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We elaborate on the theory for the variational solution of the Schrödinger equation of small
atomic and molecular systems without relying on the Born–Oppenheimer paradigm. The all-particle
Schrödinger equation is solved in a numerical procedure using the variational principle, Cartesian
coordinates, parameterized explicitly correlated Gaussian functions with polynomial prefactors, and
the global vector representation. As a result, non-relativistic energy levels and wave functions of
few-particle systems can be obtained for various angular momentum, parity, and spin quantum
numbers. A stochastic variational optimization of the basis function parameters facilitates the cal-
culation of accurate energies and wave functions for the ground and some excited rotational-
(vibrational-)electronic states of H+

2 and H2, three bound states of the positronium molecule, Ps2,
and the ground and two excited states of the 7Li atom. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4731696]

I. INTRODUCTION

The clamped nuclei or Born–Oppenheimer (BO)
approximation1–3 is one of the central paradigms of present
day theoretical and computational chemistry. This paper
is devoted to a theoretical approach, which does not rely
on this paradigm. A recent overview of such a pre-Born–
Oppenheimer or “molecular structure” approach is given in
Ref. 4, which also presents one of the central conceptual prob-
lems of molecular structure theory: the reconstruction of the
classical molecular structure from a fully quantum mechani-
cal description.4–19 Numerical contributions to this question
can be found in Refs. 20–29. In recent work,25, 26 we in-
troduced radial and angular density functions to recognize
elements of classical molecular structure in the all-particle
quantum theory as strong correlation effects for the nuclei.
Using these concepts the atomic-to-molecular transition was
observed for a three-particle system by rescaling the relative
mass of the particles in the calculations.25

In this work, we report on the development of a varia-
tional approach for the accurate calculation of energy levels
and wave functions of few-particle systems with various an-
gular momentum, parity, and spin quantum numbers. Method-
ological contributions to this field have a long history in the
physicists’ community30–35 and have found increasing interest
in the molecular domain.36–38 We can only note here that there
are also efforts toward chemical and possible biochemical ap-
plications of a quantum electrons-nuclei theory.39–42 Another
interesting direction is a variational reduced-density matrix
theory for electrons and protons.43

a)Author to whom correspondence should be addressed. Electronic mail:
matyus@chem.elte.hu.

b)Present address: Institute of Chemistry, Eötvös University, P.O. Box 32,
H-1518, Budapest 112, Hungary.

Our goal here is the accurate solution of the Schrödinger
equation of few-particle systems. We describe electrons and
atomic nuclei (or other particles) on equal footing, while fo-
cusing on the molecular domain. We are aiming at “spec-
troscopic accuracy.”44 This is motivated by high-resolution
measurements of the bonding energy of the H2 molecule45, 46

and post-Born–Oppenheimer calculations including relativis-
tic and quantum-electrodynamic corrections47, 48 as well as
by spectroscopic investigations of the H+

3 molecular ion.49–51

Following the recent methodological developments in Ref. 37
and especially in Refs. 35, 52, and 53, we had to solve some
technical issues to be able to use these ideas for our purposes.

The usage of explicitly correlated Gaussian functions
considering the pioneering contributions54–56 since the early
work of Boys and Singer,57, 58 the inclusion of polyno-
mial prefactors, and the global vector representation (GVR)
(Refs. 35, 53, and 59) appear to be an appealing combination
for the construction of a flexible basis set with the required
spatial symmetry. This parameterization allows one to include
polynomial prefactors in terms of more than one coordinate.
However, it was noted in Refs. 60 and 61 that in the case of
polynomial prefactors for several coordinates with large expo-
nents instabilities might appear during the integral evaluation
in a numerical procedure. Our preliminary tests indicated sim-
ilar problems for a direct implementation of the formulae in
Refs. 35 and 53. At the same time, small exponents in the
polynomial prefactors were not sufficient for an efficient cal-
culation of the energy levels of molecular systems. Thus,
we decided to rearrange the original formulation35, 53 and
make it applicable to molecular systems in practice. This
would allow us the variational calculation of energy levels
and wave function of molecules with not only zero, for ex-
ample, Refs. 37, 62, and 63 but also non-zero (rotational or
orbital) angular momentum quantum numbers within a pre-
Born–Oppenheimer approach.

0021-9606/2012/137(2)/024104/17/$30.00 © 2012 American Institute of Physics137, 024104-1
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As to the parameterization of the basis functions, a
stochastic optimization of the parameters30, 35, 64–66 can result
in a flexible, on-the-fly adjustment of the basis set to vari-
ous systems. We shall address the questions how to choose
an “appropriate” random number generator for the stochas-
tic optimization and whether this choice has an effect on the
efficiency of the procedure.

Finally, for actual calculations, one can use laboratory-
fixed (LF) or various translationally invariant Cartesian coor-
dinates, e.g., Radau or Jacobi coordinate sets. Also in this con-
text various questions arise: Which is the best choice? Does
this choice have any effect on the convergence rate of the en-
ergy? We decided to stick to (laboratory-fixed or translation-
ally invariant) Cartesian coordinates, which allows us to write
the Hamiltonian in a simple form, in contrast to the common
choice of curvilinear coordinates in BO rotational-vibrational
calculations, which results in complicated kinetic energy op-
erators (see, for example, Refs. 67–70).

In Sec. II, we summarize first the necessary theory, and
then we describe our solutions to the technical issues raised
above. In the paper, we indicate only the main steps of the
integral evaluation and our choices made to restore the nu-
merical stability in our calculations, while the lengthy integral
formulae are collected in the supplementary material.71 Based
on the methodological details presented in Sec. II, a computer
program was developed using the FORTRAN 90 programming
language.

To demonstrate the applicability of this program, we re-
port in Sec. III numerical results for rotational(-vibrational)
energy levels corresponding to the ground and some electron-
ically excited states of the H+

2 and H2 molecules; three bound
states of the positronium molecule Ps2, and the ground and
two excited states of the 7Li atom. Finally, we investigate the
transferability of the optimized basis function parameters and
point out possible directions for future methodological devel-
opments.

II. VARIATIONAL SOLUTION OF THE MANY-PARTICLE
SCHRÖDINGER EQUATION

A. Quantum Hamiltonian and the Pauli principle

The non-relativistic quantum Hamiltonian in Hartree
atomic units and expressed in Cartesian coordinates in the LF,
r i for i = 1, 2, . . . , np + 1 particles, is

Ĥ = T̂ + V̂ (1)

with the kinetic and the potential energy terms

T̂ = −
np+1∑
i=1

1

2mi

�ri
, (2)

V̂ =
np+1∑
i=1

np+1∑
j>i

qiqj

|r i − rj | , (3)

respectively, where the masses, mi, and the electric charges,
qi, are properties associated to the point-like particles. The
physically relevant eigenstates of this Hamiltonian satisfy the
Pauli principle, i.e., conditions of the spin-statistics theorem

considering the bosonic or fermionic nature of the particles
associated with some spin si.

Instead of re-expressing this Hamiltonian using trans-
lational, orientational, and internal coordinates, we use
Cartesian coordinates and set up a trial wave function in a
variational procedure as a linear combination of symmetry-
adapted basis functions, which are angular momentum (total
spatial angular momentum, i.e., angular momentum without
the spins), parity, and spin eigenfunctions. As a result, the
eigenvalues and eigenfunctions are obtained according to the
quantum numbers of the non-relativistic theory.

Since we do not want to specify at the outset of the theo-
retical description the particle types, we simply use L for to-
tal spatial (rotational or orbital) angular momentum quantum
number. For the notation of the total spin quantum number for
particles a, we use the symbol Sa. At a later stage, when the
particle types and the system are specified one can adapt the
common notations in atomic and molecular spectroscopy (see
for example the recommendations of the International Union
of Pure and Applied Chemistry, Ref. 72): N for the total spa-
tial angular momentum without the spins and S and I for the
electronic and nuclear spin quantum numbers.

B. Translationally invariant coordinates and
Hamiltonian

In order to obtain a translationally invariant wave func-
tion, �, for an (np + 1)-particle system there are two ways
to proceed, see, for example, Ref. 20. (A) One can either pa-
rameterize the basis functions expressed in terms of LF Carte-
sian coordinates, r ∈ R3(np+1), and choose the parameters so
that the overall momentum for the wave function is zero, i.e.,
P̂ total� = 0; or (B) one can transform the LF Cartesian coor-
dinates to some translationally invariant (TI) set of Cartesian
coordinates, x ∈ R3np plus the coordinates of the center of
mass (CM), RCM ∈ R3 by a linear transformation(

x
RCM

)
= (U ⊗ I3)r and r = (U−1 ⊗ I3)

(
x

RCM

)
(4)

with U ∈ R(np+1)×(np+1). The coordinates x are translationally
invariant73 if

np+1∑
j=1

Uij = 0, i = 1, 2, . . . , np (5)

and

Unp+1,j = mj/mtot, j = 1, 2, . . . , np + 1 (6)

with mtot = ∑np+1
j=1 mj .

Then, the Hamiltonian is transformed accordingly and af-
ter subtracting the kinetic energy of the translational motion
of the center of mass, T̂CM = −1/(2mtot)�RCM , we have

Ĥ ′ = Ĥ − T̂CM = −
np∑

i=1

np∑
j=1

Mij∇T
xi
∇xj

+
np+1∑
i=1

np+1∑
j>i

qiqj

|( f ij ⊗ I3)Tx| (7)
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with ∇T
xi

= (∂/∂xi1, ∂/∂xi2, ∂/∂xi3). I3 ∈ R3×3 is the unit
matrix, the masses are contained in

Mij =
np+1∑
k=1

UikUjk/2mk, (8)

and the kth element (k = 1, 2, . . . , np) of f ij is defined as

( f ij )k = (U−1)ik − (U−1)jk. (9)

We note that the total spatial angular momentum relative
to the center of mass commutes with the translationally invari-
ant Hamiltonian.20, 73, 74 In this work, we make use of both the
coordinates defined according to (A) and (B). However, we
will always apply those that lead to a simpler formulation.

