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A mode-selective quantum chemical method for tracking molecular
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The theoretical investigation of mesoscopic objects requires new techniques which are particularly
suited for the study of selected aspects of these systems. Vibrational spectroscopy is a main source
for structural information on heterogeneous systems. We present an efficient quantum chemical
method, which relies on a modified Davidson algorithm for targeting selected vibrations in infrared
and Raman spectra. This approach is applied to the characteristic breathing modes of single-walled
carbon nanotubes. @003 American Institute of Physic§DOI: 10.1063/1.1523908

I. INTRODUCTION pone and Parrinell& It is decisive for our approach that it
can be made much more efficient than the parallelized cal-

The study and rational design of nanosized mc’Iecm"j.‘f:ulation of all vibrational modes such that largenoscaled

structures ha_s:levqlved toan importar_lt branch of _chemistry '%bjects can be investigated. In this way, quantum chemistry
recent yea_ré. This S‘e"’?dy Increase in system sizes affordscan be the eyes of the experimentalists in those cases where
new experimental techniques, which allow one to resolve th

: . xperimental spectroscopic methods do not provide detailed
detailed processes on a nanometer length scale. While x-r P P P P

. : ructural information.
crystallography is the most important tool for structure This work is organized as follows: Section Il describes
analysis in classical chemistry, it is of little value if the ob-

iact i | d th ; het in detail the methodology, Sec. Ill gives some test calcula-
Jects get very large and the systems are heterogeneous aﬁgns, which demonstrate the accuracy and efficiency of the

not crysta_l—hke structured. . method, and Sec. IV demonstrates how it can be applied to
The size of the nanomolecules thus requires new eXperEingIe-walled carbon nanotubes

mental but also theoretical approaches. Infrared and espe
cially Raman spectroscopy have proven to be of particular
value in nanoscale chemistry. Here, our focus will be on the
application of theoretical vibrational spectroscopy on carborl. METHODOLOGY

nanotubes, which play an important role in fast growing S :
nanoscienc&® We shall show that the dependence of the In order to calculate the wpratlonal frequencies, we have
vibrational frequencies on the diameter of the nanotubes an® solve the eigenvalue equation
frequen.cy shifts resulti_ng from .sideV\./aII .functionalization, HM g =\ e 1)
for which first experimental investigations have been '

undertakerf;** can be studied within our approach. whereH(™ is the mass-weighted Cartesian Hessian, which
~ The standard procedure for the quantum chemical calCysgntains themass-weightedsecond derivatives of the total

lation of vibrational spectra is the diagonalization of the full o actronic energy with respect to nuclear Cartesian coordi-

Hessian matrix within the harmonic approximation, i.e., Ofnates and\,,q is the eigensystem to be determirfedth

the matri?< of all second derivatiyes of the total e_Iectronic)\kw wﬁ andw, being thekth vibrational frequency; see Refs.
energy with respect to the Cartesian nuclear coordina®s 15 anq 17.

Ref. 14 for a recent compilation of the state of the.arhis The conventional procedure is to calculaié elements
produces all normal modes of the molecule under considerss the matrixH (™ (either analytically or numericaljyand to
atiqn and t.he experimentally important modes are identiﬁeqjiagonalize this matrix to obtain all\8 eigenvalues and

by inspection of these modes. Here, we turn the procedurgigenyectors for a molecule containigatoms. If only se-
upside-down in order to account for the fact that @ipriori - |g¢eq vibrations are of interest, one can apply subspace it-
known, which modes will be important in the experimental o ation methods like those by Lanc¥dsr by Davidsor
spectrum. It is thus desirable to target the important vibrapig has the major advantage that the full Hessian need not
tions directly and to omit all other modes. Our methodologype caiculated, which is the time limiting step in the standard
thus starts with a definition of those atoms whose V'brat'onabrocedure.

