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Analysis of the asymptotic and short-range behavior of quasilocal Hartree-Fock
and Dirac-Fock-Coulomb electron-electron interaction potentials
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The analytic origin behavior of Hartree-Fock and Dirac-Fock-Coulomb electron-electron interaction poten-
tials is derived. This yields explicit expressions, which depend on^1/r n& matrix elements. The direct part of the
electron-electron interaction including the self-interaction is equal for all shells. If the self-interaction is
subtracted the Coulomb part will become shell dependent. Additional shell dependence of the origin behavior
originates from the true exchange-interaction terms. For the Dirac-Fock-Coulomb operator we find singular
behavior for nons shells, if a Coulomb-type electron-nucleus potential is used, while it is nonsingular fors
shells. For all shells in case of finite nuclear models, the electron-electron interaction potentials are nonsingular
at the origin. A comparison of potentials for the small and large component of the relativistic radial spinor
shows that they are equal in the long-range limit, while this is not true, in general, at the origin. The analytic
results presented are tested by comparing them to numerical results obtained for the zinc atom.
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I. INTRODUCTION

The Hartree-Fock~HF! method is a well-known approac
for electronic-structure calculations of atoms. Its relativis
analog, the Dirac-Hartree-Fock or Dirac-Fock theory, u
the relativistic Dirac Hamiltonian as the one-electron ope
tor. The exact relativistic many-particle Hamiltonian is n
known. Therefore, simple Coulomb-type operators are u
ally used to describe the electron-electron interaction.
will denote this approach as the Dirac-Fock-Coulomb~DFC!
method. Both the HF and DFC methods are independ
particle theories and therefore do not include correlat
effects.

The most computer-time consuming part in the HF a
DFC calculations concerns the calculation of electro
electron-interaction matrix elements. Since all orbitals en
the electron-electron interaction potentials~EEIPs! in the HF
and DFC equations, these equations can only be solved i
tively in a self-consistent-field procedure. Another difficul
is that the EEIPs contain nonlocal exchange-interac
terms, so that inhomogeneous differential equations mus
solved. Many attempts have been made to simplify th
potentials by replacing them by local potentials~cf. e.g.,
@1–3#!, so that homogeneous equations are obtained, w
are computationally less demanding. This is the case
density-functional theory@4,5#. Another example can be
found in the optimized-potential method by Talman a
Shadwick@6#. The optimized-potential method determines
local potential such that the expectation value of the Ham
tonian is minimized, and it has been regarded as the e
Kohn-Sham exchange potential for atoms@7#. Further sim-
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plification can be achieved by analytical independent-part
model potentials~cf. e.g.,@8–11#!, which are simple analyti-
cal expressions and replace the two-electron integrals in
HF and DFC equations. For these approaches, analytic
derived properties of EEIPs in the HF and DFC models
very useful ~compare, for instance, the search for an e
change potential that decreases as 1/r @28#!. While the long-
range asymptotic behavior is known, the short-range beh
ior has not yet been analyzed in detail.

Although it can be seen from early work by Hartree@1#
that the EEIPs within HF theory are different for differe
shells at the origin, shell-independent EEIPs are used
Kohn-Sham theory and in the optimized-potential meth
Explicit analytical expressions for the short-range behav
of the nonrelativistic and relativistic EEIPs have not yet be
given. Such an analysis of the short-range behavior of
electron-electron interaction terms is carried out here. I
performed for nonrelativistic Hartree-Fock potentials as w
as for Dirac-Fock-Coulomb potentials.

Information on analytically determined shell-depende
properties of these potentials may be of importance for
development of Kohn-Sham effective exchange potent
~compare, for instance,@5,12–14#!, effective core potentials
~see@15# for their introduction into the self-consistent-fiel
equations for atoms!, and analytical independent-partic
model potentials@8–11#.

The paper is organized as follows. In Sec. II, a short su
mary of the HF and DFC notation is given and general
pressions for the EEIPs are derived. Section III presents a
lytical expressions for the EEIPs at the origin in terms
^1/r n& matrix elements, while Sec. IV briefly deals with th
asymptotic behavior. Graphical representation of numer
calculated EEIPs in Sec. V confirms the analysis presen

II. HARTREE-FOCK AND DIRAC-FOCK-COULOMB
THEORY FOR ATOMS

To clarify the notation used, we recall essential eleme
of the HF and DFC theory. Detailed presentations of th
©2002 The American Physical Society18-1
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theories may be found in@16–19#. Since our analysis con
cerns electronic ground states in atoms, the central-field
proximation is adopted. Hartree atomic units are us
throughout this article, i.e., the numerical values of the
ementary charge, 4pe0 , \, and the mass of an electron a
chosen to be equal to 1. Accordingly, energies are meas
in units of Eh5e2/(4pe0a0), i.e., in hartrees and distance
are measured in units ofa054pe0\/(mee

2), i.e., in bohrs.

