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1. SPIDYAN 
With the recent developments in the field of fast arbitrary waveform generators (AWGs) 
in the GHz range, it has become possible to use frequency swept microwave pulses in 
EPR. Such frequency swept, or passage, pulses are well known in NMR spectroscopy 
while their effects in EPR are yet to be fully understood. 
Common EPR programs were not designed to simulate EPR experiments with arbitrary 
shaped pulses that may also require consideration of spectrometer hardware parameters, 
such as a resonator profile or AWG resolution. Waiting for extension by the developers of 
these packages would have hold back our own developments of experimental techniques 
and of theory of passage pulses. Likewise, NMR programs would have needed extensions 
for convenient computation of pulse EPR experiments. In order to simulate spin dynamics 
during frequency-swept, or generally arbitrary wavefunction pulses, the SPIn DYnamics 
ANalysis (SPIDYAN) library was developed, which runs on MATLAB. SPIDYAN is free of 
cost and open source. The first release of SPIDYAN can treat one-spin and two-spin 
systems with arbitrary spin quantum numbers. At the current stage of development of EPR 
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spectroscopy with shaped pulses, this appears appropriate. A future version will allow for 
systems with an arbitrary number of spins. 

1.1. Installation 
SPIDYAN runs in MATLAB and requires MATLAB R2013a or newer. The current version 
of SPIDYAN also depends on the MATLAB Signal Processing Toolbox and for improved 
performance the Parallel Computing Toolbox is recommended.  
To install SPIDYAN, the program has to be downloaded from www.epr.ethz.ch/software 
and extracted into a directory of choice. For testing it is possible to write and run scripts 
from that directory. To install SPIDYAN permanently and make it accessible from 
everywhere on the computer, the program’s directory has to be added to the MATLAB 
search path. This is done by clicking on the ‘Set Path’ button in the ‘environment’ section 
of the home tab and picking ’Add Folder…’ to navigate to the location of SPIDYAN. Now 
MATLAB will be looking for the SPIDYAN functions in the specified directory. SPIDYAN 
scripts can now be run from any directory on your machine. 

1.2. Using SPIDYAN  
Any SPIDYAN script is divided in three segments: 
 
Set up of Input: 

- system – a structure which contains the spin system 
- sequence – a structure with the pulse sequence 
- options – a structure containing all other parameters required for the simulation 

 
Initializing, Processing and Propagation: 

- call of triple with sequence and options, creates the structure experiment 
- call of setup with system and options, returns the updated structure system 
- call of homerun with system, experiment and options to simulate the experiment 

 
Returned Output: 

- density matrix state and time traces detected_signal, which can be plotted 
 
Structure arrays are a data type in MATLAB which allow the user to store several variables 
in a convenient and easily accessible way. A structure consists of fields, which can be any 
other data type (integers, doubles, vectors, strings, cell arrays or structures). The fields of 
structures can be called with ‘structure.field’. For example the field .sqn1 (which is the 
spin quantum number of the first spin) in the structure system, can be set with: 
 
system.sqn1=0.5;   
 
The following sections provide detailed information on how to set up the input and what 
fields are available. Some example files can be downloaded together with SPIDYAN and 
are discussed and explained in the Tutorial section of the documentation. 

http://www.epr.ethz.ch/software
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2. User created input 

2.1. Structure system 
The structure system provides SPIDYAN with the spin system. The required and optional 
parameters are resonance frequencies for up to two spins, spin quantum numbers, 
relaxation times and coupling constants. The structure is processed by setup which also 
does a rudimentary check for completeness.  
 

Table 1: Fields required for the structure system, not all 
are required for SPIDYAN. 

User created fields of system with units 
.nu01 GHz .nu02 GHz 
.sqn1  .sqn2  
.T1 ns .T2 ns 
.default_T1 ns .default_T2 ns 
.A GHz .B GHz 
.init_state    
 

Table 2: Fields that are created by SPIDYAN 
from the input. 

Fields created from input 
.sops .spins 
.ham .eq 
.R .gamma 

 