motion is considered to be important and projects then itera- Filippone and Parrinell§2° have shown that already a
tiyely on all these relevant _vibrations. This “projection tec_h- Lanczos-type algorithm can yield substantial improvements
nique” is an extended version of the one suggested by Filipyp, the standard procedure in periodic-boundary calculations.
However, the number of iteratioand thus the number of
3Electronic mail: markus.reiher@chemie.uni-erlangen.de eigenvectorsin Ref. 15 appears still too large for standard
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isolated-molecule calculations, which led us to an investiga-  {j(m).i — gi TH(mgi = gi Ty (5)
tion of the Davidson method with suitably chosen precondi-
tioning approaches. where all vectord' ando’ (with I=1,. .. j andi being the
Our Davidson-type method starts with a collective dis-actual iteration stepare collected in the matricd® and3/',
placement of all atoms(cf. Ref. 19 respectively. We then solve the eigenvalue problem for the
N small Davidson matrix,
b:j; bj™, 2 iy = pig, ®)

where é™ are the 3 (mass-weightednuclear Cartesian wherep' is theith approximate eigenvalue, from which we

basis vectors, ank, are the components of the displacement.can calculate approximate wave numbers in every iteration
The elemeni of the vectore=H(™.b, which is the first Step. The desired eigenvectay is selected from the set of

approximation to the left-hand side of Eq), is then given Vectors obtained from Eq6) and the residuum vector reads
as i

2E 2E =2 Us [0 = psh'] v

Uk:{H(m).b}kZE PG b= TP ()
T IR™IRY IR™ab - PR
(note thati always denotes the actuath iteration ands

FPEI[IRMIR(™M] is the second derivative of the total elec- Marks the selected vecjoiThe sum is over all basis vectors
tronic energy with respect tonass-weightednuclear Carte- b, and the number of basis vectors is increased in each
sian coordinates. This relation allows us to calculate the vecieration. In the standard Davidson method, the number of

tor o as a numerical derivative of the gradient of the totalPasis vectors is equal to the number of iterations, since in
electronic energyE with respect to the collective displace- each iteration one new basis vector is introduced. For each

mentb. 15:20 new basis vectob' ", we obtain a new vectos’ " as the
numerical derivative of the gradient with respect to the col-
PE lective displacemenit' **.
> H{Pb, El SRR b, The ith approximationv; to the exact eigenvectars in
! o Eq. (1) is obtained as
9°E .
> H{Mp, > ———b L
o=HM.p=| T T o T RMeRM V=3 b ®)
=1
2 The new basis vectors are generated from the residuum vec-
2 H(m b, J°E ¢
~ AN Wb' ors,
' IRyIR i+1 yipl
b'*t=X'ry, 9
9°E P . . .
— where X' is a preconditioner, which should ideally be as
IRy db close as possible tpH™ —p1]7%. The simplest approxi-
2 mation for the inverse matrix ofH(™—p.1] is to use a
— diagonal preconditioner with diagonal elementx;;
= R"db | . @ =1/(H{M—pl). However, this is only a good approximation
: for diagonally dominant matrices, a condition which is ful-
E filled for configuration interaction matrices, but not for the

Hessian matrices investigated here. This procedure is re-
aRg“,Q‘)ab peated until the convergence criterion drops below a pre-
~defined threshold. Convergence criteria @rethe maximum
‘The vectoro can thus be calculated as the numericalgjement of the residuum vectdii) the norm of the residuum
derivative of the analytic gradients of the total energy. Folyector, andiii) the contributiorut. ; of the latest basis vector
this numerical differentiation it is necessary to carry out; i, Eq. (8) to the selected eigerivector.
single point calculations for the alormdistorted structures The convergence characteristics of this algorithm
such thqtn_-pomt central dn"l‘ere.nce'formlllg‘JSfOr the NU-  strongly depend on the reliability df) the initial guess of
merical finite-difference approximation of the second derivatne first basis vectob®. which is the first approximation to
tive can be applied. _For the generatipn of thes_e distorteghe desired exact eigenvectqe and of (i) the precondi-
structures, we use displacements which result in a presgner, The latter problem is delicate since we do not have

lected norm of the correspondirigon-mass-weightedCar- 4,y information about the matrid(™; only matrix—vector
tesian displacement vector; in general, a step size of O-Oﬁlyroductsd:H(m)b' are known.

bohr proved to yield reliable and numerically stable The Hessian may be approximated using the inverse

der|vat|ve§1. o _ . transformation of Eq(5)
In theith subspace iteration we build the Davidson ma-

trix H™' as HM=BH™BT, (10
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FIG. 1. Hierarchical structure of programs for the calculation of vibrational spestrais the standard packag®ef. 35, aANF has been developed by J.
Neugebauer for anharmonic spectRef. 44, and the modulekira represents the implementation according to the algorithm described in this work.