A. Hamiltonian and one-electron functions

The many-electron Hamiltonian in the HF and DF
theory can be written as

H5(
i 51

N

h~ i !1
1

2 (
i 5” j

N
1

ur i2r j u
, ~1!

whereh( i ) is defined as

h~ i !5H 2
1

2
pi

21Vnuc~r i !, HF theory

ca~ i !•p1c2b~ i !1Vnuc~r i !, DFC theory.
~2!

These equations are given in the standard representation
pi52 i“ i is the momentum operator,a is a three-vector of
434 matrices containing Pauli spin matrices, andb is a 4
34 diagonal matrix@19#. N is the total number of electron
andVnuc(r ) is the electron-nucleus interaction potential,

Vnuc~r !5H 2
Z

r
, point nucleus,

model potentials, finite nucleus.

~3!

A comprehensive overview of different finite-nucleus mod
is given in @20#. The ansatz for a one-electron functio
within the central-field approximation is in the HF formalis
a spin orbital,

c i
HF5cni l iml ,ims,i

5
Pni l i

~r !

r
Yl iml ,i

~u,f!xms,i
~s!, ~4!

and a spinor,

c i
DFC5cnik imj ,i

5
1

r S Pnik i
~r !xk imj ,i

~u,f!

iQnik i
~r !x2k imj ,i

~u,f!D ~5!

in the DFC formalism.Pni l i
(r ), Pnik i

(r ) ~the large compo-

nent!, and Qnik i
(r ) ~the small component! are radial func-

tions. In the nonrelativistic formalism,Yl iml ,i
are spherical

harmonics andxms,i
(s) are spin functions, while in the rela

tivistic analogxk imj ,i
are two-component spherical spinor

where the spherical harmonics have been coupled with
spin function. Here we have used the central-field appro
mation and the equivalence restriction, i.e., we use the s
radial functions for spin orbitals belonging to the same sh
Shells are de-
03251
p-
d
l-
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s

e
i-
e

l.

fined by pairs of quantum numbers: in the nonrelativis
case by$ni ,l i%5 i and in the relativistic case by$ni ,k i%5 i .

B. Total electronic-energy expectation value

The total energy for closed-shell atoms after integrat
over all angular and spin coordinates is given by

^E&5(
i

Dihii 1
1

2 (
i j

DiD jF ^r i i U j j 0&

2
1

2 (
n

Ai j n^r i j U ji n&G . ~6!

In order to treat nonrelativistic and relativistic approaches
the same footing, we introduced

hii 5H ^Pi~r !uhS~r !uPi~r !&, HF

^~Pi~r !,Qi~r !!uhD~r !u~Pi~r !,Qi~r !!&, DFC,
~7!

and the radial density

r i j ~r !5H Pi~r !Pj~r !, HF

Pi~r !Pj~r !1Qi~r !Qj~r !, DFC.
~8!

The one-electron operatorshS,D(r ) in hii are the radial
Schrödinger and Dirac operators, respectively,

hS,D~r !55 hS~r !5F2
1

2

d2

dr2
1

l i~ l i11!

2r 2
1Vnuc~r !G , HF

hD~r !5FVnuc~r ! Ai
†~r !

Ai~r ! Vnuc~r !22c2G , DFC,

~9!

with

Ai~r !5cS d

dr
1

k i

r D and Ai
†52cS d

dr
2

k i

r D . ~10!

Further, we utilized the Laplace expansion for the opera
1/(ur i2r j u) ~cf., e.g.,@21#! leading to potential functions

Ui j n~r 1!5
1

r 1
n11E0

r 1
dr2@r i j ~r 2!r 2

n#

1r 1
nE

r 1

`

dr2@r i j ~r 2!/r 2
n11#, ~11!

which are part of the two-electron integrals

^rklUi j n&5E
0

`

dr1rkl~r 1!Ui j n~r 1!. ~12!

In the case of HF theory, the sum overn runs fromu l i2 l j u to
l i1 l j , with n1 l i1 l j even. In the relativistic DFC frame
8-2
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work, the summation is for alln from u j i2 j j u to j i1 j j , with
n1 j i1 j j odd if sgn(k i)5sgn(k j) , and n1 j i1 j j even if
sgn(k i)Þ sgn(k j) .

The symmetry coefficients are

Ai j n
HF5S l i n l j

0 0 0D
2

, ~13!

Ai j n
DFC52S j i n j j

1

2
0 2

1

2
D 2

. ~14!

Since we are dealing with closed-shell atoms, the occupa
numbers may be written as

Di5H 4l i12, HF

2 j i11, DFC.
~15!

C. Self-consistent-field equations

Variation of the HF total electronic-energy expectati
value with respect to the orbitals yields the radial HF eq
tions @1,22#, which we may write here as homogeneous d
ferential equations

S 2
1

2

d2

dr2
1

l i~ l i11!

2r 2
1Vnuc~r !1Wi

S~r !2e i D Pi~r !50,

~16!

where we introduced thequasilocalHF electron-electron in-
teraction potential

Wi
S~r !5(

j
D jFU j j 0~r !2

1

2 (
n

Ai j n
HFU ji n~r !Pj~r !/Pi~r !G

5Vi~r !1
Xi

S~r !

