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A mode-selective quantum chemical method for tracking molecular
vibrations applied to functionalized carbon nanotubes

Markus Reihera) and Johannes Neugebauer
Lehrstuhl für Theoretische Chemie, Universita¨t Erlangen-Nu¨rnberg, Egerlandstrasse 3,
D-91058 Erlangen, Germany

~Received 28 August 2002; accepted 2 October 2002!

The theoretical investigation of mesoscopic objects requires new techniques which are particularly
suited for the study of selected aspects of these systems. Vibrational spectroscopy is a main source
for structural information on heterogeneous systems. We present an efficient quantum chemical
method, which relies on a modified Davidson algorithm for targeting selected vibrations in infrared
and Raman spectra. This approach is applied to the characteristic breathing modes of single-walled
carbon nanotubes. ©2003 American Institute of Physics.@DOI: 10.1063/1.1523908#
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I. INTRODUCTION

The study and rational design of nanosized molecu
structures has evolved to an important branch of chemistr
recent years.1–4 This steady increase in system sizes affo
new experimental techniques, which allow one to resolve
detailed processes on a nanometer length scale. While x
crystallography is the most important tool for structu
analysis in classical chemistry, it is of little value if the o
jects get very large and the systems are heterogeneous
not crystal-like structured.

The size of the nanomolecules thus requires new exp
mental but also theoretical approaches. Infrared and e
cially Raman spectroscopy have proven to be of particu
value in nanoscale chemistry. Here, our focus will be on
application of theoretical vibrational spectroscopy on carb
nanotubes, which play an important role in fast growi
nanoscience.5,6 We shall show that the dependence of t
vibrational frequencies on the diameter of the nanotubes
frequency shifts resulting from sidewall functionalizatio
for which first experimental investigations have be
undertaken,7–13 can be studied within our approach.

The standard procedure for the quantum chemical ca
lation of vibrational spectra is the diagonalization of the f
Hessian matrix within the harmonic approximation, i.e.,
the matrix of all second derivatives of the total electron
energy with respect to the Cartesian nuclear coordinates~see
Ref. 14 for a recent compilation of the state of the art!. This
produces all normal modes of the molecule under consi
ation and the experimentally important modes are identi
by inspection of these modes. Here, we turn the proced
upside-down in order to account for the fact that it isa priori
known, which modes will be important in the experimen
spectrum. It is thus desirable to target the important vib
tions directly and to omit all other modes. Our methodolo
thus starts with a definition of those atoms whose vibratio
motion is considered to be important and projects then ite
tively on all these relevant vibrations. This ‘‘projection tec
nique’’ is an extended version of the one suggested by F

a!Electronic mail: markus.reiher@chemie.uni-erlangen.de
1630021-9606/2003/118(4)/1634/8/$20.00
r
in
s
e
ay

and

ri-
e-
r

e
n

nd

u-
l
f

r-
d
re

l
-

y
l

a-

-

pone and Parrinello.15 It is decisive for our approach that
can be made much more efficient than the parallelized
culation of all vibrational modes such that large~nanoscaled!
objects can be investigated. In this way, quantum chemi
can be the eyes of the experimentalists in those cases w
experimental spectroscopic methods do not provide deta
structural information.

This work is organized as follows: Section II describ
in detail the methodology, Sec. III gives some test calcu
tions, which demonstrate the accuracy and efficiency of
method, and Sec. IV demonstrates how it can be applie
single-walled carbon nanotubes.

II. METHODOLOGY

In order to calculate the vibrational frequencies, we ha
to solve the eigenvalue equation

H(m)qk5lkqk , ~1!

whereH(m) is the mass-weighted Cartesian Hessian, wh
contains the~mass-weighted! second derivatives of the tota
electronic energy with respect to nuclear Cartesian coo
nates, and$lk ,qk% is the eigensystem to be determined~with
lk;vk

2 andvk being thekth vibrational frequency; see Refs
16 and 17!.

The conventional procedure is to calculateall elements
of the matrixH(m) ~either analytically or numerically! and to
diagonalize this matrix to obtain all 3N eigenvalues and
eigenvectors for a molecule containingN atoms. If only se-
lected vibrations are of interest, one can apply subspac
eration methods like those by Lanczos18 or by Davidson.19

This has the major advantage that the full Hessian need
be calculated, which is the time limiting step in the standa
procedure.