with B:= B3N. This transformation would thus only be exact  Xi=[H{,~pl]~? (12)
if we used a complete set ofN\Bbasis vectors. If the basis set

is not complete, we may use the approximation in each iteration. It should be emphasized that the bottleneck
o of the calculation is not this matrix inversion, which takes
H{M o= > A 'BYBY, (1) only a couple of seconds, but the single point calculations of
. electronic energies and gradients for the displaced structures.
for the default preconditioner, where the sum is over all basi¢Jsing a three-point central differences fornfdléor the nu-
vectorsh' (I=1,... ) stored in the matrix8'. But this is  merical differentiation, we need two single-point calculations
usually a poor approximation and yields only as many apfor structures distorted along each basis vector, which are
proximate diagonal elements as basis functions are used erformed in a coarse-grained parallelized way using stan-
the current iteration(for the other diagonal elements, one dard parallelization techniques as provided by PVM and
could use either unit entries or the last diagonal element deMPl. Unfortunately, it is not possible to perforail single-
termined in this way for all other diagonal entrieslowever,  point calculations at once as the basis vectors of iteration
the more iterations needed the better the preconditioner idepend on the results of ali 1) former iterations. There-
this default preconditioning scheme. FurthermoreH:m fore, the little computational effort for the generation of more
—py) is a poor approximation to the inverse of a matrix accurate preconditioners is easily compensated by the result-
(HM—pl1) if HM is not diagonally dominant. Conse- ing reduction of the number of iterations.
quently, this approach is in most cases not better than using a In course of the calculation dﬂf:",?,}a we also obtain the
unit matrix as a preconditioner at the very beginning of thePM3 normal modes, which we use as the first approximation
procedure, when only very few basis vectors are available.b!. Note that this “guessing of normal modes” is different
Both problems mentioned previously in connection withfrom the standard projection operator technique, which al-
the convergence criteria can be overcome by using a semivays requires a certain point group in order to set up the
empirical calculation as an initial approximation: We calcu- projector from the irreducible representations of this point
late an estimate for the Hessian and approximate normaroup. Instead, we project out a selected mode and do not
modes using the PM3 mod@if course, other semiempirical rely on any group theoretical tools. Consequently, our ap-
models can also be utilizeédAn initial guess for the eigen- proach is applicable also i€;-symmetric cases. Neverthe-
vector can be chosen from the set of semiempirical normdkess, these projection operator techniques can be used to de-
modes, while the semiempirical Hessian can be used for thiermine an initial guess for the desired normal modes.
preconditioning procedure. Since the Hessian matrices under We have implemented the above-described algorithm
investigation are of dimensions of about a few hundred rowsvith a Davidson as well as a Lanczos solver to become the
and columns, it is—in contrast with configuration interactionnew AKIRA module in our program packagar* for quan-
matrices—possible to explicitly calculate the inverse precontum chemical vibrational analysésee Fig. 1 for the modular
ditioner matrix structure of the prograjnA comparison of both diagonaliza-
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TABLE I. Results for the mode-tracking calculation of a C—F stretching mode in fluorobenzg¢h& @sing
different initial guesses and preconditioners. Wave numbers of the selected uegtars given in cm’; i is
the number of iterations necessary to achieve converg@reguals the number of basis vectpreonv.” is the
number of normal modes which are converged dftiggrations.

Normal mode guess

Pure C—F stretch PM3
Preconditioner i conv Vel i conv Vel
Davidson Default 10 10 508.6 6 1 511.5
Unit matrix 10 10 508.6 6 1 511.5
Inverse Hessian, Eq12) 8 1 1246.9 3 1 5115
Lanczos 10 10 508.8 6 1 511.5