C. Symmetry-adapted basis functions,
parameterization

We apply basis functions constructed as (anti)
symmetrized products of spin functions and spatial functions,
which are angular momentum and parity eigenfunctions.
Thus, the ansatz for some set of quantum numbers λ = (L,
ML, p) and ς = (Sa,MSa

, Sb,MSb
, . . .) (a, b, . . . denote the

particle type) is constructed as

�[λ,ς] = Â{φ[λ]χ [ς]} (10)

with the symmetrization and antisymmetrization operator

Â = (Nperm)−1/2
Nperm∑
p=1

εpP̂p (11)

for bosonic and fermionic-type particles, respectively. P̂p

∈ Sna
⊗ Snb

⊗ . . . is an operator permuting identical particles
and εp = −1 if P̂p represents an odd number of interchanges
of fermions, otherwise εp = +1. Nperm is the number of all
possible permutations.

1. Spatial functions

Spatial functions with some λ = (L, ML, p) can be con-
structed through the successive coupling of angular momenta
of the subsystems within the partial wave decomposition
(PWD) formalism. It was shown in Refs. 35, 53, and 59 that
there is an alternative and equivalent route, named the global
vector representation (GVR), which relies on a linear com-
bination of several basis functions with some global vectors
whose orientation as well as the linear combination coeffi-
cients are optimized variationally. The resulting function is an
angular momentum and parity eigenfunction, while the partial
wave contributions, which do not correspond to any “exact”
quantum number, are optimized in the variational procedure.
In our work, the main advantage of the GVR over the PWD is
its simple and direct applicability for many-particle systems
with an arbitrary angular momentum quantum number.

Thus, the spatial basis functions (Figure 1) are explicitly
correlated Gaussian functions in the form recommended in
Refs. 35, 53, and 59, which describe the particle-particle cor-
relation by including products of Gaussian geminals, polyno-
mial prefactors, and an angular function, which is a spherical

Particle-particle interactions, αij Angular distribution, ui

FIG. 1. Visual representation of the inter-particle and the angular parts
of the basis functions for a four-particle system: (a) Particle-particle
interactions: particle-particle displacement vectors and the corresponding
geminal exponents, αij, are used to describe the inter-particle correla-
tion; (b) Angular distribution: “atoms-in-molecule”-type coordinates
are used in this example to express the global vector v = u1x1 + u2x2
+ u3x3 with the “inter-atomic” coordinate, x1 = m+/(m+ − m−)
(r2 − r1) + m−/(m+ − m−)(r3 − r4) and the “intra-atomic” coordinates,
x2 = r4 − r1 and x3 = r3 − r2. Note that the (anti)symmetrization of the
product of the spatial and spin functions guarantees that identical particles
enter the description equivalently.

harmonic function of Lth order and MLth degree and depends
on the orientation of the global vector v,

φ[λ](r; α, u,K) = |v|2K+L YLML
(v̂)

× exp

⎛
⎝−1

2

np+1∑
i=1

np+1∑
j>i

αij (r i − rj )2

⎞
⎠ , (12)

where v̂ is a collective label for the spherical angles charac-
terizing the orientation of the unit vector v/|v| with

v =
np+1∑
i=1

u(0)
i r i = (u(0) ⊗ I3)Tr (13)

and (u(0))T = (u(0)
1 , u(0)

2 , . . . , u(0)
np+1). As to the parameteriza-

tion corresponding to LF Cartesian coordinates (approach
(A)), the

∑np+1
i=1 u(0)

i = 0 condition is introduced to guarantee
zero overall momentum for the basis function.

2. Integral transformation, generator coordinates

During the evaluation of the matrix elements not the orig-
inal form of the basis functions given in Eq. (12) is used, but
it is generated by the integral transformation53

φ[λ](r;A, u,K) = 1

BKLp

∫
dê ηLMLp(ê)

× {
D̂(2K+L)

a g
(
r;A, s(a, u, e)

)}
ai=0,|ei |=1 (14)

with the generating function

g(r;A, s) = exp

(
−1

2
rT(A ⊗ I3)r + sTr

)
, (15)

where s ∈ R3(np+1) is also called the generator coordinate and
the definition of the symbols are collected in Table I for
any L, ML, and p values including both the “natural-parity,”
p = (−1)L, and the “unnatural-parity,” p = (−1)L + 1, cases.

In this work, we present results obtained using the basis
functions with label “A” of Table I, i.e., states with arbitrary
angular momentum quantum numbers, L, and “natural par-
ity,” p = (−1)L. We have obtained preliminary results with
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TABLE I. Explanation of the notation used in the general definition of basis functions, Eq. (14), with angular momentum L, ML, and parity p.

L p BKLp
a êb ηLMLp(ê)b,c s D̂(κ)

a
d Label

>0 (−1)L BKL ê1 YLML
(ê1) a1u1 ⊗ e1 ∂κ

a1
A

>1 (−1)L + 1 B01BKL (ê1, ê2) [YL(ê1)Y1(ê2)]LML

∑2
i=1 ai ui ⊗ ei ∂κ

a1
∂a2 B

= 0 − 1 B2
01BKL (ê1, ê2, ê3)

[
[Y1(ê1)Y1(ê2)]1 Y1(ê3)

]
00

∑3
i=1 ai ui ⊗ ei ∂κ

a1
∂a2 ∂a3 C

aBKL = 4π(2K + L)! (K + L + 1)! 2L + 1/[K! (2K + 2L + 2)!] with K, L ∈ N0.
b êi is the collective label for the spherical angles characterizing the orientation of the unit vector ei .
c[Yl1 Yl2 ]lml

denotes the coupling of the l1th and l2th spherical harmonics to the lth order and mlth degree spherical harmonic function.
dκ = 2K + L and the shorthand notation ∂k

ai
= ∂k/∂ai

k are introduced.

functions of label “B”, i.e., “unnatural-parity” basis functions
with p = (−1)L + 1 for L > 0, but they are not discussed in the
present work.

The generating function g(r;A, s) equals (within a con-
stant factor) an explicitly correlated Gaussian function with
shifted origin, R ∈ R3(np+1) (in short, “floating geminal”) ac-
cording to

f (r;A,R) = exp

(
−1

2
(r − R)T(A ⊗ I3)(r − R)

)

= exp

(
−1

2
RT(A ⊗ I3)R

)

× exp

(
−1

2
rT(A ⊗ I3)r + RT(A ⊗ I3)r

)
,

(16)

and thus by choosing R = (A−1 ⊗ I3)s so that RT

= sT(A−1 ⊗ I3) (A is symmetric and non-singular), we
obtain

f (r;A, (A−1⊗ I3)s)=exp

(
−1

2
sT(A−1⊗ I3)s

)
g(r;A, s).

(17)

The functions f and g with appropriate exponents A describe
well particles localized near R, which is different from the
origin. However, for such an R �= 0 vector, they are not par-
ity and angular momentum eigenfunctions. It is the integral
transformation of Eq. (14), which restores the space rotation-
inversion symmetry of an isolated system for g.

We note that this approach can be considered as a spe-
cial application of the more general “generator coordinate
method” introduced by Hill and Wheeler in 1953 (Ref. 75)
with one of first applications in chemistry during the late
1970s by Lathouwers, van Leuven, and co-workers.76, 77 We
also note here that the ansatz introduced in Eq. (12) shows
similarities with the “Hagedorn-type” wave packets78 used,
for example, in Ref. 79. Of course, the space rotation-
inversion symmetry for floating geminals could be restored
numerically in a variational procedure, which was pursued
by Adamowicz and Cafiero for L = 0, for example, in
Ref. 22. It would also be interesting to consider this numeri-
cal reconstruction of the spatial symmetry for higher L values,
but for the present work we stick to the analytic expressions
and employ Eq. (14).

3. Linear transformation of the coordinates, channels

The LF Cartesian coordinates, r, and various sets of trans-
lationally invariant Cartesian coordinates, say x or y, together
with the coordinates of the center of mass, RCM, are related
by simple linear transformations(

x
RCM

)
= (U ⊗ I3)r and r = (U−1 ⊗ I3)

(
x

RCM

)

(
y

RCM

)
= (V ⊗ I3)r and r = (V −1 ⊗ I3)

(
y

RCM

) (18)

so that (
y

RCM

)
= (V U−1 ⊗ I3)

(
x

RCM

)

and (
x

RCM

)
= (U V −1 ⊗ I3)

(
y

RCM

)
(19)

hold. We thus can easily switch from one set of coordinates to
another.

By switching between the coordinates, the mathemat-
ical form of the spatial functions remains unchanged and
only the parameters have to be transformed. This “re-
parameterization” of the basis functions by changing the co-
ordinate representation reads

φ[λ] = |v|2K+L YLML
(v̂) exp

(
−1

2
rT(A(0) ⊗ I3)r

)

= |v|2K+L YLML
(v̂) exp

(
−1

2
xT(A(x) ⊗ I3)x

)

= |v|2K+L YLML
(v̂) exp

(
−1

2
yT(A(y) ⊗ I3) y

)
, (20)

where the exponents

(A(0))ij = −αij (1 − δij ) +
⎛
⎝ np+1∑

k=1,k �=i

αik

⎞
⎠ δij + cA

mi

mtot

mj

mtot

(21)

are transformed according to

A(x) = U−TA(0)U−1 ⇐⇒ A(0) = UTA(x)U

and

A(y) = V −TA(0)V −1 ⇐⇒ A(0) = V TA(y)V , (22)
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which also yields the relations

A(y) = (U V −1)TA(x)U V −1 (23)

and

A(x) = (V U−1)TA(y)V U−1. (24)

Note that

A(x) =
(

A(x) 0
0 cA

)
and A(y) =

(
A(y) 0
0 cA

)
. (25)

Similarly, the global vector can be written as

v = (u(0) ⊗ I3)Tr = (u(x) ⊗ I3)Tx = (u(y) ⊗ I3)Ty, (26)

where u(0), u(x), u(y) obey the transformations u(x)

= U−Tu(0), u(0) = UTu(x), u(y) = V −Tu(0), u(0) = V Tu(x),
u(x) = (U V −1)Tu(y), and u(y) = (V U−1)Tu(x). Note also that

u(x) =
(

u(x)

cu

)
and u(y) =

(
u(y)

cu

)
(27)

and the zero overall momentum of the basis function in the
LF Cartesian representation is guaranteed if cu = 0. The con-
dition cu = 0 is equivalent to the requirement

∑np+1
i=1 u(0)

i

= cu = 0 according to the properties of the transformation
matrix, Eq. (6).