 
The fields .nu01 and .nu02 are the resonance for in the AWG frame. If simulations are to 
be carried out with one spin only, .nu02 must not be used, has to be empty or .spins set 
to 1. The value of .spins tells SPIDYAN the number of spins in the system. It does not 
need to be configured since SPIDYAN can usually guess the value from the input. 
The spin quantum numbers can be specified with .sqn1 and .sqn2. SPIDYAN assumes 
spin quantum numbers 𝑆𝑆𝑖𝑖 = ½, if not declared otherwise. 
With those parameters SPIDYAN calculates the Hamiltonian .ham of the system, which is 
required to propagate the density matrix, from the spin operators .sops (created by 
SPIDYAN). For those not satisfied with the available Hamiltonians in SPIDYAN, it is also 
possible to create tailored Hamiltonians. To do this, one first has to build the Hamiltonian 
in matrix form in Hilbert space and then assign it to the field .ham. When SPIDYAN 
discovers an assignment to .ham, it skips calculation of the Hamiltonian and propagates 
with the user’s input. 
The initial state .init_state of the system can be given as matrix or magnetization vector. 
The matrix is used as it is, while a magnetization vector of the form (𝑆𝑆𝑥𝑥 , 𝑆𝑆𝑦𝑦, 𝑆𝑆𝑧𝑧) is used to 
build a spin density matrix from the Pauli matrices for a single spin ½. If the initial state is 
omitted, SPIDYAN assumes thermal equilibrium. 
For simulations, which include relaxation effects, the relaxation times for longitudinal and 
transverse relaxation have to be given in nanoseconds, otherwise they can be omitted. 
Relaxation times can be provided either through assigning doubles or matrices to .T1 and 
.T2, or by using a graphical user interface (GUI). The GUI is described in section 2.1.1. 
Transitions which are not defined by the user are assigned default values which have to 
be provided with .default_T1 and .default_T2. 
SPIDYAN then uses the relaxation times to build the relaxation super operator Γ�, which is 
required for propagation in the Liouville space. If .spins=1 and .sqn1=1/2, SPIDYAN also 
calculates the relaxation matrix .R, which can be used for computationally more efficient 
simulations including relaxation in Hilbert space, if the system consists of only a single 
𝑆𝑆 = ½ spin. 
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An equilibrium state can be set with the field .eq, which has to have the form of a density 
matrix. If the field is not assigned, SPIDYAN assumes the equilibrium state to be – 𝑆𝑆𝑧𝑧 for 
a single electron or – 𝑆𝑆1𝑧𝑧 − 𝑆𝑆2𝑧𝑧 for two spins1. 

2.1.1. How to set up relaxation times 
SPIDYAN offers two methods to realize relaxation input. The first, very general approach 
is to apply the same longitudinal and transverse relaxation time to all transitions of the 
system. To do this the user assigns doubles to system.T1 and system.T2. This can be 
useful to get a first insight into relaxation dynamics. 
A second, more sophisticated method allows to assign relaxation times to individual 
transitions. For this the input needs to be in matrix form, with dimensions (2𝑆𝑆 + 1) for a 
single spin and (2𝑆𝑆1 + 1) (2𝑆𝑆2 + 1) for two spins respectively. 
Figure 1 shows the transitions for a single spin with 𝑆𝑆 = 1, their positions in the matrix of 
the relaxation times and a MATLAB code. The first column is always the state with the 
lowest spin projection quantum number 𝑚𝑚𝑆𝑆 . For example a 𝑆𝑆 = 1/2  starts with 𝑚𝑚𝑆𝑆 =
− 1/2 . 
The same is valid for a two-spin system. Here, the first position in the matrix contains both 
spins in their lowest state. First 𝑚𝑚𝑆𝑆 of the second spin changes (see Figure 2), and after 
all combinations, the spin quantum number of the first spin is increased. Only the upper 
triangle of the matrix has to be defined. The user does not need to assign the lower 
triangle. SPIDYAN will change the relaxation time for every non-defined (0) transition to 
.default_T1 or .default_T2. 
The elements on the diagonal of the matrix do not correspond to relaxation pathways and 
therefore do not need to be considered. 
In addition, SPIDYAN offers the possibility to enter the relaxation times through a simple 
GUI. This can be done by setting options.ui to 1. When the script is executed and 
relaxation is switched on, a window pops up, where the user can fill in the longitudinal 
relaxation times in a table. The rows and lines of the table follow the same ordering as 
described previously. By closing it, the values are stored and a second window pops up 
for transverse relaxation. Only after the second window is closed, the simulation 
continues. 
 
 

                                             
1 Caution, this in not valid for a system with one electron and a nucleus and has to be adapted accordingly 
in such a case. 
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Figure 1: a) Transitions and b) the corresponding positions in the matrix for the relaxation times for a three level 

system with S=1 with c) A MATLAB code. 

 

 
Figure 2: a) Transitions and b) their corresponding positions in the matrix for the relaxation times for a four level 

system with S=½ and I= ½ and c) MATLAB code for a matrix. 

2.2. Structure sequence 
The structure sequence is used to define the events2 during a pulse experiment. It contains 
fields for the event lengths .tp, pulse amplitudes .nu1, flip angles .beta, critical 
adiabaticity factors Q and excitation bandwidths .frq. It is also possible to assign rise 
times to each pulse with the field .t_rise and phase cycling can be added with .pcycle. 
An overview of all available fields can be found in Table 3.  
The time lengths of all events, regardless of their type, have to be written into the vector 
.tp. SPIDYAN uses the vectors for pulse amplitudes .nu1, adiabaticity factors Q and flip 

                                             
2 SPIDYAN counts pulses, inter-pulse delays and detection as events. 
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angle .beta to distinguish between pulses and free evolution. If the program finds a non-
zero value for an event on the corresponding positions in either .nu1 .beta or .Q (or all), it 
takes it for a pulse. 

