-space dipole-dipole coupling to a single center of
spin density, as is often the case for protons, the hyperfine tensor has nearly axial symmetry.. The
same applies if the dominant contribution comes from spin density in a single p or d orbital. In
these situations, one can infer from the line shapes whether the weak- or strong-coupling case
applies and whether the isotropic hyperfine coupling is positive or negative (Figure 4.8). The case
with Aiso = 0 corresponds to the Pake pattern discussed in the NMR part of the lecture course.
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5 — Electron-Electron Interactions

In this Chapter, we first consider the simplest case of two unpaired electrons. We then extend the
treatment to more than two unpaired electrons. The latter situation is encountered for high-spin
transition metal complexes and for rare-earth ion complexes.

5.1 Exchange interaction
5.1.1 Physical origin and consequences

If two unpaired electrons occupy SOMOs in the same molecule or in spatially close molecules,
the wave functions ψ1 and ψ2 of the two SOMOs may overlap. The two unpaired electrons can
couple either to a singlet state or to a triplet state. The energy difference between the singlet and
triplet state is the exchange integral

J = −2e2

∫ ∫
ψ∗1 (r1)ψ∗2 (r2)ψ1 (r2)ψ2 (r1)

|~r1~r2|
d~r1d~r2 (5.1)

There exist different conventions for the sign of J and the factor 2 may be missing in parts
of the literature. With the sign convention used here, the singlet state is lower in energy for
positive J . The singlet state S with spin wave function (|αβ〉 − |βα〉)/

√
2 is antisymmetric

with respect to exchange of the two electrons. Since electrons are Fermions, this corresponds to
the situation where the two electrons could also occupy the same orbital. Such bonding orbital
overlap corresponds to antiferromagnetic spin ordering. For negative J , the triplet state is lower
in energy, orbital overlap is anti-bonding and spin ordering ferromagnetic.

The triplet state has three substates with wave functions |αα〉 for the T+ state, (|αβ〉 +
|βα〉)/

√
2 for the T0 state, and |ββ〉 for the T− state. The T+ and T− state are eigenstates both

in the absence and presence of the J coupling. The states S and T0 are eigenstates for J � ∆ω,
where ∆ω is the difference between the electron Zeeman frequencies of the two spins. This is
the strong-exchange case, where the coupled representation is more convenient. For the opposite
case of ∆ω � J , the eigenstates are |αβ〉 and |βα〉. This case corresponds to the high-field
approximation with respect to the exchange interaction. Here, the uncoupled representation is
more convenient. Note that large hyperfine coupling can complicate the situation by mixing the
T+ and T− states with the S − T0 manifold.

For strong exchange, J � ∆ω, the energies are approximately −(3/4)J for the singlet state
and J/4−ωS , J/4 and J/4 +ωS for the triplet substates T−, T0, and T+, respectively, where ωS
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is the electron Zeeman interaction for the group spin S = 1. If J � 2πνmw, microwave photons
with energy hνmw cannot excite transitions between the singlet and triplet subspace. The two
subspaces can then be considered separately from each other. The singlet subspace corresponds
to a diamagnetic molecule and does not contribute to EPR spectra. The spin Hamiltonian of
the triplet subspace, corresponding to group spin S = 1, does not depend on J , since exchange
coupling shifts all levels in this subspace by the same energy.

For J < 0, the triplet state is the ground state and thus observable by EPR spectroscopy.
More often, J > 0 and the singlet state is the ground state. As long as ~J does not exceed thermal
energy kBT by a large factor, the triplet state is thermally populated and observable. In this case,
the EPR signal amplitude may increase rather than decrease with increasing temperature. For
organic molecules, this situation is also rare. If ~J � kBT and J > 0, the compound does not
give an EPR signal. In order to observe the triplet state by transient EPR, the system must be
photoexcited and intersystem crossing to the triplet state must occur.

Weak exchange coupling is observed in biradicals with well localized SOMOs that are
separated by more than about 0.5 nm (5 Å). Such systems are more conveniently described in
an uncoupled representation with two spins S1 = 1/2 and S2 = 1/2. In this regime, exchange
coupling J decreases exponentially with the distance between the two electrons. If the two
centers are not linked by a continuous chain of conjugated bonds, exchange coupling is rarely
resolved at distances larger than 1.5 nm. At such distances, the exchange coupling is then by more
than an order of magnitude smaller than dipole-dipole coupling between the two electrons. If the
two centers are linked by a continuous chain of conjugated bonds, exchange coupling may exceed
dipole-dipole coupling up to much longer distances. In such systems, |J | decreases exponentially
with the number of conjugated bonds. These considerations apply if the medium is a dielectric.
In conducting or semi-conducting media, exchange coupling through the medium can be relevant
up to longer distances.

Exchange coupling is also significant during diffusional encounters of two paramagnetic
molecules in liquid solution. Such dynamic Heisenberg spin exchange can be pictured as physical
exchange of unpaired electrons between the colliding molecules. This causes a sudden change of
the spin Hamiltonian, which leads to spin relaxation. A typical example is line broadening in
liquid-state EPR spectra of radicals by oxygen, which has a paramagnetic triplet ground state. If
radicals of the same type collide, line broadening is also observed, but the effects on the spectra
can be more subtle, since the spin Hamiltonians of the colliding radicals are the same. In this
case, exchange of unpaired electrons between the radicals changes only spin state, but not the
spin Hamiltonian.

5.1.2 Exchange Hamiltonian
The spin Hamiltonian contribution by weak exchange coupling is

ĤEX = J
(
Ŝ1xŜ2x + Ŝ1yŜ2y + Ŝ1zŜ2z

)
. (5.2)

This Hamiltonian is analogous to the J coupling Hamiltonian in NMR spectroscopy. If the two
spins have different g values and the field is sufficiently high (∆gµBB0/~� J) (∆g = |g1 − g2|),
the exchange Hamiltonian can be truncated in the same way as the J coupling Hamiltonian in
heteronuclear NMR:

ĤEX,trunc = JŜ1zŜ2z . (5.3)

5.1.3 Spectral manifestation of the exchange interaction
In the absence of hyperfine coupling, the situation is the same as for J coupling in NMR
spectroscopy. However, note the missing factor 2π in the EPR convention. Exchange coupling
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between like spins (same electron Zeeman frequency) does not influence the spectra. For radicals
in liquid solution, hyperfine coupling is usually observable. In this case, exchange coupling
does influence the spectra even for like spins, as illustrated in Figure 5.1. We consider two
exchange-coupled electron spins S1 = 1/2 and S2 = 1/2 with each of them coupled exclusively
to only one nuclear spin (I1 = 1 and I2 = 1, respectively). For simplicity, we assume the same
hyperfine coupling Aiso. If the exchange coupling is much smaller than the isotropic hyperfine
coupling, each of the individual lines of the hyperfine triplet further splits into three lines. If
the splitting is very small, it may be noticeable only as a line broadening. For |J | � Aiso,
the electron spins are uniformly distributed over the two exchange-coupled moieties. Hence,
each of them has the same hyperfine coupling to both nuclei. This coupling is half the original
hyperfine coupling, since, on average, the electron spin has only half the spin density in the
orbitals of a given nucleus as compared to the case without exchange coupling. For intermediate
exchange couplings, complex splitting patterns arise that are characteristic for the ratio between
the exchange and hyperfine coupling.

335 335340 340345 345

Magnetic field [mT] Magnetic field [mT]

J/A = 0 J/A = 1
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J/A = 100

J/A = 0.1
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Figure 5.1: Influence of the exchange coupling J on EPR spectra with hyperfine coupling in liquid
solution (simulation). Spectra are shown for two electron spins S1 = 1/2 and S2 = 1/2 with the same
isotropic g value and the same isotropic hyperfine coupling to a nuclear spin I1 = 1 or I2 = 1, respectively.
In the absence of exchange coupling, a triplet with amplitude ratio 1:1:1 is observed. For small exchange
couplings, each line splits into a triplet. At intermediate exchange couplings, complicated patterns with
many lines result. For very strong exchange coupling, each electron spin couples to both nitrogen nuclei
with half the isotropic hyperfine coupling. A quintuplet with amplitude ratio 1:2:3:2:1 is observed.

5.2 Dipole-dipole interaction

5.2.1 Physical picture

The magnetic dipole-dipole interaction between two localized electron spins with magnetic
moments µ1 and µ2 takes the same form as the classical interaction between two magnetic point
dipoles. The interaction energy

E = −µ0

4π
· µ1µ2 ·

1

r3
· (2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ) . (5.4)
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generally depends on the two angles θ1 and θ2 that the point dipoles include with the vector
between them and on the dihedral angle φ (Figure 5.2). The dipole-dipole interaction scales with
the inverse cube of the distance between the two point dipoles.