Filippone and Parrinello15,20 have shown that already
Lanczos-type algorithm can yield substantial improveme
on the standard procedure in periodic-boundary calculatio
However, the number of iterations~and thus the number o
eigenvectors! in Ref. 15 appears still too large for standa
4 © 2003 American Institute of Physics
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1635J. Chem. Phys., Vol. 118, No. 4, 22 January 2003 Mode-selective method for vibrations
isolated-molecule calculations, which led us to an investi
tion of the Davidson method with suitably chosen precon
tioning approaches.

Our Davidson-type method starts with a collective d
placementb of all atoms~cf. Ref. 15!

b5(
j 51

3N

bjej
(m) , ~2!

where ej
(m) are the 3N ~mass-weighted! nuclear Cartesian

basis vectors, andbj are the components of the displaceme
The elementk of the vectors5H(m)

•b, which is the first
approximation to the left-hand side of Eq.~1!, is then given
as

sk5$H(m)
•b%k5(

l

]2E

]Rl
(m)]Rk

(m)
bl5

]2E

]Rk
(m)]b

. ~3!

]2E/@]Rl
(m)]Rk

(m)# is the second derivative of the total ele
tronic energy with respect to~mass-weighted! nuclear Carte-
sian coordinates. This relation allows us to calculate the v
tor s as a numerical derivative of the gradient of the to
electronic energyE with respect to the collective displace
mentb,15,20

s5H(m)
•b5S (

l
H1,l

(m)bl

(
l

H2,l
(m)bl

A

(
l

H3N,l
(m) bl

D 5S (
l

]2E

]R1
(m)]Rl

(m)
bl

(
l

]2E

]R2
(m)]Rl

(m)
bl

A

(
l

]2E

]R3N
(m)]Rl

(m)
bl

D
5S ]2E

]R1
(m)]b

]2E

]R2
(m)]b

A

]2E

]R3N
(m)]b

D . ~4!

The vectors can thus be calculated as the numeri
derivative of the analytic gradients of the total energy. F
this numerical differentiation it is necessary to carry o
single point calculations for the along-b distorted structures
such thatn-point central difference formulas21 for the nu-
merical finite-difference approximation of the second deri
tive can be applied. For the generation of these disto
structures, we use displacements which result in a pr
lected norm of the corresponding~non-mass-weighted! Car-
tesian displacement vector; in general, a step size of 0
bohr proved to yield reliable and numerically stab
derivatives.14

In the i th subspace iteration we build the Davidson m
trix H̃(m),i as
-
i-

-

.

c-
l

l
r
t

-
d
e-

1

-

H̃(m),i5Bi TH(m)Bi5Bi TSi , ~5!

where all vectorsbl andsl ~with l 51, . . . ,i and i being the
actual iteration step! are collected in the matricesBi andSi ,
respectively. We then solve the eigenvalue problem for
small Davidson matrix,

H̃(m),iui5r iui , ~6!

wherer i is the i th approximate eigenvalue, from which w
can calculate approximate wave numbers in every itera
step. The desired eigenvectorus

i is selected from the set o
vectors obtained from Eq.~6! and the residuum vector read

r s
i 5(

l 51

i

us,l
i @sl2rs

i bl # ~7!

~note that i always denotes the actuali th iteration ands
marks the selected vector!. The sum is over all basis vector
bl , and the number of basis vectors is increased in e
iteration. In the standard Davidson method, the number
basis vectors is equal to the number of iterations, since
each iteration one new basis vector is introduced. For e
new basis vectorbi 11, we obtain a new vectorsi 11 as the
numerical derivative of the gradient with respect to the c
lective displacementbi 11.

The i th approximationvs
i to the exact eigenvectorqs in

Eq. ~1! is obtained as

vs
i 5(

l 51

i

us,l
i bl . ~8!