Table 3: The structure sequence. 

Fields of structure sequence with units 
.tp ns  .nu1 MHz 
.beta rad  .frq GHz 
.t_rise ns  .phase rad 

.Q Vector with critical adiabaticity of 
pulse. 

.excite Vector or cell array containing 
Boolean vector 

.pcycle cell array containing matrices 

.pcycle{k} matrix, first dimension phase of 
pulse, second dimension is sign 

 
If pulses are to be created with a certain flip angle, the corresponding element in .nu1 is 
0, else the flip angle is ignored and the given .nu1 is used. The same holds for creation 
through adiabaticity factors, in which case .nu1 and .beta have to be zero. 
The excitation bandwidth .frq can either be assigned to be the same for every pulse or 
different for each pulse. The same bandwidth is assigned to every pulse when .frq 
contains only one (rectangular pulse) or two (chirp) elements. The first element is the initial 
and the second element the final sweep frequency. For excitation with monochromatic 
pulses, the first and second element simply have to be the same or the vector must contain 
only one element. For example  
 
sequence.frq=[1.0 1.0]; 
 
leads to the same behavior, an offset of 1 GHz from the frequency of the simulation frame, 
as  
 
sequence.frq=[1.0]; 
 
To assign the same chirp bandwidth to every pulse, one would write 
 
sequence.frq=[0.5 1.5]; 
 
which creates a sweep from 0.5 to 1.5 GHz.  
For some experiments it is necessary to have different excitation bandwidths for every 
pulse. This can be achieved by writing .frq as a cell array, with the cells being vectors 
with initial and final sweep frequency, e.g. for a three-pulse experiment with two 
rectangular pulses (1st and 4th event), an inter pulse delay (2nd event)  and a chirp pulse 
(3rd event): 
 
sequence.frq ={[1.0], [], [0.5 1.5], [1.0 1.0]}; 
 
The phase of the pulses can be set either for all as the same by typing 
 
sequence.phase = pi; 
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or separately for each pulse by making sequence.phase a vector (example for the above 
pulse sequence): 
 
sequence.phase = [pi/2, 0, 0, pi/2]; 
 
The phase has to be given in rad.  
Since calculations are usually carried out in a frame that rotates with the local oscillator 
(LO) frequency (AWG frame 3 ), nuclear spins could be erroneously excited in the 
simulation although they are off resonant by the LO frequency. Therefore it is possible to 
denote the spin to be excited for each pulse with .excite. This will set up the excitation 
operator accordingly. In case .excite is a vector, the same excitation scheme is applied 
to every pulse. Each pulse can configured individually by writing .excite as a cell array, 
with index being the event number. The required input is a Boolean vector, where the 
position in the vector corresponds to the number of the spin as defined in system where 1 
means ‘excitation’ and 0 ‘no excitation’.  If the field is omitted (either because .excite is 
empty or not defined for individual elements in the cell array), only the first spin is excited. 
It is also possible to give a custom excitation operator in matrix form, to excite for example 
only a selected transition in multi-level system. 
 
sequence.excite=[1 1]; 
 
as well as 
 
sequence.excite={[1 1], [], [1 1]} 
 
excite both spins during both pulses (1st and 3rd event). A custom excitation operator can 
be given in a similar same way. In the following example both pulses are excited during 
the first pulse and during the third pulse only the first spin is excited (the excitation operator 
is in matrix form): 
 
sequence.excite=[1 1], [], [0 0 0.5 0; 0 0 0 0.5; 0.5 0 0 0; 0 0.5 0 0]} 
 

Phase cycling is controlled with the cell array .pcycle. The individual cell elements hereby 
correspond to the respective event. The cells are matrices with the rows corresponding to 
phase cycle steps. The first value in each row is the phase of the pulse in radians. The 
second value is a signal weighting. The density matrix resulting for the corresponding 
phase is multiplied with this number and added to the weighted density matrices from the 
other steps. Finally, the sum of the weighted density matrices of all steps is normalized by 
the sum of the absolute values of all weighting factors. For example the code  
 
sequence.pcycle{3}=[0, 1; pi, -1]; 
 
will, starting from the same initial state, cycle the third event by calculating the outcome of 
the pulse once without any additional phase and once with a phase of π,. The two resulting 
spin density matrices (expectation value traces) are processed according to the second 

                                             
3 In the frame rotating with the LO frequency, frequencies that are output by the AWG are offset frequencies. 
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value in the corresponding row of .pcycle, i.e. the second signal is subtracted from the 
first and the total signal is divided by 2. 
For an example see the Tutorial section at the end of this documentation. 

2.3. Structure options 
With options simulation parameters are adjusted, which are not covered by system and 
sequence. It is possible to declare detection operators, tweak SPIDYAN, so that it runs 
faster, include a resonator and explore the effect of complex excitation or of the choice of 
the frame.  
 

Table 4: The structure options. 

