
1

Documentation to SPIDYAN v1.0

June 3, 2015

Stephan Pribitzer
stephan.pribitzer@phys.chem.ethz.ch

Contents
1. SPIDYAN .. 1

1.1. Installation ... 2

1.2. Using SPIDYAN .. 2

2. User created input .. 3

2.1. Structure system ... 3

2.1.1. How to set up relaxation times ... 4

2.2. Structure sequence ... 5

2.3. Structure options ... 8

2.3.1. Configuration of the detection operator .. 10

3. Output ... 11

4. SPIDYAN runtime ... 11

5. Tutorial .. 13

5.1. A basic pulse experiment .. 13

5.2. The echo experiment .. 16

6. References ... 19

1. SPIDYAN
With the recent developments in the field of fast arbitrary waveform generators (AWGs)
in the GHz range, it has become possible to use frequency swept microwave pulses in
EPR. Such frequency swept, or passage, pulses are well known in NMR spectroscopy
while their effects in EPR are yet to be fully understood.
Common EPR programs were not designed to simulate EPR experiments with arbitrary
shaped pulses that may also require consideration of spectrometer hardware parameters,
such as a resonator profile or AWG resolution. Waiting for extension by the developers of
these packages would have hold back our own developments of experimental techniques
and of theory of passage pulses. Likewise, NMR programs would have needed extensions
for convenient computation of pulse EPR experiments. In order to simulate spin dynamics
during frequency-swept, or generally arbitrary wavefunction pulses, the SPIn DYnamics
ANalysis (SPIDYAN) library was developed, which runs on MATLAB. SPIDYAN is free of
cost and open source. The first release of SPIDYAN can treat one-spin and two-spin
systems with arbitrary spin quantum numbers. At the current stage of development of EPR

2

spectroscopy with shaped pulses, this appears appropriate. A future version will allow for
systems with an arbitrary number of spins.

1.1. Installation
SPIDYAN runs in MATLAB and requires MATLAB R2013a or newer. The current version
of SPIDYAN also depends on the MATLAB Signal Processing Toolbox and for improved
performance the Parallel Computing Toolbox is recommended.
To install SPIDYAN, the program has to be downloaded from www.epr.ethz.ch/software
and extracted into a directory of choice. For testing it is possible to write and run scripts
from that directory. To install SPIDYAN permanently and make it accessible from
everywhere on the computer, the program’s directory has to be added to the MATLAB
search path. This is done by clicking on the ‘Set Path’ button in the ‘environment’ section
of the home tab and picking ’Add Folder…’ to navigate to the location of SPIDYAN. Now
MATLAB will be looking for the SPIDYAN functions in the specified directory. SPIDYAN
scripts can now be run from any directory on your machine.

1.2. Using SPIDYAN
Any SPIDYAN script is divided in three segments:

Set up of Input:

- system – a structure which contains the spin system
- sequence – a structure with the pulse sequence
- options – a structure containing all other parameters required for the simulation

Initializing, Processing and Propagation:

- call of triple with sequence and options, creates the structure experiment
- call of setup with system and options, returns the updated structure system
- call of homerun with system, experiment and options to simulate the experiment

Returned Output:

- density matrix state and time traces detected_signal, which can be plotted

Structure arrays are a data type in MATLAB which allow the user to store several variables
in a convenient and easily accessible way. A structure consists of fields, which can be any
other data type (integers, doubles, vectors, strings, cell arrays or structures). The fields of
structures can be called with ‘structure.field’. For example the field .sqn1 (which is the
spin quantum number of the first spin) in the structure system, can be set with:

system.sqn1=0.5;

The following sections provide detailed information on how to set up the input and what
fields are available. Some example files can be downloaded together with SPIDYAN and
are discussed and explained in the Tutorial section of the documentation.

http://www.epr.ethz.ch/software

3

2. User created input

2.1. Structure system
The structure system provides SPIDYAN with the spin system. The required and optional
parameters are resonance frequencies for up to two spins, spin quantum numbers,
relaxation times and coupling constants. The structure is processed by setup which also
does a rudimentary check for completeness.

Table 1: Fields required for the structure system, not all
are required for SPIDYAN.

User created fields of system with units
.nu01 GHz .nu02 GHz
.sqn1 .sqn2
.T1 ns .T2 ns
.default_T1 ns .default_T2 ns
.A GHz .B GHz
.init_state

Table 2: Fields that are created by SPIDYAN
from the input.