tion schemes shows that they perform equally well if theRefs. 14 and 3R We calculate the activitieS by numerical
preconditioning is not well chose(see the following But,  differentiation of polarizabilities obtained for structures
in case of a good preconditioning through a PM3 or similarlywhich are distorted along the normal coordinte.
sophisticated guess we obtain a significantly better conver- For the calculation of the initial guesses, we used the
gence of the Davidson-type algorithm. programmopac.3* We employed for the PM3 preconditioner
Our implementation allows one to optimize severalHessians for the PM8ptimizedstructures, such that possible
eigenvectors simultaneously, which is known as thenegative eigenvalues of a PM3 Hessian for the DFT opti-
Davidson-Liu or block-Davidsonmethod???® Root homing  mized structure are avoided. This choice requires that the
is also guaranteed.For root homing, there exist two prom- optimized structures from PM3 and DFT do not differ
ising protocols in the case of normal modes as eigenvectorgargely, which would affect the convergence behavior in
(i) selection of the eigenvector with the largest overlap withwhich case a more suitable low-level method for the genera-
the initial guess vectoi(ji) selection of the eigenvector with tion of the preconditioner should be sought.
the largest overlap with the approximate eigenvector chosen For a further decrease of the wall time our implementa-
in the last iteration. Both methods are implemented in oution allows us to use the parallelized version of the density
program. While the first method can cause convergenc&nctional programs in theURBOMOLE package, such that
problems if only a poor initial guess vector is available, theevery slave node in the coarse-grained parallel calculation
second method usually shows better convergence charactdor the two single point calculations in each Davidson step
istics; however, it may converge to a different, nondesiredacts as a master node for the fine-grained parallel single point
eigenvector due to poor initial vectors in combination with calculation.
some preconditionerésee Sec. Il for an exampleln all
calculations on fullerenes presented in this work, we used the

second method to _track the eigenvectors. _ _ . TEST CASES
For all calculations we employed the density functional
programs provided by tHEURBOMOLE 5.4suite? The results We would like to present some test calculations in order

are obtained from fully optimized all-electron restricted to analyze the features of our algorithm. As a first test case
Kohn—Sham calculations. We employ the Becke—Perdewve chose fluorobenzene and applied different precondition-
functional dubbed BP&682” as implemented iMURBOMOLE.  ing procedures in order to find the most appropriate one,
In connection with this functional we always apply the which is essential for the efficient application of the algo-
resolution-of-the-identity(RI) technique’®?® For the effi- rithm. The second test case is buckminsterfullerene, whose
cient calculation of the polarizabilities for the displacementcomplete Raman spectrum has already been studied in great
structures we used tlEscFmodule of theTURBOMOLE pack-  detaill*

age, which is capable of using the resolution-of-the-identity
technique. Ahlrichs’ SYP) basis se? featuring a valence A. Fluorobenzene

double-zeta basis set with polarization functions on all atoms  We test our implementation for the fluorobenzene mol-
except hydrogen atoms was used throughwue shall dem-  ecule and compare the data to those obtained full ehar-
onstrate in Sec. Ill that this basis set yields results compamonic force field calculation witlsnF>° (see Fig. 1 Our
rable to those from a triple-zeta plus polarization basis’set, aim is to determine the frequency of a mode which involves
which has proven to give reliable Raman intensities fora stretching of the C—F bonghote that there exist several

buckminsterfulleren®). modes ofa; symmetry which show this behavjor
Raman intensities are given in terms of the system- Table | compares data for different preconditioners and
inherent Raman scattering factd®s different guesses for the initial basis vector. As initial guesses

we used(i) a pure C—F bond stretching ard) a C-F
stretching mode, which also involves a squeezing of the ben-
wherea, andy, contain the derivatives of the polarizability zene ring and which was obtained from a PM3 calculation
tensor components with respect to normal coordinéés (the PM3 wave number is 531.6 ¢rf).

S=45,%+7y?, (13)
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TABLE Il. Breathing mode of G,in cm™* as calculated with different basis
sets (PM3 value: 622.9 cm’; exp. (Ref. 49: 496 cm'!). The Raman
activities S are given in A/u.

Method Vel S Spel
SNHFBP8GRI)/TZVP 478.8 190.0 0.4733
sNHBP8GRI)/SVP 487.0 152.9 0.4261
AKIRA/BP8GRI)/SVP 487.2 155.7 .

The method for root-homing, which tests on the largest
overlap with the approximate eigenvector selected in the las
iteration, and is used throughout, can converge to different
eigenvectors if different preconditioners are applieste
Table )): All methods converge to the vector for which a
complete harmonic force field calculation yields a wave
number of 509.0 cm!, only the pure-C—F-stretch guess in

combination with an explicit inversion oH{..s- pt1) con-

verges to a different normal mode at 1246.9 ¢nmnvolving
a C—F stretch vibratiorisNF result for this vector: 1247.0
cm 1). In the other cases, the pure-C—F-stretch guess yield:
508.6 cmi', which is in satisfactory agreement with the
509.0 cm ! reference value. The PM3 guess for the normal
modes, which exhibits the best convergence behavior, yield:
511.5 cm® due to numerical inaccuracies, which can be °
diminished through a better choice of the step size for nu-
merical differentiation. However, since these calculations are
intended to be test calculations for the convergence behavio
we refrain from improving on the current results. The experi-
mental value for this vibration is 519 cm (and 1220 cm?
for the additionally found normal mode involving C-F
stretching,®® which is in good agreement with the harmonic
wave number.