User created fields of structure options with units 
.det_op cell array .no_detection vector 
.relaxation 0/1 .propagator 0/1 
.awg structure .resonator structure 
.direct_evolution vector .down_conversion 0/1 
.cutoff_freq MHz .no_dc vector 
.display_filter 0/1 .ui 0/1 
.labframe 0/1 .complex_excitation 0/1 
.LO GHz   

 
The field .det_op is a structure which contains the detection operators in string or matrix 
form. From a string SPIDYAN builds the corresponding detection operator from the spin 
operators of the system. Not supported detection operators can be added directly as 
matrices as elements of .det_op. For a thorough discussion on the syntax of detection 
operators in SPIDYAN please refer to section 2.3.1. The function setup creates the 
detection operators in matrix forms and stores them in the cell array options.detect. 
Detection is computed by multiplication of the density matrix with the detection operator 
and calculating the trace of the resulting matrix. Calculations can therefore be made more 
efficient if events, which are not of interest, are excluded from detection by writing the 
event number into the vector .no_detection. If expectation values are of no interest at all, 
.det_op can be left empty. This is useful if only the density matrix describing the state of 
the system after the sequence is required. 
By default SPIDYAN propagates the density operator during all events, including free 
evolution, on the time grid of the AWG. However, direct propagation in one large time step 
during such events can drastically reduce computation time. For events where the exact 
trace is of no interest (e.g. inter-pulse delays) .direct_evolution can be set to 1. While 
saving a lot of time, this can also lead to transients in the detected signals when down 
conversion is applied, as described below. 
Including relaxation into spin dynamics for multiple spins or spins >½ requires that the 
simulations are run in Liouville space. This in turn leads to larger matrices, slowing down 
the calculations. Therefore, SPIDYAN neglects relaxation if not explicitly requested by 
setting .relaxation to 1. If the statement is true SPIDYAN calculates the super operators 
for the Hamiltonian and the relaxation matrix system.gamma, which are required for 
simulations in the Liouville space. By default SPIDYAN uses the Liouville space for 
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relaxation effects, but for a 𝑆𝑆 = ½ system it is also possible to propagate in the Hilbert 
space. This can be done by setting .propagator to 1 while .relaxation is true. 
To propagate in the Liouville space SPIDYAN requires relaxation matrices as input, and 
those matrices can easily become very complex to set up. Therefore the program offers 
the user to assign relaxation times through a simple user interface. To use this, the value 
for .ui has to be set to 1. For more information please refer to section 2.1.1 where the 
relaxation matrix is explained. 
Simulations are usually conducted in the AWG frame, which is a frame rotating at the 
frequency of options.LO and resonance frequencies are given as offsets. Not only does 
this help to speed up calculations by making it possible to use larger time steps, it also 
minimizes numerical errors from matrix exponentials by avoiding large off-diagonal matrix 
elements in the Hamiltonian. The time grid can be changed with the field .awg, a structure 
controlling the arbitrary waveform generator. The default values for the AWG can be found 
in Table 5. The field .s_rate controls the sampling rate in GS/s and .vert_res the vertical 
resolution in bit. The user does not need to assign every field, only the ones he wants to 
change. SPIDYAN assumes default values for missing fields. 
In cases where it is of interest to simulate in the lab frame .labframe can be set to true.4 
If so, the simulation is carried out in a static frame and the resonance frequencies of the 
spin are offset by .LO. If the sampling rate of the AWG is not sufficient to fulfill the Nyquist 
condition for the excitation pulse it is automatically increased. 
To remove oscillations at the frequency system.nu01 from the signal detected in the lab 
or AWG frame, the signals may be down converted and filtered with almost no phase 
distortion. This behavior can be switched on and off with the option .down_conversion. If 
true, SPIDYAN returns all processed signals as well as the original traces. To exclude 
only certain signals from being down converted5 the user can write the index of the signal 
(position of the corresponding detection operator in options.det_op) or its label (e.g. 
‘S1p’) into the vector .no_dc. The low pass filter is tuned with the parameter .cutoff_freq, 
which is the cutoff frequency of the filter in MHz. The filter response function can be 
displayed by setting .display_filter to 1. 
In some cases it may be interesting to use complex excitation pulses, i.e. a circularly 
polarized excitation field in the rotating frame. This is possible by setting 
.complex_excitation to 1. Since SPIDYAN cannot use its speed up techniques here and 
has to calculate the propagator for every time point separately, this has to be handled with 
care and should not be used as a default option. Complex excitation pulses are 
implemented for Hilbert space only, which means relaxation has to be switched off. 
For simulations that take a resonator profile into account, the resonator has to be given in 
the structure .resonator. It contains a field .active, with the indices of events to apply the 
resonator profile to. Elements which correspond to events other than pulses are ignored. 
Other fields are the sampling rate of the resonator profile .s_rate, the quality factor .Ql 
and the resonance frequency .f0. From this SPIDYAN can calculate a simple resonator 
profile in the frequency domain by modelling an RLC circuit[1]. It is recommended to set 
                                             