Fields created from input
.sops .spins
.ham .eq
.R .gamma

The fields .nu01 and .nu02 are the resonance for in the AWG frame. If simulations are to
be carried out with one spin only, .nu02 must not be used, has to be empty or .spins set
to 1. The value of .spins tells SPIDYAN the number of spins in the system. It does not
need to be configured since SPIDYAN can usually guess the value from the input.
The spin quantum numbers can be specified with .sqn1 and .sqn2. SPIDYAN assumes
spin quantum numbers 𝑆𝑆𝑖𝑖 = ½, if not declared otherwise.
With those parameters SPIDYAN calculates the Hamiltonian .ham of the system, which is
required to propagate the density matrix, from the spin operators .sops (created by
SPIDYAN). For those not satisfied with the available Hamiltonians in SPIDYAN, it is also
possible to create tailored Hamiltonians. To do this, one first has to build the Hamiltonian
in matrix form in Hilbert space and then assign it to the field .ham. When SPIDYAN
discovers an assignment to .ham, it skips calculation of the Hamiltonian and propagates
with the user’s input.
The initial state .init_state of the system can be given as matrix or magnetization vector.
The matrix is used as it is, while a magnetization vector of the form (𝑆𝑆𝑥𝑥 , 𝑆𝑆𝑦𝑦, 𝑆𝑆𝑧𝑧) is used to
build a spin density matrix from the Pauli matrices for a single spin ½. If the initial state is
omitted, SPIDYAN assumes thermal equilibrium.
For simulations, which include relaxation effects, the relaxation times for longitudinal and
transverse relaxation have to be given in nanoseconds, otherwise they can be omitted.
Relaxation times can be provided either through assigning doubles or matrices to .T1 and
.T2, or by using a graphical user interface (GUI). The GUI is described in section 2.1.1.
Transitions which are not defined by the user are assigned default values which have to
be provided with .default_T1 and .default_T2.
SPIDYAN then uses the relaxation times to build the relaxation super operator Γ�, which is
required for propagation in the Liouville space. If .spins=1 and .sqn1=1/2, SPIDYAN also
calculates the relaxation matrix .R, which can be used for computationally more efficient
simulations including relaxation in Hilbert space, if the system consists of only a single
𝑆𝑆 = ½ spin.

4

An equilibrium state can be set with the field .eq, which has to have the form of a density
matrix. If the field is not assigned, SPIDYAN assumes the equilibrium state to be – 𝑆𝑆𝑧𝑧 for
a single electron or – 𝑆𝑆1𝑧𝑧 − 𝑆𝑆2𝑧𝑧 for two spins1.

2.1.1. How to set up relaxation times
SPIDYAN offers two methods to realize relaxation input. The first, very general approach
is to apply the same longitudinal and transverse relaxation time to all transitions of the
system. To do this the user assigns doubles to system.T1 and system.T2. This can be
useful to get a first insight into relaxation dynamics.
A second, more sophisticated method allows to assign relaxation times to individual
transitions. For this the input needs to be in matrix form, with dimensions (2𝑆𝑆 + 1) for a
single spin and (2𝑆𝑆1 + 1) (2𝑆𝑆2 + 1) for two spins respectively.
Figure 1 shows the transitions for a single spin with 𝑆𝑆 = 1, their positions in the matrix of
the relaxation times and a MATLAB code. The first column is always the state with the
lowest spin projection quantum number 𝑚𝑚𝑆𝑆 . For example a 𝑆𝑆 = 1/2 starts with 𝑚𝑚𝑆𝑆 =
− 1/2 .
The same is valid for a two-spin system. Here, the first position in the matrix contains both
spins in their lowest state. First 𝑚𝑚𝑆𝑆 of the second spin changes (see Figure 2), and after
all combinations, the spin quantum number of the first spin is increased. Only the upper
triangle of the matrix has to be defined. The user does not need to assign the lower
triangle. SPIDYAN will change the relaxation time for every non-defined (0) transition to
.default_T1 or .default_T2.
The elements on the diagonal of the matrix do not correspond to relaxation pathways and
therefore do not need to be considered.
In addition, SPIDYAN offers the possibility to enter the relaxation times through a simple
GUI. This can be done by setting options.ui to 1. When the script is executed and
relaxation is switched on, a window pops up, where the user can fill in the longitudinal
relaxation times in a table. The rows and lines of the table follow the same ordering as
described previously. By closing it, the values are stored and a second window pops up
for transverse relaxation. Only after the second window is closed, the simulation
continues.

1 Caution, this in not valid for a system with one electron and a nucleus and has to be adapted accordingly
in such a case.

5

Figure 1: a) Transitions and b) the corresponding positions in the matrix for the relaxation times for a three level

system with S=1 with c) A MATLAB code.

Figure 2: a) Transitions and b) their corresponding positions in the matrix for the relaxation times for a four level

system with S=½ and I= ½ and c) MATLAB code for a matrix.