In general, the two electron spins are spatially distributed in their respective SOMOs. The
point-dipole approximation is still a good approximation if the distance r is much larger than the
spatial distribution of each electron spin. Further simplification is possible if g anisotropy is
much smaller than the isotropic g value. In that case, the two spins are aligned parallel to the
magnetic field and thus also parallel to each other, so that θ1 = θ2 = θ and φ = 0. Eq. (5.4)
then simplifies to

E = −µ0

4π
· µ1µ2 ·

1

r3
·
(
3 cos2 θ − 1

)
, (5.5)

which is the form known from NMR spectroscopy.
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Figure 5.2: Geometry of two magnetic point dipoles in general orientation. Angles θ1 and θ2 are included
between the respective magnetic moment vectors ~µ1 or ~µ2 and the distance vector ~r between the point
dipoles. Angle φ is the dihedral angle.

5.2.2 Dipole-dipole Hamiltonian
We first consider the case of weak exchange coupling, where we can describe the situation in the
more familiar uncoupled representation.

For two electron spins that are not necessarily aligned parallel to the external magnetic field,
the dipole-dipole coupling term of the spin Hamiltonian assumes the form

Ĥdd = ŜT
1 DŜ2 =

1

r3
· µ0

4π~
· g1g2µ

2
B

[
Ŝ1Ŝ2 −

3

r2

(
Ŝ1~r
)(

Ŝ2~r
)]

. (5.6)

If the electrons are distributed in space, the Hamiltonian has to be averaged (integrated) over the
two spatial distributions, since electron motion proceeds on a much faster time scale than an EPR
experiment.

If the two unpaired electrons are well localized on the length scale of their distances and their
spins are aligned parallel to the external magnetic field, the dipole-dipole Hamiltonian takes the
form

Ĥdd =
1

r3
· µ0

4π~
· g1g2µ

2
B

[
Â+ B̂ + Ĉ + D̂ + Ê + F̂

]
. (5.7)
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with the terms of the dipolar alphabet

Â = Ŝz Îz
(
1− 3 cos2 θ

)
, (5.8)

B̂ = −1

4

[
Ŝ+Î− + Ŝ−Î+

] (
1− 3 cos2 θ

)
, (5.9)

Ĉ = −3

2

[
Ŝ+Îz + Ŝz Î

+
]

sin θ cos θe−iφ , (5.10)

D̂ = −3

2

[
Ŝ−Îz + Ŝz Î

−
]

sin θ cos θeiφ , (5.11)

Ê = −3

4
Ŝ+Î+ sin2 θe−2iφ , (5.12)

F̂ = −3

4
Ŝ−Î− sin2 θe2iφ . (5.13)
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Figure 5.3: Explanation of dipole-dipole coupling between two spins in a local field picture. At the
observer spin (blue) a local magnetic field is induced by the magnetic moment of the coupling partner
spin (red). In the secular approximation, only the z component of this field is relevant, which is parallel or
antiparallel to the external magnetic field ~B0. The magnitude of this z component depends on angle θ
between the external magnetic field and the spin-spin vector ~r. For the α (left) and β (right) states of
the partner spin, the local field at the observer spin has the same magnitude, but opposite direction. In
the high-temperature approximation, both these states are equally populated. The shift of the resonance
frequency of the observer spin by the presence of the coupling partner leads to a doublet splitting of the
observer spin transition. The splitting is twice the product of the local field induced by the coupling
partner multiplied with the gyromagnetic ratio of the observer spin.

Usually, EPR spectroscopy is performed at fields where the electron Zeeman interaction is
much larger than the dipole-dipole coupling. The latter has a magnitude of about 50 MHz at a
distance of 1 nm and of 50 kHz at a distance of 10 nm. In this situation, the terms Ĉ, D̂, Ê, and
F̂ are non-secular and can be dropped. The B̂ term is pseudo-secular and can be dropped only if
the difference between the two electron Zeeman frequencies, |ωS,1 − ωS,2|, is much larger than
the dipole-dipole coupling1. In electron electron double resonance (ELDOR) experiments, the
difference of the Larmor frequencies of the two coupled spins can be selected via the difference
of the two microwave frequencies used for exciting the observer spin and its coupling partner. It
is thus possible to excite spin pairs for which only the secular part of the spin Hamiltonian needs
to be considered,

Ĥdd = ω⊥
(
1− 3 cos2 θ

)
Ŝz Îz , (5.14)

with

ω⊥ =
1

r3
· µ0

4π~
· g1g2µ

2
B . (5.15)

1Hyperfine coupling of the electron spins can modify this condition.
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In this situation, the dipole-dipole coupling has a simple dependence on the angle θ between
the external magnetic field ~B0 and the spin-spin vector ~r. It can be interpreted as the interaction
of the spin with the z component of the local magnetic field that is induced by the magnetic
dipole moment of the coupling partner (Figure 5.3). The dipole-dipole interaction vanishes under
fast isotropic motion, since the average of the second Legendre polynomial

(
1− 3 cos2 θ

)
/2

over all angles θ vanishes. Measurements of this interaction are therefore performed in the solid
state.

The dipole-dipole tensor in the secular approximation has the eigenvalues (ω⊥, ω⊥,−2ω⊥).
The dipole-dipole coupling d at any orientation θ is given by

d = ω⊥
(
1− 3 cos2 θ

)
. (5.16)
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Figure 5.4: Energy level scheme (a) and schematic spectrum (b) for a dipole-dipole coupled spin pair
at fixed orientation θ with respect to the magnetic field. The electron Zeeman frequencies of the two
spins are ωA and ωB, respectively. Weak coupling d� |ωA − ωB| is assumed. The dipolar splitting d is
the same for both spins. Depending on homogeneous linewidth 1/T2, the splitting may or may not be
resolved. If ωA and ωB are distributed, for instance by g anisotropy, resolution is lost even for d > 1/T2.

5.2.3 Spectral manifestation of the dipole-dipole interaction
The energy level scheme and a schematic spectrum for a spin pair with fixed angle θ are shown in
Figure 5.4a and b, respectively. The dipole-dipole coupling splits the transition of either coupled
spin by d. If the sample is macroscopically isotropic, for instance a microcrystalline powder
or a glassy frozen solution, all angles θ occur with probability sin θ. Each line of the dipolar
doublet is then broadened to a powder pattern as illustrated in Figure 3.3. The powder pattern for
the β state of the partner spin is a mirror image of the one for the α state, since the frequency
shifts have opposite sign for the two states. The superposition of the two axial powder patterns is
called Pake pattern (Figure 5.5). The center of the Pake pattern corresponds to the magic angle
θmagic = arccos

√
1/3 ≈ 54.7◦. The dipole-dipole coupling vanishes at this angle.

The Pake pattern is very rarely observed in an EPR spectrum, since usually other anisotropic
interactions are larger than the dipole-dipole interaction between electron spins. If the weak-
coupling condition d� |ωA − ωB| is fulfilled for the vast majority of all orientations, the EPR
lineshape is well approximated by a convolution of the Pake pattern with the lineshape in the
absence of dipole-dipole interaction. If the latter lineshape is known, for instance from measuring
analogous samples that carry only one of the two electron spins, the Pake pattern can be extracted
by deconvolution and the distance between the two electron spins can be inferred from the
splitting ω⊥ by inverting Eq. (5.15).



38 Electron-Electron Interactions

w/w^

w^

w  = 2w|| ^

-w /2||

-1.5 -1 -0.5 0 0.5 1 1.5 q 0 35 54.7 90°

a b

0

30

60

90

q (°)

Figure 5.5: Pake pattern observed for a dipole-dipole coupled spin pair. (a) The splitting of the dipolar
doublet varies with angle θ between the spin-spin vector and the static magnetic field. Orientations have
a probability sin θ. (b) The sum of all doublets for a uniform distribution of directions of the spin-spin
vector is the Pake pattern. The "horns" are split by ω⊥ and the "shoulders" are split by ω|| = 2ω⊥. The
center of the pattern corresponds to the magic angle.

5.3 Zero-field interaction

5.3.1 Physical picture

If two unpaired electrons are strongly exchange coupled, then they are best described in the
coupled representation. The singlet state with S = 0 is diamagnetic and thus not observable by
EPR. In the high-field approximation, the three sublevels of the triplet state correspond tomagnetic
quantum numbers mS = −1, 0, and +1 and are labelled T−, T0, and T+. Splitting between
these levels is dominated by the electron Zeeman interaction. The transitionsmS = −1↔ 0 and
mS = 0↔ +1 are allowed electron spin transitions, whereas the transitionmS = −1↔ +1 is
a forbidden double-quantum transition.