It is convenient to consider various coordinates for the
calculations, for at least two reasons. First, the evaluation of
the matrix elements can be simplified using a certain type of
coordinates. Of course, the Jacobian of the coordinate trans-
formation (here a constant) must be included in the volume el-
ement expressed in terms of the transformed coordinates (see
Eq. (26) of Ref. 26). Second, different coordinates can repre-
sent efficiently different correlations (Figure 2), and thus the
parameterization of the wave function expressed in terms of
one set of coordinates can be more convenient than in terms
of another set of coordinates. Additionally, the action of a per-
mutation operation on the spatial coordinates is equivalent to
a linear transformation of the Cartesian coordinates, and thus,
its effect on the spatial functions can be accounted for by the
transformation of the parameters.

Finally, we note here that since A is real symmetric,
it is always possible to find some set of translationally in-
variant coordinates, which corresponds to a diagonal expo-
nent matrix, A′, and thus an effective “one-particle” (pseudo-
particle) basis function. As the wave function is written as a
linear combinations of the basis functions with different ex-
ponent matrices, each of these exponent matrices is diagonal
in some set of coordinates (“coordinate channels”), and thus
the wave function can be written as a linear combination of
this multiple-channel basis set.

FIG. 2. Examples for translationally invariant Cartesian coordinates for four
particles. Every choice can describe different correlations efficiently.

4. Spin functions

In this work, we consider systems in which only the cou-
pling of spin-1/2 particles occur. A spin-1/2 particle can have
α and β spin functions, σ 1

2 , 1
2
(1) = | ↑〉σ and σ 1

2 ,− 1
2
(1) = | ↓〉σ

corresponding to (sα,msα
) = (

1
2 , 1

2

)
and (sβ,msβ

) = (
1
2 ,− 1

2

)
,

respectively (the subscript σ refers to the spin degree(s) of
freedom). For n identical particles, products of one-particle
spin functions (“elementary” spin functions or uncoupled ba-
sis representation) are coupled to the many-particle spin func-
tion, �S,MS

(1, . . . , n), with the total spin quantum numbers S
and MS.

The α and β projections are distributed between the
n particles according to n = nα + nβ and MS = msα

nα

+ msβ
nβ . Thus, each n-particle uncoupled basis function,

σ 1
2 ,ms1

(1) . . . σ 1
2 ,msn

(n), which contribute to the n-particle to-
tal spin eigenfunction �S,MS

(1, . . . , n), must contain nα

= n/2 + MS and nβ = n/2 − MS one-particle spin func-
tions, σ 1

2 ,msi
(i), which can be written down in all possi-

ble permutations, resulting in a total of Ns = (
n

nα

) = (
n

nβ

)
uncoupled n-particle basis functions. Then, �S,MS

(1, . . . , n)
is expressed as a linear combination of the uncoupled ba-
sis functions using the Clebsch–Gordan expansion coef-
ficients, 〈j1,mj1 , j2,mj2 |J,MJ 〉, and the requirement that
�S,MS

(1, . . . , n) is normalized.
In the present work, we consider only systems with two

and three identical spin-1/2 particles, and the spin functions
corresponding to the calculated states are constructed as fol-
lows (the construction of any other spin function of systems
with few spin-1/2 particles can be done similarly).

For two spin-1/2 particles, we use here the �0, 0(1, 2)
(singlet) and the �1, 0(1, 2) (a triplet) spin functions. Both
spin functions have well-known forms, which we present here
to introduce notation needed later. For both �0, 0(1, 2) and
�1, 0(1, 2) holds MS = 0, and thus nα = nβ = 1. The number
of uncoupled basis functions is Ns = (

n

nα

) = (
n

nβ

) = 2. Then,
the total spin function can be obtained as

�0,0(1, 2) = [
σ 1

2
(1)σ 1

2
(2)

]
0,0

= 〈
1
2 , 1

2 , 1
2 ,− 1

2

∣∣0, 0
〉
σ 1

2 , 1
2
(1)σ 1

2 ,− 1
2
(2)

+〈
1
2 ,− 1

2 , 1
2 , 1

2

∣∣0, 0
〉
σ 1

2 ,− 1
2
(1)σ 1

2 , 1
2
(2)

= 1√
2

σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2) − 1√

2
σ 1

2 ,− 1
2
(1)σ 1

2 , 1
2
(2)

= 1√
2

(| ↑↓〉 − | ↓↑〉) , (28)

where [. . .]jmj
refers to the angular momentum coupling.

Similarly, we obtain the triplet spin function as

�1,0(1, 2) = [
σ 1

2
(1)σ 1

2
(2)

]
1,0

= 〈
1
2 , 1

2 , 1
2 ,− 1

2

∣∣1, 0
〉
σ 1

2 , 1
2
(1)σ 1

2 ,− 1
2
(2)

+ 〈
1
2 ,− 1

2 , 1
2 , 1

2

∣∣1, 0
〉
σ 1

2 ,− 1
2
(1)σ 1

2 , 1
2
(2)

= 1√
2

σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2) + 1√

2
σ 1

2 ,− 1
2
(1)σ 1

2 , 1
2
(2)

= 1√
2

(| ↑↓〉 + | ↓↑〉) . (29)
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For three spin-1/2 particles, the � 1
2 , 1

2
(1, 2, 3) (a doublet) spin

function has MS = 1/2, and thus nα = 2 and nβ = 1 with
Ns = (

n

nα

) = (
n

nβ

) = 3 uncoupled basis functions. Then, the
total spin function expressed in terms of the uncoupled spin
functions can be obtained by evaluating

� 1
2 , 1

2
(1, 2, 3) = c1

[[
σ 1

2
(1)σ 1

2
(2)

]
1 σ 1

2
(3)

]
1
2 , 1

2

+ c2
[[

σ 1
2
(1)σ 1

2
(2)

]
0 σ 1

2
(3)

]
1
2 , 1

2
. (30)

The normalization condition for � 1
2 , 1

2
(1, 2, 3) requires c2

1

+ c2
2 = 1, which can be fulfilled by choosing c1 = sin ϑ1 and

c2 = cos ϑ1 with ϑ1 ∈ [−π /2, π /2], similar to Ref. 35. Then,
we couple the one-particle spin functions, insert the corre-
sponding Clebsch–Gordan coefficients, and obtain

� 1
2 , 1

2
(1, 2, 3)

= sin ϑ1〈1, 0, 1
2 , 1

2 | 1
2 , 1

2 〉[σ 1
2
(1)σ 1

2
(2)

]
1,0 σ 1

2 , 1
2
(3)

+ sin ϑ1〈1, 1, 1
2 ,− 1

2 | 1
2 , 1

2 〉 [
σ 1

2
(1)σ 1

2
(2)

]
1,1 σ 1

2 ,− 1
2
(3)

+ cos ϑ1〈0, 0, 1
2 , 1

2 | 1
2 , 1

2 〉 [
σ 1

2
(1)σ 1

2
(2)

]
0,0σ 1

2 , 1
2
(3)

= κ1(ϑ1) σ 1
2 , 1

2
(1)σ 1

2 ,− 1
2
(2)σ 1

2 , 1
2
(3)

+ κ2(ϑ1) σ 1
2 , 1

2
(1)σ 1

2 , 1
2
(2)σ 1

2 ,− 1
2
(3)

+ κ3(ϑ1) σ 1
2 ,− 1

2
(1)σ 1

2 , 1
2
(2)σ 1

2 , 1
2
(3). (31)

Thus, in short the total spin function can be written as

� 1
2 , 1

2
(1, 2, 3) = κ1(ϑ1)| ↑↓↑〉 + κ2(ϑ1)| ↑↑↓〉

+ κ3(ϑ1)| ↓↑↑〉, (32)

where we collected the linear combination coefficients in
κ(ϑ1) = (κ1(ϑ1), κ2(ϑ1), κ3(ϑ1))

κ1(ϑ1) = 1√
2

cos ϑ1 − 1√
6

sin ϑ1, (33)

κ2(ϑ1) =
√

2
3 sin ϑ1, (34)

κ3(ϑ1) = − 1√
2

cos ϑ1 − 1√
6

sin ϑ1. (35)

If there are several types of identical particles, a, b, . . . in
the system, the total spin function is constructed as

χS,MS
= �Sa,MSa

(1, . . . , na)�Sb,MSb
(1, . . . , nb) . . . (36)

and here (S, MS) is a collective index for (Sa,MSa
),

(Sb,MSb
), . . . Since the total spin function for any particle

type a, �Sa,MSa
(1, . . . , na), can be written as a linear com-

bination of uncoupled many-particle spin functions, the χS,MS

function can also be written in a similar way, and thus for later
convenience we introduce the shorthand notation

χS,MS
(ϑ) =

Ns∑
n=1

κn(ϑ)|n〉σ , (37)

where |n〉σ denotes the product of uncoupled many-particle
spin functions for each particle type, Ns = Nsa

Nsb
. . ., σ

refers to the spin degrees of freedom, and ϑ contains the
free parameters if there are several “partial waves.” The

value of κn(ϑ) is determined by the normalization condition,
the Clebsch–Gordan coefficients, and the angular momentum
coupling procedure carried out for each particle types similar
to Eqs. (28)–(35).