2.2. Structure sequence
The structure sequence is used to define the events2 during a pulse experiment. It contains
fields for the event lengths .tp, pulse amplitudes .nu1, flip angles .beta, critical
adiabaticity factors Q and excitation bandwidths .frq. It is also possible to assign rise
times to each pulse with the field .t_rise and phase cycling can be added with .pcycle.
An overview of all available fields can be found in Table 3.
The time lengths of all events, regardless of their type, have to be written into the vector
.tp. SPIDYAN uses the vectors for pulse amplitudes .nu1, adiabaticity factors Q and flip

2 SPIDYAN counts pulses, inter-pulse delays and detection as events.

6

angle .beta to distinguish between pulses and free evolution. If the program finds a non-
zero value for an event on the corresponding positions in either .nu1 .beta or .Q (or all), it
takes it for a pulse.

Table 3: The structure sequence.

Fields of structure sequence with units
.tp ns .nu1 MHz
.beta rad .frq GHz
.t_rise ns .phase rad

.Q Vector with critical adiabaticity of
pulse.

.excite Vector or cell array containing
Boolean vector

.pcycle cell array containing matrices

.pcycle{k} matrix, first dimension phase of
pulse, second dimension is sign

If pulses are to be created with a certain flip angle, the corresponding element in .nu1 is
0, else the flip angle is ignored and the given .nu1 is used. The same holds for creation
through adiabaticity factors, in which case .nu1 and .beta have to be zero.
The excitation bandwidth .frq can either be assigned to be the same for every pulse or
different for each pulse. The same bandwidth is assigned to every pulse when .frq
contains only one (rectangular pulse) or two (chirp) elements. The first element is the initial
and the second element the final sweep frequency. For excitation with monochromatic
pulses, the first and second element simply have to be the same or the vector must contain
only one element. For example

sequence.frq=[1.0 1.0];

leads to the same behavior, an offset of 1 GHz from the frequency of the simulation frame,
as

sequence.frq=[1.0];

To assign the same chirp bandwidth to every pulse, one would write

sequence.frq=[0.5 1.5];

which creates a sweep from 0.5 to 1.5 GHz.
For some experiments it is necessary to have different excitation bandwidths for every
pulse. This can be achieved by writing .frq as a cell array, with the cells being vectors
with initial and final sweep frequency, e.g. for a three-pulse experiment with two
rectangular pulses (1st and 4th event), an inter pulse delay (2nd event) and a chirp pulse
(3rd event):

sequence.frq ={[1.0], [], [0.5 1.5], [1.0 1.0]};

The phase of the pulses can be set either for all as the same by typing

sequence.phase = pi;

7

or separately for each pulse by making sequence.phase a vector (example for the above
pulse sequence):

sequence.phase = [pi/2, 0, 0, pi/2];

The phase has to be given in rad.
Since calculations are usually carried out in a frame that rotates with the local oscillator
(LO) frequency (AWG frame 3), nuclear spins could be erroneously excited in the
simulation although they are off resonant by the LO frequency. Therefore it is possible to
denote the spin to be excited for each pulse with .excite. This will set up the excitation
operator accordingly. In case .excite is a vector, the same excitation scheme is applied
to every pulse. Each pulse can configured individually by writing .excite as a cell array,
with index being the event number. The required input is a Boolean vector, where the
position in the vector corresponds to the number of the spin as defined in system where 1
means ‘excitation’ and 0 ‘no excitation’. If the field is omitted (either because .excite is
empty or not defined for individual elements in the cell array), only the first spin is excited.
It is also possible to give a custom excitation operator in matrix form, to excite for example
only a selected transition in multi-level system.

sequence.excite=[1 1];

as well as

sequence.excite={[1 1], [], [1 1]}

excite both spins during both pulses (1st and 3rd event). A custom excitation operator can
be given in a similar same way. In the following example both pulses are excited during
the first pulse and during the third pulse only the first spin is excited (the excitation operator
is in matrix form):

sequence.excite=[1 1], [], [0 0 0.5 0; 0 0 0 0.5; 0.5 0 0 0; 0 0.5 0 0]}

Phase cycling is controlled with the cell array .pcycle. The individual cell elements hereby
correspond to the respective event. The cells are matrices with the rows corresponding to
phase cycle steps. The first value in each row is the phase of the pulse in radians. The
second value is a signal weighting. The density matrix resulting for the corresponding
phase is multiplied with this number and added to the weighted density matrices from the
other steps. Finally, the sum of the weighted density matrices of all steps is normalized by
the sum of the absolute values of all weighting factors. For example the code

sequence.pcycle{3}=[0, 1; pi, -1];

will, starting from the same initial state, cycle the third event by calculating the outcome of
the pulse once without any additional phase and once with a phase of π,. The two resulting
spin density matrices (expectation value traces) are processed according to the second

3 In the frame rotating with the LO frequency, frequencies that are output by the AWG are offset frequencies.

8

value in the corresponding row of .pcycle, i.e. the second signal is subtracted from the
first and the total signal is divided by 2.
For an example see the Tutorial section at the end of this documentation.