Pi~r !
, ~17!

whereby the functionsVi(r ) andXi
S(r ) are being dicussed in

detail in the sequel~superscriptS indicates the nonrelativistic
Hartree-Fock approach based on the Schro¨dinger one-
electron operator!. The HF equations are only artificially ho
mogeneous~and therefore the HF EEIPs are quasiloca!,
since inhomogeneities arise from thej-shell contributions
throughPj (r ). Analogously to the above HF treatment, w
obtain for the relativistic DFC equations

S Vnuc~r !1Wi
P~r !2e i Ai

†~r !

Ai~r ! Vnuc~r !1Wi
Q~r !22c22e i

D
3S Pi~r !

Qi~r !
D 5S 0

0D , ~18!

with the quasilocal DFC EEIPs
03251
n

-
-

Wi
P~r !5(

j
D jFU j j 0~r !2

1

2 (
n

Ai j n
DFCU ji n~r !Pj~r !/Pi~r !G

5Vi~r !1
Xi

P~r !

Pi~r !
, ~19!

Wi
Q~r !5(

j
D jFU j j 0~r !2

1

2 (
n

Ai j n
DFCU ji n~r !Qj~r !/Qi~r !G

5Vi~r !1
Xi

Q~r !

Qi~r !
, ~20!

whereby the functionsVi(r ) andXi
(P,Q)(r ) and their nonrel-

ativistic analogs will be analyzed in the following. Thes
quasilocal self-consistent-field potentialsWi

(S,P,Q)(r ) contain
two different parts,Vi(r ) andXi

(S,P,Q)(r ). For the homoge-
neous part,Vi(r ), which represents the Coulomb interactio
and the correction for the self-interaction, we get

Vi~r !5(
j

D jU j j 0~r !2
1

2
Di(

n
Aii nUii n~r ! ~21!

for both, the HF and DFC potentials. The inhomogeneo
part, which originates from the exchange interaction only
in the nonrelativistic HF framework,

Xi
S~r !52

1

2 (
j , j Þ i

D j(
n

Ai j n
HFU ji n~r !Pj~r !, ~22!

while we obtain in the relativistic case

Xi
P~r !52

1

2 (
j , j Þ i

D j(
n

Ai j n
DFCU ji n~r !Pj~r !, ~23!

Xi
Q~r !52

1

2 (
j , j Þ i

D j(
n

Ai j n
DFCU ji n~r !Qj~r !. ~24!

III. SHORT-RANGE BEHAVIOR OF HF AND DFC EEIPS

A. Closed-shell atoms

To analyze the short-range behavior of the potentials,
make use of the series expansion of the HF radial functio

Pi
HF~r !5r l i11(

k50

`

ak,i
HFr k, ~25!

and of the DF radial functions,

Pi
DFC~r !5r a i (

k50

`

ak,i
DFCr k, Qi~r !5r a i (

m50

`

bm,i r
m,

~26!

about the origin. According to Eqs.~21!–~24!, we must
8-3
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evaluate the behavior of the potential functionsUi j n(r ),1

lim
r 1→0

Ui j n
HF~r 1!5 lim

r 1→0
F r 1

k21S a0,i
HFa0,j

HF

n1k
2

a0,i
HFa0,j

HF

k2n21D
1r 1

nK r i j
HF~r 2!

r 2
n11 L 1O~r 1

k!G , ~27!

with k531 l i1 l j>3, and similarly

lim
r 1→0

Ui j n
DFC~r 1!5 lim

r 1→0
F r 1

m21~a0,i
DFCa0,j

DFC1b0,ib0,j !S 1

n1m

2
1

m2n21D1r 1
nK r i j

DFC~r 2!

r 2
n11 L 1O~r 1

m!G ,

~28!

with m511a i1a j>1. Here we used the power-series e
pansions, Eqs.~25! and ~26!, respectively. In both equation
the first term vanishes at the origin, and from the seco
term we get contributions only ifn50. Therefore we obtain
the result

lim
r 1→0

Ui j n~r 1!5H 0, n5” 0

^r i j /r 2&, n50,
~29!

valid for the HF and DFC potential functions.
Since the constraintn50 in Eq.~29! can only be fulfilled

if l i5 l j or j i5 j j , respectively, and the symmetry coef
cients are then given as~cf. e.g.,@23#!

Aii 052/Di , ~30!

the value of the homogeneous part of the HF EEIPs and D
EEIPs at the origin is

1The second integral in Eq.~11! was evaluated according to

lim
e→0

E
e

`

dr f ~r !5 lim
e→0

F E
0

`

dr f ~r !2E
0

e

dr f ~r !G ,

such that thee-independent expectation value^ f (r )& enters the ex-
pression. The boundarye is chosen such that a Taylor-series expa
sion for the integrandf (r ) converges. This series expansion is co
structed from the series expansions of the radial functions.
03251
-

d

C

lim
r→0

Vi~r !5(
j

D j^r j j /r &2^r i i /r &. ~31!