4 This may be necessary if one is unsure about truncation of off-diagonal terms of the laboratory-frame 
Hamiltonian. 
5 This can be the case if a system contains an electron and a nuclear spin. At the moment SPIDYAN cannot 
differentiate between electron and nuclear spins and will apply the same down conversion and filtering to 
both. In the case when coherence on the nuclei is detected, this will introduce oscillations to the signal, as 
the simulation frame rotates for the electron spin, but not for the nuclear spin. 
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.resonator.s_rate to at least ten times .resonator.f0. An experimentally obtained 
resonator profile can be used by writing the frequency axis to .range and the resonator 
profile to .nu1. SPIDYAN also contains a routine, which allows to compensate the pulse 
shape for the resonator[1] by setting the field .comp_bw in the .resonator structure to true. 
Since the resonator profile is given at the frequency in the lab frame SPIDYAN down-
converts it from the lab to the AWG frame. The required frequency is set with options.LO 
and has to be present for simulations including a resonator. 
 

Table 5: Default values of the AWG. 

AWG 
.s_rate 12 GS/s 
.vert_res 10 
.channels 1 

 

Table 6: Fields of the structure resonator. 

Resonator fields with input 
.active vector with events 
.Ql  
.range vector in GHz 
.comp_bw 0/1 
.s_rate GS/s 
.f0 GHz 
.nu1 MHz 

 

 

2.3.1. Configuration of the detection operator 
SPIDYAN can recognize and build a broad variety of detection operators from strings. 
This includes the common Pauli spin matrices, raising and lowering operators, as well as 
population and coherence operators for individual transitions. It is also possible to provide 
a detection operator in matrix form. 
The input is the cell array .det in the structure options. There is no limitation on the 
number of detection operators. 
A spin operator starts either with ‘-S’ or just ‘S’. This is followed by a letter, where ‘x’, 
‘y’ or ‘z’ stand for the Pauli matrices, ‘m’ and ‘p’ for the lowering 𝑆𝑆−  and raising 
𝑆𝑆+operators and ‘e’ represents unity. This leads to the following set of operators for a 
single spin: 
 
Sx, Sy, Sz, Sp, Sm, Se, -Sx, -Sy,… 
 
The syntax in a two-spin system is similar to the one for a single spin. The capital ‘S’ is 
followed by two letters for the two spin operators 
 
Sxx, Sxy, Sxz, Syy, Syx, Syz, Szz, Szy, Sxz, Spm, Sxp,… 
 
where the first letter denotes an operation on the first spin (defined in system.sqn1) and 
the second on the second spin (system.sqn2). 
To observe populations or magnetization changes on selected transitions or levels for a 
high-spin system or a two-spin system the detection operators can be further modified. By 
appending a number to the 𝑆𝑆𝑧𝑧 operator, SPIDYAN detects populations, e.g. in a 𝑆𝑆 = 3/2 
system ‘Sz2’ tracks the 𝑚𝑚𝑆𝑆 = −1/2  level. SPIDYAN supports one-digit numbers only, 
meaning the maximum number of observable levels is nine. 
Transitions are detected by adding a second digit. Sticking with the 𝑆𝑆 = 3/2 system, 
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Sx23, Sy23 or Sp23  
 
can be written to observe coherence of the central transition (𝑚𝑚𝑆𝑆 =  − ½ ↔   𝑚𝑚𝑆𝑆 =  ½ ) or  
 
Sz14 
 
for the polarization between the first (𝑚𝑚𝑆𝑆 = −3/2) and the fourth level (𝑚𝑚𝑆𝑆 = 3/2) with. 
For single spin operators in a two-spin system, it is possible to write  
 
S1x, S2x, S1z, S2p,… 
 
where the number represents the spin. 
Populations can be detected with 
 
S1z1, Szz3, S2z2,… 
 
and coherence and raising/lowering operators for selected transitions have the form 
 
S1x23, Sxx23, Sp23, Sm14, Szz14… . 
 

3. Output 
The output of SPIDYAN consists of two variables state, detected_signal and an updated 
version of experiment. 
The variable state is the state of the system after the pulse experiment in form of a spin 
density matrix.  
The structure detected_signal contains the time traces of the experiment. If detection 
was not switched off it contains the fields .sf, .dc, .t and .signals, else an empty cell 
is returned. 
 

Table 7: The fields of the output structure detected_signal. 

.sf .signals.sf 

.dc .signals.dc 

.t .signals.t 

 
The vectors .sf, .dc are n×k-dimensional matrices, where n is the number of detection 
operators and k the length of the signal. They contain the time traces of the signal in the 
simulation frame and after down conversion (only available if .down_conversion is true). 
The corresponding time axis can be found in .t. 
In the structure .signals the time traces (simulation frame and down converted) and time 
axes of each individual event are stored in cell arrays. 

