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Exact decoupling of the Dirac Hamiltonian. Il. The generalized
Douglas—Kroll-Hess transformation up to arbitrary order 2)

Markus Reiher® and Alexander Wolf®
Lehrstuhl fur Theoretische Chemie, UniversitBonn, WegelerstraRe 12, D-53115 Bonn, Germany

(Received 30 August 2004; accepted 27 September)2004

In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation
scheme, we have discussed in part | of this series that either a purely numerical iterative technique
(the Barysz—Sadlej—Snijders methant a stepwise analytic approacthe Douglas—Kroll-Hess
method are possible. For the evaluation of Douglas—Kroll-Hess Hamiltonians up to a pre-defined
order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this
analytic derivation of Douglas—Kroll-Hess Hamiltonians up to any arbitrary order in the external
potential is presented. We discuss how an estimate for the necessary order for exact decoupling
(within machine precisionfor a given system can be determined from the convergence behavior of
the Douglas—Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum
order has been accomplished, the spectrum of the positive-energy part of the decoupled
Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part
of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic
operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is
presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole
periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth
order DKH Hamiltonians are presented. 204 American Institute of Physics.

[DOI: 10.1063/1.1818681

I. INTRODUCTION In part I of this series, we have shown that the
Douglas—Kroll-Hes$DKH) method~2is theonly valid ex-

b F(;)r a f[:r:) n?stten(tquig)rgISpV|st||_<|: ele_:ltt:tro_ns-o_?_ly (tjhe(_)rybl ansion scheme for the decoupled Dirac operkfigy based
ased on the first-quantized Dirac Hamiltonian, itis desirable, '\ i transformations

to eliminate the unphysical negative-energy states at energies

below —2mc from the theoretical description. Conse- %

quently, one arrives at a computationally less demanding rep- H,4= > &, (2
resentation for the electronic bound states which does not k=0

En?ke r?rl]lyf rrefe(rjer;citle éo dithe S?(;ﬁglecjh Str\r,]va" C?nmp?]ni?t that yields analytic closed-form operators. These operators
cl. pa or a detalied discuss uch atwo-component .o given through regular and well-defined expressions, and

re_Iat|V|st|c _sche_me res_ults af_ter complete depoupllng of theeach term&, can be classified according to its order in the
Dirac HamiltonianHy via a suitably chosen unitary transfor-

mation U external potential, which is encoded in the subscript of each
term. Actually, the true expansion parameter of the DKH

h, O protocol is the scaled or damped external poteftiakince
o h. |’ @ each term contributing t6, contains exactljk— 1 factors of

The block-diagonal Dirac Hamiltoniail,y possesses ex- V (see below Moreover, we have ar_guétthat I IS 1n prin-
ciple not possible to carry owtepwisedecoupling within

actly the same spectrum as the original Hamiltonké. any two-(or onejcomponent scheme purely numerically in a
However, this exact one-step decoupling for Coulombic sys- y P purely y

. : : . recursive manner. Instead, if explicit reference to the small
tems is only possible purely numerically in the framework of ) L ;
. . YR component shall be avoiddend this is always the case in a
the Barysz—Sadlej—Snijder®SS method?~* which does
. . . two- or one-component thegrythe DKH operators of as-
not yield analytic closed-form expressions for the operators. ) o ; ) )
From this BSS approach the infinite-order two-componenf€nding order iV canonly be derived via symbolic opera-

(I0TC) method of Barysz and collaborators evolveste, toNS- Once all these decoupléever) operatorscy are de-
e.g., the recent paper by, Kziera and BarySy. Note, how- rived, they can subsequently be evaluated by transition to a

ever, that we have used both acronyf@SS and 10TG p2-basis, i.e., the basis-set representation which diagonalizes

synonymously when referring to this method. the nonrelativistic ki_neti(? enerdy.
The DKHn Hamiltonians

Hbd=UHDUT=(

3n memoriam Professor Dr. Bernd Artur Hess. n

YAuthors to whom correspondence should be addressed. Electronic mail: Hpkun= 2 Es ©)
reiher@thch.uni-bonn.de, awolf@thch.uni-bonn.de k=0
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approximate the exact block-diagonal Dirac Hamiltonianther numerical improvement(relevant for 7) will be

Hpg achieved. Higher-order correctior‘tfék>nopt will thus only
n o yield insignificant fluctuations of total and relative energies
Hpa= 2 Et 2 E=Hpgun+ OV, (4) and properties. For the numerical set up of the exact, block-
k=0 k=n+1

diagonal Dirac HamiltoniarH,4 it is thus sufficient to re-
strict to the finite-order DKId,, Hamiltonian, since the
truncation error is guaranteed to be numerically negligible.
In other words, numerical convergence of the DKH energies
towards the exact Dirac energy is already achieved by re-
striction to the DKHh,,; scheme, which thus represents the
optimal DKH approximation optimizing the balance between
accuracy and computational cost.

It is exactly this possibility of determining the required

up to (n—1)-th order inV. The reason for this peculiarity
lies, of course, in the independence of the initial fpFW trans
formationU, of the damped potential and the fact that the
fpFW HamiltonianH, does not contain an odd term of ze-
roth order. Application of the firain+1 unitary transforma-
tions U, --U,Uq to the Dirac HamiltoniarH yields the
intermediate Hamiltonian

0 m maximum ordem,, prior to a quantum chemical calcula-
Hmt1= ka Uk|Hp kHo Ul} tion, which makes the DKH protocol a feasible infinite-order
decoupling method. Otherwise, if this truncation criterion,
2m+1 * * which will be deduced in detail in Sec. Ill, were not avail-
= kzo 5k+k %ﬁ E(km+1)+k %ﬂ oy, (5)  able, one would have to test each order in a complete elec-

tronic structure calculation to check convergence of the en-

that contains exactly (2+ 1) even terms which will not be ergy expectation values. Note that infinite-order decoupling
altered by further unitary transformatiofi$2m-+1)-rule]. in the purely numerical Barysz—Sadlej—Snijdeii©TC)
The even terms of higher order will be affected by subsemethod actually relies on exactly the same philosophy: it-
guent unitary DKH transformations, which is indicated by aerative evaluation of the one-step unitary transformation em-
superscript in parenthesis attached to each term. Here and johoyed in the I0TC protocol is stopped, as soon as a certain
the following we are employing exactly the same notationnumerical precision has been reached.
(symbols and abbreviationas in part | of this serieswhich Let us assume the intermediate Hamiltonkdy, ; after
might be consulted in order to avoid any ambiguities. the firstm+ 1 unitary transformation steps defined by Es).