5. Permutation of identical particles

For the (anti)symmetrization of the product of the spatial
and the spin functions, Eq. (10), we have to evaluate the effect
of a permutation operator on this product by acting on both the
spatial and the spin “coordinates”

P̂p

{
φ[λ]χ [ς]

} = {
P̂pφ[λ](r)

}{
P̂pχ [ς]

}

= φ[λ](P̂ −1
p r

) Ns∑
n=1

κn(ϑ)P̂p|n〉σ . (38)

To proceed, we construct the matrix representation of
P̂p for both the elementary (uncoupled) spin functions,
P s

p ∈ RNs×Ns , and for the LF Cartesian coordinates, P r
p

∈ R(np+1)×(np+1) with

P̂pr = (
P r

p ⊗ I3
)
r. (39)

Since the effect of P̂p is a simple permutation for both the
elementary spin functions and the LF Cartesian coordinates,
the corresponding matrices contain “0”s except for a single
“1” element in each row and column. Then, we can write

P̂p{φ[λ]χ [ς]} = φ[λ]
((

P r
p ⊗ I3

)−1
r; u(0),A(0)

)

×
Ns∑

n=1

((
P s

p

)T
κ(ϑ)

)
n
|n〉σ

= φ[λ]
(
r; u(0)

p ,A(0)
p

) Ns∑
n=1

(κ̃p(ϑ))n|n〉σ , (40)

where the transformation of the spatial function parameters
upon the linear transformation, P r

p, of the coordinates was in-
serted, Eqs. (18)–(27), and for brevity the following notation
was introduced:

κ̃p(ϑ) = (
P s

p

)T
κ(ϑ) (41)

and

u(0)
p = (

P r
p

)T
u(0) and A(0)

p = (
P r

p

)TA(0) P r
p. (42)

D. Overlap and Hamiltonian matrix elements

The matrix element of a spin-independent and permuta-
tionally invariant operator, Ô, for basis functions I and J is
evaluated as

O
[λ,ς]
IJ = 〈

�
[λ,ς]
I

∣∣Ô∣∣�[λ,ς]
J

〉
r,σ

= 〈
Â
{
φ

[λ]
I χ

[ς]
I

}|Ô|Â{
φ

[λ]
J χ

[ς]
J

}〉
r,σ

. (43)
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By exploiting the quasi-idempotency ÂÂ = (Nperm)1/2Â, the
(Ith,Jth) matrix element is

O
[λ,ς]
IJ =

Nperm∑
p=1

εp

〈
φ

[λ]
I χ

[ς]
I

∣∣Ô∣∣P̂p

{
φ

[λ]
J χ

[ς]
J

}〉
r,σ

=
Nperm∑
p=1

εp

〈
φ

[λ]
I

∣∣Ô∣∣P̂pφ
[λ]
J

〉
r

〈
χ

[ς]
I

∣∣P̂pχ
[ς]
J

〉
σ

=
Nperm∑
p=1

c
[ς]
IJp

O
[λ]
IJp

(44)

with

c
[ς]
IJp

= εp

〈
χ

[ς]
I

∣∣P̂pχ
[ς]
J

〉
σ
, (45)

O
[λ]
IJp

= 〈
φ

[λ]
I

∣∣Ô∣∣P̂pφ
[λ]
J

〉
r
. (46)

In this work, Ô will be the unit operator, Î , the kinetic en-
ergy operator, T̂ , and the potential energy operator, V̂ . Ac-
cordingly, the overlap matrix element is

S
[λ,ς]
IJ =

Nperm∑
p=1

c
[ς]
IJp

S
[λ]
IJp

with S
[λ]
IJp

= 〈
φ

[λ]
I

∣∣P̂pφ
[λ]
J

〉
r
. (47)

The matrix elements for the kinetic and the potential energy
operators are

T
[λ,ς]
IJ =

Nperm∑
p=1

c
[ς]
IJp

T
[λ]
IJp

with T
[λ]
IJp

= 〈
φ

[λ]
I

∣∣T̂ ∣∣P̂pφ
[λ]
J

〉
r

(48)

and

V
[λ,ς]
IJ =

Nperm∑
p=1

c
[ς]
IJp

V
[λ]
IJp

with V
[λ]
IJp

= 〈
φ

[λ]
I

∣∣V̂ ∣∣P̂pφ
[λ]
J

〉
r

(49)

so that

H
[λ,ς]
IJ = T

[λ,ς]
IJ + V

[λ,ς]
IJ . (50)

Then, we are left with the evaluation of S
[λ]
IJp, T

[λ]
IJp, and

V
[λ]
IJp, i.e., the matrix elements for two spatial functions,

Eqs. (12) and (14). The procedure (see, for example, Ref. 35)
is somewhat tedious, so we list here only the main steps of the
evaluation and collect the explicit formulae in the supplemen-
tary material.

A matrix element of operator Ô is best written using the
form of the basis function given with the generating integral
equation (14), and it is, with λ = (L, ML, p),

〈φ[λ](r;A, u,K)|Ô|φ[λ](r;A′, u′,K ′)〉r
= 1

BKLpBK ′Lp

∫
dê

∫
dê′ η∗

LMLp(ê)ηLMLp(ê′)

×{
D̂(2K+L)

a D̂(2K ′+L)
a′〈

g
(
r;A, s(a, u, e)

)|Ô|g(
r;A′, s′(a′, u′, e′)

)〉
r

}
ai=a′

i=0,|ei |=|e′
i |=1.

(51)

The definition of the symbols is given in Table I and the in-
tegration is carried out over the points of the unit sphere de-

scribed by the spherical angles collected in ê and ê′ of the unit
vectors e and e′, respectively. 〈. . .〉r indicates that the integra-
tion has to be carried out for the spatial coordinates r.

The evaluation of the integral in Eq. (51) includes the
following steps.

(1) Evaluation of the integral with the generating functions
(floating geminals)

IO,1(s, s′) = 〈g(r;A, s)|Ô|g(r;A′, s′)〉r . (52)

(2) Differentiation prescribed by the operators D̂(2K+L)
a and

D̂(2K ′+L)
a′ (see Table I for the definition). Then, the result

is expressed in terms of polynomials of scalar products
of the unit vectors, eTe′,

I
[(L)]
O,2 (e, e′) =

{
D̂(2K+L)

a D̂(2K ′+L)
a′

IO,1
(
s(a, u, e), s′(a′, u′, e′)

)}
ai=a′

i=0,|ei |=|e′
i |=1

. (53)

(3) Evaluation of the angular integrals

I
[λ=(L,ML,p)]
O,3 = 1

BKLpBK ′Lp

∫
dê

×
∫

dê′ η∗
LMLp(ê)ηLMLp(ê′)I [(L)]

O,2 (e, e′), (54)

which reads for the natural-parity case, p = (−1)L, as

I
[λ=(L,ML,(−1)L)]
O,3 = 1

BKLpBK ′Lp

∫
dê

×
∫

dê′ Y ∗
LML

(ê)YLML
(ê′)I [(L)]

O,2 (e, e′). (55)

The evaluation of the angular integrals is facilitated by
the identity, see p. 87 of Ref. 35, related to the addition
theorem of spherical harmonics

(eTe′)k =
k∑

l=0

[(k−l)/2∈N0]

Bk−l
2 ,l

l∑
m=−l

Y ∗
lm(ê)Ylm(ê′), (56)

which is for k = 1

eTe′ = 4π

3

1∑
m=−1

Y ∗
1m(ê)Y1m(ê′). (57)

Further details of the derivation of the overlap, kinetic,
and potential energy integrals are given in the supplementary
material.

For large (2K + L) > 4 exponents of the |v|2K+L poly-
nomial prefactor, Eq. (12), a direct implementation of the in-
tegral formulae given in Refs. 35 and 53 resulted in numeri-
cal instabilities for a computer program with a finite number
representation (double precision in FORTRAN). To restore the
numerical stability, we introduced quasi-normalization for the
basis functions, which allowed us to cancel some problematic
terms. We call the normalization with respect to the spatial
function,

�[λ,ς] = (〈φ[λ]|φ[λ]〉r )−1/2 Â{φ[λ]χ [ς]}, (58)
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quasi-normalization. The quasi-normalized and rearranged
integral formulae are collected in the supplementary mate-
rial. Where it was necessary and useful, we used a logarithmic
evaluation of products and fractions, e.g.,

(a · b)/(c · d) = sign(ab/cd) · 10(lg a+lg b−lg c−lg d), (59)

which allowed us to obtain small numbers as ratios and prod-
ucts of large ones. Furthermore, it was possible to factor out
the term, see the supplementary material,

FKL =
K∑

m=0

22m(L + m + 1)!

(K − m)!(K − m)!m!(2L + 2m + 2)!
, (60)

whose value for a finite number of K and L integer values was
pre-calculated with MATHEMATICA.80 These numbers were
stored in a file and are read in by the FORTRAN program.

E. Multi-stage variational optimization

The wave function for some set of quantum numbers
λ = (L, ML, p) and ς = (S, MS) is written as a linear com-
bination of Nb basis functions

�[λ,ς](r, σ ) =
Nb∑
I=1

cI�
[λ,ς]
I (r, σ )

= (Nperm)−1/2
Nb∑
I=1

cI

×
Nperm∑
p=1

P̂p{φ[λ](r; αI , uI , KI )χ [ς](σ ; ϑ I )}.

(61)

The concept of this parameterization is visualized in Figure 3.
Since the overlap and the Hamiltonian matrix elements are
evaluated analytically (Sec. II D and the supplementary mate-
rial), we can rely on the variational principle during the course
of the selection of the numerical values for the “free parame-
ters” of this ansatz. Thus, the lower the eigenenergy, the better
the parameterization is. During the course of the calculations
we tightened the optimization criterion of the free parameters
and increased the number of the basis functions to obtain a
lower energy eigenvalue.

In this work, we solved the generalized linear variational
problem corresponding to Nb basis functions with some fixed

c1 + c2 + c3 + . . .