4. SPIDYAN runtime 
A simplified environment scheme of SPIDYAN is displayed in Figure 3. After setup of the 
three structures system, options and sequence, these are processed with the two functions 
setup and triple. While setup takes care of the system, by creating spin density matrices 
and the Hamiltonian in matrix form, building spin operators, detection operators and 
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setting up the relaxation matrix, triple checks sequence for consistency and creates the 
pulse shapes. 
Although it would have been possible, these two routines and homerun were not combined 
into a single function. That way more flexibility and insight into the simulation is provided 
for the user. Furthermore, certain parameters, such as Hamiltonians, pulse strengths or 
inter-pulse delays can still be changed after building the pulses or system, but before the 
simulation. 
For propagation, homerun has to be called with the structures as returned from setup and 
triple. The output of homerun contains the final state as a density matrix, the time traces 
and the pulse sequence. 
The high-level functions setup, triple and homerun augment input variables of the type 
structure with additional fields, depending on the information that was already provided. 
This may lead to unintended behavior if these functions are called repeatedly, for instance 
in a loop. If changes in the structures system, options and sequence are intended, these 
structures should be cleared and newly initialized.   
 

system

triple

homerun

setup

options

Relaxation
Detection
Resonator

ZFS-Symmetry

sequence

pulses
delays

Output

Density matrix
Expectation value

 

Figure 3: SPIDYAN runtime. 
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5. Tutorial 

5.1. A basic pulse experiment 
The script tweak.m is a very short and simple SPIDYAN script. It contains a section for the 
spin system, one for the options and one for the sequence. By default the simulation is 
carried out for a single spin with spin quantum number ½. This can be extended to a two-
spin system where a nucleus couples to the electron spin with the secular coupling 
constant A and pseudo-secular coupling constant B, by uncommenting the lines marked 
as second spin. The script runs a two pulse experiment, with an inter-pulse delay of 20 ns 
and a detection time of 40 ns.  
First the pulse sequence is defined. It is created with the structure sequence: 
 
sequence.tp=[50,20,40,40];    % event durations 
sequence.beta(1)=pi;    % flip angle of the first pulse 
sequence.beta(3)=pi/2;    % flip angle of the 2nd pulse/third event 
sequence.frq={[0.5 1.5]};    % excitation band 
sequence.phase=0;      % no phase shift for all pulses 
sequence.excite={[1 0],[],[1 0]}   % both pulses excite the first spin only 
 
In the example the experiment consisting of 4 events with durations of 50, 20, 40 and 40 
ns is run. By creation of the field beta, SPIDYAN is told which of these events are the 
pulses (1 and 3) and what flip angles they have. First a 180° pulse with a duration of 50 
ns is applied to the system  (SPIDYAN calculates the pulse amplitudes required for the 
specified flip angle), which is followed by a 20 ns delay, a 90° pulse of 40 ns duration and 
a free evolution interval of 40 ns duration, during which the signal is detected. During both 
pulses frequency is linearly swept from 0.5 to 1.5 GHz. 
Next is the structure options: The first set of parameters  
 
options.relaxation=0; 
options.det_op={'Sp','-Sz'}; 
 
tells SPIDYAN to switch off relaxation, and observe the system through the 𝑆𝑆+ and −𝑆𝑆𝑧𝑧 
operator. 
The second set of parameters specifies signal processing: 
 
options.down_conversion=1; 
options.cutoff_freq=100; 
options.no_dc={}; 
options.display_filter=0; 
 
Down conversion is on and the cutoff frequency is 100 MHz. All signals are being down 
converted and the program is not displaying the frequency response of the applied filter. 
The following parameters can be used to speed up the simulation.  
 
options.no_detection={3}; 
options.direct_evolution=[2]; 
options.ui=0; 
options.complex_excitation=0; 
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With .no_detection it is possible to exclude certain events from detection (in this case the 
second pulse = 3rd event), which can speed up the calculation by avoiding the 
computationally expensive computation of the matrix trace. Stepwise evolution is switched 
off during the second event, which is going to be the inter-pulse delay. This greatly 
increases performance and should be used whenever possible. The user interface for 
editing relaxation times is switched off and complex excitation is switched off. Both these 
choices correspond to default behavior, and would not need to be explicitly defined. 
The next step is the definition of the spin system. At first the simulation is to be carried out 
with one spin only, a second spin will be added later. The resonance frequency of the 
electron is set to be 1 GHz in the AWG frame. The spin quantum number is ½, longitudinal 
relaxation time 5000 ns and transversal relaxation time 1000 ns. 
 
system.nu01=1;   % resonance frequency of spin in GHz 
system.sqn1=0.5;   % spin quantum number 
system.T1=5000;   % longitudinal relaxation time in ns 
system.T2=1000;  % transversal relaxation time in ns 
 