The new basis vectors are generated from the residuum
tors,

bi 115X ir s
i , ~9!

where X i is a preconditioner, which should ideally be a
close as possible to@H(m)2rs

i 1#21. The simplest approxi-
mation for the inverse matrix of@H(m)2rs

i 1# is to use a
diagonal preconditioner with diagonal elementsXj j

51/(H j j
(m)2rs

i ). However, this is only a good approximatio
for diagonally dominant matrices, a condition which is fu
filled for configuration interaction matrices, but not for th
Hessian matrices investigated here. This procedure is
peated until the convergence criterion drops below a p
defined threshold. Convergence criteria are:~i! the maximum
element of the residuum vector,~ii ! the norm of the residuum
vector, and~iii ! the contributionus,i

i of the latest basis vecto
i in Eq. ~8! to the selected eigenvector.

The convergence characteristics of this algorith
strongly depend on the reliability of~i! the initial guess of
the first basis vectorb1, which is the first approximation to
the desired exact eigenvectorqs and of ~ii ! the precondi-
tioner. The latter problem is delicate since we do not ha
any information about the matrixH(m); only matrix–vector
productssl5H(m)bl are known.

The Hessian may be approximated using the inve
transformation of Eq.~5!

H(m)5BH̃(m)BT, ~10!
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FIG. 1. Hierarchical structure of programs for the calculation of vibrational spectra:SNF is the standard package~Ref. 35!, ANF has been developed by J
Neugebauer for anharmonic spectra~Ref. 44!, and the moduleAKIRA represents the implementation according to the algorithm described in this work.
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with BªB3N. This transformation would thus only be exa
if we used a complete set of 3N basis vectors. If the basis se
is not complete, we may use the approximation

H j j ,appr
(m) 5(

kl
H̃kl

(m),iBk j
i Bl j

i ~11!

for the default preconditioner, where the sum is over all ba
vectorsbl ( l 51, . . . ,i ) stored in the matrixBi . But this is
usually a poor approximation and yields only as many
proximate diagonal elements as basis functions are use
the current iteration~for the other diagonal elements, on
could use either unit entries or the last diagonal element
termined in this way for all other diagonal entries!. However,
the more iterations needed the better the preconditione
this default preconditioning scheme. Furthermore, 1/(H j j

(m)

2rs
i ) is a poor approximation to the inverse of a mat

(H(m)2rs
i 1) if H(m) is not diagonally dominant. Conse

quently, this approach is in most cases not better than usi
unit matrix as a preconditioner at the very beginning of
procedure, when only very few basis vectors are availab

Both problems mentioned previously in connection w
the convergence criteria can be overcome by using a s
empirical calculation as an initial approximation: We calc
late an estimate for the Hessian and approximate nor
modes using the PM3 model~of course, other semiempirica
models can also be utilized!. An initial guess for the eigen
vector can be chosen from the set of semiempirical nor
modes, while the semiempirical Hessian can be used for
preconditioning procedure. Since the Hessian matrices u
investigation are of dimensions of about a few hundred ro
and columns, it is—in contrast with configuration interacti
matrices—possible to explicitly calculate the inverse prec
ditioner matrix
is

-
in

e-

in

a
e
.

i-
-
al

al
he
er
s

-

X i5@HPM3
(m) 2rs

i #21 ~12!

in each iteration. It should be emphasized that the bottlen
of the calculation is not this matrix inversion, which tak
only a couple of seconds, but the single point calculations
electronic energies and gradients for the displaced structu
Using a three-point central differences formula21 for the nu-
merical differentiation, we need two single-point calculatio
for structures distorted along each basis vector, which
performed in a coarse-grained parallelized way using s
dard parallelization techniques as provided by PVM a
MPI. Unfortunately, it is not possible to performall single-
point calculations at once as the basis vectors of iteratioi
depend on the results of all (i 21! former iterations. There-
fore, the little computational effort for the generation of mo
accurate preconditioners is easily compensated by the re
ing reduction of the number of iterations.

In course of the calculation ofHPM3
(m) we also obtain the

PM3 normal modes, which we use as the first approximat
b1. Note that this ‘‘guessing of normal modes’’ is differen
from the standard projection operator technique, which
ways requires a certain point group in order to set up
projector from the irreducible representations of this po
group. Instead, we project out a selected mode and do
rely on any group theoretical tools. Consequently, our
proach is applicable also inC1-symmetric cases. Neverthe
less, these projection operator techniques can be used t
termine an initial guess for the desired normal modes.