At zero magnetic field, the electron Zeeman interaction vanishes and the magnetic quantum
number mS is not a good quantum number. Yet, the three triple sublevels are not degenerate.
They exhibit zero-field splitting (ZFS). This is because the two unpaired electrons are also
dipole-dipole coupled. To infer the ZFS, we need to transform the dipole-dipole part of the
spin Hamiltonian from the uncoupled representation to the coupled representation, i.e., from
the expression for the S1 = 1/2, S2 = 1/2 system given above to an expression for the triplet
state with S = 1. By integration of Eq. (5.6) over the spatial distribution of the two electron
spins in their respective SOMOs we obtain the a ZFS tensorD that can be cast in a form where it
describes coupling of the group spin S = 1 with itself [Rie07]. Since for each configuration of
the two electron spins, the dipole-dipole coupling is purely anisotropic, its integral over both
SOMOs must be purely anisotropic, too. However, although for each configuration of the two
electron spins, the dipole-dipole coupling has axial symmetry, the ZFS tensor does not necessarily
have axial symmetry. This is because the unique axes differ between the different configurations.
In general, the ZFS tensor has axial symmetry only if the system has a Cn symmetry axis with
n ≥ 3. In that case, it can be parametrized by a single value D. If the ZFS tensor is non-axial,
a second parameter E is required (see Section 5.3.4). The ZFS tensor vanishes if the system
has tetrahedral or cubic symmetry. The triplet sublevels at zero field are related to the principal
axes directions of the zero-field interaction tensor and are therefore labeled Tx, Ty, and Tz . For
transition metal and rare earth ions, spin-orbit coupling causes an additional contribution to
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the ZFS tensor. Quantum-chemical prediction of the zero-field interaction is an active field of
research. Quite reasonable predictions can be obtained for transition metal ions, whereas only
order-of-magnitude estimates are usually possible for rare earth ions.

5.3.2 Extension to more than two electrons

The concept of the coupled representation can be extended to an arbitrary number n of strongly
coupled electron spins. Cases with up to 5 strongly coupled unpaired electrons occur for transition
metal ions (d shell) and cases with up to 7 strongly coupled unpaired electrons occur for rare earth
ions (f shell). According to Hund’s rule , in the absence of a ligand field the state with largest
group spin S = n/2 is the ground state. This is because all d or f orbitals are degenerate for a
bare ion and distributing the electrons as widely as possible among them minimizes Coulomb
repulsion. The state with maximum group spin S is called the high-spin state. A ligand field
removes degeneracy. If this leads to an energy splitting between the d (or f) levels that exceeds
pairing energy, the lower orbitals are doubly occupied before higher levels are populated. Usually
this leads to the low-spin state, which is the state with the smallest possible group spin S. For an
even number of electrons, this is a diamagnetic S = 0 state. Such systems are EPR silent. For an
odd number of electrons, one unpaired electron is left and the low-spin state has S = 1/2. In a
few cases, intermediate spin states are observed. Spin-crossover from a high-spin to a low -spin
state may happen in some systems upon change in temperature.

5.3.3 Kramers and non-Kramers ions

We first consider a triplet species, S = 1, with zero-field states Tx, Ty, and Tz . Their energies
are −2D/3, D/3− E, and D/3 +E, so that the transition frequencies are 2|E|, |D − E|, and
|D + E|. By convention, the parameters are chosen such that |E| ≤ |D|/3. Hence, none of the
transition frequencies is lower than 2|E|. If the largest attainable microwave frequency is lower
than 2|E|, none of the transitions can be excited at zero field. If |D| and |E| are sufficiently large,
this may still apply at the largest magnetic fields B0 that can be attained, since the levels shift by
no more than gµBB0/~. Although the system is paramagnetic, it may thus be ’EPR-silent’ for
practical purposes, i.e., in the whole range of accessible microwave frequencies and magnetic
fields. The same phenomenon can occur for systems with an even number n > 2 of unpaired
electrons that have integer spin S. Transition metal ions with this property are called non-Kramers
ions. Most non-Kramers ions are hard to access by EPR spectroscopy, unless the ZFS tensor has
axial symmetry (E = 0). Typical examples are Fe(II) (3d6, S = 2) and Ni(II) (3d8, S = 1).

The situation is different for an odd number n > 1 of unpaired electrons. A theorem by
Kramers implies that all energy levels of such systems are at least doubly degenerate at zero field.
These pairs of levels are associatedwithmagnetic quantumnumbers±mS (mS = 1/2, 3/2, . . . S).
At non-zero magnetic fields these pairs of levels split, to first order, by 2mSgµBB0/~. The
’central transition’, |−1/2〉 ↔ |+1/2〉 is allowed in the high-field approximation. The transitions
between levels that are degenerate at zero field are observable even if D and E are very large.
Such Kramers ions are thus accessible to EPR even in their high-spin states. Typical examples
are Fe(III) (3d6, S = 5/2) and Co(II) (3d7, S = 3/2).

5.3.4 Zero-field interaction Hamiltonian

The zero-field interaction Hamiltonian is usually given as

ĤZFI =
~̂
STD

~̂
S , (5.17)
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where T denotes the transpose of the spin vector operator. In the principal axes system of the
zero-field splitting (ZFS) tensor, the Hamiltonian simplifies to

ĤZFI = DxŜ
2
x +DyŜ

2
y +DzŜ

2
z

= D

[
S2
z −

1

3
S (S + 1)

]
+ E

(
S2
x − S2

y

)
. (5.18)

where D = 3Dz/2 and E = (Dx −Dy)/2. Note the squared spin operators. As mentioned
above, the reduction to two parameters is possible, since D is a purely anisotropic, i.e., traceless
tensor. TheD,E notation presumes thatDz is the principal value with the largest absolute value
(D can be negative). Together with the absence of an isotropic component, this means that Dy,
which is always the intermediate value, is either closer to Dx than to Dz or exactly in the middle
between these two values. Accordingly, |E| ≤ |D/3|. At axial symmetry E = 0. At cubic
symmetry, both D and E are zero. For group spin S ≥ 2, the leading term of the ZFS is then a
hexadecapolar contribution that scales with the fourth power of the spin operators (Ŝ4

x, Ŝ
4
y , Ŝ

4
z ).

In the high-field approximation, the ZFS contribution to the Hamiltonian is a ωDS2
z term.

In other words, to first order in perturbation theory the contribution of the ZFS to the energy
of a spin level with magnetic quantum numbermS scales withm2

S . For an allowed transition
mS ↔ mS + 1, this contribution is ωD (2mS + 1). This contribution vanishes for the central
transitionmS = −1/2↔ 1/2 of Kramers ions. More generally, because of the scaling of the
level energies withm2

S , the first-order contribution of ZFS to transition frequencies vanishes for
all −mS ↔ +mS transitions.
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Figure 5.6: Schematic CW EPR spectra for triplet states (S = 1) at high field. Simulations were
performed at an X-band frequency of 9.6 GHz. (a) Axial symmetry (D = 1 GHz, E = 0). The spectrum
is the derivative of a Pake pattern. (b) Orthorhombic symmetry (D = 1 GHz, E = 0.1 GHz).

5.3.5 Spectral manifestation of zero-field splitting
Spectra are most easily understood in the high-field approximation. Quite often, deviations from
this approximation are significant for the ZFS (see Fig. 2.3), and such deviations are discussed
later. The other limiting case, where the ZFS is much larger than the electron Zeeman interaction
(Fe(III) and most rare earth ions), is discussed in Section 5.3.6.

For triplet states (S = 1) with axial symmetry of the ZFS tensor, the absorption spectrum is
a Pake pattern (see Section 5.2.3). With continuous-wave EPR, the derivative of the absorption
spectrum is detected, which has the appearance shown in Fig. 5.6(a). A deviation from axial
symmetry leads to a splitting of the "horns" of the Pake pattern by 3E, whereas the "shoulders"
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of the pattern are not affected (Fig. 5.6(b)). Triplet states of organic molecules are often observed
after optical excitation of a singlet state and intersystem crossing. Such intersystem crossing
generally leads to different population of the zero-field triplet sublevels Tx, Ty, and Tz . In this
situation the spin system is not at thermal equilibrium, but spin polarized. Such spin polarization
affects relative intensity of the lineshape singularities in the spectra. However, the singularities
are still observed at the same resonance fields, i.e., the parameters D and E can still be read off
the spectra as indicated in Fig. 5.6.