However, the short-range behavior of the inhomogene
part Xi

R(r )/Ri(r ) ~with R being $S,P,Q% and Ri being the
corresponding radial function! of the EEIPs is different in
nonrelativistic and relativistic theory due to the exponents
the series expansions of the radial functions, Eqs.~25! and
~26!. This difference has its origin in the structure of th
differential equations~16!, which are of second order, an
Eqs. ~18!, which are coupled first-order differential equ
tions. The way in which the structure of the differential equ
tions affects the exponents in the radial functions’ series
pansions is explicated, for instance, in Refs.@15# and@24#. In
the case of the DFC theory it turns out that these expon
additionally depend on the type of model used for t
nucleus, i.e., point nucleus or finite nucleus. In contrast to
DFC theory, the exponents are independent of the elect
nucleus interaction model within the HF theory. The analy
of limr→0@Xi

R(r )/Ri(r )# is lengthy but straightforward and i
given in the Appendix. If the homogeneous partVi(r ) of the
total HF EEIP is added to the inhomogeneous te
Xi

S(r )/Pi(r ), whose short-range behavior is given in E
~A3! in the Appendix, we obtain

Wi
S~0!5 lim

r→0
@Vi~r !1Xi

S~r !/Pi~r !# ~32!

5^1/R&2^r i i
HF/r &2

1

2 (
j ;$ j Þ i ,l j< l i %

D jAi j ( l i2 l j )
HF

3^r i j
HF/r l i2 l j 11&

a0,j
HF

a0,i
HF

, ~33!

where we introduced the expectation value

^1/R&5(
i

Di^r i i /r &, ~34!

which is the shell-independent part ofWi
S(0) originating

solely from the Coulomb interaction. Due to the series e
pansions of the radial functions we get different expressi
for the radial densityr i j

DFC(r ) depending on the nuclea
model used. This leads to an origin behavior of the excha
contributions to the EEIPs, for which different cases have
be considered, which are discussed in the Appendix.

Analogously to the derivation of Eq.~33!, for the DFC
potentials we get by adding the inhomogeneous contributi
~A25! and~A26!—as derived in in Appendix—to the homo
geneous part,

-
-

8-4
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Wi
P~0!5 lim

r→0
@Vi

P~r !1Xi
P~r !/Pi~r !# ~35!

5^1/R&2^r i i
DFC/r &25

1

2 (
j , j 5” i

d (b
i j ,min
P ,0)D jAi j ( l i2 l j )

DFC K r i j
DFC~r !

r nmin11 L akj ,min , j
DFC

aki ,min ,i
DFC

, finite nucleus

1

2 (
j , j 5” i

d (k i ,k j )
D jAi j 0

DFCK r i j
DFC~r !

r L a0,j
DFC

a0,i
DFC

, point nucleus,uk i u51

`, point nucleus, otherwise,

~36!

Wi
Q~0!5 lim

r→0
@Vi

P~r !1Xi
Q~r !/Qi~r !# ~37!

5^1/R&2^r i i
DFC/r &25

1

2 (
j , j 5” i

d (b
i j ,min
Q ,0)D jAi j ( l i2 l j )

DFC K r i j
DFC~r !

r nmin11 L bmj ,min , j

bmi ,min ,i
, finite nucleus

1

2 (
j , j 5” i

d (k i ,k j )
D jAi j 0

DFCK r i j
DFC~r !

r L b0,j

b0,i
, point nucleus,uk i u51

`, point nucleus, otherwise.

~38!
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The third index of the symmetry coefficients results from t
possible values ofj i , j j , andk i ,k j , respectively, under the
restrictions included in the Kronecker delta~for details see
the Appendix!. It can be seen from these equations that
main contribution to the EEIPs at the origin is given by t
^1/R& expectation value, which by far dominates the abo
expressions. Additional contributions can be written in ter
of ^1/r n& matrix elements. These small corrections, wh
cause the shell dependence of the EEIPs, result from
local self-interaction term and the nonlocal exchange in
action only, while the part that concerns the Coulomb int
action ~self-interaction included! is equal for all shells.

Furthermore, it is interesting to analyze in case of
DFC EEIPs, whether there is a connection betweenWi

P(r )
and Wi

Q(r ), since this assumption is usually made in t
relativistic density functional theory@25#. In general, these
two components are equal in their long-range behavior~see
Sec. IV for details!, but they may be different in the shor
range limit. Nevertheless, these EEIPs are identical at
origin in some special cases for the point nucleus; consi
ing the cusp-analogous condition for the case of a po
nucleus@24#,

b0,i

a0,i
DFC

5
~a i1k i !c

Z
, ~39!

it follows that

a0,i
DFC

a0,j
DFC

5
b0,i

b0,j
~40!

if k i5k j . Therefore, we obtain from Eqs.~36! and ~38!
03251
e

e
s

he
r-
-

e

e
r-
t

Wi
P~0!5Wi

Q~0!, ~41!

provideduk i u51. This demonstrates thatWi
P(r ) andWi

Q(r )
are equal at the origin fors1/2 and p1/2 shells in a pointlike
nuclear potential. Foruk i u.1, Wi

P(r ), andWi
Q(r ) are singu-

lar at the origin. Note that Eq.~39! does not hold for the cas
of a finite nucleus, in general.