In recent years, the standard Douglas—Kroll-Hess prowere given. Application of the next unitary transformation
cedure of second ordérf, DKH2, has been extended to U,
third, ' DKH3, fourth and fifth?** DKH4 and DKHS5, re- Hyon=U, o Hyo UL 6)
spectively, and very recently to sixth ordér:®> DKH6. Fur-

thermore, also highly sophisticated implementations of the P - (m+2)
DKH method were published taking explicitly care of spin- - ,;0 gk+k:;+4 2
dependent term$1® and the transformation of the two-
electron interactioh®1° + OV V4 a1 0@ 11 Wos1580]
In this work, we present the first realization of an arbi- )
trary and thus infinite-order DKH scheme, i.e., an analytic Om 1
decoupling procedure for the Dirac Hamiltonian up to any *
given order inV. We start with the introduction of the basic + > o (7)
notation in Sec. I, where it is also explained how exact ko
decoupling can be achieved within the generalized DKH = Hpcams 3+ O(F23), (8

framework. The following Sec. Il explicates how the maxi-

mum order necessary for this purpose can be deduced. TRgelds all terms contributing to the DKH Hamiltonians up to
algorithmic details are described in Sec. IV and a diSCUSSiO@rder 2n+ 3, where for the sake of S|mp||c|ty the irrelevant
of the scaling behavior of this algorithm with respect to com-gdd terms with orders between+2 and 2n+ 3 in the ex-
putational requirements may be found in Sec. V. Numericaternal potentiaV have been omitted in E¢8). The unitary
results for one- and many-electron atoms are given in SegransformationU,,.;—as all unitary matrices employed

VI, and Sec. VIl concludes this study. before—is constructed as the most general power series an-
satz in terms of the anti-Hermitian odd operalg, . ;
Il. INFINITE-ORDER DKH o
In any computational scheme, “exact” decoupling is ~ Um+1=8ms10lt le am+1Wh+1- (€)

reached if the truncation err@(V") defined by Eq(4) is of

the order of the arithmetic precision of the computer, or aEquation (9) defines thegeneralizedDouglas—Kroll-Hess
least negligible with respect to the physical or chemical is-method’** because the most general analytic expressions for
sues under investigation. Given a molecular system and #e DKH Hamiltonians are obtained, covering all different
desired numerical accuracy we do consequently need an unitary parametrizations used in the literature. Note that the
evaluation protocol for the priori determination of the cut- termW! ., is of exactly[j-(m-+1)]-th order inV. There-

off order n,,; of the DKH expansion, beyond which no fur- fore, for a consistent derivation of all relevant terms of the
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DKHng, Hamiltonian, we have to take all terms contributing decomposed intk— 1 separate factors &f, but might also
to the unitary transformationt); with ordersi-k into ac- contain terms with nested energy denominators e (cf.
count, with k=0,1,... ,int(ny,/i) according to the (@ Ref. 1). Due to the structure of the fpFW Hamiltonian
+1)-rule. Consequently, the inner unitary transformations, ,

which are parametrized biy,-operators of lower order in the Hi=&+&+0, (12

external potential have to be expanded up to higher powers =BE,—m+A,(V+RVR)A,+ BA[R,,VIA,,

according to Eq(9) than the outer unitary transformations. (13)
W, 1 is determined uniquely by the requirement that it ith
has to account for the elimination of the odd teef",>. V!
Being an integral operator ofr(+ 1)-th order, this is guar- Ep+ mc
anteed if and only if the kernel 8, ; is given by A=\ 2 (14)
P
Win+1(PosP1y -+ - Pm+1) ca-p
_ Am+1,0 Osnm:ll)(vaplu N D) (10 Rp=TRpap= Ept mc?’ (15
Am+11 Boo T Epm s each even term&, comprises at least a factor of

If the matrix representation of this kernel were known, oneApRpVRpAp-(ApT/Ap)kfl. Within a semiclassical analysis
could immediately employ it to evaluate all terms of thethis factor assumes its maximum value for vanishing mo-
DKH HamiltonianH pyp2m+3)- This procedure could be re- mentump, and is thus always guaranteed to have a smaller
peated until the resulting Hamiltonian is block-diagonal upoperator norm than the truncation estimate operator
to any desired order iW (determined by machine precision B 5 21 “n kel

It is, however, exactly this step which is not feasible ~ Yk=(4M°C%) "= AgVAy- (AVA,)™ . (16)
within any two-component implementation, since the matrix The order of magnitude of the terfiy can thus be estimated
representations of odd operators must not be calculated. Asy investigating the eigenvalueg® of this truncation esti-
mentioned above and discussed in detail in paritheir  mate operatob),, which will of course depend on the system
evaluation would inevitably require the introduction of basisynder investigation, i.e., the largest nuclear chafgef the
sets for the small components of the molecular spinorspyclei occurring in the molecule and the basis set chosen. As

which are approximately twice as large as the large composoon as the absolute value of the largest eigenvalug, i
nent basis sets and have to contain exponents for higher apejow the chosen truncation threshokg |a®), /<7, the

. . . . ma
gular momentum functions due to the requirements of K'net'(higher-order even tern& with 1>k will only affect the total
balance. This would not only blow up the computationalenergy of the system under investigation beyond the desired
costs of the calculations considerably, but even destroy thgccyracy established by
elegant framework of one- or two-component relativistic | Taple | the largest absolute value of the eigenvalues
methods, which could no longer be easily embedded intq,i(k) of V, for one-electron atoms with nuclear charggs
every nonrelativistic computer code. As a matter of fact, ex-— 20, 40, 60, 80, and 100 is presented. For all truncation
actly the same integrals would appear as in fully reIativistican(—jﬂyseS we have employed the same large even-tempered
four-component codes, and no savings were obtained by thgaussian basis set as for the energy calculations in Sec. VI A
block-diagonalization of the Hamiltonian. We thus have to(see below, According to our truncation criterion, DKHS,
restrict to a symbolic closed-form evaluation of the evenpkH11, DKH14, DKH16, and DKH18, respectively, should
terms&, employing a suitable DKH parser algorithm which pe gyficient for the five ions presented in Table | if an over-

is presented in Sec. IV. all absolute accuracy for total energiesef 10~° is sought

for. These optimal DKH orders,, have to be increased to
Ill. PRE-DETERMINATION OF THE MAXIMUM DKH 10, 14, 17, 20, and 23, respectively, if the tighter truncation
ORDER REQUIRED threshold ofr=10"8 is chosen.

. A comparison of thesa priori determined optimal or-
The necessary ordeng, for exact decoupling— .