2.3. Structure options
With options simulation parameters are adjusted, which are not covered by system and
sequence. It is possible to declare detection operators, tweak SPIDYAN, so that it runs
faster, include a resonator and explore the effect of complex excitation or of the choice of
the frame.

Table 4: The structure options.

User created fields of structure options with units
.det_op cell array .no_detection vector
.relaxation 0/1 .propagator 0/1
.awg structure .resonator structure
.direct_evolution vector .down_conversion 0/1
.cutoff_freq MHz .no_dc vector
.display_filter 0/1 .ui 0/1
.labframe 0/1 .complex_excitation 0/1
.LO GHz

The field .det_op is a structure which contains the detection operators in string or matrix
form. From a string SPIDYAN builds the corresponding detection operator from the spin
operators of the system. Not supported detection operators can be added directly as
matrices as elements of .det_op. For a thorough discussion on the syntax of detection
operators in SPIDYAN please refer to section 2.3.1. The function setup creates the
detection operators in matrix forms and stores them in the cell array options.detect.
Detection is computed by multiplication of the density matrix with the detection operator
and calculating the trace of the resulting matrix. Calculations can therefore be made more
efficient if events, which are not of interest, are excluded from detection by writing the
event number into the vector .no_detection. If expectation values are of no interest at all,
.det_op can be left empty. This is useful if only the density matrix describing the state of
the system after the sequence is required.
By default SPIDYAN propagates the density operator during all events, including free
evolution, on the time grid of the AWG. However, direct propagation in one large time step
during such events can drastically reduce computation time. For events where the exact
trace is of no interest (e.g. inter-pulse delays) .direct_evolution can be set to 1. While
saving a lot of time, this can also lead to transients in the detected signals when down
conversion is applied, as described below.
Including relaxation into spin dynamics for multiple spins or spins >½ requires that the
simulations are run in Liouville space. This in turn leads to larger matrices, slowing down
the calculations. Therefore, SPIDYAN neglects relaxation if not explicitly requested by
setting .relaxation to 1. If the statement is true SPIDYAN calculates the super operators
for the Hamiltonian and the relaxation matrix system.gamma, which are required for
simulations in the Liouville space. By default SPIDYAN uses the Liouville space for

9

relaxation effects, but for a 𝑆𝑆 = ½ system it is also possible to propagate in the Hilbert
space. This can be done by setting .propagator to 1 while .relaxation is true.
To propagate in the Liouville space SPIDYAN requires relaxation matrices as input, and
those matrices can easily become very complex to set up. Therefore the program offers
the user to assign relaxation times through a simple user interface. To use this, the value
for .ui has to be set to 1. For more information please refer to section 2.1.1 where the
relaxation matrix is explained.
Simulations are usually conducted in the AWG frame, which is a frame rotating at the
frequency of options.LO and resonance frequencies are given as offsets. Not only does
this help to speed up calculations by making it possible to use larger time steps, it also
minimizes numerical errors from matrix exponentials by avoiding large off-diagonal matrix
elements in the Hamiltonian. The time grid can be changed with the field .awg, a structure
controlling the arbitrary waveform generator. The default values for the AWG can be found
in Table 5. The field .s_rate controls the sampling rate in GS/s and .vert_res the vertical
resolution in bit. The user does not need to assign every field, only the ones he wants to
change. SPIDYAN assumes default values for missing fields.
In cases where it is of interest to simulate in the lab frame .labframe can be set to true.4
If so, the simulation is carried out in a static frame and the resonance frequencies of the
spin are offset by .LO. If the sampling rate of the AWG is not sufficient to fulfill the Nyquist
condition for the excitation pulse it is automatically increased.
To remove oscillations at the frequency system.nu01 from the signal detected in the lab
or AWG frame, the signals may be down converted and filtered with almost no phase
distortion. This behavior can be switched on and off with the option .down_conversion. If
true, SPIDYAN returns all processed signals as well as the original traces. To exclude
only certain signals from being down converted5 the user can write the index of the signal
(position of the corresponding detection operator in options.det_op) or its label (e.g.
‘S1p’) into the vector .no_dc. The low pass filter is tuned with the parameter .cutoff_freq,
which is the cutoff frequency of the filter in MHz. The filter response function can be
displayed by setting .display_filter to 1.
In some cases it may be interesting to use complex excitation pulses, i.e. a circularly
polarized excitation field in the rotating frame. This is possible by setting
.complex_excitation to 1. Since SPIDYAN cannot use its speed up techniques here and
has to calculate the propagator for every time point separately, this has to be handled with
care and should not be used as a default option. Complex excitation pulses are
implemented for Hilbert space only, which means relaxation has to be switched off.
For simulations that take a resonator profile into account, the resonator has to be given in
the structure .resonator. It contains a field .active, with the indices of events to apply the
resonator profile to. Elements which correspond to events other than pulses are ignored.
Other fields are the sampling rate of the resonator profile .s_rate, the quality factor .Ql
and the resonance frequency .f0. From this SPIDYAN can calculate a simple resonator
profile in the frequency domain by modelling an RLC circuit[1]. It is recommended to set

4 This may be necessary if one is unsure about truncation of off-diagonal terms of the laboratory-frame
Hamiltonian.
5 This can be the case if a system contains an electron and a nuclear spin. At the moment SPIDYAN cannot
differentiate between electron and nuclear spins and will apply the same down conversion and filtering to
both. In the case when coherence on the nuclei is detected, this will introduce oscillations to the signal, as
the simulation frame rotates for the electron spin, but not for the nuclear spin.

