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Exact decoupling of the Dirac Hamiltonian. II. The generalized
Douglas–Kroll–Hess transformation up to arbitrary order a…

Markus Reiherb) and Alexander Wolfb)

Lehrstuhl für Theoretische Chemie, Universita¨t Bonn, Wegelerstraße 12, D-53115 Bonn, Germany

~Received 30 August 2004; accepted 27 September 2004!

In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation
scheme, we have discussed in part I of this series that either a purely numerical iterative technique
~the Barysz–Sadlej–Snijders method! or a stepwise analytic approach~the Douglas–Kroll–Hess
method! are possible. For the evaluation of Douglas–Kroll–Hess Hamiltonians up to a pre-defined
order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this
analytic derivation of Douglas–Kroll–Hess Hamiltonians up to any arbitrary order in the external
potential is presented. We discuss how an estimate for the necessary order for exact decoupling
~within machine precision! for a given system can be determined from the convergence behavior of
the Douglas–Kroll–Hess expansion prior to a quantum chemical calculation. Once this maximum
order has been accomplished, the spectrum of the positive-energy part of the decoupled
Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part
of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic
operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is
presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole
periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth
order DKH Hamiltonians are presented. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1818681#

I. INTRODUCTION

For a consistent~quasi-!relativistic electrons-only theory
based on the first-quantized Dirac Hamiltonian, it is desirable
to eliminate the unphysical negative-energy states at energies
below 22 mc2 from the theoretical description. Conse-
quently, one arrives at a computationally less demanding rep-
resentation for the electronic bound states which does not
make any reference to the so-called ‘‘small component’’
~cf. part I1 for a detailed discussion!. Such a two-component
relativistic scheme results after complete decoupling of the
Dirac HamiltonianHD via a suitably chosen unitary transfor-
mationU

Hbd5UHDU†5S h1 0

0 h2
D . ~1!

The block-diagonal Dirac HamiltonianHbd possesses ex-
actly the same spectrum as the original HamiltonianHD .
However, this exact one-step decoupling for Coulombic sys-
tems is only possible purely numerically in the framework of
the Barysz–Sadlej–Snijders~BSS! method,2–4 which does
not yield analytic closed-form expressions for the operators.
From this BSS approach the infinite-order two-component
~IOTC! method of Barysz and collaborators evolved~see,
e.g., the recent paper by Ke¸dziera and Barysz5!. Note, how-
ever, that we have used both acronyms~BSS and IOTC!
synonymously when referring to this method.

In part I1 of this series, we have shown that the
Douglas–Kroll–Hess~DKH! method6–8 is theonly valid ex-
pansion scheme for the decoupled Dirac operatorHbd based
on unitary transformations

Hbd5 (
k50

`

Ek , ~2!

that yields analytic closed-form operators. These operators
are given through regular and well-defined expressions, and
each termEk can be classified according to its order in the
external potential, which is encoded in the subscript of each
term. Actually, the true expansion parameter of the DKH
protocol is the scaled or damped external potentialṼ, since
each term contributing toEk contains exactlyk21 factors of
Ṽ ~see below!. Moreover, we have argued1 that it is in prin-
ciple not possible to carry outstepwisedecoupling within
any two-~or one-!component scheme purely numerically in a
recursive manner. Instead, if explicit reference to the small
component shall be avoided~and this is always the case in a
two- or one-component theory!, the DKH operators of as-
cending order inṼ canonly be derived via symbolic opera-
tions. Once all these decoupled~even! operatorsEk are de-
rived, they can subsequently be evaluated by transition to a
p2-basis, i.e., the basis-set representation which diagonalizes
the nonrelativistic kinetic energy.6

The DKHn Hamiltonians

HDKHn5 (
k50

n

Ek , ~3!

a!In memoriam Professor Dr. Bernd Artur Hess.
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approximate the exact block-diagonal Dirac Hamiltonian
Hbd

Hbd5 (
k50

n

Ek1 (
k5n11

`

Ek5HDKHn1O~Ṽn!, ~4!