: ) o dersn,, to the actually calculated DKH energies for these
depending on the system under investigation—can be deter-

mined prior to any quantum chemical calculation due to thesystems(cf. Table V) reveals that our truncation criterion is

exact knowledge of the expansion paramdigt, part [ }[/()evivya:gshtfhzhze[;}iiz degg(rﬂ;scaﬁﬁﬁ;r t%gﬁn;;rﬁaenei\tleﬁa?ster
Each term contributing to the even teré of the DKH Y 9

Hamiltonian of Eq.(3) features exacthk—1 huge energy been estimated. For example, for a nuclear chargé=e20

: . (Ca already DKH5 and DKHS yield total energies with 5
denominators due to the damped external potential and 8 decimal figures which are not affected by higher-order

~ Vij corrections, respectively. And fat=60 (Nd) DKH13 is al-
Vij= Ei+E;’ (12) ready capable of guaranteeing five correct decimals places.
_ s ) L Consequently, the truncation criterion based on the
with Ep = ypic+mc” being the relativistic energy— analysis of the eigenvalues of the truncation estimate opera-
momentum relation. In order to keep the notation as simpleor ), has thus to be understood as an approximate, yet very
as possible, we will continue to denot§ as being of reliable estimate for the determination of the necessary DKH
(k—1)-th order inV, though obviously it cannot always be order for exact decoupling of the Dirac Hamiltonian. Decou-
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TABLE |I. Largest absolute valuge®,] of the eigenvaluesr’ of the truncation estimate operatdy, for
different nuclear charges. sgne®) denotes the sign of the eigenvalueslyf The even-tempered Gaussian
basis set described in Sec. VIA has been employed. The corresponding optimal DKH mygdos exact
decoupling due to the truncation error analysis for two different truncation threshatgsgiven in the last two
lines of the Table.

k sgne®) Z=20 Z=40 Z=60 Z=80 Z=100

1 - 2.39438E-5 4.64839E-6 1.992278-7 2.80578B-7 2.99538E-7
2 + 3.19840E-3 2.13568E-5 1.39914E-6 2.65461B-6 1.68506E-6
3 - 1.17040E-2 1.452685-4 1.446258-5 3.690928-5 2.05976E-5
4 + 4.93307E-0 1.11158E-3 1.673298-4 57430784 3.86563E 4
5 - 217787E-1 887797E-1 20145683 9.297848-3 8.04119E-3
6 + 9.86177E-3 7.24394E-0 24721982 1534218-3 1.7311183
7 - 454306E-4 5.99285E-1 3.06901E-1 25609582 3.80328E-2
8 + 212023E-5 5.01226E-2 3.841278-0 4.310178-1 8.47033E-1
9 - 9.99959E-7 4.23501E-3 4.83924E-1 7.30196B-0 1.904 7781
10 + 4758 48E-8 3.61733E-4 6.13054E-2 1.244068-0 4.314 108-0
11 - 2.28251E-9 3.12928E-5 7.80547E-3 2.13040E-1 9.82420E-1
12 + 274976E-6 9.98439E-4 3.66569E-2 2.246 66E-1
13 - 2.46237E-7 1.28280E-4 6.33618E-3 5.15506E-2
14 + 2.25164E-8 1.65510E-5 1.10004E-3 1.186 06E 2
15 - 2.10113E-9 2.14414E-6 1.91797E-4 2.73492E-3
16 + 2.78857E-7 3.35805E-5 6.31825E-4
17 - 3.64047E-8 5.90350E-6 1.46198E-4
18 + 4770 08E-9 1.04203E-6 3.38760E-5
19 - 1.846 59E-7  7.859 19E-6
20 + 3.28522E-8 1.82535E-6
21 - 5.867 38E-9  4.24383E-7
22 + 9.876 02E-8
23 - 2.300 35E-8
24 + 5.362 64E-9

Nopi( 7=1072) 8 11 14 16 18
Nopi( 7=1078) 10 14 17 20 23

pling up to the chosen threshotdmight in practice be ob- V. GENERATION OF DKH OPERATORS

tained even earlier, i.e., for lower-order DKH Hamiltonians. OF ARBITRARY ORDER

But the DKHn,,, Hamiltonians suggested by this truncation _ . _
analysis will not fail to yield the desired accuracy, which is ~ As discussed above, the evaluation of the DKH Hamil-

confirmed by the numerical results presented in Sec. VI. tonian up to any predefined order in the external potential
The well-known alternating pattern of the DKH requires a new computational scheme, which cannot rely on

energie§ can already be anticipated by inspection of the S|g|’f;l purely numerical iterative method. Therefore, each order of

sgn@®) of the eigenvalues ofV,. Odd orders k the decoupled DKH Hamiltonian has to be determined

=1,3,5. ..) doalways feature negative contributions to the purely algebraically, i.e., bgymbolicalevaluation of the cor-

DKH energy whereas even-order termis=2,4,...) do al-  responding unitary transformations. Due to the increasing

ways increase the energy as compared to the previous ordé@mplexity of the higher-order terms, their determination,

We note that all eigenvalues!) of the truncation estimate however, is only possible if the algebraic operations are

operatorV, feature the same Sign, ie., they are either a||evaluated automatically by a suitable parser routine yleldlng

positive (k even or all negative k odd). analytic formulas for each ordef,. Subsequently, this
Finally, we emphasize that within any basis set approaciparser should be able to translate the resulting closed-form

exact decoupling does, of course, only guarantee convefperator expressions into corresponding matrix multiplica-

gence towards the basis set limit and not towards the exaons arising in any basis set expansion. The basic layout and

analytic Dirac limit. For any practical calculation the trunca- the efficient implementation of such a parser routine will be

tion thresholdr should thus consequently be chosen in ac-described in this section.

cordance with the deficiency inherent in the basis set: The Starting point for the symbolic procedure

larger and better the basis set, the smaller the threshold ) . . ]

might be sensibly chosen, since it would not make any sense 1he starting point for the symbolic operations to be per-

to decouple up to an accuracy o108, for example, if formed by the parser routine is the free-particle Foldy—

the basis set employed is only capable of guaranteeing millivWouthuysen Hamiltoniai ;

Hartree accuracy. For most quantum chemical calculations

employing standard basis sets of, e.g., triple zeta quality,

decoupling up tor=10"* appears thus to be sufficient. Hi=&+E&+ 0, (17
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TABLE II. Overview of all high-level expressions employed within the Rp_do commute with each other, but they all do not com-

symbolic parser procedure. The high-level expressions are described in d?ﬁute with any operator containing the external poter\l’lal
tail in Sec. IV C.

Quantity Definition High-level code
B. Step 1: Symbolic construction of the high-level
& BEp,—mc? ECO DKH Hamiltonian
& A(V+R,VR)A, EO1
0, BALR, V1A, 001 As soon as the desired ordeg,=n up to which decou-
Wi cf. Eq.(10) Wxx pling shall be achieved has been fixed, the high-level expres-
S cf. sect. IVC SXxx sions of all necessary unitary transformations [i
Ti RpSR, X =1,2,...,int(n/2)] can be constructed. From now on we

will consequently use instead ofn,, to denote the desired
order of decoupling for the sake of brevity. For any real

which is represented here in its “high-level” form. This op- humbera, int(a) denotes the largest integer lower or equal to
erator is formally stored as a vector with three componentsr, and due to the (2+1)-rule no further unitary transfor-
according to mations are required. For algorithmic reasons all these
int(n/2) transformations cannot be simultaneously con-
(0,+1,+1.0&) structed at the very beginning, but they have to be consecu-
Hi—| (L+1,+1.0£) |. (18)  tively processed. The following subsectiof@ecs. IVB 1—
(1,-1,+1.00,) IV B 4) are thus to be executed for each transformaltigiof