B. Open-shell atoms

The analysis presented so far is derived for closed-s
atoms only. For open-shell systems, the HF and DFC EE
are of a different form. Moreover, Eq.~30! cannot be used
sinceDi

HF,open5” 4l i12 andDi
DFC,open5” 2 j i11. In spite of

this, the same expressions forWi
(S,P,Q)(0) can be used as in

the case of closed-shell systems. This is now shown
Wi

S(0); for the DFCEEIPs at the origin, an analogous a
proach can be used.

Considering atoms with one open shell, we have to d
tinguish between the HF EEIPs for the open and the clo
shells. In the former case the potential is@16#

Wi
S,o~r ,LS!5(

j
D jU j j 0~r !2Uii 0~r !

2
1

2 (
j , j Þ i

(
n

D jAi j n
HFU ji n~r !

Pj~r !

Pi~r !

2 (
n.0

ã i ,k~LS!Uii n~r !. ~42!

Only the coefficientsã i ,k(LS) depend explicitly on the (LS)
state of the system. The summation is over all shells of
8-5
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JOHANNES NEUGEBAUER, MARKUS REIHER, AND JUERGEN HINZE PHYSICAL REVIEW A65 032518
atom. For the closed shells the potential is not explic
dependent on the (LS) state of the atom,

Wi
S,c~r ,LS!5(

j
D jU j j 0~r !2Uii 0~r !

2
1

2 (
j , j 5” i

(
n

D jAi j n~r !U ji n~r !
Pj~r !

Pi~r !

2 (
n.0

~2l i11!Aii n~r !Uii n~r !. ~43!

At the origin, both potentials lead to the same express
which is identical with Eq.~33!. Differences may occur only
by the last sum in these equations, but sincen50 is ex-
cluded, there are no additional short-range contributions

If the method of configuration averages is used for op
shell systems, the EEIPs may be written as

Wi
S,av~r !5(

j
D jU j j 0~r !2Uii 0~r !2

Di21

4l i11

3 (
n.0

~2l i11!Aii nUii n~r !

2
1

2 (
j , j 5” i

D j(
n

Ai j nU ji n~r !
Pj~r !

Pi~r !
. ~44!

The same reasoning as in the former case can be use
show that this equation leads also to Eq.~33! at the origin.

IV. ASYMPTOTIC BEHAVIOR OF HF
AND DFC POTENTIALS

The long-range behavior of the EEIPs has been the s
ject of many investigations@6,13,26,27#. Especially the cor-
rect asymptotic behavior of the exchange potentials in
context of the density-functional theory and related meth
has often been examined in the nonrelativistic framew
~see, for instance,@28#!. We briefly recall the analysis fo
nonrelativistic theory within our approach and extend it
the DFC theory. For large values ofr, the EEIPs are domi-
nated by the 1/r decay of the potential functionsUi j n with
n50 since

lim
r→`

Ui j n~r !5^r i j ~r !r n& lim
r→`

r 2n21. ~45!

Thus, the homogeneous contributions to the EEIPs in
long-range limit may be written as

lim
r→`

Vi~r !5
1

r (
j

D j^r j j &2
Di

2
Aii 0^r i i &5

1

r F(
j

D j21G ,
~46!

which holds for both the HF and the DFC potentials. T
inhomogeneous part is determined by
03251
n,

-

to

b-

e
s
k

e

lim
r→`

Xi
S~r !

Pi~r !
52

1

2 (
j , j 5” i

D jAi j nmin
^r i j & lim

r→`
H Pj~r !

r 11nminPi~r !
J

50 ~47!

within the HF theory and by

lim
r→`

Xi
P~r !

Pi~r !
5

1

2 (
j , j 5” i

D jAi j nmin

DFC ^r i j & lim
r→`

H Pj~r !

r 11nminPi~r !
J 50,

~48!

lim
r→`

Xi
Q~r !

Qi~r !
5

1

2 (
j , j 5” i

D jAi j nmin

DFC ^r i j & lim
r→`

H Qj~r !

r 11nminQi~r !
J 50,

~49!

within the DFC theory. The vanishing of contributions fro
the inhomogeneitiesXi

(S,P,Q)(r ) comes from the use of or
thonormal radial functions yieldinĝr i j &50. Thus, there are
only contributions from the homogeneous part, which
equal in both cases, and we finally obtain

lim
r→`

Wi
(S,P,Q)~r !5

(
j

D j21

r
5

N21

r
. ~50!

As can be seen from the preceding section, this expres
holds for closed- and open-shell systems. If we add
electron-nucleus potential, this is just the potential of the i
which the electron leaves behind, i.e.,2(Z2N11)/r .