up to (n21)-th order in Ṽ. The reason for this peculiarity
lies, of course, in the independence of the initial fpFW trans-
formationU0 of the damped potentialṼ and the fact that the
fpFW HamiltonianH1 does not contain an odd term of ze-
roth order. Application of the firstm11 unitary transforma-
tions Um¯U1U0 to the Dirac HamiltonianHD yields the
intermediate Hamiltonian

Hm115F )
k5m

0

UkGHDF )
k50

m

Uk
†G

5 (
k50

2m11

Ek1 (
k52m12

`

E k
(m11)1 (

k5m11

`

O k
(m11) , ~5!

that contains exactly (2m11) even terms which will not be
altered by further unitary transformations@(2m11)-rule#.
The even terms of higher order will be affected by subse-
quent unitary DKH transformations, which is indicated by a
superscript in parenthesis attached to each term. Here and in
the following we are employing exactly the same notation
~symbols and abbreviations! as in part I of this series,1 which
might be consulted in order to avoid any ambiguities.

In recent years, the standard Douglas–Kroll–Hess pro-
cedure of second order,6,7 DKH2, has been extended to
third,9,10 DKH3, fourth and fifth,8,11 DKH4 and DKH5, re-
spectively, and very recently to sixth order,12,13 DKH6. Fur-
thermore, also highly sophisticated implementations of the
DKH method were published taking explicitly care of spin-
dependent terms14–18 and the transformation of the two-
electron interaction.15,19

In this work, we present the first realization of an arbi-
trary and thus infinite-order DKH scheme, i.e., an analytic
decoupling procedure for the Dirac Hamiltonian up to any
given order inṼ. We start with the introduction of the basic
notation in Sec. II, where it is also explained how exact
decoupling can be achieved within the generalized DKH
framework. The following Sec. III explicates how the maxi-
mum order necessary for this purpose can be deduced. The
algorithmic details are described in Sec. IV and a discussion
of the scaling behavior of this algorithm with respect to com-
putational requirements may be found in Sec. V. Numerical
results for one- and many-electron atoms are given in Sec.
VI, and Sec. VII concludes this study.

II. INFINITE-ORDER DKH

In any computational scheme, ‘‘exact’’ decoupling is
reached if the truncation errorO(Ṽn) defined by Eq.~4! is of
the order of the arithmetic precision of the computer, or at
least negligible with respect to the physical or chemical is-
sues under investigation. Given a molecular system and a
desired numerical accuracyt, we do consequently need an
evaluation protocol for thea priori determination of the cut-
off order nopt of the DKH expansion, beyond which no fur-

ther numerical improvement~relevant for t! will be
achieved. Higher-order correctionsEk.nopt

will thus only
yield insignificant fluctuations of total and relative energies
and properties. For the numerical set up of the exact, block-
diagonal Dirac HamiltonianHbd it is thus sufficient to re-
strict to the finite-order DKHnopt Hamiltonian, since the
truncation error is guaranteed to be numerically negligible.
In other words, numerical convergence of the DKH energies
towards the exact Dirac energy is already achieved by re-
striction to the DKHnopt scheme, which thus represents the
optimal DKH approximation optimizing the balance between
accuracy and computational cost.

It is exactly this possibility of determining the required
maximum ordernopt prior to a quantum chemical calcula-
tion, which makes the DKH protocol a feasible infinite-order
decoupling method. Otherwise, if this truncation criterion,
which will be deduced in detail in Sec. III, were not avail-
able, one would have to test each order in a complete elec-
tronic structure calculation to check convergence of the en-
ergy expectation values. Note that infinite-order decoupling
in the purely numerical Barysz–Sadlej–Snijders~IOTC!
method4 actually relies on exactly the same philosophy: it-
erative evaluation of the one-step unitary transformation em-
ployed in the IOTC protocol is stopped, as soon as a certain
numerical precision has been reached.

Let us assume the intermediate HamiltonianHm11 after
the firstm11 unitary transformation steps defined by Eq.~5!
were given. Application of the next unitary transformation
Um11

~6!

~7!