{α1,ij, u1,i, K1} {α2,ij, u2,i, K2} {α3,ij, u3,i, K3}

FIG. 3. Visual representation of the parameterization of the wave function
for H2. The width of the lines of the double-headed arrows, which connect
the particles i and j is proportional to the value of αI, ij (i = 1, . . . , 4; j = i
+ 1, . . . , 4), and the orientation of the grey arrows represent the orientation
of the global vectors parameterized by uI,i (i = 1, 2, 3) (I = 1, 2, . . . , Nb).

PI = (αI , uI , KI ; ϑ I ) parameters

H [λ,ς]c[λ,ς]
i = E

[λ,ς]
i S[λ,ς]c[λ,ς]

i i = 1, 2, . . . , Nb (62)

using the LAPACK “divide and conquer” diagonalizer avail-
able in Intel’s Math Kernel Library (MKL).81 If the parameter
set, PI , was selected appropriately (see the discussion below),
we did not observe any near-linear dependency problems in
finite-precision, 8-byte (double precision in FORTRAN), arith-
metics. Near-linear dependency problems were always indi-
cators of an inadequate parameter generation.

The parameters were generated for one basis function af-
ter the other in a random procedure.30, 35, 64–66 The random
generation with a variational selection criterion is a straight-
forward approach, and this explains our choice here. We have
found the description in Ref. 35 the most useful in our work,
including the fast eigenvalue estimation procedure of an up-
dated parameter set, described on pp. 27–29 of Ref. 35.

In addition, we have investigated the effect of the coor-
dinate representation and the sampling strategy on the con-
vergence rate of the energy with respect to the computational
effort. We have found that both have a crucial impact on the
efficiency, and we summarize our observations and our strat-
egy developed as follows.

1. Non-linear variational problem

Optimization of the parameters of the basis functions is
a delicate problem. For example, for an (np + 1)-particle sys-
tem there are (np + 1)np/2 + np + 1 = (np + 1)(np + 2)/2 free
parameters, {αI , uI , KI }, corresponding to each spatial func-
tion, Eqs. (12) and (13). If, for example, np + 1 = 4, there are
10 free parameters for each basis function, and thus for 500
basis functions, the ansatz contains 5000 parameters to be op-
timized. One may suspect that there is a myriad of local min-
ima for such a large number of free parameters. Nevertheless,
the variational principle and the physical-chemical intuition
served as two major guiding tools for us in the construction
of a useful strategy for calculating as low of an energy eigen-
value (and the corresponding wave function) as possible. The
actual values of the free parameters at the minimum point are
not of primary interest, and there might be several equiva-
lent or at least “almost equivalent” parameterizations due to
the non-orthogonality of the basis functions and the multiple
equivalent coordinate representations.

During the course of the buildup of the basis set, the free
parameters were optimized one after the other. To select a
new parameter a large number of trial values were generated
randomly, which were then tested using the fast eigenvalue-
update procedure of Ref. 35. Then, that trial value was utilized
for the extension of the basis set, which provided the lowest
energy eigenvalue (or the lowest few energy eigenvalues if
vibrational excited states were also of interest). For small to
medium-sized basis sets (with typically 50–200 basis func-
tions), we run regular refinement cycles for the already se-
lected parameters, which allowed us to replace an earlier se-
lected parameter with a newly generated and better one, i.e.,
which corresponded to a lower energy eigenvalue.

In order to select parameters for new spatial and spin
functions, we had to generate and test trial values for the
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FIG. 4. Optimized basis function parameters for H2 (L = 0, p = +1, Sp = 0, Kmax = 10). The αp-e exponents corresponding to laboratory-fixed Cartesian

coordinates were optimized using ξ = (αp-e)−1/2 and a random number generator with a uniform continuous distribution of ξ ∈ u(a(p−e)
min , a

(p−e)
max ). The K values

were generated (not optimized) in a uniform discrete distribution with [0, Kmax].

K ∈ N0 polynomial exponent, the αij ∈ R+ Gaussian expo-
nents (or the entries of the symmetric A(0) or A(x) matrices),
the ui ∈ R (or ui) global vector parameters, and, in the case of
the three-fermionic 7Li, the ϑ1 ∈ [−π /2, π /2] spin-function
parameter. As to the efficiency of this trial-and-error opti-
mization, we had to address a few technical questions:

1. Shall we sample the parameters corresponding to the
laboratory-fixed Cartesian coordinate representation,
i.e., αij and A(0)

ij , or is it better to generate first the trial
parameters corresponding to some x translationally in-
variant set of coordinates, A

(x)
ij ?

In general, which is the most convenient coordinate set
for the optimization?

2. Shall we generate random values for the original param-
eter, say αij, or shall we use instead a transformed one,
e.g.,

√
αij or ln αij?

In general, what kind of probability distribution shall we
use in the random number generator to generate ran-
dom trials efficiently for the selected parameterization
and coordinate representation?

In the calculations, we used the quasi-random number
generators of the Vector Statistical Library available in Intel’s
MKL.81 The intrinsic randomness or quasi-randomness of the
trials did not play a role here.

The first question is related to the quasi-separability
of the many-particle correlation problem to some, coupled,
few-particle correlations represented by some coordinate set,
Figure 2, and the corresponding geminal basis. The second
question addresses the characteristic values and the distribu-
tion of the parameters in some representation. In an ideal case,
all parameters, A12, A13, . . . , u1, u2, . . . could be optimized in-
dependently and the optimal values would be distributed ac-
cording to some ordinary probability distribution, which is
characterized by a few, well-defined parameters. Then, the
generation of a trial value according to this probability dis-
tribution would be a reasonable first guess, not far from a real
minimum point. In practice, a brute-force treatment of a few-
particle system can be far from this ideal case, but it can be
approached by a good choice of the coordinate set.

Assuming that a coordinate set has been selected, we give
an example to our second question in Figure 4, which presents
histograms for the optimized values of the proton-electron
correlation exponents corresponding to the ground state of the
H2 molecule. As it is apparent from the figure, it is the most
practical to sample the distribution of ln αp-e, instead of αp-e.

After exploratory test calculations, we estimated the envelope
of the histograms with a normal probability density function
parameterized with the sample mean and the unbiased sample
variance and used this random distribution in our large-scale
calculations to generate “reasonable” trial values for the opti-
mization. In principle, it would be possible to automatize this
procedure in the spirit of a sampling-importance-resampling
strategy.82 We note here that the sampling of a uniform contin-
uous distribution for αij resulted in a very slow convergence
rate and near-linear dependence problems in finite precision
arithmetics. In any case, we conclude that the parameteriza-
tion and the random distribution, which we sample, have a
(sometimes dramatic) influence on the convergence rate. At
the same time, the convergence is guaranteed, in theory, by
the variational principle.

2. Basis function generation strategy

We can summarize our basis function generation strategy
as follows.

1. K was generated (not optimized) according to some
discrete uniform or discretized normal distribution with
the sample mean and the unbiased sample variance
determined in test calculations, similar to Refs. 36, 83,
and 84.

2. In the case of lithium, ϑ1 was generated (not optimized)
according to a uniform continuous distribution over the
interval [−π/2, π/2].

3. Trial values of ln αij corresponding to LF Cartesian co-
ordinates were generated according to a normal distribu-
tion with some sample mean and some unbiased sample
variance determined in test calculations. That trial value

c1 + c2 + c3 + . . .

{α1,ij, u1,i, K1} {A(x)
2,ij , u

(x)
2,i , K2} {A(y)

3,ij, u
(y)
3,i , K3}

FIG. 5. Visual representation of an ansatz for the H2 molecule expressed
in terms of several coordinates (channels). The Gaussian geminal expo-
nents represented by double-headed arrows and wavy lines correspond to
(1) laboratory-fixed Cartesian coordinates; (2) Jacobi coordinates; (3) heavy-
particle centered coordinates, respectively, where the different widths of the
lines represent the different numerical values of the various exponents. The
grey arrows indicate the orientation of the global vectors parameterized by
uI,i (i = 1, 2, 3) (I = 1, 2, 3, . . . , Nb).
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was selected for the construction of the basis function,
which provided the lowest energy eigenvalue.

4. Trial values of u(x)
i (i = 1, 2, . . . , np) were generated ac-

cording to a normal distribution with some sample mean
and some unbiased sample variance determined in test
calculations. That trial value was selected for the con-
struction of the basis function, which provided the low-
est energy eigenvalue. Instead of using LF Cartesian co-
ordinates, a set of translationally invariant coordinates,
x, was selected, which described reasonably well the an-
gular distribution of the particles. In the case of H2, the
atoms-in-molecule coordinates (Sec. III) were found to
provide a useful representation, similar to Ps2.85

During the extension of the basis set, we regularly run re-
finement cycles for the already selected Gaussian exponents,
αij, and the global vector coefficients, u(x)

i , using the same ran-
dom number distributions as before, while the values of the K
and ϑ1 parameters were kept fixed.

Finally, the αij and the u(x)
i values were further optimized

in repeated fine-tuning cycles based on random walks. The
fine-tuning was carried out for each αij and ui parameter
one after the other, and was started from the original value of
the parameter. A new value was accepted or rejected based on
the variational principle. During the random walk, the param-
eter values were not restricted within any interval, but they
were controlled by the definition of a “fine-tuning” radius,
which allowed the program to change the parameter value
with a certain percentage only, and each random walk se-
quence was limited by a maximum number of steps.

The optimization of the Gaussian exponents and the
global vector parameters were carried out in terms of differ-
ent coordinates. Due to the simple transformation property
of the basis functions (and thus the integrals) in terms of a
linear transformation of the coordinates, one can use several
coordinate representations during the same calculation (“re-
parameterization”). As a result of this observation, we pro-
pose a multiple-coordinate or multiple-channel optimization
strategy.

3. Multiple-channel optimization

Our optimization strategy needs to answer the questions
of how to guess a “good enough” coordinate representation
for the optimization procedure and what the best strategy to
follow is if there are more than one coordinate representa-

tions which describe important but qualitatively different few-
particle correlations?

Since the re-parameterization of the basis functions in
terms of various sets of Cartesian coordinates is straightfor-
ward, one can optimize (generate and test, refine, and fine-
tune) the basis function parameters using several coordinate
representations, Figure 5.