Even if the populations of the triplet sublevels have relaxed to thermal equilibrium, the
spectrum may still differ from the high-field approximation spectrum, as is illustrated in Fig. 5.7
for the excited naphtalene triplet (simulation performed with an example script of the software
package EasySpin http://www.easyspin.org/). For D = 3 GHz at a field of about 160
mT (electron Zeeman frequency of about 4.8 GHz) the high-field approximation is violated
andmS is no longer a good quantum number. Hence, the formally forbidden double-quantum
transitionmS = −1↔ +1 becomes partially allowed. To first order in perturbation theory, this
transition is not broadened by the ZFS. Therefore it is very narrow compared to the allowed
transitions and appears with higher amplitude. As it appears at about half of the magnetic field
of single-quantum transitions, it is termed "half-field" signal.

magnetic field (mT)
0 100 200 300 400 500

Figure 5.7: CW EPR spectrum of the excited naphtalene triplet at thermal equilibrium (simulation at an
X-band frequency of 9.6 GHz). D ≈ 3 GHz, E ≈ 0.41 GHz). The red arrow marks the half-field signal,
which corresponds to the formally forbidden double-quantum transitionmS = −1↔ +1.

For Kramers ions, the spectra are usually dominated by the central mS = −1/2 ↔ 1/2
transition, which is not ZFS-broadened to first order. To second order in perturbation theory,
the ZFS-broadening of this line scales inversely with magnetic field. Hence, whereas systems
with g anisotropy exhibit broadening proportional to the magnetic field B0, central transitions of
Kramers ions exhibit narrowing with 1/B0. The latter systems can be detected with exceedingly
high sensitivity at high fields if they do not feature significant g anisotropy. This applies to
systems with half-filled shells (e.g. Mn(II), 3d5; Gd(III), 4f7). In the case of Mn(II) (Figure
5.8) the narrow central transition is split into six lines by hyperfine coupling to the nuclear spin
of 55Mn (nuclear spin I = 5/2, 100% natural abundance). Because of the |2mS + 1| scaling
of anisotropic ZFS broadening of mS ↔ mS + 1 transitions, satellite transitions become the
broader the larger |mS | is for the involved levels. In the high-temperature approximation, the
integral intensity in the absorption spectrum is the same for all transitions. Hence, broader
transitions make a smaller contribution to the amplitude in the absorption spectrum and in the
first derivative that is acquired by CW EPR.
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Figure 5.8: CW EPR spectrum of a Mn(II) complex (simulation at a W-band frequency of 94 GHz).
D = 0.6 GHz, E = 0.05 GHz, A(55Mn) = 253 MHz. The six intense narrow lines are the hyperfine
multiplet of the central transitionmS = −1/2↔ +1/2.

5.3.6 Effective spin 1/2 in Kramers doublets
For some systems, such as Fe(III), ZFS is much larger than the electron Zeeman interaction at
any experimentally attainable magnetic field. In this case, the zero-field interaction determines
the quantization direction and the electron Zeeman interaction can be treated as a perturbation
[Cas+60]. The treatment is simplest for axial symmetry (E = 0), where the quantization axis is
the z axis of the ZFS tensor. The energies in the absence of the magnetic field are

ω (mS) = Dm2
S , (5.19)

which for high-spin Fe(III) with S = 5/2 gives three degenerate Kramers doublets corresponding
to mS = ±5/2, ±3/2, and ±1/2. If the magnetic field is applied along the z axis of the
ZFS tensor, mS is a good quantum number and there is simply an additional energy term
mSgµBB0 with g being the g value for the half-filled shell, which can be approximated as g = 2.
Furthermore, in this situation only themS = −1/2↔ 1/2 transition is allowed. The Zeeman
term leads to a splitting of the mS = ±1/2 Kramers doublet that is proportional to B0 and
corresponds to g = 2. This Kramers doublet can thus be described as an effective spin S′ = 1/2
with geff = 2.

If the magnetic field is perpendicular to the ZFS tensor z axis, the mS = ±5/2 and
±3/2 Kramers doublets are not split, since the Sx and Sy operator does not connect these
levels. The Sx operator has an off-diagonal element connecting the mS = ±1/2 levels that
is
√
S(S + 1) + 1/4/2 = 3/2. Since the levels are degenerate in the absence of the electron

Zeeman interaction, they become quantized along the magnetic field and mS is again a good
quantum number of this Kramers doublet. The energies are mS3gµBB0 + D/4, so that the
transition frequency is again proportional to B0, but now with an effective g value geff = 6.
Intermediate orientations can be described by assuming an effective g tensor with axial symmetry
and g⊥ = 6, g|| = 2. This situation is encountered to a good approximation for high-spin Fe(III)
in hemoglobins (g⊥ ≈ 5.88, g|| = 2.01).

For the non-axial case (E 6= 0), the magnetic field B0 will split all three Kramers doublets.
To first order in perturbation theory the splitting is proportional toB0, meaning that each Kramers
doublet can be described by an effective spin S′ = 1/2 with an effective g tensor. Another



5.3 Zero-field interaction 43

simple case is encountered for extreme rhombicity, E = D/3. By reordering principal axes
(exchanging z with either x or y) one can the get rid of the S2

z term in Eq. (5.18), so that the ZFS
Hamiltonian reduces to E′ =

(
S2
x − S2

y

)
with E′ = 2E. The level pair corresponding to the

new z direction of the ZFS tensor has zero energy at zero magnetic field and it can be shown that
it has an isotropic effective g value geff = 30/7 ≈ 4.286. Indeed, signals near g = 4.3 are very
often observed for high-spin Fe(III).
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6 — Forbidden Electron-Nuclear Transitions

6.1 Physical picture
6.1.1 The S = 1/2, I = 1/2 spin system

The basic phenomena can be well understood in the simplest possible electron-nuclear spin
system consisting of a single electron spin S = 1/2 coupled to a single nuclear spin I = 1/2.
This system was already introduced in Section 2.2.3, where we also assumed an isotropic g
value and a hyperfine coupling that is much smaller than the electron Zeeman interaction. After
truncating the Hamiltonian to the form given by Eq. (4.9) and going to the electron-spin rotating
frame, we had found

Ĥ0 = ΩSŜz + ωI Îz +AŜz Îz +BŜz Îx . (6.1)

For the nuclear spin, we are still in the laboratory frame. Such a Hamiltonian is a good
approximation, for instance, for protons in organic radicals.

If the high-field approximation were also fulfilled for the nuclear spin, the pseudo-secular
hyperfine coupling term BŜz Îx would vanish. As can be seen from Eq. (4.10), this term also
vanishes if the hyperfine interaction is purely isotropic, i.e. for sufficiently fast tumbling in liquid
solution,1 and along the principal axes of the hyperfine tensor. Otherwise, the B term can only
be neglected if ωI � A,B, corresponding to the high-field approximation of the nuclear spin.
Within the approximate range 2|ωI |/5 < |A| < 10|ωI | the pseudo-secular interaction affects
transition frequencies. More important, it makes formally forbidden transitions with ∆mS = 1,
∆mI = 1 partially allowed, asmI is no longer a good quantum number. Note that the B term in
this Hamiltonian is not the B term of the dipolar alphabet. Rather, it relates to part of the C and
D terms of the dipolar alphabet.

6.1.2 Local fields at the nuclear spin
That the forbidden transitions become partially allowed is most easily grasped in a semi-classical
magnetization vector picture. To that end, we consider local fields at the nuclear spin for the
two possible states αS and βS of the electron spin. These local fields are obtained from the
parameters ωI , A, and B of the Hamilton operator terms that act on the nuclear spin. When
divided by the gyromagnetic ratio of the nuclear spin, these terms have the dimension of a local

1The product of rotational correlation time τr and hyperfine anisotropy must be much smaller than unity
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Figure 6.1: Local fields (multiplied by the gyromagnetic ratio γI of the nuclear spin) at the nuclear spin
in the two states αS and βS of an electron spin S = 1/2. The quantization axes are along the effective
fields ~ωα/γI and ~ωβ/γI and are, thus, not parallel.

magnetic field. The local field corresponding to the nuclear Zeeman interaction equals the static
magnetic field B0 and is the same for both electron spin states, since the expectation value of Îz
does not depend on the electron spin state. It is aligned with the z direction of the nuclear spin
laboratory frame (blue arrow in Figure 6.1). The two hyperfine fields arise from Hamiltonian
terms that contain an Ŝz factor, which has the expectation valuemS = +1/2 for the αS state and
mS = −1/2 for the βS state. The A term is aligned with the z axis and directed towards +z in
the αS state and towards −z in the βS state, assuming A > 0 (violet arrows). The B term is
aligned with the x axis and directed towards +x in the αS state and towards −x in the βS state,
assuming B > 0 (green arrows).