~8!

yields all terms contributing to the DKH Hamiltonians up to
order 2m13, where for the sake of simplicity the irrelevant
odd terms with orders betweenm12 and 2m13 in the ex-
ternal potentialV have been omitted in Eq.~8!. The unitary
transformation Um11—as all unitary matrices employed
before—is constructed as the most general power series an-
satz in terms of the anti-Hermitian odd operatorWm11

Um115am11,011(
j 51

`

am11,jWm11
j . ~9!

Equation ~9! defines thegeneralizedDouglas–Kroll–Hess
method,8,11 because the most general analytic expressions for
the DKH Hamiltonians are obtained, covering all different
unitary parametrizations used in the literature. Note that the
term Wm11

j is of exactly@ j •(m11)#-th order inṼ. There-
fore, for a consistent derivation of all relevant terms of the
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DKHnopt Hamiltonian, we have to take all terms contributing
to the unitary transformationsUi with orders i •k into ac-
count, with k50,1,. . . ,int(nopt/ i ) according to the (2n
11)-rule. Consequently, the inner unitary transformations,
which are parametrized byWi-operators of lower order in the
external potential have to be expanded up to higher powers
according to Eq.~9! than the outer unitary transformations.

Wm11 is determined uniquely by the requirement that it
has to account for the elimination of the odd termOm11

(m12) .
Being an integral operator of (m11)-th order, this is guar-
anteed if and only if the kernel ofWm11 is given by

Wm11~p0 ,p1 , . . . ,pm11!

5
am11,0

am11,1
b

Om11
(m11)~p0 ,p1 , . . . ,pm11!

Ep0
1Epm11

. ~10!

If the matrix representation of this kernel were known, one
could immediately employ it to evaluate all terms of the
DKH HamiltonianHDKH(2m13) . This procedure could be re-
peated until the resulting Hamiltonian is block-diagonal up
to any desired order inV ~determined by machine precision!.

It is, however, exactly this step which is not feasible
within any two-component implementation, since the matrix
representations of odd operators must not be calculated. As
mentioned above and discussed in detail in part I,1 their
evaluation would inevitably require the introduction of basis
sets for the small components of the molecular spinors,
which are approximately twice as large as the large compo-
nent basis sets and have to contain exponents for higher an-
gular momentum functions due to the requirements of kinetic
balance. This would not only blow up the computational
costs of the calculations considerably, but even destroy the
elegant framework of one- or two-component relativistic
methods, which could no longer be easily embedded into
every nonrelativistic computer code. As a matter of fact, ex-
actly the same integrals would appear as in fully relativistic
four-component codes, and no savings were obtained by the
block-diagonalization of the Hamiltonian. We thus have to
restrict to a symbolic closed-form evaluation of the even
termsEk employing a suitable DKH parser algorithm which
is presented in Sec. IV.

III. PRE-DETERMINATION OF THE MAXIMUM DKH
ORDER REQUIRED

The necessary ordernopt for exact decoupling—
depending on the system under investigation—can be deter-
mined prior to any quantum chemical calculation due to the
exact knowledge of the expansion parameter@cf., part I#:
Each term contributing to the even termEk of the DKH
Hamiltonian of Eq.~3! features exactlyk21 huge energy
denominators due to the damped external potential

Ṽi j 5
Vi j

Ei1Ej
, ~11!

with Epi
5Api

2c21m2c4 being the relativistic energy–
momentum relation. In order to keep the notation as simple
as possible, we will continue to denoteEk as being of
(k21)-th order in Ṽ, though obviously it cannot always be

decomposed intok21 separate factors ofṼ, but might also
contain terms with nested energy denominators likeW2 ~cf.
Ref. 1!. Due to the structure of the fpFW Hamiltonian

H15E01E11O1 ~12!

5bEp2mc21Ap~V1RpVRp!Ap1bAp@Rp ,V#Ap ,
~13!

with

Ap5AEp1mc2

2Ep
, ~14!

Rp5Rpa"p5
ca"p

Ep1mc2 , ~15!

each even termEk comprises at least a factor of
ApRpVRpAp•(ApṼAp)k21. Within a semiclassical analysis
this factor assumes its maximum value for vanishing mo-
mentump, and is thus always guaranteed to have a smaller
operator norm than the truncation estimate operator

Vk5~4m2c2!21
•ApVAp•~ApṼAp!k21. ~16!