We have implemented the above-described algorit
with a Davidson as well as a Lanczos solver to become
new AKIRA module in our program packageSNF14 for quan-
tum chemical vibrational analyses~see Fig. 1 for the modula
structure of the program!. A comparison of both diagonaliza



1637J. Chem. Phys., Vol. 118, No. 4, 22 January 2003 Mode-selective method for vibrations
TABLE I. Results for the mode-tracking calculation of a C–F stretching mode in fluorobenzene C6H5F using

different initial guesses and preconditioners. Wave numbers of the selected vectorsñsel are given in cm21; i is
the number of iterations necessary to achieve convergence~it equals the number of basis vectors!, ‘‘conv.’’ is the
number of normal modes which are converged afteri iterations.

Normal mode guess

Pure C–F stretch PM3

Preconditioner i conv ñsel
i conv ñsel

Davidson Default 10 10 508.6 6 1 511.5
Unit matrix 10 10 508.6 6 1 511.5
Inverse Hessian, Eq.~12! 8 1 1246.9 3 1 511.5

Lanczos ••• 10 10 508.8 6 1 511.5
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tion schemes shows that they perform equally well if t
preconditioning is not well chosen~see the following!. But,
in case of a good preconditioning through a PM3 or simila
sophisticated guess we obtain a significantly better con
gence of the Davidson-type algorithm.

Our implementation allows one to optimize seve
eigenvectors simultaneously, which is known as
Davidson–Liu or block-Davidsonmethod.22,23 Root homing
is also guaranteed.24 For root homing, there exist two prom
ising protocols in the case of normal modes as eigenvec
~i! selection of the eigenvector with the largest overlap w
the initial guess vector;~ii ! selection of the eigenvector wit
the largest overlap with the approximate eigenvector cho
in the last iteration. Both methods are implemented in
program. While the first method can cause converge
problems if only a poor initial guess vector is available, t
second method usually shows better convergence chara
istics; however, it may converge to a different, nondesi
eigenvector due to poor initial vectors in combination w
some preconditioners~see Sec. III for an example!. In all
calculations on fullerenes presented in this work, we used
second method to track the eigenvectors.

For all calculations we employed the density function
programs provided by theTURBOMOLE 5.4suite.25 The results
are obtained from fully optimized all-electron restricte
Kohn–Sham calculations. We employ the Becke–Perd
functional dubbed BP8626,27as implemented inTURBOMOLE.
In connection with this functional we always apply th
resolution-of-the-identity~RI! technique.28,29 For the effi-
cient calculation of the polarizabilities for the displaceme
structures we used theESCFmodule of theTURBOMOLE pack-
age, which is capable of using the resolution-of-the-iden
technique. Ahlrichs’ SV~P! basis set30 featuring a valence
double-zeta basis set with polarization functions on all ato
except hydrogen atoms was used throughout~we shall dem-
onstrate in Sec. III that this basis set yields results com
rable to those from a triple-zeta plus polarization basis se31

which has proven to give reliable Raman intensities
buckminsterfullerene14!.

Raman intensities are given in terms of the syste
inherent Raman scattering factorsS,

S545ak8
217gK8

2 , ~13!

whereak8 andgk8 contain the derivatives of the polarizabilit
tensor components with respect to normal coordinates~cf.
r-

l
e

rs:

n
r
e

ter-
d

e

l

w

t

y

s

a-

r

-

Refs. 14 and 32!. We calculate the activitiesS by numerical
differentiation of polarizabilities obtained for structure
which are distorted along the normal coordinate.33

For the calculation of the initial guesses, we used
programMOPAC.34 We employed for the PM3 preconditione
Hessians for the PM3optimizedstructures, such that possib
negative eigenvalues of a PM3 Hessian for the DFT o
mized structure are avoided. This choice requires that
optimized structures from PM3 and DFT do not diff
largely, which would affect the convergence behavior
which case a more suitable low-level method for the gene
tion of the preconditioner should be sought.