It can be understood from Table | that three methods FIG. 2. Breathing mode of thgb,5]-nanotubel.
converge to ten roots within ten iterations. This poor conver-
gence is due to the inappropriate choices of the precondition-
ers as diagona| matrices in the first two cases and due to tHg1ce in numerical diﬁerentiation, i.e., in terms of Cartesian
missing preconditioning possibility of the Lanczos method.coordinates and in terms of distortions along selected normal
These teml-symmetric roots are equa| for all three Cases_COOfdinateS, is reSponSible for the different values for the
The full calculation shows that there are eleven vibrations oRaman activitys 152.9 and 155.7 Au. Although these SVP
a, symmetry, which demonstrates the poor convergence iMalues forS differ by about 34 A/u from the TZVP result,
the case of ineffective preconditioning. Therefore, the importhe relative values fo§ which are calculated with respect to
tant result of this comparison is that a PM3 guess for thdhe most intense peak in the total spectrum, compare very
normal mode and, in particular, the use of the inverse PM3vell (cf. Table I). The wave number obtained with the
Hessian yields by far the best convergence behavior. If thémaller basis set is about 8 Crhlarger than the correspond-
preconditioning for the Davidson procedure is not optimal iting one obtained with the TZVP basis set. Because of an

shows the same poor convergence like the Lanczos methofTor compensation of themallerbasis set and thiearmonic
approximation(see also Ref. 37this wave number is closer

to the experimental result than the TZVP value is.

B. Buckminsterfullerene

Owing to the regular structure of fullerenes, we have
already shown that the TZVP basis®atan reliably be used
for the calculation of Raman intensities fogdC In order to
test whether it is possible to use an even smaller basis set for For our study of large molecules, we chose the mddel
the large nanotubes, we investigate the basis set effect on tlier an armchaif5,5] nanotube, in which we have saturated
a4 breathing mode of g (Table II). the free valencies of the edge carbon atoms by hydrogen

First of all, we note that our Davidson algorithm gives atoms (the structure ofl and the corresponding breathing
almost the same wave number for the breathing mode likenode are depicted in Fig)ZThe electronic structure of such
the sNF reference value, which is computed by numerical[5,5] nanotubes has been investigated very recéfiiywe
differentiation in terms of Cartesian coordinates. The differ-should note that the carbon nanotube models used for this

IV. MODE TRACKING FOR SINGLE-WALLED CARBON
NANOTUBES
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study can be analyzed within a few days on a personal com-
puter cluster. The size of the nanotubes which is accessible
by our methodology is actually larger than the 120 atoms of
our model.

A. Breathing modes of carbon nanotubes

Wave numbers of certain normal modes can be used as
diagnostic tools for the determination of the diameter of a
nanotub€.As an example, we calculated the breathing mode
(Fig. 2 of our[5,5]-nanotube model.

The convergence of our algorithm is excellent and the
breathing mode is obtained after the first iteration because of
the regular shape of the molecule, which allows us to obtain
a very accurate initial gueds'. The actual point group of
nanotubel is Dsq, though we did not take advantage of this
and calculated the breathing mode @3 symmetry. How-
ever, the totally symmetric breathing mode belongs to the
irreducible representatios 4, such that the good quality of
the PM3 normal mode is mainly due to the high symmetry,
which was implicitly adopted in the DFT and PM3 calcula-
tions though it was not explicitly specified.

The DFT wave number of 341.5 ¢m differs largely
from the PM3 wave number of 426.8 crh(like in the case
of Cgo), Which demonstrates that the semiempirical PM3
model without application of empirical wave-number-scaling
techniques does not provide a reliable description of vibra-
tions of fullerenes.

It is thus possible to calculate the diameter-dependent
vibrations of[ n,m] nanotubes in order to support the assign-
ment of experimental bands.