The order of magnitude of the termEk can thus be estimated
by investigating the eigenvaluesa i

(k) of this truncation esti-
mate operatorVk , which will of course depend on the system
under investigation, i.e., the largest nuclear chargeZ of the
nuclei occurring in the molecule and the basis set chosen. As
soon as the absolute value of the largest eigenvalue ofVk is
below the chosen truncation thresholdt, uamax

(k) u,t, the
higher-order even termsEl with l .k will only affect the total
energy of the system under investigation beyond the desired
accuracy established byt.

In Table I the largest absolute value of the eigenvalues
a i

(k) of Vk for one-electron atoms with nuclear chargesZ
520, 40, 60, 80, and 100 is presented. For all truncation
analyses we have employed the same large even-tempered
Gaussian basis set as for the energy calculations in Sec. VI A
~see below!. According to our truncation criterion, DKH8,
DKH11, DKH14, DKH16, and DKH18, respectively, should
be sufficient for the five ions presented in Table I if an over-
all absolute accuracy for total energies oft51025 is sought
for. These optimal DKH ordersnopt have to be increased to
10, 14, 17, 20, and 23, respectively, if the tighter truncation
threshold oft51028 is chosen.

A comparison of thesea priori determined optimal or-
dersnopt to the actually calculated DKH energies for these
systems~cf. Table V! reveals that our truncation criterion is
very tight. The DKH energies appear to converge even faster
towards the desired accuracy limit given byt than it has
been estimated. For example, for a nuclear charge ofZ520
~Ca! already DKH5 and DKH8 yield total energies with 5
and 8 decimal figures which are not affected by higher-order
corrections, respectively. And forZ560 ~Nd! DKH13 is al-
ready capable of guaranteeing five correct decimals places.

Consequently, the truncation criterion based on the
analysis of the eigenvalues of the truncation estimate opera-
tor Vk has thus to be understood as an approximate, yet very
reliable estimate for the determination of the necessary DKH
order for exact decoupling of the Dirac Hamiltonian. Decou-
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pling up to the chosen thresholdt might in practice be ob-
tained even earlier, i.e., for lower-order DKH Hamiltonians.
But the DKHnopt Hamiltonians suggested by this truncation
analysis will not fail to yield the desired accuracy, which is
confirmed by the numerical results presented in Sec. VI.

The well-known alternating pattern of the DKH
energies8 can already be anticipated by inspection of the sign
sgn(a(k)) of the eigenvalues ofVk . Odd orders (k
51,3,5,. . . ) doalways feature negative contributions to the
DKH energy whereas even-order terms (k52,4,. . . ) do al-
ways increase the energy as compared to the previous order.
We note that all eigenvaluesa i

(k) of the truncation estimate
operatorVk feature the same sign, i.e., they are either all
positive (k even! or all negative (k odd!.

Finally, we emphasize that within any basis set approach
exact decoupling does, of course, only guarantee conver-
gence towards the basis set limit and not towards the exact
analytic Dirac limit. For any practical calculation the trunca-
tion thresholdt should thus consequently be chosen in ac-
cordance with the deficiency inherent in the basis set: The
larger and better the basis set, the smaller the thresholdt
might be sensibly chosen, since it would not make any sense
to decouple up to an accuracy oft51028, for example, if
the basis set employed is only capable of guaranteeing milli-
Hartree accuracy. For most quantum chemical calculations
employing standard basis sets of, e.g., triple zeta quality,
decoupling up tot51024 appears thus to be sufficient.