V. GRAPHICAL REPRESENTATION OF HF
AND DFC EEIPS

In this section, we present the numerically calculat
short-rangebehavior of EEIPs, obtained using fully numer
cal atomic-structure programs for the HF@29# and DFC cal-
culations @30#. The implemented numerical discretizatio
schemes and solution methods are described elsew
@15,24,29,30#. For the relativistic calculations, the value fo
the speed of lightc5137.035 989 5 was used@31#. All re-
sults were obtained with 2000 inner grid points on a ratio
~HF calculations! and logarithmic grid~DFC calculations!,
respectively. Figures 1 and 2 reproduce nicely the analyt
results. Particularly, Fig. 1 shows the shell dependence of
EEIPs. Additionally, Fig. 2 shows that the DFC EEIPs a
not identical for large and small components. But forr 50,
the relationshipWi

P(r )5Wi
Q(r ) is valid for shells withuku

51, i.e., j 5$1/2,21/2%. The singularities for shells with
other values forj affect only the very first grid points, be
cause the absolute values of the exponentsb i j ,min in Eq.
~A16! are very small. Nevertheless, calculations with g
points closer to the origin leave no doubt that singularit
occur for shells withuku.1, while the EEIPsWnp1/2

P (r ) show

regular behavior and, furthermore, yield the same values
Wnp1/2

Q (r ) at the first grid point as obtained by Eq.~41!.
8-6
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VI. CONCLUSION

Writing the HF and DFC equations as formally homog
neous differential equations introduces quasilocal EEIPs.
analysis of the short- and long-range behavior shows tha
HF and DFC EEIPs can be treated parallel and lead to c
pletely analogous expressions. The main contribution to
value of these potentials at the origin is shell independ
and given by thê1/R& expectation value. Shell dependen
originates from the contributions of the local self-interacti
term and the nonlocal exchange interaction terms and ca
ascribed tô 1/r n& matrix elements. The DFC EEIPs additio
ally depend on the kind of potential used to describe
electron-nucleus interaction, due to its influence on the sh
range series expansion of the radial functions, which e
the analysis of the exchange contributions at the origin.
find singularities at the origin for the DFC EEIPs of she
with uk i u5” 1, if a point-nucleus model is used. Howeve
well-defined expressions can be given for shells withuk i u
51 ~point nucleus! and for all shells, if a finite nucleus
model is applied. The relativistic DFC EEIPs for large a
small components are not identical, in general, only in
case of a point nucleus, and ifuk i u51 we could prove
Wi

P(0)5Wi
Q(0).

Contrary to their behavior at the origin, the EEIPs a
shell independent, and within the DFC approach identical
large and small components, in the long-range limit, wh
they show the Coulomb-type interaction between an elec
and the remaining ionized atom withN21 electrons.

Additionally, it is straightforward to apply the analys
presented here to EEIPs resulting from the Breit interac
via potential functions as defined in@32,33#, which are used
in the Dirac-Fock theory as a relativistic correction to t
nonrelativistic instantaneous Coulomb-type electron-elec
interaction operator.

The analytical expressions derived here can be used in
construction of local model potentials exhibiting the corre
short-range and asymptotic behavior for efficient electron

FIG. 1. HF EEIPs for orbitals of Zn (Z5N530). Note that the
value for^1/R&, which is common in all the shell-dependent pote
tials, is 142.06.
03251
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structure calculations without evaluating time-consum
two-electron integrals.
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APPENDIX: EXCHANGE INTERACTION
AT THE ORIGIN

For the evaluation of the short-range behavior of E
~17!, ~19!, and ~20!, limr→0@Vi(r )1Xi

R(r )/Ri(r )# ~with R
being $S,P,Q% andRi being the corresponding radial func
tion!, we used expressions for the origin behavior
Xi

R(r )/Ri(r ), which are derived in the following.

FIG. 2. DFC EEIPs fors andp spinors of Zn (Z5N530) ~point
nucleus!. Note that the value for̂1/R&, which is common in all the
shell-dependent potentials, is 144.47.
8-7
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1. Nonrelativistic framework

For the determination ofXi
S(0)/Pi(0), weevaluate prod-

ucts of potential functionsUi j n(r ) and ratios of radial func-
tions Pj (0)/Pi(0),

lim
r 1→0

FUi j n~r 1!
Pj~r 1!

Pi~r 1! G
5 lim

r 1→0
F r 1

m21S a0,j
HF2

n1 l i1 l j13
2

a0,j
HF2

l i1 l j2n12D
1r 1

n1 l j 2 l iK r i j
HF~r 2!

r 2
n11 L a0,j

HF

a0,i
HF

1O~r 1
m!G , m5312l j ,

~A1!

where we used the definition ofUi j n(r ) in Eq. ~11! and the
series expansion, Eq.~25!. Only the last term yields nonva
nishing contributions for short distancesr, provided n5 l i
2 l j and l i> l j ~otherwise this term always vanishes, sin
negative values forn are not allowed by the selection rules!.
The former constraint can easily be understood, since fon
. l i2 l j we have limr 1→0(r 1

n1 l j 2 l i)50, andn, l i2 l j is not
allowed due to the selection rules. Summarizing the ab
results, we get

lim
r→0

FUi j n~r !
Pj~r !