The effective fields at the nuclear spin in the two electron spins states are vector sums of the
three local fields. Because of the B component along x, they are tilted from the z direction by
angle ηα in the αS state and by angle ηβ in the βS state. The length of the sum vectors are the
nuclear transition frequencies in these two states and are given by

ωα =

√
(ωI +A/2)2 +B2/4

ωβ =

√
(ωI −A/2)2 +B2/4 . (6.2)

For |ωI | > 2|A|, the hyperfine splitting is given by

ωhfs = |ωα − ωβ| (6.3)

and the sum frequency is given by

ωsum = ωα + ωβ . (6.4)

For |ωI | > 2|A|, the nuclear frequency doublet is centered at ωsum/2 (Fig. 6.2(c)). The sum
frequency is always larger than twice the nuclear Zeeman frequency. None of the nuclear
frequencies can become zero. The minimum possible valueB/2 is attained in one of the electron
spin states if the nuclear Zeeman and hyperfine interaction are matched, 2|ωI | = |A|. For
|ωI | < 2|A| the nuclear frequency doublet is split by ωsum and centered at ωhfs/2 (Fig. 6.2(d))).
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The tilt angles ηα and ηβ (Figure 6.1) can be inferred from trigonometric relations and are
given by

ηα = arctan

(
−B

2ωI +A

)
ηβ = arctan

(
−B

2ωI −A

)
. (6.5)

We now consider a situation where the electron spin is in its αS state. At thermal equilibrium,
the nuclear magnetization from all radicals in this state is aligned with ~ωα. Microwave excitation
causes transitions of the electron spin to the βS state. In this state, the local field at the nuclear
spin is directed along ~ωβ . Now, the nuclear magnetization vector from the radicals under
consideration is tilted by angle 2η with respect to the new local field (Figure 6.1). Hence, the
nuclear magnetization will start to precess around this local field vector. This corresponds to
excitation of the nuclear spin by flipping the electron spin, which is a formally forbidden transition.
Obviously, such excitation will occur only if angle 2η differs from 0◦ and from 180◦. The case of
0◦ corresponds to the absence of pseudo-secular hyperfine coupling (B = 0) and is also attained
in the limit |A| � |ωI |. The situation 2η → 180◦ is attained in the limit of very strong secular
hyperfine coupling, |A| � |ωI |. Forbidden transitions are thus observed only for intermediate
hyperfine coupling. Maximum excitation of nuclear spins is expected when the two quantization
axes are orthogonal with respect to each other, 2η = 90◦.
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Figure 6.2: Electron-nuclear spin system S = 1/2, I = 1/2 in the presence of pseudo-secular hyperfine
coupling. (a) Level scheme. In EPR, ∆mS = 1, ∆mI = 0 transitions are allowed (red), in NMR
∆mS = 0, ∆mI = 1 transitions are allowed (blue), and the zero- and double-quantum transitions with
∆mS = 1, ∆mI = 1 are formally forbidden. (b) EPR stick spectrum. Allowed transitions have transition
probability cos2 η and forbidden transitions probability sin2 η. The spectrum is shown for |ωI | > 2|A|.
For |ωI | < 2|A|, the forbidden transitions lie inside the allowed transition doublet. (c) NMR spectrum for
|ωI | > 2|A|. (d) NMR spectrum for |ωI | < 2|A|.

6.2 Product operator formalism with pseudo-secular interactions
6.2.1 Diagonalization of the Hamiltonian

In the NMR part of the lecture course, product operator formalism was introduced with the
condition that all terms of the Hamiltonian must pairwise commute. This condition is not fulfilled
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for the Hamiltonian given by Eq. (6.1), since Ŝz Îx does not commute with either Îz or Ŝz Îz . In
order to be able to apply product operator formalism, we must first diagonalize Ĥ0. A diagonal
Hamiltonian features only terms with Ŝz and Îz operators. All such terms pairwise commute.
Fortunately, it turns out that Ĥ0 can be diagonalized by the same type of rotations in spin space
that are the basis of product operator formalism.
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ább|ába|áab|áaa|
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Figure 6.3: Matrix representation of the S = 1/2, I = 1/2 spin Hamiltonian Ĥ0 given by Eq. (6.1).
The Hamiltonian is block diagonal. The 2× 2 blocks marked red can be diagonalized independently. The
upper left red block corresponds to the α state of the electron spin and the bottom left red block to the β
state of the electron spin

The 4 × 4 matrix representation of Ĥ0 (Figure 6.3) reveals that the Hamiltonian is block-
diagonal. The upper left 2× 2 submatrix corresponds to the electron spin αmanifold of states. In
Figure 6.1 it corresponds to the right quadrant and the local field vector that is tilted by angle ηα
with respect to the z axis. Likewise, the lower right 2× 2 submatrix corresponds to the electron
spin β manifold of states, to the left quadrant in Figure 6.1 and to the local field vector that is
tilted by angle ηβ . Hence, these submatrices can be diagonalized by rotations by angles −ηα and
−ηβ , respectively.

In order to see, how this works with product operators, we rewrite Ĥ0 with polarization
operators Ŝα and Ŝβ for the electron spin:

Ĥ0 = ΩS/2Ŝ
α + ŜαωI Îz +A/2ŜαÎz +B/2ŜαÎx

−ΩS/2Ŝ
β + ŜβωI Îz −A/2Ŝβ Îz −B/2Ŝβ Îx . (6.6)

The upper line on the right-hand side of Eq. (6.6) corresponds to the upper left 2×2 submatrix
in Figure 6.3. The required rotation is performed by applying the unitary transformation

Ûα = exp
{
−i
(
ηαŜ

αÎy

)}
(6.7)

Note that ŜαÎy commutes with Ŝα and with all product operators in the second line on the
right-hand side of Eq. (6.6). Analogously, the lower right 2 × 2 submatrix in Figure 6.3 is
diagonalized by

Ûβ = exp
{
−i
(
ηβŜ

β Îy

)}
(6.8)
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Since ŜαÎy and Ŝβ Îy also commute with each other, the two unitary transformations are
independent and can be applied subsequently. This corresponds to applying the transformation
into the eigenbasis of Ĥ0,

ÛEB = exp
{
−i
(
ηαŜ

αÎy − ηβŜβ Îy
)}

(6.9)

which can be rewritten as

ÛEB = exp
{
−i
(
ξÎy + η2 Ŝz Îy

)}
. (6.10)

where ξ = (ηα − ηβ)/2 and η = (ηα + ηβ)/2. The latter form is more convenient, because Îy
commutes with all operators that describe electron spin excitation and detection. Hence, for
experiments without direct excitation or detection of nuclear spins, the ξÎy term can be dropped.

6.2.2 Transformation of Ŝx to the eigenbasis
Excitation and detection in EPR experiments are described by the Ŝx and Ŝy operators in the
rotating frame. These operators act only on electron spin transitions and thus formalize the
spectroscopic selection rules. In the frame of Eq. (6.1), any excitation and detection operators is
a linear combination of Ŝx and Ŝy. However, spectroscopic transitions relate to the eigenbasis of
Ĥ0. In order to understand which of these transitions are excited and detected how strongly, we
thus need to transform Ŝx to the eigenbasis. The transformation of Ŝy is analogous. We can do
so by product operator formalism and can understand the result in the local field picture.

The two rotations in Eq. (6.10) about Îy and Ŝz Îy commute. As mentioned above, Îy also
commutes with Ŝx. Hence, transformation of Ŝx to the eigenbasis reduces to

Ŝx
η2Ŝz Îy−→ cos η Ŝx + sin η 2Ŝy Îy . (6.11)

The allowed transitions with ∆mS = ±1 ,∆mI = 0 are driven by Ŝx. Their transition
moment is scaled by a factor cos η ≤ 1. Hence, it becomes smaller when η 6= 0. In order
to interpret the second term, we rewrite it in terms of ladder operators Ŝ+ = Ŝx + iŜy and
Ŝ− = Ŝx − iŜy. We find

2Ŝy Îy =
1

2

(
Ŝ+Î− + Ŝ−Î+ − Ŝ+Î+ − Ŝ−Î−

)
. (6.12)

In other words, this term drives the forbidden electron-nuclear zero- and double-quantum
transitions (Fig. 6.2(a)) with a transition amplitude that is proportional to sin η.

In recording an EPR spectrum, each transition must be both excited and detected. In other
words, the amplitude is proportional to the square of the transition moment, which is the transition
probability. Allowed transitions thus have an intensity proportional to cos2 η and forbidden
transitions a transition probability proportional to sin2 η (Fig. 6.2(b)).

6.2.3 General product operator computations for the electron-nuclear spin Hamiltonian
In a product operator computation, terms of the Hamiltonian can be applied one after the other
if and only if they pairwise commute. The Hamiltonian in the eigenbasis, ĤEB

0 , fulfills this
condition. We obtain it by applying ÛEB to Ĥ0:

Ĥ0
ηŜz Îy−→ ΩSŜz + ωsum/2 Îz + ωhfi Ŝz Îz = ĤEB

0 . (6.13)

This provides a simple recipe for product operator computations in the presence of the
pseudo-secular hyperfine coupling. Free evolution is computed in the eigenbasis, using ĤEB

0 . For
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application of non-selective pulses, the density operator needs to be transformed to the electron
spin rotating frame/nuclear spin laboratory frame basis by applying Û †EB. In product operator

formalism this corresponds to a product operator transformation
−ηŜz Îy−→ . After application

of non-selective pulses, the density operator needs to be backtransformed to the eigenbasis.
Detection also needs to be performed in the electron spin rotating frame/nuclear spin laboratory
frame basis.2

This concept can be extended to any non-diagonal Hamiltonian, as long as one can find a
unitary transformation to the eigenbasis, which can be expressed by a single product operator
term or a sum of pairwise commuting product operator terms. This is possible, for instance,
for the Hamiltonian describing dipole-dipole interaction including the B term (strong-coupling
situation) and for off-resonant excitation.