B. Functionalized carbon nanotubes

Functionalization of carbon nanotuBé8-*?is the first
step toward their possible application in molecular machines
(cf. the recent review—Ref. 43Apart from the specific con-
trol of functionalization reactions it is very important to
verify that the desired functionalization has taken place. Our
methodology can be a valuable tool for the distinction ofFIG. 3. Three models for functionalizei®,5] nanotubes(Top) 2a, HF
potential reaction products through comparison of theoreticagdded in a 1,2-positiorimiddie) 2b, HF added in a 1,4-positioibottom 3,
and experimental vibrational frequencies. The fluorination of 2 3dded in & 1,2-position.
nanotubes is a prominent example for the first step toward
more sophisticated, planned synthetic approaches. For
sample calculation we thus added onednd one HF mol-
ecule, respectively, to our model nanotubdo obtain the
structure2a, 2b, and3 in Fig. 3.

For comparison with the parent modelwe calculated
all breathing modes of these fluorinated nanotubesble
[11). The number of iterations needed for convergence is in-
creased in part because the structural distortions are N§hgLEe I11. wave numbers of breathing modes of tf&5]-nanotubel and
treated properly by the PM3 guess. A second reason for thise functionalization model and3 in cm™* (method: Davidson; guesses:
somewhat worse convergence behavior for the functionalizetiverse Hessian and normal modes from PM3 calculatiofise Raman
carbon nanotubes is based on the fact that the breathirf§tiVity Sis given in A,
mode is largely distorted upon functionalization when com-  1pe

s‘%eps such that all physically relevant modes are obtained. In
this sense the increasing number of iterationsaslrawback

of the method but a nice feature, which guarantees a correct
physical description of the sought-for vibrations: Through
the additional iterations we obtain all other relevant normal

: . Vot (Veelpmd [ S

pared tol. In this case, several normal modes in the same el s
wave number range show similar collective movements of 1 341.5(426.8 1 149.4
the atoms like the desired distorted breathing mode. gg gig';‘gigg ; gg'g
The Davidson procedure cannot project out a single 5 335.0(415.7 12 848

mode in such a case but increases the number of iteration
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modes. The accuracy of these additional modes can easily lab initio correlation methods like the popular coupled cluster
checked by means of the convergence criteria, which aremodel CCSIT). Our methodology thus applies also in these
calculated in every iteration for each of the approximatecases where only a small number of modes exists in total but
eigenvectors. If the norm and the maximum component ofhe calculation of the full Hessian matrix is unfeasible be-
the residuum vector for these modes are small enough, thesause the calculation of only one of its elements is extremely
are also reliable approximations to the exact normal modegime consuming.

It should be noted that the slightly slow convergence for ~ With the methodology presented, it is possible to study
the fluorinated nanotubes is not to be confused with the bathrge molecules, which we have demonstrated for single-
convergence which was found for thgHzF molecule ow- walled carbon nanotubes. Particular vibrational modes can
ing to the unsuitable choice of the preconditioner. Here, thefficiently be used for structure determination if an assign-
total number of vibrational basis vectors is 360 in ireepf ~ ment to experimental vibrational bands is possible. These
C,. The maximum number of twelve iterations is thus verymodes are chosen in advance by selection of those atoms in
small: convergence within sevéoompound2a and2b) or  the molecule whose motion will set up the desired collective
twelve (compound3) iterations is still very satisfactory. For vibration; the above-mentioned advanced guesses for the de-
instance, we had to carry out 14 single point calculations fosired normal mode are just sophisticated means for this
the seven iterations necessary for compoRadBy contrast, simple idea, which has directly been implemented if a guess
6x 122=732 single point calculationg.e., 3N times two in  is not available. In those cases in which the sought-for vibra-
the case of a three-point central differences formuiauld  tion is not represented by a single mode, our algorithm will
be needed in the traditional seminumerical approach, whiclproduce all physically relevant modes by automatic enlarge-
calculates the complete Hessian. ment of the number of basis vectors through the number of

The results further on demonstrate that the wave numbaterations. This procedure makes one aware of additional
shifts compared withl can become sufficiently large for modes, which can become important but which have not
(F,), nanotubes such that they can be distinguished fronbeen recognized priori.
each other in the Raman spectrum. However, it is most likely
that other characteristic vibrations, which contain C—FACKNOWLEDGMENTS
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