Each entry of this high-level Hamiltonian vector in pseudo-the sequence of unitary transformations.
code notation is characterized by the structure

. 1. Construction of the unitary transformation U i
(order, symm, coeff, string),

The high-level expressions of unitary transformatiehs
are represented by vectors with inf{) +1 components,
whose K+ 1)-th entry is given by

where the integeprder specifies the order in the external
potential V and symm describes the even+1) or odd
(—1) structure of this term. The real variahteeff is the
prefactor of the corresponding term and the character stringki, (—1)X, aj k. W!‘)
string labels the actual form of this term. We have chosen N K
the phrase “high-level” expression here in order to empha- Ak, (=17 a WxxWxx... Wxx).
size that the specific form of each term contributinddtpis  The first entry k=0) is simply the unity operator and the
not resolved into computable expressions at this stage. Igoefficientsa; ,, of course, have to satisfy the unitarity con-
general, high-level expressions do only contain the quantitieditions. According to Table 1l each operatdf, is stored as a
&, &1, 01, theW-operators¥V; , and combinations of these 3-character stringVxx, i.e.,W; is coded asV01. This setup
quantities for which new shortcuts might be introduced in thes thus flexible enough to allow for the construction of the
second step, cf. Sec. IV C. For instance, we have thus ndirst 99 unitary transformations. The Hermitian conjugate
replaced the high-level ter@, by its low-level constituents, transformatiorufr is constructed by changing the sign of the
ie., odd coefficientsy; . In order to obtain an overall consis-
_ tent order ofn, inner unitary transformationdow value of
Ei’_ iJ_r igﬁﬁpsgﬁ\p; , (190 i) have to be expanded up to higher powers\bfthan outer
oo prPtp transformations. For instance, the first unitary transformation
which would show a closer resemblance to the actual matrixJ; containsn+1 components, whereas the last transforma-
operations to be performed by any DKH program. Howevertion [i =int(n/2)] contains only three components, since it
this would lead to a fpFW Hamiltonian with five components has to be expanded up Wﬁu(n/z)- We note in passing that
instead of three, which would in turn dramatically increasethe last component dfV; can always be neglected if it is an
the computational complexity in subsequent steps. Henceydd term of exactlynth order.
the huge computational complexity, which is due to the large  Before the transformatiot; may be applied to the in-
number of components comprised by these high-level extermediate Hamiltoniai;, we have to store the high-level
pressions is postponed to a later step of the algorithm. Thiorm of the odd operatoWw; in order to reduce the final
advantage of this procedure is that symbolic manipulationgiamiltonian to its low-level representation in step 3, cf. Sec.
on the resulting high-level Hamiltonians are much less comtVv D. According to Eq.(10) W, contains all odd terms df;
puter time demanding. which are ofith order, furnished with3 and an energy de-

In Table Il a summary of all high-level expressions em-nominator. In order to make handling of the resulting expres-
ployed by the algorithm is presented. The numerical evaluasions feasible, these energy denominators are symbolized by
tion in terms of matrix multiplications requires, of course, surrounding brackets, i.e., the firdl-operatorW, is stored
low-level expressions which are entirely reduced to the mosas
fundamental quantities.

In order to understand the symbolic operations per—WlH(l’_ 1,+1.050.])£(1,-1,+1.d0B[O01]), (20
formed by this algorithm it is essential to realize that alland contains only one high-level component, whei&ass
operators containing the momentum operator—#keand  represented by

(1,-1,+1.00,)—
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(2,-1,+1.08[W;&]) TABLE Ill. Number of high-level components of each even oper&jofor
W, — ' ' =1 different choices of the parametrization of the unitary transformatidns
(2,—1,—1.08[E:W,]) Hpkizo cOmprises all terms up to 20th order. A zero threshold of'tGias

been employed for all calculations. Note that a less tight but still reliable
( (2,—1,+ 1.dOB[W01E01])) zero threshold would reduce the number of components contributing to each
A .

21 . ils.
(2,_ 1— 1.dOB[ EOlWOl]) ( ) term. See text for further details

. . SQ McW opt exp CA
The number of high-level components of high®roperators v v v v v

grows significantly and depends slightly on the chosen pa- &, 1 1 1 1 1

rametrization of the unitary transformations. A detailed dis- & 1 1 1 1 1

cussion of this scaling behavior is postponed to Sec. V. & 2 2 2 2 2

& 3 3 3 3 3

) ) ) & 8 8 8 8 8

2. Execution of the unitary transformation U & 12 10 14 14 14
As soon adJ; andU] are set up, they are applied to the 24 26 28 30 30
intermediate Hamiltoniatd;, which yields the new Hamil- & 38 39 ot ot o
_ i y & 76 82 84 88 88
tonian & 107 107 137 137 137
B t &0 186 212 236 246 246
Hi+1—UiHiUi—Hi+1(50,(€1,01,W1,...,Wi). (22) &n 271 309 363 371 371

At this stage the high-level Hamiltoniat; , ; contains only 12 464 546 592 626 626
few ingredients, namely the three foFW components and 53 667 769 907 939 939
a few ing * 1y p P g 14 1058 1286 1430 1506 1506
the firsti W-operators. Since each of the three “vectors” to Eis 1492 1843 2111 2199 2199
be multiplied bears terms up tah order, most terms arising Es 2308 2928 3230 3410 3410
out of these two multiplications feature an order higher than €17 3216 4100 4724 4932 4932
n and are thus immediately disregarded. Finally, all resulting £ 4770 6298 7024 7416 7418
6616 8878 10062 10554 10558

; ; ; 19

terms .ofI—IIiH are sorted in ascending ordgr in the exter_nal P 9666 13210 14 670 15 490 15 502
potential in order to reduce the computational demandings y,, ., 30986 40 658 45 672 48018 48 036
for the next iteration witHJ;, ;, since the order of products
can thus easily by determined in advance.

3. Exploitation of commutator symmetry are negllected. A; a consequence, cancgllatlon of identical
terms with opposite sign is not accomplished exactly but
only up to a tiny residual component, e.g., up to 40 For
all calculations presented in this study we have employed the
(W, &l=—00, (23 Very rigid zero threshold of 10", which must not be con-
o ] . ~ fused with the truncation thresholdintroduced in Sec. IlI.
which is nothing else but the fundamental equation definingy, general, these two thresholds have nothing in common,
Wi, cf. Eqs.(10) and (7). Note that we have s&o=a;1  and they have to be fixed independently of each other. Our
=1 here, which can always be assumed without 0SS Oferg threshold of 10* might be relaxed significantly in or-
generality’ Due to this relation all occurrences & within  ger to allow efficient prescreening of terms to reduce the
the HamiltonianH;, ; are eliminatedexcept of the zeroth-  compuytational effort, which is discussed in Sec. V, where the

order term&y, of course, which is not affected by the whole compytational scaling behavior of the DKH Hamiltonians is
symbolic procedure at all Hence, the Hamiltoniansl;, ;