Pi~r ! G5H 0, n5” l i2 l j

^r i j
HF/r n11&

a0,j
HF

a0,i
HF

, n5 l i2 l j

~A2!

and we are now able to evaluateXi
S(r )/Pi(r ) in Eq. ~32! for

r 50,

lim
r→0

FXi
S~r !

Pi~r !
G52

1

2 (
j ;$ j 5” i ,l j< l i %

D jAi j ( l i2 l j )

3^r i j
HF/r l i2 l j 11&

a0,j
HF

a0,i
HF

, ~A3!

to arrive at Eq.~33!.

2. Relativistic framework

The exchange-interaction contributions to the EEIPs
the DFC theory at the origin require to consider differe
cases due to different first exponents in the series expans
for the radial functions resulting from different nucleus mo
els. In case of the pointlike nucleus model, we have@34#

a i5Ak i
22

Z2

c2
, ~A4!

while for finite nucleus modelsa i is a non-negative intege
@24#

a i5uk i u. ~A5!
03251
e

n
t
ns

-

In the latter case, eithera0
DFC or b0 in Eq. ~26! may be zero,

dependent on sgn(k i). Thus, one must distinguish the fo
lowing two cases.

~1! k.0, a5k: this yields

a0
DFC50⇒kmin51 and b05” 0⇒mmin50. ~A6!

~2! k,0, a52k: this yields

a0
DFC5” 0⇒kmin50 and b050⇒mmin51. ~A7!

Here we introducedkmin and mmin , which denote the
lowest indicesk and m in Eq. ~26! with nonzero values for
the coefficientsak

DFC andbm . Both kmin andmmin are zero
in case of a point nucleus. In analogy to the HF treatme
we therefore obtain

lim
r 1→0

FUi j n~r 1!
Pj~r 1!

Pi~r 1! G5 lim
r 1→0

F r
1
b i j

PK r i j
DFC~r 2!

r 2
n11 L akj ,min , j

DFC

aki ,min ,i
DFC G ,

~A8!

lim
r 1→0

FUi j n~r 1!
Qj~r 1!

Qi~r 1! G5 lim
r 1→0

F r
1
b i j

QK r i j
DFC~r 2!

r 2
n11 L bmj ,min , j

bmi ,min ,i
G ,

~A9!

where we already skipped the terms vanishing in the sh
range limit. The exponentsb are defined by the following
expressions:

b i j
P5n1~a j1kj ,min!2~a i1ki ,min!, ~A10!

b i j
Q5n1~a j1mj ,min!2~a i1mi ,min!. ~A11!

Obviously, in the case of an external potential of a po
nucleus both expressions are equal,b i j

P5b i j
Q5b i j . The next

task is the determination of the lowest possible valu
b i j ,min , since onlyb i j ,min50 results in regular, nonvanish
ing contributions at the origin.

a. The case of a point nucleus

In the presence of the external potential of a po
nucleus, the exponentsa i are noninteger, while the allowe
values ofn are always integers. Therefore, additional ca
must be considered in order to determine those, which l
to nonvanishing contributions at the origin in Eqs.~A8! and
~A9!, i.e., which yield exponentsb i j .” 0.

~a! uk i u5uk j u: The lowest possible value forn is2 nmin
50, so that

b i j ,min50. ~A12!

~b! uk i u,uk j u: Here we havenmin5 j j2 j i5uk j u2uk i u,
and therefore

2The quantum numbersj i andk i are related byj i5uk i u21/2 and
nmin5u j i2 j j u5uuk i u2uk j uu.
8-8
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b i j ,min5uk j u2uk i u2S uk i uA12
Z2

c2k i
2
2uk j uA12

Z2

c2k j
2D

~A13!

'2uk j u22uk i u1
Z2

2c2 S 1

uk i u
2

1

uk j u
D.0. ~A14!

In the last transformation, we utilized the Taylor-series e
pansionA11x511x/21O(x2), which converges foruxu
,1.

~c! uk i u.uk j u: This leads to EEIP singularities, sinc
nmin5uk i u2uk j u, from which we obtain

b i j ,min5uk i u2uk j u2S uk i uA12
Z2

c2k i
2
2uk j uA12

Z2

c2k j
2D

~A15!

'
Z2

2c2 S 1

uk i u
2

1

uk j u
D,0. ~A16!

This shows that all EEIPsWi
P(r ),Wi

Q(r ) @see Eqs.~19! and
~20!#, in which contributions withuk i u.uk j u occur, i.e., all
EEIPs except those with the minimaluk i u51, behave non-
regular at the origin.