An initial state can be given in form of a magnetization vector: 
 
system.init_state=[0 0 1];  % magnetization vector, this corresponds to Mz 
 
If no initial state is specified, SPIDYAN automatically assumes thermal equilibrium in the 
high temperature limit.  
Before running the simulation SPIDYAN needs to process the input with  
 
[experiment, options] = triple(sequence, options); 
[system, state, options] =setup(system, options); 
    
where triple creates the actual pulse sequence and setup builds spin operators, 
Hamiltonians in matrix form, detection operators in matrix form and an initial state from 
the magnetization vector. 
The returned structures are used to call 
 
[state, detected_signal, experiment, options,~]=homerun(state, system, 
experiment, options, []); 
 
which propagates the system. The output provided are the final state, returned as a 
density matrix, and a structure which contains the signals with and without down 
conversion, a time axis and the signals for each event separately. Homerun also returns 
the structure experiment, which is updated during the simulation, the updated structure 
options.  
Finally, the signals are plotted, both as detected in the AWG frame and after down 
conversion and filtering: 
 
figure(1),clf  % plots the first figure 
hold on 
plot(experiment.taxis,real(detected_signal.sf)) 
legend(options.det_op,'Location','NorthEast') 
  
figure(2),clf  % plots the second figure 
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hold on 
plot(experiment.taxis,real(detected_signal.dc)) 
legend(options.det_op,'Location','NorthEast') 
plot([experiment.tp(1) experiment.tp(1)],[-1 1],'r--') 
plot([experiment.tp(2)+experiment.tp(1) experiment.tp(2)+experiment.tp(1)],[-1 
1],'r--') 
plot([experiment.tp(3)+experiment.tp(2)+experiment.tp(1) 
experiment.tp(3)+experiment.tp(1)+experiment.tp(2)],[-1 1],'r--') 
 
The result of this simulated experiment after down conversion is depicted in Figure 4. 

 

Figure 4: Time trace of a simple two pulse element after down conversion. Events are separated by vertical, dashed, 
red lines. The blue line is the expectation value over the course of the experiment for the raising operator and the 

orange line the expectation value for the negative Sz operator. 

This example can be extended to a two-spin system (tweak-2spin.m), by uncommenting 
the lines  
 
system.sqn2=0.5; 
system.nu02=-0.014; 
system.A=0.014; 
system.B=0.009; 
options.det={'Sp', 'S1z','S2p'}; 
options.no_dc={3};     % or options.no_dc={'S2p'}; 
 
before the call of setup. Here a second (nuclear) spin with spin quantum number ½ and a 
resonance frequency of 14 MHz is created. The coupling parameters A and B are 14 MHz 
and 9 MHz. The detection operator needs to be updated to compute the information of 
interest for the two-spin system. If spin operators for a single spin system (Sp) are used in 
an experiment with two spins, SPIDYAN can in some cases correct this. In the present 
case the operator Sp is going to be changed to S1p by the program. Nevertheless, to avoid 
unintended behavior, we advise to use the explicit form. 
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If down conversion is switched on, SPIDYAN applies down conversion to every signal with 
oscillating components (off diagonal elements in the detection operator), but since the 
nucleus rotates at a different frequency, down conversion would then introduce a new 
oscillation or remove the entire signal. Therefore down conversion is switched off for the 
third signal. Alternatively one can also write the string of the detection operator that is to 
be excluded from down conversion. 
If we want to include phase cycling for both pulses, the line 
 
sequence.pcycle{3}=[0, 1; pi/2, -1; pi, 1; 3*pi/2, -1]; % cycling the second 
pulse 
 
has to be added to the section of the pulse definitions. This phase cycle enforces 
coherence order changes ∆p = 1 for the first and ∆p = 2 for the second pulse, thus 
selecting only the echo signal. The resulting phase cycle is depicted in Table 8. 
 

Table 8: Example phase cycle for two pulses, specifying the phases of the two pulses and the detector. 

P1(π/2) P2(π) 
detectio

n 
x x y 
x y -y 
x -x y 
x -y -y 

5.2. The echo experiment  
The file echo_template.m is a script which simulates a simple two-pulse echo. 
 
% Define spin distribution for #1 spin 
c=1;         % center of Gauss distribution in GHz; resonance frequency 
sigma=0.05;       % standard deviation of Gauss distribution    
nu0_s=0.9;        % beginning frequency [GHz] of spin distribution  
nu0_e=1.1;        % end frequency [GHz] of spin distribution  
st=0.0002;        % frequency step [GHz]between two spin packets                               
nu0_vec=nu0_s:st:nu0_e;        
p=exp(-((c-nu0_vec)/sigma).^2); % calculates distribution probability(Gaussian) 
p=p/trapz(p);  % normalization of probabilities 
 
It assumes a Gaussian distribution of spin packets, centered around 1 GHz, with a 
standard deviation of 0.05 GHz. The vector nu0_vec contains 1001 spin packets, with 
resonance frequencies ranging from 0.9 GHz to 1.1 GHz, each with individual probability 
p. After the spin packet distribution, next the spin system is set up. 
 