IV. GENERATION OF DKH OPERATORS
OF ARBITRARY ORDER

As discussed above, the evaluation of the DKH Hamil-
tonian up to any predefined order in the external potential
requires a new computational scheme, which cannot rely on
a purely numerical iterative method. Therefore, each order of
the decoupled DKH Hamiltonian has to be determined
purely algebraically, i.e., bysymbolicalevaluation of the cor-
responding unitary transformations. Due to the increasing
complexity of the higher-order terms, their determination,
however, is only possible if the algebraic operations are
evaluated automatically by a suitable parser routine yielding
analytic formulas for each orderEk . Subsequently, this
parser should be able to translate the resulting closed-form
operator expressions into corresponding matrix multiplica-
tions arising in any basis set expansion. The basic layout and
the efficient implementation of such a parser routine will be
described in this section.

A. Starting point for the symbolic procedure

The starting point for the symbolic operations to be per-
formed by the parser routine is the free-particle Foldy–
Wouthuysen HamiltonianH1

H15E01E11O1 , ~17!

TABLE I. Largest absolute valueuamax
(k) u of the eigenvaluesa i

k of the truncation estimate operatorVk for
different nuclear chargesZ. sgn(a(k)) denotes the sign of the eigenvalues ofVk . The even-tempered Gaussian
basis set described in Sec. VI A has been employed. The corresponding optimal DKH ordersnopt for exact
decoupling due to the truncation error analysis for two different truncation thresholdst are given in the last two
lines of the Table.

k sgn(a(k)) Z520 Z540 Z560 Z580 Z5100

1 2 2.394 38E15 4.648 39E16 1.992 27E17 2.805 78E17 2.995 38E17
2 1 3.198 40E13 2.135 68E15 1.399 14E16 2.654 61E16 1.685 06E16
3 2 1.170 40E12 1.452 68E14 1.446 25E15 3.690 92E15 2.059 76E15
4 1 4.933 07E10 1.111 58E13 1.673 29E14 5.743 07E14 3.865 63E14
5 2 2.177 87E21 8.877 97E11 2.014 56E13 9.297 84E13 8.041 19E13
6 1 9.861 77E23 7.243 94E10 2.472 19E12 1.534 21E13 1.731 11E13
7 2 4.543 06E24 5.992 85E21 3.069 01E11 2.560 95E12 3.803 28E12
8 1 2.120 23E25 5.012 26E22 3.841 27E10 4.310 17E11 8.470 33E11
9 2 9.999 59E27 4.235 01E23 4.839 24E21 7.301 96E10 1.904 77E11
10 1 4.758 48E28 3.617 33E24 6.130 54E22 1.244 06E10 4.314 10E10
11 2 2.282 51E29 3.129 28E25 7.805 47E23 2.130 40E21 9.824 20E21
12 1 2.749 76E26 9.984 39E24 3.665 69E22 2.246 66E21
13 2 2.462 37E27 1.282 80E24 6.336 18E23 5.155 06E22
14 1 2.251 64E28 1.655 10E25 1.100 04E23 1.186 06E22
15 2 2.101 13E29 2.144 14E26 1.917 97E24 2.734 92E23
16 1 2.788 57E27 3.358 05E25 6.318 25E24
17 2 3.640 47E28 5.903 50E26 1.461 98E24
18 1 4.770 08E29 1.042 03E26 3.387 60E25
19 2 1.846 59E27 7.859 19E26
20 1 3.285 22E28 1.825 35E26
21 2 5.867 38E29 4.243 83E27
22 1 9.876 02E28
23 2 2.300 35E28
24 1 5.362 64E29

nopt(t51025) 8 11 14 16 18
nopt(t51028) 10 14 17 20 23

10948 J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 M. Reiher and A. Wolf
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which is represented here in its ‘‘high-level’’ form. This op-
erator is formally stored as a vector with three components
according to

H1→S ~0,11,11.0,E0!

~1,11,11.0,E1!

~1,21,11.0,O1!
D . ~18!

Each entry of this high-level Hamiltonian vector in pseudo-
code notation is characterized by the structure

~order, symm, coeff, string!,

where the integerorder specifies the order in the external
potential V and symm describes the even (11) or odd
(21) structure of this term. The real variablecoeff is the
prefactor of the corresponding term and the character string
string labels the actual form of this term. We have chosen
the phrase ‘‘high-level’’ expression here in order to empha-
size that the specific form of each term contributing toH1 is
not resolved into computable expressions at this stage. In
general, high-level expressions do only contain the quantities
E0 , E1 , O1 , theW-operatorsWi , and combinations of these
quantities for which new shortcuts might be introduced in the
second step, cf. Sec. IV C. For instance, we have thus not
replaced the high-level termO1 by its low-level constituents,
i.e.,

~1,21,11.0,O1!→S ~1,21,11.0,bApRpVAp!