Further simplification of the resulting Hamiltoniddh . ;
is achieved by exploitation of the commutator relation

- analyzed.
can be characterized by After Secs. IVB1-IVB4 have been executed for all
Hisi=Hi11(&,00, Wy, ... W,). (24) unitary transformations); , the high-level expressions of all
even termsg, contributing to the final Hamiltonia pyyn
4. Elimination of all noncontributing terms given by Eq.(3) are available, i.e., the analytic expression

for the DKHn Hamiltonian has been derived. Depending on

o o the zero threshold and the parametrizatiotdof the number

E.KH F][arﬂllt()l?llan are re(rjnove(;jdfromrrg;(eiﬂ?mntomﬁm1d.d of components o, varies. This scaling of the number of
irst of all, all lowest-order odd terms; , €., the 0 terms contributing to each ord€j, is presented in Table IlI

terms of 0”?'?" are remqved, since they perfectly cancel duefor five different parametrizations up to order 20 and is dis-
to the conditional equation faV; , cf. Eq. (7). Furthermore, cussed in Sec. V.

all odd terms with orders higher or equal to-i are re-
moved, since they cannot in principle contribute to even . .

terms with order Ig/wer or equalpm) in IZubsequent transfor- C. Step 2: High-level substitution procedure

mation steps. If the last transformatidsh, has been per- After the high-level form of the DKH Hamiltonian has
formed, i.e.,i=int(n/2), all odd terms occurring in the final been set up, one could immediately start to reduce it directly
Hamiltonian can, of course, be neglected. All terms, whichto its low-level form. Such a procedure would, however, be
occur more than once in the Hamiltonian are subsequentlgxtremely unfavorable, since a large number of operator
summarized, and all terms with coefficieruseff(a; ) be-  products does occur many times and should not be recom-
low a certain zero threshol@djusted to machine precisiopn puted again and again if an efficient implementation is

Finally, all terms which will not affect the desired final
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sought for. For instance, even for the DKH10 Hamiltonianings by their previous introduction. The low-level reduction
the product\Ni does occur 538 times, and should thus onlyof the S; andT; operators has thus to be performed after the
be evaluated once. reduction of the Hamiltonian, and high&r operators might

Consequently, products of the foli;W; andW;&,1W;, still depend on lowerS;-operators [<i) and on all
which are represented by 6- and 9-character expressions -operators in order to achieve the greatest computational
the code, respectively, are substituted by suit&hlepera- savings possible.

tors, which are represented I8xxx patterns according to After this brute-force reduction to low-level form the
Table II. Up to 14th order a maximum number of 8  1-character low-level symbolic expressions have to be suit-
expressions is sufficient. ably reordered. First, everg-matrix B will be moved to the

Substitution by thesé&; operators is executed for both very left of each term, taking into account that it anticom-
the Hamiltonian and th&V-operators in order to achieve the mutes withP. Afterwards, the DKH resolution of the iden-
largest simplification possible. Due to the odd structure ofity,
the W-operators, they do, however, always contain an odd
number of odd operators; i.e., after tBg substitution pro-
cess for theW-operators, there will always be at least one  Pp5z Pp—PQP=1, (28)
odd operator left to be processed later. For example, the first P

entry of W5 will be substituted according to . . .
y 3 g with QA 1/P3 is introduced in order to guarantee that the

(3,—1,+0.33B[W01W01001]) resulting expressions are strictly functionspsfor pVp in-
stead of the linear momentum operajpalone. It is one of
—(3,71,+0.33B[S003001]). (25 the most essential features of the Dirac Hamiltonian and its
These resulting odd operatdiike hereO; 2 O01) will sub-  block-diagonal representation that this is always possible for
sequently give rise to new even structufes R,SR, coded  even operators, as it has been discussed in gdirlally, the
asTxxx, which do thus also have to be stored for later stepspositions of the bracketg’‘and ‘]’ representing energy de-
As a consequence, after this high-level substitution processominators are reordered, such that the resulting symbolic
the DKH Hamiltonian can be characterized by expressions have a direct matrix counterpart in step 4. These
_ final steps of reordering terms and exploiting the DKH reso-
Hokrn=Hokrn(E1,S ,Wa, - .. Winnsz)), 26 lution of the identity have to be performed separately for the
where the number of contributing-operators does now de- Hamiltonian and for theS, and T; expressions.
pend on the number of-operators introduced: the more The final step during this reduction to low-level form in
Si-operators have been introduced, the lé®perators are  step 3 is the introduction of suitable auxiliary matridesx
still present inHpky,. The substitution process of step 2 which represent products of 1-character low-level expres-
completes the high-level manipulations of our symbolic al-sions. Since there will be at most 36 differdmxx expres-

gorithm. sions occurring in the final DKH Hamiltoniairrespective
of the chosen ordgrthis final substitution process will dra-
D. Step 3: Reduction to low-level form matically reduce the number of matrix multiplications to be

) ) . performed in the next step, cf. Sec. V.
Now all high-level expressions for the Hamiltonian

Hpknn, @and theS; and T; operators have to be reduced to a

computable low-level form. First, all high-levé;-operators

are recursively replaced by their low-level constituentsE- Step 4: Transcription of the symbolic expressions
which have been stored in step {see Sec. IVB L This N0 a matrix code

will frequently introduce the od_d operatc@l, which has _ As soon as the DKH HamiltoniaH pyy,, and the auxil-
subsequently to be resolved by its final low-level expressionary operatorss, andT; are completely reduced to their low-
(1,—1,4+1.dOBPV) level form, they might be evaluated by sequences of matrix
01— (1,—1,—1.dOBVP) |- (27 multiplications. Since the Hamiltonian depends on bSth

andT; expressions an&; depends on th&@; operators, one

Here B represents the Dirgg-matrix andP symbolizes the has to evaluate th&; patterns first. Subsequently, ti&
operatork,= a-P,,. Note that for a scalar-relativistic imple- expressions might be processed and finally the Hamiltonian
mentation of the DKH procedure, no 1-character expressiogan be evaluated order by order.
for Dirac a-matrices has to be introduced, since all  The basic principle of this transcription into matrix mul-
a-matrices cancel due to Dirac’s relation for spin matricestiplications is exactly the same as for conventional low-order
(cf. part ). Furthermore, the external potenti®l and its  implementations of the DKH procediirand is thus not re-
damped varian¥ do always appear in combination with two printed in this study. Detail&diagonalization of the nonrela-
diagonal A,-factors. It is thus sufficient for the low-level tivistic kinetic energy, transformation tp?-space, etg.
stage of our algorithm to represent the proddigV/ A, by the  might be found in Ref. 8.
1-character symboV. After the evaluation of the DKH Hamiltonian up to the

Note that during the reduction of the Hamiltonian to desired order, the DKH modified one-electron integrals
low-level form theS;-operators must, of course, not be re- might directly be passed over to the SCF or correlation rou-
solved; otherwise we would not gain any computational savtines.
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V. ANALYSIS OF THE SCALING BEHAVIOR TABLE IV. Number of matrix multiplications necessary for the evaluation