10

.resonator.s_rate to at least ten times .resonator.f0. An experimentally obtained
resonator profile can be used by writing the frequency axis to .range and the resonator
profile to .nu1. SPIDYAN also contains a routine, which allows to compensate the pulse
shape for the resonator[1] by setting the field .comp_bw in the .resonator structure to true.
Since the resonator profile is given at the frequency in the lab frame SPIDYAN down-
converts it from the lab to the AWG frame. The required frequency is set with options.LO
and has to be present for simulations including a resonator.

Table 5: Default values of the AWG.

AWG
.s_rate 12 GS/s
.vert_res 10
.channels 1

Table 6: Fields of the structure resonator.

Resonator fields with input
.active vector with events
.Ql
.range vector in GHz
.comp_bw 0/1
.s_rate GS/s
.f0 GHz
.nu1 MHz

2.3.1. Configuration of the detection operator
SPIDYAN can recognize and build a broad variety of detection operators from strings.
This includes the common Pauli spin matrices, raising and lowering operators, as well as
population and coherence operators for individual transitions. It is also possible to provide
a detection operator in matrix form.
The input is the cell array .det in the structure options. There is no limitation on the
number of detection operators.
A spin operator starts either with ‘-S’ or just ‘S’. This is followed by a letter, where ‘x’,
‘y’ or ‘z’ stand for the Pauli matrices, ‘m’ and ‘p’ for the lowering 𝑆𝑆− and raising
𝑆𝑆+operators and ‘e’ represents unity. This leads to the following set of operators for a
single spin:

Sx, Sy, Sz, Sp, Sm, Se, -Sx, -Sy,…

The syntax in a two-spin system is similar to the one for a single spin. The capital ‘S’ is
followed by two letters for the two spin operators

Sxx, Sxy, Sxz, Syy, Syx, Syz, Szz, Szy, Sxz, Spm, Sxp,…

where the first letter denotes an operation on the first spin (defined in system.sqn1) and
the second on the second spin (system.sqn2).
To observe populations or magnetization changes on selected transitions or levels for a
high-spin system or a two-spin system the detection operators can be further modified. By
appending a number to the 𝑆𝑆𝑧𝑧 operator, SPIDYAN detects populations, e.g. in a 𝑆𝑆 = 3/2
system ‘Sz2’ tracks the 𝑚𝑚𝑆𝑆 = −1/2 level. SPIDYAN supports one-digit numbers only,
meaning the maximum number of observable levels is nine.
Transitions are detected by adding a second digit. Sticking with the 𝑆𝑆 = 3/2 system,

11

Sx23, Sy23 or Sp23

can be written to observe coherence of the central transition (𝑚𝑚𝑆𝑆 = − ½ ↔ 𝑚𝑚𝑆𝑆 = ½) or

Sz14

for the polarization between the first (𝑚𝑚𝑆𝑆 = −3/2) and the fourth level (𝑚𝑚𝑆𝑆 = 3/2) with.
For single spin operators in a two-spin system, it is possible to write

S1x, S2x, S1z, S2p,…

where the number represents the spin.
Populations can be detected with

S1z1, Szz3, S2z2,…

and coherence and raising/lowering operators for selected transitions have the form

S1x23, Sxx23, Sp23, Sm14, Szz14… .

3. Output
The output of SPIDYAN consists of two variables state, detected_signal and an updated
version of experiment.
The variable state is the state of the system after the pulse experiment in form of a spin
density matrix.
The structure detected_signal contains the time traces of the experiment. If detection
was not switched off it contains the fields .sf, .dc, .t and .signals, else an empty cell
is returned.

Table 7: The fields of the output structure detected_signal.

.sf .signals.sf

.dc .signals.dc

.t .signals.t

The vectors .sf, .dc are n×k-dimensional matrices, where n is the number of detection
operators and k the length of the signal. They contain the time traces of the signal in the
simulation frame and after down conversion (only available if .down_conversion is true).
The corresponding time axis can be found in .t.
In the structure .signals the time traces (simulation frame and down converted) and time
axes of each individual event are stored in cell arrays.