6.3 Generation and detection of nuclear coherence by electron spin excitation

6.3.1 Nuclear coherence generator (π/2)− τ − (π/2)

We have seen that a single microwave pulse can excite coherence on forbidden electron-nuclear
zero- and double-quantum transitions. This provides access to the nuclear frequencies ωα and
ωβ , which are differences of frequencies of allowed and forbidden electron spin transitions,
as can be inferred from Fig. 6.2(a,b). Indeed, the decay of an electron spin Hahn echo
(π/2) − τ − (π) − τ − echo as a function of τ is modulated with frequencies ωα and ωβ ,
as well as with ωhfi and ωsum. The modulation arises from forbidden transitions during the
refocusing pulse, which redistribute coherence among the four transitions. This two-pulse
ESEEM experiment is not usually applied for measuring hyperfine couplings. First, peaks at the
combination frequencies ωhfi and ωsum complicate the spectra and, second, the two-pulse ESEEM
spectrum has poor resolution compared to an NMR spectrum, since linewidth is determined by
electron spin transverse relaxation.

Better resolution and simpler spectra are obtained by indirect observation of the evolution
of nuclear coherence. Such coherence can be generated by applying a pulse subsequence
(π/2) − τ − (π/2) to the electron spins. The first π/2 generates electron spin coherence on
allowed transitions with an amplitude proportional to cos η and coherence on forbidden transitions
with amplitude proportional to sin η. During delay τ , these coherences acquire different phase.
The second π/2 pulse converts half of the existing electron spin coherence to polarization, i.e.,
to magnetization along the z axis. In other words, it "switches off" half of the electron spin
coherence. However, for the coherence on forbidden transitions, with probability cos η the
nuclear spin is not flipped. For this fraction of the spins, coherent superposition of the nuclear
spin states survives. For electron spin coherence on allowed transitions, with probability sin η
the "switching off" of the electron coherence leads to a "switching on" of nuclear coherence.
Hence, in both these pathways nuclear coherence is generated with probability proportional to
sin η cos η = sin(2η)/2. The delay τ is required, since at τ = 0 the different nuclear coherence
components have opposite phase and cancel.

The nuclear coherence generated by the block (π/2)−τ − (π/2) can be computed by product

2Transition-selective pulses are best described in the eigenbasis, using operators such as ŜxÎα, ŜxÎβ , Ŝ+Î−, and
Ŝ+Î+
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operator formalism as outlined in Section 6.2.3. We find

〈
ŜαÎx

〉
= − sin (ΩSτ) sin (2η) sin

(ωβ
2
τ
)

cos (ωατ)〈
ŜαÎy

〉
= − sin (ΩSτ) sin (2η) sin

(ωβ
2
τ
)

sin (ωατ)〈
Ŝβ Îx

〉
= − sin (ΩSτ) sin (2η) sin

(ωα
2
τ
)

cos (ωβτ)〈
Ŝβ Îy

〉
= − sin (ΩSτ) sin (2η) sin

(ωα
2
τ
)

sin (ωβτ) . (6.14)

This expression can be interpreted in the following way. The phase of the nuclear coherence is
the same as if it had started to evolve as Îx at time τ = 0. This is seen from the last factor on
the right-hand side of each line, which describes phase acquired during delay τ . The amplitude
of nuclear coherence is modulated as a function of the electron spin resonance offset ΩS (first
sine factor on each line). It is zero exactly on resonance. The integral over an inhomogeneously
broadened, symmetric EPR line is also zero, since

∫∞
−∞ sin (ΩSτ) dΩS = 0. At this point it

would appear that we have not gained anything, as net nuclear coherence is zero. However,
upon detection after applying a third π/2 pulse, another sine factor appears, and the integral of
sin2(ΩSτ) does not vanish.

Furthermore, the amplitude of the nuclear coherence scales with sin 2η. This can be
understood by realizing that one allowed and one forbidden transfer are required to excite such
coherence and that sin (η) cos (η) = sin (2η) /2 (second factor). Finally, the third factor on the
right-hand side of lines 1 and 2 tells that the amplitude of the coherence with frequency ωα is
modulated as a function of τ with frequency ωβ/2. Likewise, the amplitude of the coherence
with frequency ωβ is modulated as a function of τ with frequency ωα/2 (lines 3 and 4). Hence,
at certain values of τ , where this sine is zero, no coherence is created at the transition with
frequency ωα. At other times, where this sine is 1, maximum coherence is generated. This
blind-spot behavior requires that the experiment is repeated for different values of τ in order to
detect all nuclear frequencies.

6.4 ESEEM and HYSCORE

6.4.1 Advantages of electron-spin based detection of nuclear frequency spectra

Nuclear frequency spectra in the liquid (Section 4.3.2) and solid states (4.3.4) exhibit much
better hyperfine resolution than EPR spectra, because the former spectra feature fewer and
narrower lines. In fact, small hyperfine couplings to ligand nuclei in metal complexes are not
usually resolved in EPR spectra and only the largest hyperfine couplings may be resolved in
solid-state EPR spectra. The nuclear frequency spectra cannot be measured by a dedicated
NMR spectrometer because they extend over several Megahertz to several tens of Megahertz,
whereas NMR spectrometers are designed for excitation and detection bandwidths of a few tens
of kilohertz. Furthermore, electron spin transitions have 660 times more polarization than proton
transitions. The polarization advantage of EPR is even higher for nuclei other than protons. The
larger magnetic moment of electron spins also leads to higher detection sensitivity. Therefore, it
is advantageous to transfer polarization from electron spins to nuclear spins and to back transfer
the response of the nuclear spins to the electron spins for detection. This can be done by electron
nuclear double resonance (ENDOR) experiments, which are close in spirit to heteronuclear
double resonance experiments in NMR. It can also be done by ESEEM experiments. We will
first discuss one-dimensional three-pulse ESEEM and then two-dimensional HYSCORE.
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6.4.2 Three-pulse ESEEM

In three-pulse ESEEM, the amplitude of a stimulated echo is observed as a function of
the variable interpulse delay t at fixed interpulse delay τ (Fig. 6.4). The pulse sequence
(π/2)− τ − (π/2)− t− (π/2)− τ − echo consist of the nuclear coherence generator explained
in Section 6.3.1, free evolution of nuclear coherence during time t, back transfer of nuclear
coherence to electron coherence on allowed and forbidden transitions by the last π/2 pulse, and
detection of this electron coherence at the time of echo formation after another delay of length τ .

After the nuclear coherence generator, most of the magnetization has been converted to a
polarization grating that creates an unmodulated stimulated echo, while only a small fraction has
been transferred to nuclear coherence. This nuclear coherence acquires phase during time t with
the nuclear frequencies ωα and ωβ . Depending on this phase, a fraction of nuclear coherence
is back transferred to electron spin coherence by the last π/2 pulse. Hence, the part of the
stimulated echo that arises from back transferred nuclear coherence is modulated as a function of
t with frequencies ωα and ωβ .

An expression for this echo envelopemodulation can be derived by product operator formalism,
using the concepts explained in Section 6.2. Disregarding relaxation, the somewhat lengthy
derivation provides

V3p(τ, t) =
1

2
[Vα(τ, t) + Vβ(τ, t)] , (6.15)

where the terms Vα(τ, t) and Vβ(τ, t) correspond to contributions with the electron spin in its α
or β state, respectively, during interpulse delay t. These terms are given by

Vα(τ, t) = 1− k

2
{1− cos [ωβτ ]} {1− cos [ωα (t+ τ)]}

Vβ(τ, t) = 1− k

2
{1− cos [ωατ ]} {1− cos [ωβ (t+ τ)]} . (6.16)

The factors cos [ωβτ ] for the Vα term and cos [ωατ ] for the Vβ term describe the blind spot
behavior of three-pulse ESEEM. The modulation depth k is given by

k = sin2 2η =

(
BωI
ωαωβ

)2

. (6.17)

We see that a second factor sin 2η has arisen from detection by the subsequence π/2− τ − echo,
which is symmetric to the nuclear coherence generator (π/2)− τ − (π/2).