OF THE ARBITRARY-ORDER DKH ALGORITHM of the DKHn HamiltoniansHpyy, up to DKH14 for two different param-
etrizations(SQ and exp of the unitary transformations. The computational

. . ._effort for the DKH schemes without the exploitation of auxiliary operators
In the last section the basic layout of a fully automatic bryte-force implementationis compared to our efficient implementation

symbolic algorithm for the construction and evaluation of thetaking advantage of th&xxx, Txxx, and Uxx auxiliary operators. A zero

DKH Hamiltonians up to any predefined order has been prethreshold of 10* has been employed for all calculations. Note that the

. . . multiplication with diagonal matrices lik® is counted as an ordinary ma-
sented. Being very favorable with respect to CompUta‘tlon"#rix multiplication here though the implementation takes full advantage of

demandings for low orders, the DKH scheme becomes morge diagonal structure of these matrices.
elaborate for higher orders. In this section the scaling behav

ior of the DKH HamiltoniangH pyy, will thus be analyzed in use uee
detail. brute-force  with auxiliary ~ brute-force  with auxiliary
Depending on the chosen parametrization of the unitaryn operators operators
transformationdJ; , the number of high-level terms contrib- 12 12 12 12
uting to the Hamiltonian and thus the number of matrix mul- 3 44 30 44 30
tiplications necessary for its evaluation varies. Our analysis4 432 88 432 88
will be focused on parametrizations which can be given in 2 1940 191 2116 193
20 440 1162 22296 1174

clgsed form, i.e., tf;éa traditional square—roqt par'\</|':1cr\1/1vetr|zatlon7 100716 2860 112 124 3042
USe={1+W?+W,?° the McWeeny choice UMW=(1 8 911 648 17510 1021136 19523
+W)-(1-W?) 221 the exponential parametrizatidd®® o 4861764 40476 5546 132 46 050
=expW), and the Cayley-type expressiah*=(2+W)/ 10 243948 276924
(2—W). Furthermore, also the optimal unitary parametriza--: 564064 635297
tion U°P' from Ref. 8 is presented which minimizes the de- 3295045 3717944
on el p ( _ 13 7443367 8457531
viation from unitarity for truncated series expansions of Eq.14 42 864 903 48970529
(9). We note in passing that this choice for the parametriza=
tion of the unitary transformations is the best possible from a

fundamental, i.e., theoretical point of view. It has been estab-

lished without reference to any special atomic or moleculatnhosen zero threshold of 18 is very tight, and it might be
system, but only due to the mathematical properties of trunejaxed without any loss of accuracy. Since higher-order
cated series expansions of unitary transformatfonsioes,  terms contribute orders of magnitude less to the total energy
however, not guarantee that numerical results obtained witthan first- or second-order terms, this zero threshold can be
this parametrization are closer to the exact analytical resultshosen dynamically depending on the order of the term
for each order and/or for any particular system. which is processed at a given stage of the algorithm. The

Due to vanishing odd coefficients; .1 (k=1) the  higher the order in the external potential of a term is, the
square-root parametrization originally proposed by Douglasarger(i.e., weakerthe zero threshold might be chosen with-
and Krolf? features the smallest number of terms contribut-out loss of accuracy. This will allow efficient prescreening of
ing to W;. The symmetry properties of the expansion coef-terms and will reduce the computational requirements for
ficients a, for the McWeeny parametrizatiot)V™" (az  very high orders significantly. However, such a prescreening
=ap, 1 for k=1) and for the optimum parametrizatitt™  has not been applied here, and a discussion of computational
(axk—1=ay for k=3) are the reason for the slightly more savings obtained by this dynamical prescreening scheme will
favorable scaling of these two parametrizations as comparegke presented elsewhete.
to U®® and U“*, whose coefficients do not exhibit any Finally we mention that the number of high-level terms
symmetry? All other parametrizations feature the same scalcontributing to&, presented in Table Iil does not depend on
ing of the number of terms al; like the exponential param- the number of auxiliary operatorSxxx, Txxx, and Uxx)
etrization. introduced during the symbolic procedure. The introduction

This increase of the number of high-level terms contrib-of these auxiliary quantities will, however, strongly influence
uting to higher-ordeW-operators is reflected by the increas- the number of matrix multiplications needed for the final
ing number of high-level terms comprised by the higher-evaluation of the DKH Hamiltonians, as it is shown by Table
order even terms, of the DKH Hamiltonian. In Table Ill the |V, where this total number of matrix multiplications re-
number of these terms contributing to each otgleis given  quired for the evaluation of the DKiHHamiltonians without
for the five different unitary parametrizations mentionedthe introduction of auxiliary operators is compared to the
above. The square-root parametrization features significantlynore favorable approach employi8xxx, Txxx, and Uxx
less terms than all other parametrizations, and due to theperators. The analysis of the number of matrix multiplica-
coefficient symmetries) MV and U°P* are computationally tions in Table IV is presented for two different parametriza-
less demanding thabl®® and UA. Note that due to their tions of the unitary transformation&JE° and U®®). Note,
factorial suppression the coefficierag of U®® tend more  however, that the multiplication with diagonal matrices like
rapidly to zero than folJ“?, and since we have chosen a Q is counted as an ordinary matrix multiplication here
zero threshold of 10 there are slightly less terms contrib- though the implementation takes full advantage of the diag-
uting to & 15 for U than for UCA, onal structure of these matrices

As already mentioned in step 1d, cf. Sec. IVB 4, the  Since the even operatéy is frequently used throughout

Downloaded 02 Apr 2013 to 129.132.118.73. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 Douglas—Kroll-Hess transformation =~ 10953

TABLE V. One-electron ground-state energies for the DKH scheme employing the exponential parametrization
for the unitary transformations in Hartree atomic units. For all calculations an even-tempered universal Gauss-
ian basis set with 75 exponents has been used. The speed of lightvi&5.035 989 5, and DEQ denotes the
analytical Dirac energies.