4. SPIDYAN runtime
A simplified environment scheme of SPIDYAN is displayed in Figure 3. After setup of the
three structures system, options and sequence, these are processed with the two functions
setup and triple. While setup takes care of the system, by creating spin density matrices
and the Hamiltonian in matrix form, building spin operators, detection operators and

12

setting up the relaxation matrix, triple checks sequence for consistency and creates the
pulse shapes.
Although it would have been possible, these two routines and homerun were not combined
into a single function. That way more flexibility and insight into the simulation is provided
for the user. Furthermore, certain parameters, such as Hamiltonians, pulse strengths or
inter-pulse delays can still be changed after building the pulses or system, but before the
simulation.
For propagation, homerun has to be called with the structures as returned from setup and
triple. The output of homerun contains the final state as a density matrix, the time traces
and the pulse sequence.
The high-level functions setup, triple and homerun augment input variables of the type
structure with additional fields, depending on the information that was already provided.
This may lead to unintended behavior if these functions are called repeatedly, for instance
in a loop. If changes in the structures system, options and sequence are intended, these
structures should be cleared and newly initialized.

system

triple

homerun

setup

options

Relaxation
Detection
Resonator

ZFS-Symmetry

sequence

pulses
delays

Output

Density matrix
Expectation value

Figure 3: SPIDYAN runtime.

13

5. Tutorial

5.1. A basic pulse experiment
The script tweak.m is a very short and simple SPIDYAN script. It contains a section for the
spin system, one for the options and one for the sequence. By default the simulation is
carried out for a single spin with spin quantum number ½. This can be extended to a two-
spin system where a nucleus couples to the electron spin with the secular coupling
constant A and pseudo-secular coupling constant B, by uncommenting the lines marked
as second spin. The script runs a two pulse experiment, with an inter-pulse delay of 20 ns
and a detection time of 40 ns.
First the pulse sequence is defined. It is created with the structure sequence:

sequence.tp=[50,20,40,40]; % event durations
sequence.beta(1)=pi; % flip angle of the first pulse
sequence.beta(3)=pi/2; % flip angle of the 2nd pulse/third event
sequence.frq={[0.5 1.5]}; % excitation band
sequence.phase=0; % no phase shift for all pulses
sequence.excite={[1 0],[],[1 0]} % both pulses excite the first spin only

In the example the experiment consisting of 4 events with durations of 50, 20, 40 and 40
ns is run. By creation of the field beta, SPIDYAN is told which of these events are the
pulses (1 and 3) and what flip angles they have. First a 180° pulse with a duration of 50
ns is applied to the system (SPIDYAN calculates the pulse amplitudes required for the
specified flip angle), which is followed by a 20 ns delay, a 90° pulse of 40 ns duration and
a free evolution interval of 40 ns duration, during which the signal is detected. During both
pulses frequency is linearly swept from 0.5 to 1.5 GHz.
Next is the structure options: The first set of parameters

options.relaxation=0;
options.det_op={'Sp','-Sz'};

tells SPIDYAN to switch off relaxation, and observe the system through the 𝑆𝑆+ and −𝑆𝑆𝑧𝑧
operator.
The second set of parameters specifies signal processing:

options.down_conversion=1;
options.cutoff_freq=100;
options.no_dc={};
options.display_filter=0;

Down conversion is on and the cutoff frequency is 100 MHz. All signals are being down
converted and the program is not displaying the frequency response of the applied filter.
The following parameters can be used to speed up the simulation.

options.no_detection={3};
options.direct_evolution=[2];
options.ui=0;
options.complex_excitation=0;

14

With .no_detection it is possible to exclude certain events from detection (in this case the
second pulse = 3rd event), which can speed up the calculation by avoiding the
computationally expensive computation of the matrix trace. Stepwise evolution is switched
off during the second event, which is going to be the inter-pulse delay. This greatly
increases performance and should be used whenever possible. The user interface for
editing relaxation times is switched off and complex excitation is switched off. Both these
choices correspond to default behavior, and would not need to be explicitly defined.
The next step is the definition of the spin system. At first the simulation is to be carried out
with one spin only, a second spin will be added later. The resonance frequency of the
electron is set to be 1 GHz in the AWG frame. The spin quantum number is ½, longitudinal
relaxation time 5000 ns and transversal relaxation time 1000 ns.

system.nu01=1; % resonance frequency of spin in GHz
system.sqn1=0.5; % spin quantum number
system.T1=5000; % longitudinal relaxation time in ns
system.T2=1000; % transversal relaxation time in ns

An initial state can be given in form of a magnetization vector:

system.init_state=[0 0 1]; % magnetization vector, this corresponds to Mz

If no initial state is specified, SPIDYAN automatically assumes thermal equilibrium in the
high temperature limit.
Before running the simulation SPIDYAN needs to process the input with

[experiment, options] = triple(sequence, options);
[system, state, options] =setup(system, options);

where triple creates the actual pulse sequence and setup builds spin operators,
Hamiltonians in matrix form, detection operators in matrix form and an initial state from
the magnetization vector.
The returned structures are used to call