~1,21,21.0,bApVRpAp! D , ~19!

which would show a closer resemblance to the actual matrix
operations to be performed by any DKH program. However,
this would lead to a fpFW Hamiltonian with five components
instead of three, which would in turn dramatically increase
the computational complexity in subsequent steps. Hence,
the huge computational complexity, which is due to the large
number of components comprised by these high-level ex-
pressions is postponed to a later step of the algorithm. The
advantage of this procedure is that symbolic manipulations
on the resulting high-level Hamiltonians are much less com-
puter time demanding.

In Table II a summary of all high-level expressions em-
ployed by the algorithm is presented. The numerical evalua-
tion in terms of matrix multiplications requires, of course,
low-level expressions which are entirely reduced to the most
fundamental quantities.

In order to understand the symbolic operations per-
formed by this algorithm it is essential to realize that all
operators containing the momentum operator—likeAp and

Rp—do commute with each other, but they all do not com-
mute with any operator containing the external potentialV.

B. Step 1: Symbolic construction of the high-level
DKH Hamiltonian

As soon as the desired ordernopt[n up to which decou-
pling shall be achieved has been fixed, the high-level expres-
sions of all necessary unitary transformationsUi @ i
51,2,. . . ,int(n/2)# can be constructed. From now on we
will consequently usen instead ofnopt to denote the desired
order of decoupling for the sake of brevity. For any real
numbera, int~a! denotes the largest integer lower or equal to
a, and due to the (2n11)-rule no further unitary transfor-
mations are required. For algorithmic reasons all these
int(n/2) transformations cannot be simultaneously con-
structed at the very beginning, but they have to be consecu-
tively processed. The following subsections~Secs. IV B 1–
IV B 4! are thus to be executed for each transformationUi of
the sequence of unitary transformations.

1. Construction of the unitary transformation U i

The high-level expressions of unitary transformationsUi

are represented by vectors with int(n/ i )11 components,
whose (k11)-th entry is given by

~ki, ~21!k, ai ,k , Wi
k!

=~ki, ~21!k, ai ,k , WxxWxx . . . Wxx!.

The first entry (k50) is simply the unity operator and the
coefficientsai ,k , of course, have to satisfy the unitarity con-
ditions. According to Table II each operatorWi is stored as a
3-character stringWxx, i.e.,W1 is coded asW01. This setup
is thus flexible enough to allow for the construction of the
first 99 unitary transformations. The Hermitian conjugate
transformationUi

† is constructed by changing the sign of the
odd coefficientsai ,2k11 . In order to obtain an overall consis-
tent order ofn, inner unitary transformations~low value of
i ) have to be expanded up to higher powers ofWi than outer
transformations. For instance, the first unitary transformation
U1 containsn11 components, whereas the last transforma-
tion @ i 5 int(n/2)# contains only three components, since it
has to be expanded up toWint(n/2)

2 . We note in passing that
the last component ofWi can always be neglected if it is an
odd term of exactlynth order.

Before the transformationUi may be applied to the in-
termediate HamiltonianHi , we have to store the high-level
form of the odd operatorWi in order to reduce the final
Hamiltonian to its low-level representation in step 3, cf. Sec.
IV D. According to Eq.~10! Wi contains all odd terms ofHi

which are ofi th order, furnished withb and an energy de-
nominator. In order to make handling of the resulting expres-
sions feasible, these energy denominators are symbolized by
surrounding brackets, i.e., the firstW-operatorW1 is stored
as

W1→~1,21,11.0,b@O1# !=~1,21,11.d0,B@O01# !, ~20!

and contains only one high-level component, whereasW2 is
represented by

TABLE II. Overview of all high-level expressions employed within the
symbolic parser procedure. The high-level expressions are described in de-
tail in Sec. IV C.