For a further decrease of the wall time our implemen
tion allows us to use the parallelized version of the dens
functional programs in theTURBOMOLE package, such tha
every slave node in the coarse-grained parallel calcula
for the two single point calculations in each Davidson s
acts as a master node for the fine-grained parallel single p
calculation.

III. TEST CASES

We would like to present some test calculations in ord
to analyze the features of our algorithm. As a first test c
we chose fluorobenzene and applied different precondit
ing procedures in order to find the most appropriate o
which is essential for the efficient application of the alg
rithm. The second test case is buckminsterfullerene, wh
complete Raman spectrum has already been studied in g
detail.14

A. Fluorobenzene

We test our implementation for the fluorobenzene m
ecule and compare the data to those obtained in afull har-
monic force field calculation withSNF14,35 ~see Fig. 1!. Our
aim is to determine the frequency of a mode which involv
a stretching of the C–F bond~note that there exist severa
modes ofa1 symmetry which show this behavior!.

Table I compares data for different preconditioners a
different guesses for the initial basis vector. As initial gues
we used~i! a pure C–F bond stretching and~ii ! a C–F
stretching mode, which also involves a squeezing of the b
zene ring and which was obtained from a PM3 calculat
~the PM3 wave number is 531.6 cm21).
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The method for root-homing, which tests on the larg
overlap with the approximate eigenvector selected in the
iteration, and is used throughout, can converge to differ
eigenvectors if different preconditioners are applied~see
Table I!: All methods converge to the vector for which
complete harmonic force field calculation yields a wa
number of 509.0 cm21, only the pure-C–F-stretch guess
combination with an explicit inversion of (Hguess

(m) 2rs
i 1) con-

verges to a different normal mode at 1246.9 cm21 involving
a C–F stretch vibration~SNF result for this vector: 1247.0
cm21). In the other cases, the pure-C–F-stretch guess yi
508.6 cm21, which is in satisfactory agreement with th
509.0 cm21 reference value. The PM3 guess for the norm
modes, which exhibits the best convergence behavior, yi
511.5 cm21 due to numerical inaccuracies, which can
diminished through a better choice of the step size for
merical differentiation. However, since these calculations
intended to be test calculations for the convergence beha
we refrain from improving on the current results. The expe
mental value for this vibration is 519 cm21 ~and 1220 cm21

for the additionally found normal mode involving C–
stretching!,36 which is in good agreement with the harmon
wave number.

It can be understood from Table I that three metho
converge to ten roots within ten iterations. This poor conv
gence is due to the inappropriate choices of the precondit
ers as diagonal matrices in the first two cases and due to
missing preconditioning possibility of the Lanczos metho
These tena1-symmetric roots are equal for all three cas
The full calculation shows that there are eleven vibrations
a1 symmetry, which demonstrates the poor convergenc
the case of ineffective preconditioning. Therefore, the imp
tant result of this comparison is that a PM3 guess for
normal mode and, in particular, the use of the inverse P
Hessian yields by far the best convergence behavior. If
preconditioning for the Davidson procedure is not optima
shows the same poor convergence like the Lanczos met

B. Buckminsterfullerene

Owing to the regular structure of fullerenes, we ha
already shown that the TZVP basis set31 can reliably be used
for the calculation of Raman intensities for C60. In order to
test whether it is possible to use an even smaller basis se
the large nanotubes, we investigate the basis set effect o
ag breathing mode of C60 ~Table II!.

First of all, we note that our Davidson algorithm give
almost the same wave number for the breathing mode
the SNF reference value, which is computed by numeric
differentiation in terms of Cartesian coordinates. The diff

TABLE II. Breathing mode of C60 in cm21 as calculated with different basi
sets ~PM3 value: 622.9 cm21; exp. ~Ref. 45!: 496 cm21). The Raman
activitiesS are given in Å4/u.