[state, detected_signal, experiment, options,~]=homerun(state, system,
experiment, options, []);

which propagates the system. The output provided are the final state, returned as a
density matrix, and a structure which contains the signals with and without down
conversion, a time axis and the signals for each event separately. Homerun also returns
the structure experiment, which is updated during the simulation, the updated structure
options.
Finally, the signals are plotted, both as detected in the AWG frame and after down
conversion and filtering:

figure(1),clf % plots the first figure
hold on
plot(experiment.taxis,real(detected_signal.sf))
legend(options.det_op,'Location','NorthEast')

figure(2),clf % plots the second figure

15

hold on
plot(experiment.taxis,real(detected_signal.dc))
legend(options.det_op,'Location','NorthEast')
plot([experiment.tp(1) experiment.tp(1)],[-1 1],'r--')
plot([experiment.tp(2)+experiment.tp(1) experiment.tp(2)+experiment.tp(1)],[-1
1],'r--')
plot([experiment.tp(3)+experiment.tp(2)+experiment.tp(1)
experiment.tp(3)+experiment.tp(1)+experiment.tp(2)],[-1 1],'r--')

The result of this simulated experiment after down conversion is depicted in Figure 4.

Figure 4: Time trace of a simple two pulse element after down conversion. Events are separated by vertical, dashed,
red lines. The blue line is the expectation value over the course of the experiment for the raising operator and the

orange line the expectation value for the negative Sz operator.

This example can be extended to a two-spin system (tweak-2spin.m), by uncommenting
the lines

system.sqn2=0.5;
system.nu02=-0.014;
system.A=0.014;
system.B=0.009;
options.det={'Sp', 'S1z','S2p'};
options.no_dc={3}; % or options.no_dc={'S2p'};

before the call of setup. Here a second (nuclear) spin with spin quantum number ½ and a
resonance frequency of 14 MHz is created. The coupling parameters A and B are 14 MHz
and 9 MHz. The detection operator needs to be updated to compute the information of
interest for the two-spin system. If spin operators for a single spin system (Sp) are used in
an experiment with two spins, SPIDYAN can in some cases correct this. In the present
case the operator Sp is going to be changed to S1p by the program. Nevertheless, to avoid
unintended behavior, we advise to use the explicit form.

16

If down conversion is switched on, SPIDYAN applies down conversion to every signal with
oscillating components (off diagonal elements in the detection operator), but since the
nucleus rotates at a different frequency, down conversion would then introduce a new
oscillation or remove the entire signal. Therefore down conversion is switched off for the
third signal. Alternatively one can also write the string of the detection operator that is to
be excluded from down conversion.
If we want to include phase cycling for both pulses, the line

sequence.pcycle{3}=[0, 1; pi/2, -1; pi, 1; 3*pi/2, -1]; % cycling the second
pulse

has to be added to the section of the pulse definitions. This phase cycle enforces
coherence order changes ∆p = 1 for the first and ∆p = 2 for the second pulse, thus
selecting only the echo signal. The resulting phase cycle is depicted in Table 8.

Table 8: Example phase cycle for two pulses, specifying the phases of the two pulses and the detector.

P1(π/2) P2(π)
detectio

n
x x y
x y -y
x -x y
x -y -y

5.2. The echo experiment
The file echo_template.m is a script which simulates a simple two-pulse echo.

% Define spin distribution for #1 spin
c=1; % center of Gauss distribution in GHz; resonance frequency
sigma=0.05; % standard deviation of Gauss distribution
nu0_s=0.9; % beginning frequency [GHz] of spin distribution
nu0_e=1.1; % end frequency [GHz] of spin distribution
st=0.0002; % frequency step [GHz]between two spin packets
nu0_vec=nu0_s:st:nu0_e;
p=exp(-((c-nu0_vec)/sigma).^2); % calculates distribution probability(Gaussian)
p=p/trapz(p); % normalization of probabilities

It assumes a Gaussian distribution of spin packets, centered around 1 GHz, with a
standard deviation of 0.05 GHz. The vector nu0_vec contains 1001 spin packets, with
resonance frequencies ranging from 0.9 GHz to 1.1 GHz, each with individual probability
p. After the spin packet distribution, next the spin system is set up.

system.sqn1=0.5;
system.sqn2=0.5
system.nu02=-0.014;
system.A=0.014; % secular hyperfine term A in GHz
system.B=0.009; % pseudo-secular hyperfine term B in GHz
system.T1=[0,10000,5000,5000;0 0 5000 5000; 0 0 0 10000; 0 0 0 0];
system.T2=[0,5000,1000,1000;0 0 1000 1000; 0 0 0 5000; 0 0 0 0];

17

system.init_state=[0 0 1]; % starting point of magnetization;