system.sqn1=0.5;              
system.sqn2=0.5 
system.nu02=-0.014;                  
system.A=0.014;                % secular hyperfine term A in GHz 
system.B=0.009;                % pseudo-secular hyperfine term B in GHz 
system.T1=[0,10000,5000,5000;0 0 5000 5000; 0 0 0 10000; 0 0 0 0]; 
system.T2=[0,5000,1000,1000;0 0 1000 1000; 0 0 0 5000; 0 0 0 0]; 
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system.init_state=[0 0 1];     % starting point of magnetization; 
  
This is exactly the same as in the previous example, with the only difference that no 
resonance frequency for the first spin is required, since it will be added from nu0_vec in 
the loop and the relaxation times are now input in a matrix form. The relaxation times are 
now input in matrix form, where the elements in the matrix correspond to the transitions 
as depicted in Figure 2. The same is valid for options, only this time relaxation is switched 
on from the beginning. 
 
options.relaxation=1;       
options.propagator=0; 
options.cutoff_freq=100; 
options.det_op={'S1p'};                
options.no_detection={}; 
options.down_conversion=0;  
  
This spin echo is a two-pulse experiment, with a 90° pulse followed by a 180° pulse. In 
order to refocus the coherence of all spin packets with chirp pulses, the second pulse 
must last half as long as the first pulse and the frequency band needs to be the same. 
 
sequence.tp=[200,100,100,500];       
sequence.beta(1)=pi/2;               
sequence.beta(3)=pi;                 
sequence.frq={[0.5 1.5]}; 
sequence.phase=[0 0 0];    % no phase shifts 
sequence.excite=[1 0];    % pulses excite only the first spin 
 
[experiment, options] = triple(sequence, options); 
 
After the input is completed, the for-loop is processed. It is possible in this example to 
use a parfor loop (parallel-for), which uses the multicore processing ability of MATLAB 
and decreases the computation times by a factor of almost the number of cores. For more 
details see the MATLAB documentation on parallel computing. In parallel computing 
threads have to be independent of each other, meaning that loops cannot communicate 
with each other. This makes it impossible to calculate the total signal (from all spin 
packets) within the loop. Therefore a cell structure has to be created first in which the 
detected signals of all spin packets are stored. Only after the parfor-loop is completed 
the total signal is calculated from the individual traces.  
 
signalc=cell(1,length(nu0_vec));     % creates empty cell structure 
  
For the loop instances to be independent it is necessary to change the system parameters 
in every loop separately, by creating a system structure systeml, which is, after addition 
of the resonance frequency of the distributed spin, processed by setup within the loop. 
 
parfor k=1:length(nu0_vec)     
       
    systeml=system;                  
    systeml.nu01=nu0_vec(k);         
            
    [systeml, state, optionsl]=setup(systeml,options);   
     

http://www.mathworks.com/products/parallel-computing/
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    [state, detected_signal]=homerun(state, systeml, experimentl, optionsl);   
     
    signalc{k}=detected_signal.sf;    
end 
 
After simulation of each spin packet, the total signal is created by summing up the 
weighted traces. At this point the probability comes into play, which acts as a weighting 
factor for each individual signal. 
 
signal=zeros(size(signalc{1})); 
 
for k=1:length(nu0_vec) 
    signal=signal+signalc{k}*p(k); 
end 
 
After creation of a time axis the echo is plotted.  
 
figure(22); clf;  
hold on 
plot(t,real(signal)) 
xlabel('time [ns]') 
plot([experiment.tp(1) experiment.tp(1)],[-1 1],'r--') 
plot([experiment.tp(2)+experiment.tp(1) experiment.tp(2)+experiment.tp(1)],[-1 
1],'r--') 
plot([experiment.tp(3)+experiment.tp(2)+experiment.tp(1) 
experiment.tp(3)+experiment.tp(1)+experiment.tp(2)],[-1 1],'r--') 
 
To remove oscillations the signal can be down converted by calling strike with the signal 
in the simulation frame and the center frequency of the spin distribution and plot the 
converted signal:  
 
signalf=strike(signal, t, c, options); 
 
figure(23); clf;  
hold on 
plot(t,abs(signalf)) 
xlabel('time [ns]') 
plot([experiment.tp(1) experiment.tp(1)],[-1 1],'r--') 
plot([experiment.tp(2)+experiment.tp(1) experiment.tp(2)+experiment.tp(1)],[-1 
1],'r--') 
plot([experiment.tp(3)+experiment.tp(2)+experiment.tp(1) 
experiment.tp(3)+experiment.tp(1)+experiment.tp(2)],[-1 1],'r--') 
 
This results in a non-oscillatory echo (Figure 5). 
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Figure 5: A two-pulse echo after down conversion. The events are separated by vertical, dashed, red lines. Observed 
was the raising operator for the first spin for the entire experiment. The first segment corresponds to the π/2 pulse and 

the third element to the π pulse. 
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