Only for uk i u51 we find a regular short-range behavior
the EEIPs for the case of a point nucleus. In this case,
find nonvanishing contributions only foruk j u5uk i u51,
where nmin1 j i1 j j52 j i is odd. Thus, these contribution
occur only if sgn(k i)5sgn(k j ) and thereforek i5k j561.

b. The case of a finite nucleus

In the presence of an external potential of a finite nucle
the valuesb i j ,min are different for large and small compone
in accordance with Eqs.~A10! and ~A11!. They are depen-
dent on sgn(k ), which can be seen by means of Eqs.~A6!
and ~A7!. Writing Eqs. ~A10! and ~A11! explicitly for all
possible combinations$ sgn(k i),sgn(k j )%, we obtain

b i j
P5H n1uk j u2uk i u, sgn~k i !5sgn~k j !

n1uk j u2uk i u21, k i.0`k j,0

n1uk j u2uk i u11, k i,0`k j.0,

~A17!

b i j
Q5H n1uk j u2uk i u, sgn~k i !5sgn~k j !

n1uk j u2uk i u21, k i,0`k j.0

n1uk j u2uk i u11, k i.0`k j,0.

~A18!

It is useful to regard the lowest possible valuesnmin , since
n>u j i2 j j u has to be fulfilled as well as the constraint co
cerning the sumn1 j i1 j j , so that

nmin5H uuk i u2uk j uu, sgn~k i !5sgn~k j !

uuk i u2uk j uu11, sgn~k i !5” sgn~k j !,
~A19!
03251
-

e

s,

since u j i2 j j u1 j i1 j j5uuk i u2uk j uu1uk i u1uk j u21 is always
odd. Combining Eqs.~A17!, ~A18!, and~A19! yields

b i j ,min
P 5H uuk i u2uk j uu1uk j u2uk i u, sgn~k i !5sgn~k j !

uuk i u2uk j uu1uk j u2uk i u, k i.0`k j,0

uuk i u2uk j uu1uk j u2uk i u12, k i,0`k j.0,

~A20!

b i j ,min
Q 5H uuk i u2uk j uu1uk j u2uk i u, sgn~k i !5sgn~k j !

uuk i u2uk j uu1uk j u2uk i u, k i,0`k j.0

uuk i u2uk j uu1uk j u2uk i u12, k i.0`k j,0.

~A21!

These expressions may be investigated subject to the a
lute values of thek quantum numbers,

uuk i u2uk j uu1uk j u2uk i u5H 0, uk i u>uk j u

2uk j u22uk i u.0, uk i u,uk j u.
~A22!

Thus, the lowest exponentsb i j ,min are for the case of a finite
nucleus

b i j ,min
P 5H 0, sgn~k i !5sgn~k j !`uk i u>uk j u

0, k i.0`k j,0`uk i u>uk j u

b i j ,min
P .0, otherwise,

~A23!

b i j ,min
Q 5H 0, sgn~k i !5sgn~k j !`uk i u>uk j u

0, k i,0`k j.0`uk i u>uk j u

b i j ,min
Q .0, otherwise.

~A24!

It can easily be seen that in contrast to the point-nucl
case, there exist no singularities in the EEIPs in case o
finite nucleus. Hence, an analytical expression for the EE
at the origin can be determined for a finite nucleus, and fo
point nucleus, as far as shells withuk i u51 are concerned.

To evaluate the inhomogeneous terms in Eqs.~35! and
~37! we have to carry out the summation in Eqs.~23! and
~24!, and obtain in the short-range limit
8-9
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lim
r→0

FXi
P~r !

Pi~r !
G55 2

1

2 (
j , j 5” i

d (b
i j ,min
P ,0)D jAi j nmin

DFC K r i j
DFC

r nmin11L akj ,min , j
DFC

aki ,min ,i
DFC

, finite nucleus

2
1

2 (
j , j 5” i

d (k i ,k j )
D jAi j 0

DFCK r i j
DFC

r L a0,j
DFC

a0,i
DFC

, point nucleus,uk i u51

2`, point nucleus, otherwise,

~A25

lim
r→0

FXi
Q~r !

Qi~r !
G55

2
1

2 (
j , j 5” i

d (b
i j ,min
Q ,0)D jAi j nmin

DFC K r i j
DFC

r nmin11L bmj ,min , j

bmi ,min ,i
, finite nucleus

2
1

2 (
j , j Þ i

d (k i ,k j )
D jAi j 0

DFCK r i j
DFC

r L b0,j

b0,i
, point nucleus,uk i u51

2`, point nucleus, otherwise.

~A26

In the analysis that leads to Eq.~A4! it is assumed that there is no EEIP which behaves like 1/r or more singular at the orig
Since in the relativistic case the pointlike nucleus model can only be applied forZ<c, the prefactor in Eq.~A16! is alway
<1. The term in parentheses in Eq.~A16! is always larger than21, such thatb.21. Typical values for the Zn atom
b'20.02. Therefore, in case of singular behavior of the DFC EEIPs, the series expansions of the radial functio
unaffected by the weak singularity.
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