A simple application of this multiple-channel optimiza-
tion strategy is used in our present optimization procedure
(steps 1–4), but it can, of course, be generalized by relying
on several coordinate representations.

III. NUMERICAL RESULTS

We have implemented the theory outlined to study the
ground and some excited states of H+

2 , Ps2, H2, and 7Li. As
characteristic properties of these systems, the mass, the elec-
tric charge, and the spin of the particles as well as the spatial
angular momentum and the spin quantum numbers were spec-
ified, while we considered states with natural parity only. The
virial coefficient, η = |1 + 〈�|V̂ |�〉/2〈�|T̂ |�〉|, was evalu-
ated to assess the quality of the calculated wave functions.

During the course of the non-linear optimization the ln αij

coefficients were generated and optimized corresponding to
the LF Cartesian coordinates where the αij parameter is the
exponent corresponding to the square of the Cartesian dis-
placement vector between the ith and jth particles, Eq. (12).
The global vector coefficients were generated and opti-
mized using the translationally invariant coordinates shown in
Figure 6.

After the selection and refinement of the αij and ui pa-
rameters, we ran repeated fine-tuning cycles by carrying out
random walk sequences, which started from the original value
and with a random but less than 10% change of the ac-
tual value. A new value was accepted if it lowered the total
energy.

Before we discuss the results obtained, we should stress
that due to omission of the BO paradigm, no potential energy
surface with respect to a subset of coordinates is obtained.
Instead, we obtain the total energies and thus all but one are
excited states.

A. H+
2

Figure 7 summarizes our results for H+
2 and the corre-

sponding BO potential energy curves are also sketched for

H+
2 = {p+, p+, e−} Ps2 = {ē+, ē+, e−, e−} H2 = {p+, p+, e−, e−} 7Li = {7Li3+, e−, e−, e−}

FIG. 6. The translationally invariant Cartesian coordinates used for the optimization of the global vector coefficients. The empty and the full circles represent
the electrons and the positively charged particles, respectively. H+

2 : proton-centered coordinates (similar to heavy-particle centered coordinates35); Ps2 and H2:
“atoms-in-molecule” coordinates85 (AIM-Ps2 and AIM-H2, respectively), where the “inter-atomic” distance vector connects the center-of-mass points of the
two “subatoms”; 7Li: Jacobi coordinates.35
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TABLE II. Calculated energy levels of H+
2 = {p+, p+, e−}.

La pa Sp
a E/Eh

b ηc δE/μEh
d Ref. Assignmente

0 1 0 −0.597139059 1.6 × 10−8 −0.004 89, 90 para X̃ 2
�

+
g v = 0

0 1 0 −0.587155670 3.2 × 10−9 −0.009 89, 90 para X̃ 2
�

+
g v = 1

[. . .]

1 − 1 1 −0.596873733 7.9 × 10−9 −0.005 89, 90 ortho X̃ 2
�

+
g v = 0

1 − 1 1 −0.586904311 9.4 × 10−8 −0.010 89, 90 ortho X̃ 2
�

+
g v = 1

[. . .]

2 1 0 −0.596345202 1.8 × 10−8 −0.004 89, 90 para X̃ 2
�

+
g v = 0

2 1 0 −0.586403620 1.4 × 10−7 −0.011 89, 90 para X̃ 2
�

+
g v = 1

[. . .]

3 − 1 1 −0.595557635 4.1 × 10−10 −0.004 90 ortho X̃ 2
�

+
g v = 0

3 − 1 1 −0.585657606 1.6 × 10−8 −0.006 90 ortho X̃ 2
�

+
g v = 1

[. . .]

4 1 0 −0.594517166 2.0 × 10−9 −0.003 90 para X̃ 2
�

+
g v = 0

4 1 0 −0.584672130 4.0 × 10−8 −0.004 90 para X̃ 2
�

+
g v = 1

[. . .]

5 − 1 1 −0.593231725 6.4 × 10−9 −0.004 88 ortho X̃ 2
�

+
g v = 0

5 − 1 1 −0.583454791 1.6 × 10−8 −0.005 88 ortho X̃ 2
�

+
g v = 1

[. . .]

0 1 1 −0.499743489 1.1 × 10−8 −0.014 88 ortho Ã 2
�

+
u v = 0

1 − 1 0 −0.499739262 1.5 × 10−8 −0.006 88 para Ã 2
�

+
u v = 0

2 1 1 −0.499731516 1.9 × 10−8 −0.007 88 ortho Ã 2
�

+
u v = 0

aL: quantum number of the total angular momentum without the spins; p: parity; Sp: total spin quantum number of the protons.
bmp/me = 1836.15267247.86 The dissociation limit is E(H(n = 1)) = −0.499727840 Eh. The wave functions were optimized as a linear combination of Nb = 400 basis functions and
for the exponents 2K of the polynomial prefactors the K values were generated in a normal distribution with mean and variance 5 and 1, respectively, and then the generated value was
rounded to the nearest integer.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.
eThe assignment of the ortho (Sp = 1) and para (Sp = 0) descriptions corresponds to the value of the Sp quantum number. The electronic state label of the BO theory is assigned
based on comparison with the literature.87, 88 There are two energy levels shown corresponding to every set of (L, p, Sp) quantum numbers in the electronic ground state, which can be
assigned to the ground and the first excited vibrational energy levels of the BO theory.

comparison. The calculated numerical values are given in
Table II. We used a proton-electron mass ratio of mp/me

= 1836.15267247.86 The corresponding non-relativistic
ground-state energy of the free hydrogen atom, which is the
dissociation limit, is E(H) = −0.499727840 Eh.

The quantum numbers of the non-relativistic theory are
L, p, and Sp. To obtain the various energy levels shown in
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u
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g

(0, 1,0)
(1,-1,1)
(2, 1,0)
(3,-1,1)
(4, 1,0)
(5,-1,1)

(0, 1,0)
(1,-1,1)
(2, 1,0)
(3,-1,1)
(4, 1,0)
(5,-1,1)

X̃ 2Σ+
g

(0, 1,0)
(1,-1,1)
(2, 1,0)
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(4, 1,0)
(5,-1,1)

(0, 1,0)
(1,-1,1)
(2, 1,0)
(3,-1,1)
(4, 1,0)
(5,-1,1)

(0, 1,1)
(1,-1,0)
(2, 1,1)

(L, p, Sp)H (n = 1)

(0, 1,1)
(1,-1,0)
(2, 1,1)

(L, p, Sp)H (n = 1)

FIG. 7. Calculated all-particle (pre-Born–Oppenheimer) energy levels of
H+

2 (on the right). For comparison, the Born–Oppenheimer potential energy
curves are also illustrated (on the left). The dissociation energy corresponds
to the ground state energy of the hydrogen atom. The numerical values of the
calculated energy levels are given in Table II. L: Total angular momentum
quantum number without the spins, p = (−1)L: parity, and Sp: the total spin
quantum number of the protons.

Figure 7, we chose various values for L and Sp, and always
assumed natural parity, p = (−1)L. Due to the Pauli princi-
ple for the protons, if the internal part of the wave function is
symmetric with respect to the interchange of the two protons
for even (odd) L, the total spin of the protons, Sp must be 0
(1), i.e., para-H+

2 (ortho-H+
2 ). This case can be assigned to the

rotation-vibration energy levels of the electronic ground state,
X̃ 2

�
+
g , of standard BO-based theory. On the other hand, if

the internal part of the wave function is antisymmetric with
respect to the interchange of the two protons for even (odd)
L, Sp must be 1 (0), i.e., ortho-H+

2 (para-H+
2 ). This case cor-

responds to the electronically excited state, Ã 2
�

+
u of BO

theory.
The numerical results are compared to literature data,

Table II, and the agreement with for example, Refs. 87–
90 is good. As to the Ã 2

�
+
u states, we obtained only

three rotation-only (vibrational ground state) energy lev-
els below the dissociation limit, in agreement with earlier
calculations.87, 88

B. Ps2

Our second example is the positronium molecule (Ps2),
with four particles of equal mass, two of them positively
charged and two of them negatively charged. Variational cal-
culations without the adiabatic separation of the positive and
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TABLE III. Calculated energy levels of the positronium molecule, Ps2 = {ē+, ē+, e−, e−}.

La pa S+a S−a E/Eh
b ηc δE/μEh

d Ref. Assignmente

0 1 0 0 −0.5160037887 3.9 × 10−9 − 0.0017 97 0+ A1

0 1 1 0 −0.3302874964 3.3 × 10−8 +10.686 85 0+ E
1 − 1 0 0 −0.3344082953 1.8 × 10−8 − 0.022 99 1− B2

aL: quantum number of the total angular momentum without the spins; p: parity; S+ and S-: total spin quantum number of the positrons, ē+, and that of the electrons, e−, respectively.
bm+/m− = 1. The energy of the lowest-lying dissociation threshold is E(Ps(n = 1) + Ps(n = 1)) = −1/2 Eh = −0.5 Eh, while the second two states belong to a different symmetry
block, and the corresponding dissociation threshold is E(Ps(n = 1) + Ps(n = 2)) = −5/16 Eh = −0.3125 Eh.85 The wave functions were optimized as a linear combination of
Nb = 1 200 basis functions and the exponents of the polynomial prefactors were 2K = 0 or 2, selected randomly.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.
eLp and the symmetry labels are taken from Refs. 33 and 85.

negative particles were presented already in 1947 (Ref. 91)
and later more accurate calculations for the ground,33, 34, 92, 93

excited,85, 94, 95 and possible metastable states33, 96 followed.
Bound states must lie below the lowest-energy dissocia-

tion limit, and the states above are in the continuum. There
are however different symmetry blocks or spin states which
are not coupled to the continuum of the lowest-lying disso-
ciation products, and thus they can be calculated within the
present approach.