z 20 40 60 80 100 120

nr —200.000 000 00 —800.000 000 00 —1800.000 000 —3200.000 00 —5000.0000 —7200.000
DKH1 —201.341496 11 —823.894 226 33 —1934.202 797 —3686.447 46 —6472.3942 —12134.151
DKH2 —201.072539 60 —817.615 779 96 —1893.897 686 — 3523.324 90 —5906.1919 —9594.100
DKH3 —201.076 66181 —817.820 117 49 —1895.844 065 —3533.119 58 —5942.3695 —9712.934
DKH4  —201.076 509 74 —817.804 856 85 —1895.627 057 — 3531.708 57 —5936.4739 —9698.531
DKH5 —201.076 524 82 —817.808 104 08 —1895.702 943 —3532.462 50 —5941.5411 —9731.138
DKH6 —201.076523 20 —817.807 385 74 —1895.676 850 —3532.101 20 —5938.3144 —9703.671
DKH7 —201.076 523 36 —817.807 518 48 —1895.683 887 —3532.225 33 —5939.5876 —9714.236
DKH8 —201.076 523 34 —817.807 492 70 —1895.681 834 —3532.177 00 —5938.9700 —9708.236
DKH9 —201.076 523 34 —817.807 498 59 —1895.682 550 — 3532.200 16 —5939.3620 —9713.637
DKH10 —201.076523 34 —817.807 497 14 —1895.682 282 —3532.188 44 —5939.1072 —9709.207
DKH11 —201.076523 34 —817.807 497 47 —1895.682 374 —3532.193 69 —5939.2439 —9711.709
DKH12 —201.076 523 34 —817.807 497 40 —1895.682 342 —3532.191 26 —5939.1649 —9709.993
DKH13 —201.076523 34 —817.807 497 42 —1895.682 354 —3532.192 49 —5939.2167 —9711.483
DKH14 —201.076523 34 —817.807 497 40 —1895.682 350 —3532.191 84 —5939.1821 —9710.251
DEQ —201.076 523 36 —817.807 497 83 —1895.682 356 —3532.192 15 —5939.1954 —9710.784

the DKH parser procedure for the set up of higher-ordenf terms relying on flexible zero thresholds for each order is
terms, it is not decomposed into its most basic constituentsxploited, as it will be discussed elsewhéte.
The treatment of this term does thus correspond to exactly
one matrix multiplication each time it occurs in higher-ordery|, RESULTS
terms. As a consequence, the evaluation of the auxiliary op-
eratorS,;= W&, W,, for example, requires only 198 matrix
multiplications with our implementation instead of 4480 ma-  We have implemented the parser algorithm described in
trix multiplications which have been reported for an imple-the last sections as a general purpose code, which can easily
mentation of the sixth-order DKH6 Hamiltonidf. be interfaced with any nonrelativistic electronic structure
Furthermore, also diagonal matrices Iik% and 1Pr2) program. In order to investigate the convergence behavior of
resulting from the DKH resolution of the identitief. Sec. the DKH series, first test calculations have been performed
IVD) were treated as requiring one complete matrix multi-for one-electron hydrogenlike atoms with different nuclear
plication for the analysis presented in Table IV, though theirchargesZ, where the DKH results can be compared to the
actual evaluation is coded in a more efficient way. Up toanalytically known exact Dirac energies.
DKH4 the number of matrix multiplications is, of course, All calculations have been performed with an even-
independent of the chosen parametrization, but for highertempered universal Gaussian basis set comprising exponents
order schemes the square-root parametrization is slightlfrom 0.001 up to about 8 with an even-tempered ratio of
more favorable with respect to computational demandingd.65. This dense basis set contains thus 75 exponents. The
than the exponential parametrization. However, these differvalue for the speed of lighd=137.035989 5 was taken from
ences are of the order of magnitude of 10% of the totaRef. 23, and all calculations have been carried out with 64-
number of matrix multiplications required, and do thusbit accuracy. All DKH calculations have been performed
hardly play any role for a significant speedup of the algo-with DKH Hamiltonians relying on the exponential param-
rithm. etrization of the unitary matrices. The dependence of fifth-
Table IV clearly demonstrates, however, that the intro-and higher-order results on the chosen parametrization of the
duction of auxiliary operator§Sxxx, Txxx, andUxx) is an  unitary transformation is very small and will be discussed in
essential and mandatory pre-requisite for the efficient evaludetail elsewheré?
ation of the DKH Hamiltonians with higher order. Already In Table V the ground state energies for six different
Hpkhio is not feasible at all if one relies on a brute-force nuclear chargeZ =20 up toZ=120 are presented for the
implementation of the DKH scheme without taking advan-nonrelativistic case as well as for the DKH Hamiltonians up
tage of the auxiliary operators. And even for the sixth-orderto 14th order. For the hydrogenlike ion with=20 the DKH
HamiltonianH pkye the brute-force implementation requires series is already completely converged for DKH8, i.e., al-
~20 times as much effort than our efficient realization of theready the DKH8 Hamiltonian represents the exactly decou-
DKH parser algorithm. This ratio is dramatically increasedpled infinite-order Hamiltoniam ,4 with sufficient accuracy.
up to about 50 for DKH9. With our approach even the veryThe tiny deviation of X 10 8 Hartree of our decoupled
accurate DKH14 scheme becomes feasible, though its evalldKH results from the analytical Dirac energy confirms that
ation requires approximately 489 and 49 () million our large basis set is indeed capable of resolving these very
matrix multiplications, respectively. These numbers will, small oscillations. The results fat=20 show that DKH5
however, be significantly reduced if dynamical prescreeningand DKH8 are sulfficient if one aims at an accuracy for total

. One-electron atoms
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energies of 10° and 10 8, respectively. The truncation cri- TABLE VI. Hartree-Fock all-electron ground statéS] energiesE of the
terion based on the truncation estimate operw;anesented gold atom. A universal Gaussian basis set of the foris23@20d15f (Ref.

in's Il is th indeed th fi f 24) and the speed of light=137.035 989 5 have been used for all calcula-
In Sec. IS thus Indeed a rather conservatve measure q{ons. The four-component Dirac—Fo¢RFC) results have been obtained

the prediction of the optimal order,. with MoLFDIR (Ref. 26.

For the heavier nuclei witlz=40 andZ=60 DKH14
does still yield an overall accuracy of 10 and 10°°, re- E
spectively. This has to be compared to lower-order approxi- nr —17 865.394 387
mations like DKH4 and DKH6, which are only capable of  DKH1 —19339.308 840
guaranteeing one decimal place B+ 60 (NP°'). If one is BE:; ‘ig gii;;é ;ég
interested in highly accurate tota_l energies, i.e., in completely DKH4 10011347 295
decoupled two-component Hamiltonians one has thus neces- pkns ~19012.812 403
sarily to go beyond those low-order approximations. Further- DKH6 —19012.147 430
more it is interesting to note that DKH4, which is the last  DKH7 —19012.364 326
order being independent of the chosen parametrization, is PKH8 —19012.284 261
almost as accurate as the next variational Douglas—Kroll— DKHS ~19012.318821

ratie DKH10 —19012.303 145

Hess scheme DKH6 foZ=60. Major improvement on the DKH11 ~19012.309 484
accuracy is only accomplished with DKH10, which does DkH12 —19012.306 813
give milli- and sub-milli-Hartree accuracy. BE:E —ig 81;28; ig?