Method ñsel S Srel

SNF/BP86~RI!/TZVP 478.8 190.0 0.4733
SNF/BP86~RI!/SVP 487.0 152.9 0.4261
AKIRA /BP86~RI!/SVP 487.2 155.7 •••
t
st
nt

ds

l
ds
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ence in numerical differentiation, i.e., in terms of Cartes
coordinates and in terms of distortions along selected nor
coordinates, is responsible for the different values for
Raman activityS: 152.9 and 155.7 Å4/u. Although these SVP
values forS differ by about 34 Å4/u from the TZVP result,
the relative values forS, which are calculated with respect t
the most intense peak in the total spectrum, compare v
well ~cf. Table II!. The wave number obtained with th
smaller basis set is about 8 cm21 larger than the correspond
ing one obtained with the TZVP basis set. Because of
error compensation of thesmallerbasis set and theharmonic
approximation~see also Ref. 37!, this wave number is close
to the experimental result than the TZVP value is.

IV. MODE TRACKING FOR SINGLE-WALLED CARBON
NANOTUBES

For our study of large molecules, we chose the mode1
for an armchair@5,5# nanotube, in which we have saturate
the free valencies of the edge carbon atoms by hydro
atoms ~the structure of1 and the corresponding breathin
mode are depicted in Fig. 2!. The electronic structure of suc
@5,5# nanotubes has been investigated very recently.38,39 We
should note that the carbon nanotube models used for

FIG. 2. Breathing mode of the@5,5#-nanotube1.
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study can be analyzed within a few days on a personal c
puter cluster. The size of the nanotubes which is access
by our methodology is actually larger than the 120 atoms
our model.

A. Breathing modes of carbon nanotubes

Wave numbers of certain normal modes can be use
diagnostic tools for the determination of the diameter o
nanotube.7 As an example, we calculated the breathing mo
~Fig. 2! of our @5,5#-nanotube model.

The convergence of our algorithm is excellent and
breathing mode is obtained after the first iteration becaus
the regular shape of the molecule, which allows us to ob
a very accurate initial guessb1. The actual point group o
nanotube1 is D5d , though we did not take advantage of th
and calculated the breathing mode inC1 symmetry. How-
ever, the totally symmetric breathing mode belongs to
irreducible representationa1g , such that the good quality o
the PM3 normal mode is mainly due to the high symme
which was implicitly adopted in the DFT and PM3 calcul
tions though it was not explicitly specified.

The DFT wave number of 341.5 cm21 differs largely
from the PM3 wave number of 426.8 cm21 ~like in the case
of C60), which demonstrates that the semiempirical PM
model without application of empirical wave-number-scali
techniques does not provide a reliable description of vib
tions of fullerenes.

It is thus possible to calculate the diameter-depend
vibrations of@n,m# nanotubes in order to support the assig
ment of experimental bands.

B. Functionalized carbon nanotubes

Functionalization of carbon nanotubes9,40–42 is the first
step toward their possible application in molecular machi
~cf. the recent review—Ref. 43!. Apart from the specific con-
trol of functionalization reactions it is very important t
verify that the desired functionalization has taken place. O
methodology can be a valuable tool for the distinction
potential reaction products through comparison of theoret
and experimental vibrational frequencies. The fluorination
nanotubes is a prominent example for the first step tow
more sophisticated, planned synthetic approaches. F
sample calculation we thus added one F2 and one HF mol-
ecule, respectively, to our model nanotube1 to obtain the
structures2a, 2b, and3 in Fig. 3.

For comparison with the parent model1, we calculated
all breathing modes of these fluorinated nanotubes~Table
III !. The number of iterations needed for convergence is
creased in part because the structural distortions are
treated properly by the PM3 guess. A second reason for
somewhat worse convergence behavior for the functional
carbon nanotubes is based on the fact that the breat
mode is largely distorted upon functionalization when co
pared to1. In this case, several normal modes in the sa
wave number range show similar collective movements
the atoms like the desired distorted breathing mode.

The Davidson procedure cannot project out a sin
mode in such a case but increases the number of itera
-
le
f

as
a
e

e
of
in

e

,

-

nt
-

s

r
f
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f

rd
a

-
ot
is
d

ng
-
e
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e
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steps such that all physically relevant modes are obtained
this sense the increasing number of iterations isno drawback
of the method but a nice feature, which guarantees a cor
physical description of the sought-for vibrations: Throu
the additional iterations we obtain all other relevant norm

FIG. 3. Three models for functionalized@5,5# nanotubes.~Top! 2a, HF
added in a 1,2-position;~middle! 2b, HF added in a 1,4-position;~bottom! 3,
F2 added in a 1,2-position.