For small hyperfine couplings, A,B � ωI , we have ωα ≈ ωβ ≈ ωI , so that Eq. (6.17)
reduces to

k =
B2

ω2
I

, (6.18)

i.e., the modulation depth is inversely proportional to the square of the magnetic field. Using Eqs.
(4.10) and (4.11) we find for protons that are not too close to a well localized unpaired electron

k =
9

4

(µ0

4π

)2
(
gµB
B0

)2 sin2 (2θHFI)

r6
, (6.19)

where θHFI is the angle between the electron-proton axis and the static magnetic field B0.
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Figure 6.4: Pulse sequences for three-pulse ESEEM (a) and HYSCORE (b). In three-pulse ESEEM, time
t is varied and time τ is fixed. In HYSCORE, times t1 and t2 are varied independently in order to obtain a
two-dimensional data set.
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Figure 6.5: Schematic HYSCORE spectrum for the phenyl radical (compare Fig. 4.6). Note that hyperfine
couplings are given in frequency units, not angular frequency units. Signals from weakly coupled nuclei
appear in the right (+,+) quadrant. To first order, these peaks are situated on a line parallel to the
anti-diagonal that intersects the ν2 axis at 2νI . The doublets are centered at νI and split by the respective
hyperfine couplings. Signals from strongly coupled nuclei appear in the (-,+) quadrant. To first order,
these peaks are situated on two lines parallel to the anti-diagonal that intersect the ν2 axis at −2νI and
2νI . The doublets are centered at half the hyperfine coupling and split by 2νI .

6.4.3 HYSCORE
The HYSCORE experiment is derived from the three-pulse ESEEM experiment by inserting
a microwave π pulse midway through the evolution of nuclear coherence. This splits the
interpulse delay t into two interpulse delays t1 and t2 (Fig. 6.4(b)). These two delays are varied
independently to provide a two-dimensional data set V (t1, t2), which depends parametrically
on the fixed interpulse delay τ . The inserted π pulse inverts the electron spin state. Hence,
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coherence that has evolved with frequency ωα during interpulse delay t1 evolves with frequency
ωβ during interpulse delay t2 and vice versa. In most cases, the weak modulation limit applies,
where the HYSCORE experiment correlates only frequencies ωα and ωβ of the same nuclear spin.
The full modulation expression for the HYSCORE experiment contains a constant contribution
as well as contributions that vary only with respect to either t1 or t2. These contributions can be
removed by background correction with low-order polynomial functions along both dimensions.
The remaining modulation corresponds to only cross peaks and can be expressed as

V4p(t1, t2; τ) =
k

2
sin
(ωατ

2

)
sin
(ωβτ

2

) [
V (αβ)(t1, t2; τ) + V (βα)(t1, t2; τ)

]
(6.20)

with

V (αβ)(t1, t2; τ) = cos2 η cos
(
ωαt1 + ωβt2 + ωsum

τ

2

)
− sin2 η cos

(
ωαt1 − ωβt2 + ωhfi

τ

2

)
V (βα)(t1, t2; τ) = cos2 η cos

(
ωβt1 + ωαt2 + ωsum

τ

2

)
− sin2 η cos

(
ωβt1 − ωαt2 + ωhfi

τ

2

)
. (6.21)

In this representation, η < 45◦ corresponds to the weak coupling case (|A| < 2|ωI |) and
η > 45◦ to the strong coupling case (|A| > 2|ωI |), as can be inferred from Fig. 6.1. Hence,
cos2 η > sin2 η in the weak coupling case and sin2 η > cos2 η in the strong coupling case.
Therefore, in the weak coupling case, the cross peaks that correlate nuclear frequencies with the
same sign (cos2 η terms) are much stronger than those that correlate frequencies with opposite
sign (sin2 η terms). In the strong coupling case, it is the other way around. The two cases can be
easily distinguished in HYSCORE spectra, as the cross peaks appear in different quadrants (Fig.
6.5). Furthermore, disregarding a small shift that arises from the pseudo-secular part B of the
hyperfine coupling (see below), the cross peaks of a given isotope with spin I = 1/2 are situated
on parallels to the anti-diagonal that corresponds to the nuclear Zeeman frequency νI . Since
νI can be computed from the nuclear g value (or gyromagnetic ratio γ) and the static magnetic
field B0, peak assignment for I = 1/2 nuclei is straightforward. For nuclei with I > 1/2 the
peaks are further split by the nuclear quadrupole interaction. Unless this splitting is much smaller
than both the hyperfine interaction and the nuclear Zeeman interaction (2H, 6Li), numerical
simulations are required to assign the peaks and extract the hyperfine and nuclear quadrupole
coupling.

The small pseudo-secular shift of the correlation peaks with respect to the anti-diagonal
contains information on the anisotropy T of the hyperfine interaction (Fig. 6.6). In the solid
state, the cross peaks from different orientations θHFI form curved ridges. For a hyperfine tensor
with axial symmetry, as it is encountered for protons not too close to a well-localized unpaired
electron, the maximum shift in the diagonal direction corresponds to θHFI = 45◦ and is given by
9T 2/32|ωI |. Since ωI is known, T , and thus the electron-proton distance r can be computed
from this maximum shift. IfAiso � ωI , which is usually the case, the orientation with maximum
shift is also the orientation with maximum modulation depth. This is because sin2(2η) attains its
maximum near the maximum of B, which is in turn attained at θHFI = 45◦.

The curved ridges end at their intersection with the parallel to the anti-diagonal. These points
correspond to the principal values of the hyperfine tensor. Modulation depth is zero at these
points. However, it is usually possible to fit the theoretical ridge to the experimentally observed
ridge, as the curvature near θHFI = 45◦ together with the position of the θHFI = 45◦ point fully
determines the problem.

Analysis of HYSCORE spectra requires some precaution due to the blind-spot behavior (factor
sin
(
ωατ

2

)
sin
(ωβτ

2

)
in Eq. (6.20)) and due to orientation selection by the limited bandwidth of

the microwave pulses that is much smaller than spectral width for transition metal complexes. It
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Figure 6.6: Schematic HYSCORE spectrum for a proton with an axial hyperfine tensor with anisotropy T
and isotropic component Aiso. The correlation peaks from different orientations form curved ridges (red).
Curvature is the stronger the larger the anisotropy is and the ratio of squared anisotropy to the nuclear
Zeeman frequency determines the maximum shift with respect to the 2ωI anti-diagonal.

is therefore prudent to measure HYSCORE spectra at several values of τ and at several observer
positions within the EPR spectrum.
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7.1 Separation of the dipole-dipole interaction

Precise measurement of the dipole-dipole interaction is of interest for determination of spatial
structure, since this interaction scales with the inverse cube of the distance between two spins.
The upper bound of the accessible length scale depends on the magnetic moments of the two
coupled spins and on transverse relaxation time of the more slowly relaxing spin. For two nuclear
spins, it is about 5 Å, for an electron spin and a nuclear spin, about 10 Å, and for two electron
spins about 100 Å. A lower bound arises mainly for two electron spins, where exchange coupling,
which cannot always be disentangled from dipole-dipole coupling, contributes significantly below
15 Å.

In most cases, dipole-dipole interaction is not the dominating interaction in an NMR or EPR
spectrum. In simple cases, it can be separated by lineshape analysis. However, this approach
introduces some uncertainty and limits the accessible distance range. Better accuracy of the
measurement and access to smaller couplings can be achieved by experimental separation of
the dipole-dipole interaction. The simplest way of doing this is the spin-echo double resonance
(SEDOR) experiment, originally introduced to NMR by Kaplan and Hahn in 1958. The
experiment was reinvented in a slightly different form in EPR by Salikhov, Milov, and Shirov in
1981. As an EPR experiment, it is known by the names of double electron-electron resonance
(DEER) or pulsed electron electron double resonance (PELDOR).

The basic idea can be grasped from Fig. 7.1. The coupling partner (red) exerts some local
field (green) on an observer spin (blue). For the orientation of spin-spin vector ~r with respect to
the external magnetic field ~B0 assumed in the Figure, this field counteracts the external field
if the coupling partner is aligned parallel to ~B0 (situation 1) and adds to the external field if
it is aligned anti-parallel (situation 2). If the spin of the coupling partner is inverted by a π
pulse, the local field Blocal changes sign. This shifts the resonance frequency of the observer
spin by the dipole-dipole coupling d. When going from situation 1 to situation 2, the resonance
frequency shifts by +d and when going from situation 2 to 1, it shifts by −d. In the high-field
approximation, both transitions are equally likely. If this frequency change is measured in a
time-domain experiment as a function of t, the two transitions generate signals proportional to
cos(dt) + i · sin(dt) and cos(−dt) + i · sin(−dt) = cos(dt)− i · sin(−dt). The total signal is
thus expected to be proportional to cos(dt).
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Figure 7.1: Spin inversion of the coupling partner (red) of an observer spin (blue) inverts the local
magnetic field (green) that the coupling partner exerts on the observer spin. This local field change
∆Blocal causes a change in the resonance frequency by dipole-dipole coupling d.