Quantity Definition High-level code

E0 bEp2mc2 E00
E1 Ap(V1RpVRp)Ap E01
O1 bAp@Rp ,V#Ap O01
Wi cf. Eq. ~10! Wxx
Si cf. sect. IV C Sxxx
Ti RpSiRp Txxx
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W2→S ~2,21,11.0,b@W1E1# !

~2,21,21.0,b@E1W1# !
D

=S ~2,21,11.d0,B@W01E01# !

~2,21,21.d0,B@E01W01# !
D . ~21!

The number of high-level components of higherW-operators
grows significantly and depends slightly on the chosen pa-
rametrization of the unitary transformations. A detailed dis-
cussion of this scaling behavior is postponed to Sec. V.

2. Execution of the unitary transformation U i

As soon asUi andUi
† are set up, they are applied to the

intermediate HamiltonianHi , which yields the new Hamil-
tonian

Hi 115UiHiUi
†5Hi 11~E0 ,E1 ,O1 ,W1 , . . . ,Wi !. ~22!

At this stage the high-level HamiltonianHi 11 contains only
a few ingredients, namely the three fpFW components and
the first i W-operators. Since each of the three ‘‘vectors’’ to
be multiplied bears terms up tonth order, most terms arising
out of these two multiplications feature an order higher than
n and are thus immediately disregarded. Finally, all resulting
terms ofHi 11 are sorted in ascending order in the external
potential in order to reduce the computational demandings
for the next iteration withUi 11 , since the order of products
can thus easily by determined in advance.

3. Exploitation of commutator symmetry

Further simplification of the resulting HamiltonianHi 11

is achieved by exploitation of the commutator relation

@Wi ,E0#52O i
( i ) , ~23!

which is nothing else but the fundamental equation defining
Wi , cf. Eqs.~10! and ~7!. Note that we have setai ,05ai ,1

51 here, which can always be assumed without loss of
generality.8 Due to this relation all occurrences ofE0 within
the HamiltonianHi 11 are eliminated~except of the zeroth-
order termE0 , of course, which is not affected by the whole
symbolic procedure at all!. Hence, the HamiltoniansHi 11

can be characterized by

Hi 115Hi 11~E1 ,O1 ,W1 , . . . ,Wi !. ~24!

4. Elimination of all noncontributing terms

Finally, all terms which will not affect the desired final
DKH Hamiltonian are removed from the HamiltonianHi 11 .
First of all, all lowest-order odd termsO i

( i 11) , i.e., the odd
terms of orderi are removed, since they perfectly cancel due
to the conditional equation forWi , cf. Eq. ~7!. Furthermore,
all odd terms with orders higher or equal ton2 i are re-
moved, since they cannot in principle contribute to even
terms with order lower or equal ton in subsequent transfor-
mation steps. If the last transformationUi has been per-
formed, i.e.,i 5 int(n/2), all odd terms occurring in the final
Hamiltonian can, of course, be neglected. All terms, which
occur more than once in the Hamiltonian are subsequently
summarized, and all terms with coefficientscoeff(ai ,k) be-
low a certain zero threshold~adjusted to machine precision!

are neglected. As a consequence, cancellation of identical
terms with opposite sign is not accomplished exactly but
only up to a tiny residual component, e.g., up to 10220. For
all calculations presented in this study we have employed the
very rigid zero threshold of 10214, which must not be con-
fused with the truncation thresholdt introduced in Sec. III.
In general, these two thresholds have nothing in common,
and they have to be fixed independently of each other. Our
zero threshold of 10214 might be relaxed significantly in or-
der to allow efficient prescreening of terms to reduce the
computational effort, which is discussed in Sec. V, where the
computational scaling behavior of the DKH Hamiltonians is
analyzed.

After Secs. IV B 1–IV B 4 have been executed for all
unitary transformationsUi , the high-level expressions of all
even termsEk contributing to the final HamiltonianHDKHn

given by Eq.~3! are available, i.e., the analytic expression
for the DKHn Hamiltonian has been derived. Depending on
the zero threshold and the parametrization ofUi , the number
of components ofEk varies. This scaling of the number of
terms contributing to each orderEk is presented in Table III
for five different parametrizations up to order 20 and is dis-
cussed in Sec. V.