We considered here only three states, which are known
to be bound.85 Our L = 0 and L = 1 calculations, Table III,
with zero spins agree well with the best available literature
data.97, 98 For all three states, we obtain substantially lower
energies than those of Ref. 85 and the results could be fur-
ther improved by extended optimization times. In this work,
we have not considered the fourth known bound state, which
would become easily accessible to the present approach by
considering the charge conjugation symmetry, a special prop-
erty of this system.

C. H2

Figure 8 summarizes our results for the H2 molecule and
the numerical results are collected in Table IV. With various
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FIG. 8. Calculated all-particle (pre-Born–Oppenheimer) energy levels of
H2 (on the right). For comparison the Born–Oppenheimer potential energy
curves are also illustrated (on the left). The lower- and the higher-energy dis-
sociation thresholds shown in the figure correspond to two hydrogen atoms
in the ground state, and to one hydrogen atom in the ground state and the
other in the first excited state, respectively. The numerical values of the cal-
culated energy levels are given in Table IV. L: quantum number of the total
angular momentum without the spins, p = (−1)L: parity, Sp: the total spin
quantum number of the protons, and Se: the total spin quantum number of the
electrons.

selections for the quantum number of the total angular mo-
mentum without the spins, L, the total proton spin, Sp, and the
total electron spin, Se, the lowest energy levels of four “types”
(symmetries) of states became easily accessible, while we al-
ways considered natural parity, p = (−1)L. These four “sym-
metry cases” (or “spin cases”) are

(1) L = 0, 1, . . . , p = (−1)L, Se = 0 (singlet),
Sp = (1 − p)/2 (para for even L, ortho for odd L);

(2) L = 0, 1, . . . , p = (−1)L, Se = 1 (triplet), Sp = (1 − p)/2
(para for even L, ortho for odd L);

(3) L = 0, 1, . . . , p = (−1)L, Se = 0 (singlet),
Sp = (1 + p)/2 (ortho for even L, para for odd L);

(4) L = 0, 1, . . . , p = (−1)L, Se = 1 (triplet), Sp = (1 + p)/2
(ortho for even L, para for odd L).

The four cases are assigned, based on direct compari-
son of the calculated energy levels with the literature, to the
X 1

�
+
g ,47 b 3

�
+
u (repulsive),100 B 1

�
+
u ,101–106 and a 3

�
+
g

(Refs. 101, 107, and 108) electronic states of the BO theory,
respectively. These electronic states are the four lowest ones
of the hydrogen molecule.109 The corresponding potential en-
ergy functions are visualized in Figure 8 (for their calculation
and applications see, for example, Refs. 47 and 101–106). Ac-
cording to the literature relying on the BO paradigm, there
are bound rotation(-vibration) energy levels corresponding to
the X 1

�
+
g , B 1

�
+
u , and a 3

�
+
g , while the b 3

�
+
u electronic

state is repulsive.
In our calculations, we obtained rotation energy levels

lower than the corresponding dissociation thresholds in cases
(1), (3), and (4) assignable to X 1

�
+
g , B 1

�
+
u , and a 3

�
+
g

electronic states, respectively. Whereas in case (2) the calcu-
lated energy levels converged from above to the energy of two
ground-state hydrogen atoms, E(H(n = 1) + H(n = 1)) (see
Table IV), in agreement with the known results based on the
BO theory.100

Although the lowest-lying dissociation products are two
ground-state hydrogen atoms, H(n = 1) + H(n = 1) with
E(H(n = 1) + H(n = 1)) = −0.499727840 Eh, the rotation-
vibration-electronic wave function can have different sym-
metry properties upon the interchange of identical particles,
which can correspond to higher-lying dissociation thresholds.
Although these states have larger energies than the dissocia-
tion continuum of the two ground-state hydrogen atoms, they
can be calculated within our variational procedure because of
their different symmetry (and different spin). Concerning the
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TABLE IV. Calculated energy levels of H2 = {p+, p+, e−, e−}.

La pa Sp
a Se

a E/Eh
b ηc δE/μEh

d Ref. Assignmente

0 1 0 0 −1.164025026 1.4 × 10−8 −0.004 62, 63 para singlet X 1
�

+
g

1 − 1 1 0 −1.163485167 3.2 × 10−9 −0.006 47 ortho singlet X 1
�

+
g

2 1 0 0 −1.162410402 2.2 × 10−8 −0.007 47 para singlet X 1
�

+
g

3 − 1 1 0 −1.160810486 7.9 × 10−9 −0.006 47 ortho singlet X 1
�

+
g

4 1 0 0 −1.158699660 6.7 × 10−9 −0.006 47 para singlet X 1
�

+
g

[. . . ]
0 1 1 1 [−0.999450] [6.3 × 10−6] [−5.8] 100 ortho triplet b 3

�
+
u

1 − 1 0 1 [−0.999445] [8.9 × 10−6] [−10.4] 100 para triplet b 3
�

+
u

[. . . ]
0 1 1 0 −0.753026938 1.8 × 10−6 −0.455 106 ortho singlet B 1

�
+
u

1 − 1 0 0 −0.752848338 5.9 × 10−6 −2.041 106 para singlet B 1
�

+
u

[. . . ]
0 1 0 1 −0.730825002 1.2 × 10−6 −0.198 108 para triplet a 3

�
+
g

1 − 1 1 1 −0.730521133 7.4 × 10−7 −0.277 108 ortho triplet a 3
�

+
g

[. . . ]

aL: quantum number of the total angular momentum without the spins; p: parity; Sp: total spin quantum number of the protons; Se: total spin quantum number of the electrons.
bmp/me = 1836.15267247.86 The energy of the lowest-lying dissociation threshold is E(H(n = 1) + H(n = 1)) = −0.999455679 Eh, while the third and fourth set of states belong to a
different symmetry block, and the corresponding dissociation threshold is E(H(n = 1) + H(n = 2)) = −0.624659800 Eh. The wave function for the X 1

�
+
g (for the B 1

�
+
u , a 3

�
+
g )

states was written in terms of a linear combination of Nb = 1500 (Nb = 1000) basis functions and the K values of the “2K” exponents of the polynomial prefactors were generated in
a normal distribution with mean and variance 9 and 1, respectively, and the generated value was rounded to the nearest integer.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.
eThe para (ortho) and singlet (triplet) descriptions correspond to Sp = 0 (1) and Se = 0 (1), respectively. The electronic-state label of the Born–Oppenheimer theory is assigned to the
calculated energy levels based on comparison with the literature.47, 100, 106, 108 In each case, the vibrational ground state is shown, i.e., the lowest energy level corresponding to each set
of angular momentum, parity, and spin quantum numbers.

clamped-nucleus analogy, correlation rules between molecu-
lar states and dissociation limits were derived by Hund110, 111

and by Wigner and Witmer112 for homonuclear diatomic
molecules, which were later extended by Mulliken113 (see
also Refs. 109 and 114).

As to the technical details of our calculations, we used
LF Cartesian coordinates to optimize the logarithm of the
basis function exponents, ln αij, while the GVR coefficients
were generated first corresponding to the atoms-in-molecule
coordinates85 (see “AIM-H2” in Figure 6). The random num-
ber generators were parameterized following the sampling-
importance-resampling strategy for the X 1

�
+
g states. These

random distributions (normal distributions with some mean
and variance for each ln αij (i = 1, 2, . . . , np + 1; j = i
+ 1, . . . , np + 1) and u(AIM−H2)

i (i = 1, 2 . . . , np)) were used
not only for the X 1

�
+
g states but also for the the generation

of the trial parameters for the electronically excited states. Of
course, the internal distribution of the particles can be very
different in the various electronic states, as it can be antici-
pated from the very different minimum positions and width
of the potential energy curves (Figure 8). Thus, if we re-
parameterized the random distributions of the random num-
ber generators for each electronically excited state (following
a sampling-importance-resampling strategy), we could have
a more efficient optimization procedure, and thus could cal-
culate lower energy eigenvalues with a similar computational
effort. This requires a series of calculations, which we might
pursue in a later work.

As to the optimization of the global vector coefficients,
the parameter optimization in terms of the AIM coordinates
seem to represent the physical idea that the lighter elec-
trons “follow” the heavier protons, and thus provide a rea-

sonable choice for the parameterization of the angular distri-
bution of the particles. Of course, the coordinates of the two
electrons and the two protons enter the procedure symmet-
rically due to the (anti)symmetrization of the trial functions,
Eq. (10).

In Table IV, we present the calculated energy values
and their comparison with earlier calculations. For L = 0,
Sp = 0, Se = 0 tightly converged all-particle (“pre-Born–
Oppenheimer”) variational calculations62, 63 were used as
reference data. For every other energy levels calculations
within a pre-Born–Oppenheimer approach were not avail-
able, and we compared our results to the results of ac-
curate “post-Born–Oppenheimer” variational-perturbational
calculations.47, 101–106 The b 3

�
+
u energy eigenvalues shown

in Table IV converged from above to the energy of two
ground-state hydrogen atoms, which we interpret as an indica-
tion of the repulsive character of this electronic state in the BO
theory.

Although the numerical results reported in Table IV
could be improved, our goal is accomplished by demonstrat-
ing that rotational energy levels corresponding to the ground
and some excited energy levels can be calculated within the
presented variational all-particle procedure.

As a next logical question, one may ask if it is pos-
sible to calculate rotation(-vibration) energy levels corre-
sponding to higher-lying bound electronic states, for exam-
ple, to e 3

�
+
u ,109 within the present approach. We think that

the rotation(-vibration) states, which could be assigned to
e 3

�
+
u ,109 are embedded in the continuum assignable to the

b 3
�

+
u , and thus could be calculated as resonances with some

characteristic energy and finite lifetime within an all-particle
approach.
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TABLE V. Calculated energy levels of 7Li = {7Li3 +, e−, e−, e−}.

La pa Se
a Eb ηc δE/μEh

d Ref.