7.2 The SEDOR experiment

The SEDOR experiment is based on a Hahn echo experiment on the observer spins at frequency
ν1 (blue subsequence in Figure 7.2a). This subsequence refocuses the resonance offset term
ΩS,1Ŝz,1 of the observer spin as well as the dipole-dipole coupling dŜz,1Ŝz,2. The π pulse with
frequency ν2 inverts the spin state of the coupling partner (red) at the same time as the observer
spin is inverted.
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Figure 7.2: Pulse sequences of the SEDOR (a) and three-pulse DEER (b) experiments. (a) Delay t1
is varied and modulation of the amplitude of the echo signal is observed. Two-dimensional Fourier
transformation with respect to t1 and t2 correlates the dipolar spectrum (local field) to the NMR spectrum.
(b) Delay t is varied at constant delay τ and the echo integral is observed.

We describe this experiment by product operator formalism for two electron spins S1 = 1/2
and S2 = 1/2. Magnetization on spin S2 does not contribute to the signal. Hence, we start with
the thermal equilibrium density operator of only spin S1, which is σ0 = −Ŝz,1. The π/2 pulse
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with phase x generates observer spin coherence σ1 = Ŝy,1. We find

Ŝy,1
dt1Ŝz,1Ŝz,2−→ cos

(
dt1
2

)
Ŝy,1 − sin

(
dt1
2

)
2Ŝx,1Ŝz,2

πŜx,1−→ − cos

(
dt1
2

)
Ŝy,1 − sin

(
dt1
2

)
2Ŝx,1Ŝz,2

πŜx,2−→ − cos

(
dt1
2

)
Ŝy,1 + sin

(
dt1
2

)
2Ŝx,1Ŝz,2

dt1Ŝz,1Ŝz,2−→
[
sin2

(
dt1
2

)
− cos2

(
dt1
2

)]
Ŝy,1 + 2 cos

(
dt1
2

)
sin

(
dt1
2

)
2Ŝx,1Ŝz,2

. (7.1)

Using trigonometric laws, we can simplify the final expression to

σecho = − cos (dt1) Ŝy,1 + sin (dt1) 2Ŝx,1Ŝz,2 . (7.2)

The echo amplitude is proportional to 〈Ŝy〉 and, hence, to cos(dt1). Fourier transformation of
the echo amplitude with respect to t1 thus provides a dipolar doublet centered at zero frequency
with splitting 2d. For a powder or glass sample, we obtain a Pake pattern.

7.3 DEER as a constant-time SEDOR experiment
The SEDOR experiment works quite well in solid-state NMR, where the transverse relaxation
rate is usually much smaller than the dominant dipolar couplings. Unpaired electrons are rare, so
that distances between them can be long and dipolar couplings correspondingly small, while
electron spin relaxation rates are comparatively high, as they roughly scale with the square of the
magnetic moment. As a consequence, dipolar spectra obtained with the SEDOR sequence are
strongly relaxation-broadened. Furthermore, implementation of SEDOR in EPR is expensive,
since two high-power microwave amplifiers are needed for output of two overlapping pulses.

Therefore, the same separation of interactions is achieved in a slightly different way in the
three-pulse DEER experiments, avoiding, both, broadening by relaxation and overlapping pulses.
On the observer spin, a constant-time Hahn echo experiment with fixed delay τ is performed (blue
subsequence in Figure 7.2b). As in SEDOR, this subsequence refocuses the resonance offset
term ΩS,1Ŝz,1 of the observer spin as well as the dipole-dipole coupling dŜz,1Ŝz,2. The π pulse
with frequency ν2 is now applied at a variable time after the observer π/2 pulse. Computation by
product operator formalism, starting again after the π/2 pulse, provides

Ŝy,1
dtŜz,1Ŝz,2−→ cos

(
dt

2

)
Ŝy,1 − sin

(
dt

2

)
2Ŝx,1Ŝz,2

πŜx,2−→ cos

(
dt

2

)
Ŝy,1 + sin

(
dt

2

)
2Ŝx,1Ŝz,2

d(τ−t)Ŝz,1Ŝz,2−→ cos
[
d
(
t− τ

2

)]
Ŝy,1 + sin

[
d
(
t− τ

2

)]
2Ŝx,1Ŝz,2

πŜx,1−→ − cos
[
d
(
t− τ

2

)]
Ŝy,1 + sin

[
d
(
t− τ

2

)]
2Ŝx,1Ŝz,2

dτŜz,1Ŝz,2−→ − cos (dt) Ŝy,1 + sin (dt) 2Ŝx,1Ŝz,2 . (7.3)

Neglecting relaxation, the result is the same as for the SEDOR sequence. In this three-pulse
DEER experiment, the same signal loss by transverse electron spin relaxation applies at all times
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t. For exponential decay with time constant T2, the loss factor is e−2τ/T2 . In contrast, signal
reduction in SEDOR, e−2t1/T2 , is on average not as strong if data are measured up to the same
maximum t1 or t, since t < τ . This is a general property of constant-time experiments, which
achieve better resolution at the expense of a loss in sensitivity.

7.4 Four-pulse DEER
The three-pulse DEER experiment does not solve the problem of pulse overlap completely. Time
t = 0 corresponds to an overlap of the observer spin π/2 pulse with the π pulse that acts on
the coupling partner. Even if two microwave amplifiers are used, data on the order of the pulse
length is somewhat compromised. This introduces a dead time td, with data being available
only at t > td. This dead time is problematic in retrieving distance distributions from the
data, in particular near the lower bound of the accessible distance range. Therefore, DEER is
almost invariably measured with the four-pulse sequence shown in Figure 7.3, which eliminates
deadtime.

At the time of formation of the first Hahn echo (label ¬ in the ν2 sub-sequence), the situation
immediately after the observer spin π/2 pulse (label ¬ in the ν1 sub-sequence) is restored, except
for some signal loss by relaxation during time 2τ1 and for a sign inversion of the magnetization if
the first observer spin π pulse has the same phase as the π/2 pulse. The density operator is given
by σ1 = −Ŝy,1. It follows that we do not need to repeat the product operator computation. Except
for the inconsequential sign change, Eq. (7.3) also applies for the four-pulse DEER experiment.

t1 t1 t2 t2

p/2

p

p p

n1

n2

t

x
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d(t - )2 t d(t - )2 t

d�t2 d t

� ƒ„ …

‚�

� ‚ ƒ „ …

Figure 7.3: Four-pulse DEER sequence, coherence transfers, and evolution of the observer spin
magnetization. Pulses shown in blue are applied to the observer spin, the pump pulse shown in red is
applied to its coupling partner. The echo at time 2τ1 (dashed blue line) is not observed. Interpulse delays
τ1 and τ2 are fixed, time t is varied, and the echo amplitude is observed as a function of t.

It is instructive to consider the experiment in a magnetization vector picture for an ensemble
of observer spin packets with different resonance offsets ΩS,1 (bottom row of Figure 7.3.
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Simultaneously, we follow coherence transfers in the four-level scheme in the second to bottom
row in Figure 7.3. For that, we start out with coherence on only one of the observer spin transitions
(wavy line in four-level scheme ¬), although in fact both transitions are excited by the π/2 pulse
and refocused by the first π pulse. At the time of first echo formation, the magnetization vectors
of all spin packets are aligned along the −y axis. During time t, the magnetization vectors fan
out in the xy plane due to the distribution of resonance offsets of the spin packets. After that
time, at point , the coherence is transferred to the other transition of the observer spin, which
adds the dipolar coupling d to the resonance offsets of all spin packets. During the subsequent
delay of duration τ2 − t, the magnetization vectors further fan out, but simultaneously, the whole
fan rotates with angular frequency d in the xy plane. At point ®, the second observer spin π
pulse inverts the phase of the coherence. This corresponds to a 180◦ rotation of all magnetization
vectors about the x axis, effectively mirroring the fan of magnetization vectors on the x axis
(point ¯). Spin packets with large positive resonance offset ΩS,1, which where leading before
this pulse are now lagging, whereas spin packets with large negative resonance offset, which
were lagging before the pulse are now leading. Hence, during subsequent evolution for time τ2,
the fan closes again. The magnetization vectors of all spin packets end up at the same phase
angle at point °. However, with respect to dipolar evolution, the fan lags only by phase d(τ2 − t)
at point ¯, whereas it gains phase dτ2 during time τ2. Hence, the magnetization vector ends up
at phase angle dt at the time of second observer echo formation (point °). The magnetization
amplitude along y is scaled by cos(dt).
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