Also for even heavier nuclei witd =80 up toZ=120 DEC 19039 585 625

the necessity of higher orders is evident by inspection of the
results of Table V. FoZ=80 (Hg'®") DKH14 is at least
capable of guaranteeing milli-Hartree accuracy, whereas, for
example, DKH6 does again only yield one decimal place as The one-electron investigations presented in this subsec-
compared to the exact Dirac eigenvalue. But for super-heavijon have proven that exact decoupling is in practice possible
nuclei even DKH14 appears not to be sufficient to yield ex-With DKH Hamiltonians. The necessary orde, strongly
actly decoupled Hamiltonians. According to our truncationdepends on the system under investigation, and for moder-
analysis based obi, one would have to go to 27th order in ately charged systemsup to Z=60) already DKH14
the DKH series in order to guarantee decoupled results up tBchieves this goal.
eight digits. Although our automatic decoupling algorithm is
in principle able to achieve decoupling up to this order, weB- Many-electron systems
refrain from carrying out these very extensive calculations. Besides the one-electron calculations presented in the
It should be emphasized that total energies are only ofast subsection we have also performed all-electron calcula-
little importance in quantum chemistry. Furthermore, a certions on the neutral gold atom in i&S ground state. Its
tain number of accurate digits is much harder to obtain fofelectronic configuration is characterized p¥e]5d'%s!.
systems with large total energy than for systems with smalleExactly the same universal Gaussian basis set provided by
total energies. For a more suitable and fair comparison of thglalli et al?* has been employed as in an earlier study on the
necessary order for exact decoupling one may calculatgeneralized DKH transformation up to DKHS his basis set
scaled ground state energis.qeq — E/Z? for the systems  contains 38, 29, 20d, and 15 exponents with an even-
discussed above in Table V. Then, up Zo=60 already tempered ratio of 2.05. The smallest exponent is 0.02 and its
DKH12 guarantees exact results, and even Zer80 the largests-exponent is given by-10°.
deviation of the scaled enerdys.,eqfrom the exact Dirac We have performed nonrelativistior) as well as rela-
eigenvalue is smaller than 16 for DKH14. However, tivistic DKH calculations up to 14th order, and the results are
lower-order approximations like DKH8 for example seemgiven in Table VI. All these calculations have been per-
not to be suited if one aims at highly accurétémos) de-  formed with an atomic Hartree—Fock program based on the
coupled results. work by Roothaan and Bag@3which has been modified in
For Z=120 there is one further subtlety, which has al-order to include our arbitrary-order DKH package. The four-
ready been observed in earlier stud®¥ and which can component Dirac—Fock—CouloniBFC) result has been ob-
now be explained in view of higher orders: For systems withtained withMoLFDIR.?®
Z larger than 104 the third-order result DKH3 yields energies  Similar to the one-electron calculations presented above,
which are atypically too large and do thus approximate thealso the total DKH energies of the gold atom feature the
exact Dirac eigenvalue better than the formally superiorsame characteristic alternating convergence behavior: Odd
schemes DKH5, DKH7, and DKH9. However, even for theseDKH orders do always lower the energy, while even orders
highly charged nuclei the DKH series does not feature anyield a positive contribution to the energy and do thus in-
convergence problems, such that this atypical behavior ofrease it as compared to the value corresponding to the pre-
DKH3 seems to be due to some favorable internal error carvious DKH order. The standard second-order DKH approxi-
cellation of the DKH operators. The alternating pattern of themation, DKH2, is not able to yield reliable total energies for
DKH series, i.e., even orders do always increase the energhe gold atom, but the DKH series exhibits a quite rapid
as compared to the previous odd scheme is, however, nabnvergence pattern. Already DKH14 gives a total energy
affected. with better than milli-Hartree accuracy. Since the deficiency
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FIG. 1. Schematic representation of the ground s&8 énergy of the gold atom for different orders of the DKH scheme. Left: BKarergies fon=2 up
to n=14. Right: DKH energies fom=6, in order to resolve the convergence behavior of the DKH series.

of the basis set+0.005 Hartree for the nonrelativistic cal- nery, we have obtained results up to 14th order for one- and

culation is of the same order of magnituder even largey,

many-electron systems for the first time, and have demon-

transition to higher DKH orders and further decoupling of strated that exact decoupling can be achieved in practice
the Hamiltonian would not make any sense. Consequently, iwithin the DKH schemdas predicted from our rigorous for-
combination with this basis set DKH14 represents the finamal analysis in part)l In order to shortly recall the achieve-

relativistic scheme for the gold atom.

As already discussed in extenso in Ref. 8 we should
emphasize that the four-component DFC result, which is
given in the last line of Table VI, must not be considered as
the DKH limit, since we have applied the usual scalar-
relativistic DKH variant for the one-electron terms only. The
gap between the DFC result and this scalar-relativistic DKH
limit is ~27 Hartree and is due to the neglect of the DKH
transformation of the two-electron terms and the spin-
dependent ternts.

The convergence behavior of the DKH series is illus-
trated graphically by Fig. 1. We have chosen two different
scales for thegvertica) energy axis in order to resolve the
tiny fluctuations of higher-order DKH corrections as com-
pared to the comparatively large oscillations of the energy up
to DKH8. The shaded rectangular blo@@KH6—-14) on the
left hand side of Fig. 1 is magnified on the right side of Fig.
1, where the energy axis does only cover a region of 0.2
Hartree(as compared to 20 Hartree on the left hand side of
the diagram Otherwise the higher-order corrections could
not be resolved at all, reflecting the fast convergence of the
DKH series.

Finally, we emphasize that our flexible implementation
of the DKH parser algorithm discussed in this study can
immediately be transferred to molecular electronic structure
calculations as its interface requires orlly V, and pVp
integral matrices.

VII. CONCLUSION

In this second part of our series of papers on exact de-
coupling of the Dirac Hamiltonian we have successfully pur-
sued to implement a general evaluation scheme for arbitrary-
order Douglas—Kroll-Hess calculations. With this machi-

ments in this work, we may summarize the following points:

An infinite-order DKH scheme requires a step-by-step
symbolicevaluation of DKH Hamiltoniangas shown in
part l). This automatic symbolic evaluation has been
described and implemented into a general purpose pro-
gram package, which can be easily interfaced with any
nonrelativistic electronic structure program.

A corner stone of the infinite-order DKH method is the
a priori determination of the highest order necessary for
decoupling up to machine precision. Here, we have uti-
lized the formal analysis from part | to obtain a trunca-
tion error criterion, which allows us to determine the
necessary decoupling order foida factoinfinite-order
DKH calculation prior to its evaluation.

The truncation criterion for the priori determination

of the DKH order was chosen to be very tight. The

actual calculations show that it may be softened by
some orders of magnitude to account for other method-
inherent approximations like the size of the basis set.

Special care has been taken for the reduction of the
number of matrix multiplications, which increases dra-
matically from order to order. The efficiency of our al-
gorithm becomes evident at, for instance, tenth order,
where the evaluation of the DKH10 Hamiltonian took
only a couple of minutes on a modern personal com-
puter. Although the standard second-order DKH2
method will be sufficient in most cases of chemical in-
terest (see Ref. 2¥, DKH Hamiltonians with orders
even as high as DKH10 or DKH12 do not require much
more additional effort.

We obtained energy eigenvalues from exactly decou-
pled DKH Hamiltonians for highly charged one-
electron ions in excellent agreement with the analyti-
cally known Dirac energies.
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