TABLE III. Wave numbers of breathing modes of the@5,5#-nanotube1 and
the functionalization models2 and3 in cm21 ~method: Davidson; guesses
inverse Hessian and normal modes from PM3 calculations!. The Raman
activity S is given in Å4/u.

Tube ñsel ( ñsel,PM3) i S

1 341.5~426.8! 1 149.4
2a 345.4~415.0! 7 26.6
2b 342.7~418.1! 7 89.2
3 335.0~415.7! 12 84.8
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modes. The accuracy of these additional modes can easi
checked by means of the convergence criteria, which
calculated in every iteration for each of the approxim
eigenvectors. If the norm and the maximum componen
the residuum vector for these modes are small enough,
are also reliable approximations to the exact normal mod

It should be noted that the slightly slow convergence
the fluorinated nanotubes is not to be confused with the
convergence which was found for the C6H5F molecule ow-
ing to the unsuitable choice of the preconditioner. Here,
total number of vibrational basis vectors is 360 in irrepa of
C1 . The maximum number of twelve iterations is thus ve
small: convergence within seven~compounds2a and2b! or
twelve ~compound3! iterations is still very satisfactory. Fo
instance, we had to carry out 14 single point calculations
the seven iterations necessary for compound2a. By contrast,
631225732 single point calculations~i.e., 3N times two in
the case of a three-point central differences formula! would
be needed in the traditional seminumerical approach, wh
calculates the complete Hessian.

The results further on demonstrate that the wave num
shifts compared with1 can become sufficiently large fo
(F2)x nanotubes such that they can be distinguished fr
each other in the Raman spectrum. However, it is most lik
that other characteristic vibrations, which contain C
stretching, can also be utilized for this purpose. Quant
chemical calculations can thus serve as efficient diagno
tools for structure analysis of experimental vibrational sp
tra of carbon nanotubes.

V. CONCLUSION

In this study we have shown how the standard proced
of calculating all vibrational normal modes of a molecule f
an analysis of certain bands in a vibrational spectrum can
reversed. This ‘‘reversion’’ is important because it allows
to select a desired vibration from the very beginning. O
this particular vibration or a small number of related vibr
tions are projected out of the large number of all collect
modes of large molecules. The steadily increasing amoun
normal modes for increasing system sizes does not make
calculation unfeasible if a single point calculation is possib
which is always the case because optimized structures w
have to be generated first. The vibrational eigenvalue pr
lem is solved in a small subspace of the complete nor
coordinate space and one or a couple of predefined m
are projected out of all 3N modes of the molecule. Since th
calculation of the full Hessian is not necessary, compa
tively little computational effort is needed compared to t
standard procedure.

For a good convergence behavior of the method it
most important to generate a sufficiently accurate guess
the desired normal modes and for the preconditioner. T
guess should be based on a quantum chemical met
which is computationally less expensive than the meth
which shall be used finally. Therefore, we chose semiem
ical methods to speed up our density functional calculatio
But it is, of course, also possible to use density functio
calculations in the case of smaller molecules for a hi
quality guess for subsequent computer resource deman
be
re
e
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ab initio correlation methods like the popular coupled clus
model CCSD~T!. Our methodology thus applies also in the
cases where only a small number of modes exists in total
the calculation of the full Hessian matrix is unfeasible b
cause the calculation of only one of its elements is extrem
time consuming.

With the methodology presented, it is possible to stu
large molecules, which we have demonstrated for sing
walled carbon nanotubes. Particular vibrational modes
efficiently be used for structure determination if an assig
ment to experimental vibrational bands is possible. Th
modes are chosen in advance by selection of those atom
the molecule whose motion will set up the desired collect
vibration; the above-mentioned advanced guesses for the
sired normal mode are just sophisticated means for
simple idea, which has directly been implemented if a gu
is not available. In those cases in which the sought-for vib
tion is not represented by a single mode, our algorithm w
produce all physically relevant modes by automatic enlar
ment of the number of basis vectors through the numbe
iterations. This procedure makes one aware of additio
modes, which can become important but which have
been recognizeda priori.
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