0 1 1/2 −7.477451901 1.3 × 10−9 −0.029 115
1 − 1 1/2 −7.409557349 8.8 × 10−9 −0.410 116
2 1 1/2 −7.334926959 1.1 × 10−9 −0.347 117, 118

aL: quantum number of the total angular momentum without the spins; p: parity; Se: total
spin quantum number of the electrons.
bm7Li3+ /me+ = 12 786.393 The wave functions were optimized as a linear combination
of Nb = 1500 basis functions and the exponents of the polynomial prefactors were 2K
= 0 or 2, selected randomly.
cη = |1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)|.
dδE = E(Ref.) − E.

D. 7Li

The last system to be considered is the 7Li isotopologue
of the lithium atom described as a four-particle quantum sys-
tem with three spin-1/2 fermionic particles (electrons). The
numerical results obtained for the doublet electronic states are
collected in Table V and agree well with the available litera-
ture data.115–118

E. On the transferability of optimized basis
function parameters

We should describe our observations concerning the
transferability of the non-linear parameters of the basis func-
tions. Assume that there is a set of basis function parame-
ters, B(A), optimized for some system A, where A is a collec-
tive symbol for the input parameters of a calculation (mass,
charge, and spin of the particles, quantum numbers, size of
the basis set, etc.). Then, we use B(A) to parameterize the ba-
sis functions for calculation A′ (with particles of some mass,
charge, and spin, quantum numbers, etc.) and solve the linear
variational problem only

�(A′) =
Nb∑
I=1

cI�
(A′)
I [BI (A)] (63)

to obtain an estimate (an upper bound), E(A′)[B(A)] to the
energy for A′. We may say that the basis function parameters
are transferable from calculation A to A′ if the energy estimate

E(A′)[B(A)] is close to the energy obtained with optimizing
the basis function parameters for system A′, E(A′)[B(A′)].

We emphasize here that we do not transfer the basis func-
tions but only the parameters (geminal exponents, global vec-
tor coefficients, polynomial exponents), while the mathemat-
ical form of the basis functions is determined by the quantum
numbers (spatial and permutational symmetries). This strat-
egy is reminiscent of the vibrational subspace technique for
an efficient calculation of rotation-vibration energy levels119

using pre-calculated vibrational wave functions.
In Table VI, we present examples for such a transfer of

the basis function parameters between rotational energy lev-
els of H2 (X 1

�
+
g electronic state) with various L quantum

numbers. In this example, the basis function parameters opti-
mized for a rotational energy level of H2 with L′ were used for
the parameterization of basis functions for another rotational
energy level with L. Table VI shows that the parameterization
transfer between neighboring rotational energy levels, L = L′

± 1, gives an estimate within 0.5 μEh of the optimized value.
For larger |L − L′| values, the solution of the linear variational
problem only seems to provide less and less good estimates.
A qualitative explanation for this observation can be given as
follows. For neighboring rotational states, the internal distri-
bution of the particles is similar, and thus the same parameter
set can describe both states, while the mathematical form of
the basis functions is determined by the quantum numbers,
and the flexibility of this ansatz is provided by the linear vari-
ational coefficients.

IV. SUMMARY AND OUTLOOK

The variational solution of the Schrödinger equation of
few-particle systems was considered without the introduction
of the Born–Oppenheimer approximation. We presented an
algorithm and reported some numerical results calculated
with a computer program (implemented in FORTRAN 90),
which are based on (a) a quantum Hamiltonian expressed
in terms of laboratory-fixed or translationally invariant
Cartesian coordinates; (b) basis functions constructed with
symmetry-adapted explicitly correlated Gaussian functions
and polynomial prefactors also using the global vector

TABLE VI. On the transferability of the basis function parameters between different rotational levels of H2 corresponding to the X1�+
g electronic state

(see also Table IV). The energy differences, �EL[B(L′)], between the energy obtained via the optimization of the basis function parameters, B(L) and four
transferred parameter sets, B(L′), are given in μEh.

La EL[B(L)]/Eh
b,c �EL[B(0)]b,d �EL[B(1)]b,d �EL[B(2)]b,d �EL[B(3)]b,d �EL[B(4)]b,d

0 − 1.164025026 0.00 − 0.06 − 1.53 − 2.53 − 5.03
1 − 1.163485167 − 0.21 0.00 − 0.35 − 0.97 − 2.54
2 − 1.162410402 − 0.76 − 0.09 0.00 − 0.21 − 1.01
3 − 1.160810486 − 1.53 − 0.37 − 0.29 0.00 − 0.23
4 − 1.158699660 − 2.41 − 0.83 − 1.05 − 0.18 0.00

aL: quantum number of the total angular momentum without the spins; p = (−1)L: parity; Se = 0; and Sp = (1 − p)/2. See also the entries of Table IV assigned to the Born–Oppenheimer
electronic ground state, X1�+

g .
bThe mass ratio is mp/me = 1836.15267247.
cEL[B(L)] is the lowest eigenvalue obtained in the non-linear variational optimization, and the optimized basis function parameters are B(L).
d�EL[B(L′)] = EL[B(L)] − EL[B(L′)] (L′ = 0, 1, 2, 3, 4), where EL[B(L′)] is the lowest eigenvalue of the linear variational problem solved for a set of basis functions parameter-
ized with B(L′), which was optimized for the angular momentum quantum number (L′).
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representation;59 (c) analytic expressions for the calcula-
tion of the overlap, the kinetic, and the potential energy
integrals following the prescriptions of Refs. 35 and 53;
and (d) stochastic variational optimization of the non-linear
parameters of the basis functions.

Our work is a practical adaptation of that described in
Refs. 35 and 53 for molecular systems with various (rotational
or orbital) angular momentum quantum numbers (L ≥ 0). An
accurate calculation of the energy levels of molecular systems
required the inclusion of large exponents (>4) for the poly-
nomial prefactors in the basis functions. In order to obtain
a numerically stable and practical implementation with large
exponents, we had to rearrange the integral expressions of
Refs. 35 and 53, introduce quasi-normalization for the basis
functions, use a logarithmic evaluation of products of poly-
nomials and factorials, and pursue a careful implementation
strategy.

It was an advantageous property of the basis functions
that upon a linear transformation of the Cartesian coordinates
their mathematical form remained unaltered, and only the ba-
sis function parameters (Gaussian exponents and global vec-
tor coefficients) had to be transformed. We did make use of
this simple transformation property during the integral eval-
uation and the parameter optimization. During the evaluation
of the integrals the operators were written in their simplest
form in terms of the coordinates.

Clearly, we had to choose some set of coordinates for the
parameter optimization, but we were able to exploit the ease
of re-parameterization of the basis functions in terms of differ-
ent coordinates. For the systems studied here, we have found
the best to generate and optimize the Gaussian exponents
corresponding to laboratory-fixed Cartesian coordinates,
while for the global vector coefficients some “well-chosen”
translationally invariant Cartesian coordinates performed
better.

In general, it is not trivial how to choose an appropriate
set of coordinates or there might be not only one but several
types of correlations in the system, which are represented ef-
ficiently by different sets of coordinates. To circumvent this
coordinate dilemma, we suggested a multiple-channel opti-
mization strategy for the optimization of the basis function
parameters. Indeed, due to the simple transformation prop-
erty of the basis functions upon a linear transformation of the
coordinates, the basis function parameters can be optimized
in terms of one or another set of the coordinates during the
course of the same calculation.

Besides the stochastic optimization (competitive selec-
tion and refinement35) of the non-linear parameters, we in-
cluded repeated fine-tuning cycles. In the stochastic opti-
mization procedure, we studied the effect of various random
number generators on the efficiency of the procedure, i.e.,
the convergence rate of the energy with respect to the com-
putational effort, and finally selected a log-normal distribu-
tion for each Gaussian exponent and normal distributions for
the global vector coefficients. We have proposed a sampling-
importance-resampling strategy for the parameterization of
the random number distribution, i.e., to be able to choose a
reasonably good sample mean and sample variance for the
probability distributions.

Our emphasis was on the calculation of energy levels and
wave functions with various quantum numbers of total spatial
angular momentum (rotational and orbital angular momenta
of the BO theory), parity, and spin quantum numbers. Though
in this work we restricted the presentation to the natural-parity
case, p = (−1)L only, we have preliminary results for the un-
natural parity case, p = (−1)L + 1 as well, which might be
presented in a later publication.

Although the optimization, especially the “fine-tuning”
of the basis function parameters could be certainly improved,
our primary goal was here to test the applicability of the pro-
cedure, and thus we calculated rotation-vibration energy lev-
els of the molecular H+

2 corresponding to the X̃ 2
�

+
g ground

and the Ã 2
�

+
u electronically excited states as well as ro-

tational energy levels of H2 assigned to the X 1
�

+
g ground

and to the B 1
�

+
u and a 3

�
+
g electronically excited states.

We also calculated three bound states of the positronium
molecule, Ps2, and the 7Li atom with various angular momen-
tum quantum numbers.

The assignment of the calculated energy levels to elec-
tronic states defined within the Born–Oppenheimer theory
was carried out based on the comparison of the calculated en-
ergy eigenvalues with the literature. It would be possible to
make the assignment based on the analysis of the calculated
wave function, which can be explored in a later work. The de-
velopment of such an assignment tool would allow us to better
understand the qualitative meaning of the parameterization of
the wave function, and thus could help the improvement of the
parameterization strategy and a development of a systematic
approximation scheme.

For future work, it would be interesting to calculate
rotation-vibration energy levels, for example, for the H2

molecule, which can be assigned to higher-lying electroni-
cally excited states of the Born–Oppenheimer theory. This
undertaking appears not to be a simple, straightforward task
in the present all-particle quantum mechanical approach. We
believe that these states could be calculated as resonances em-
bedded in the continuum of lower-lying energy levels of the
same symmetry.

Finally, we discussed the transferability of the basis
function parameters between rotational states of the H2

molecule. We have found that between neighboring rotational
levels the transferred parameters provided a satisfactory basis
set, which—without further optimization of the non-linear
parameters—, when used in a linear variational problem to
parameterize the basis functions corresponding to the actual
quantum numbers, provided a very good approximation to
the energy.
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