This is exactly the same as in the previous example, with the only difference that no
resonance frequency for the first spin is required, since it will be added from nu0_vec in
the loop and the relaxation times are now input in a matrix form. The relaxation times are
now input in matrix form, where the elements in the matrix correspond to the transitions
as depicted in Figure 2. The same is valid for options, only this time relaxation is switched
on from the beginning.

options.relaxation=1;
options.propagator=0;
options.cutoff_freq=100;
options.det_op={'S1p'};
options.no_detection={};
options.down_conversion=0;

This spin echo is a two-pulse experiment, with a 90° pulse followed by a 180° pulse. In
order to refocus the coherence of all spin packets with chirp pulses, the second pulse
must last half as long as the first pulse and the frequency band needs to be the same.

sequence.tp=[200,100,100,500];
sequence.beta(1)=pi/2;
sequence.beta(3)=pi;
sequence.frq={[0.5 1.5]};
sequence.phase=[0 0 0]; % no phase shifts
sequence.excite=[1 0]; % pulses excite only the first spin

[experiment, options] = triple(sequence, options);

After the input is completed, the for-loop is processed. It is possible in this example to
use a parfor loop (parallel-for), which uses the multicore processing ability of MATLAB
and decreases the computation times by a factor of almost the number of cores. For more
details see the MATLAB documentation on parallel computing. In parallel computing
threads have to be independent of each other, meaning that loops cannot communicate
with each other. This makes it impossible to calculate the total signal (from all spin
packets) within the loop. Therefore a cell structure has to be created first in which the
detected signals of all spin packets are stored. Only after the parfor-loop is completed
the total signal is calculated from the individual traces.

signalc=cell(1,length(nu0_vec)); % creates empty cell structure

For the loop instances to be independent it is necessary to change the system parameters
in every loop separately, by creating a system structure systeml, which is, after addition
of the resonance frequency of the distributed spin, processed by setup within the loop.

parfor k=1:length(nu0_vec)

 systeml=system;
 systeml.nu01=nu0_vec(k);

 [systeml, state, optionsl]=setup(systeml,options);

http://www.mathworks.com/products/parallel-computing/

18

 [state, detected_signal]=homerun(state, systeml, experimentl, optionsl);

 signalc{k}=detected_signal.sf;
end

After simulation of each spin packet, the total signal is created by summing up the
weighted traces. At this point the probability comes into play, which acts as a weighting
factor for each individual signal.

signal=zeros(size(signalc{1}));

for k=1:length(nu0_vec)
 signal=signal+signalc{k}*p(k);
end

After creation of a time axis the echo is plotted.

figure(22); clf;
hold on
plot(t,real(signal))
xlabel('time [ns]')
plot([experiment.tp(1) experiment.tp(1)],[-1 1],'r--')
plot([experiment.tp(2)+experiment.tp(1) experiment.tp(2)+experiment.tp(1)],[-1
1],'r--')
plot([experiment.tp(3)+experiment.tp(2)+experiment.tp(1)
experiment.tp(3)+experiment.tp(1)+experiment.tp(2)],[-1 1],'r--')

To remove oscillations the signal can be down converted by calling strike with the signal
in the simulation frame and the center frequency of the spin distribution and plot the
converted signal:

signalf=strike(signal, t, c, options);

figure(23); clf;
hold on
plot(t,abs(signalf))
xlabel('time [ns]')
plot([experiment.tp(1) experiment.tp(1)],[-1 1],'r--')
plot([experiment.tp(2)+experiment.tp(1) experiment.tp(2)+experiment.tp(1)],[-1
1],'r--')
plot([experiment.tp(3)+experiment.tp(2)+experiment.tp(1)
experiment.tp(3)+experiment.tp(1)+experiment.tp(2)],[-1 1],'r--')

This results in a non-oscillatory echo (Figure 5).

19

Figure 5: A two-pulse echo after down conversion. The events are separated by vertical, dashed, red lines. Observed
was the raising operator for the first spin for the entire experiment. The first segment corresponds to the π/2 pulse and

the third element to the π pulse.

6. References

1. Doll, A., Pribitzer, S., Tschaggelar, R. & Jeschke, G. Adiabatic and fast passage
ultra-wideband inversion in pulsed EPR. J. Magn. Reson. 230, 27–39 (2013).

2. Schweiger, A. & Jeschke, G. Principles of pulse electron paramagnetic resonance.
608 (Oxford University Press, 2001).

	1. SPIDYAN
	1.1. Installation
	1.2. Using SPIDYAN
	2. User created input
	2.1. Structure system
	2.1.1. How to set up relaxation times
	2.2. Structure sequence
	2.3. Structure options
	2.3.1. Configuration of the detection operator
	3. Output
	4. SPIDYAN runtime
	5. Tutorial
	5.1. A basic pulse experiment
	5.2. The echo experiment
	6. References