C. Step 2: High-level substitution procedure

After the high-level form of the DKH Hamiltonian has
been set up, one could immediately start to reduce it directly
to its low-level form. Such a procedure would, however, be
extremely unfavorable, since a large number of operator
products does occur many times and should not be recom-
puted again and again if an efficient implementation is

TABLE III. Number of high-level components of each even operatorEk for
different choices of the parametrization of the unitary transformationsUi .
HDKH20 comprises all terms up to 20th order. A zero threshold of 10214 has
been employed for all calculations. Note that a less tight but still reliable
zero threshold would reduce the number of components contributing to each
term. See text for further details.

USQ UMcW Uopt Uexp UCA

E0 1 1 1 1 1
E1 1 1 1 1 1
E2 2 2 2 2 2
E3 3 3 3 3 3
E4 8 8 8 8 8
E5 12 10 14 14 14
E6 24 26 28 30 30
E7 38 39 45 45 45
E8 76 82 84 88 88
E9 107 107 137 137 137
E10 186 212 236 246 246
E11 271 309 363 371 371
E12 464 546 592 626 626
E13 667 769 907 939 939
E14 1058 1286 1430 1506 1506
E15 1492 1843 2111 2199 2199
E16 2308 2928 3230 3410 3410
E17 3216 4100 4724 4932 4932
E18 4770 6298 7024 7416 7418
E19 6616 8878 10 062 10 554 10 558
E20 9666 13 210 14 670 15 490 15 502

HDKH20 30 986 40 658 45 672 48 018 48 036
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sought for. For instance, even for the DKH10 Hamiltonian
the productW1

2 does occur 538 times, and should thus only
be evaluated once.

Consequently, products of the formWiWj andWiE1Wj ,
which are represented by 6- and 9-character expressions in
the code, respectively, are substituted by suitableSi opera-
tors, which are represented bySxxx patterns according to
Table II. Up to 14th order a maximum number of 98Si

expressions is sufficient.
Substitution by theseSi operators is executed for both

the Hamiltonian and theW-operators in order to achieve the
largest simplification possible. Due to the odd structure of
the W-operators, they do, however, always contain an odd
number of odd operators; i.e., after theSi substitution pro-
cess for theW-operators, there will always be at least one
odd operator left to be processed later. For example, the first
entry of W3 will be substituted according to

~3,21,10.33,B@W01W01O01# !

→~3,21,10.33,B@S003O01# !. ~25!

These resulting odd operators~like hereO1=O01) will sub-
sequently give rise to new even structuresTi5RpSiRp coded
asTxxx, which do thus also have to be stored for later steps.
As a consequence, after this high-level substitution process
the DKH Hamiltonian can be characterized by

HDKHn5HDKHn~E1 ,Si ,W1 , . . . ,Wint(n/2)!, ~26!

where the number of contributingW-operators does now de-
pend on the number ofSi-operators introduced: the more
Si-operators have been introduced, the lessW-operators are
still present inHDKHn . The substitution process of step 2
completes the high-level manipulations of our symbolic al-
gorithm.

D. Step 3: Reduction to low-level form

Now all high-level expressions for the Hamiltonian
HDKHn , and theSi andTi operators have to be reduced to a
computable low-level form. First, all high-levelWi-operators
are recursively replaced by their low-level constituents,
which have been stored in step 1a~see Sec. IV B 1!. This
will frequently introduce the odd operatorO1 , which has
subsequently to be resolved by its final low-level expression

O1→S ~1,21,11.d0,BPV!

~1,21,21.d0,BVP! D . ~27!

HereB represents the Diracb-matrix andP symbolizes the
operatorRp5a"Pp . Note that for a scalar-relativistic imple-
mentation of the DKH procedure, no 1-character expression
for Dirac a-matrices has to be introduced, since all
a-matrices cancel due to Dirac’s relation for spin matrices
~cf. part I!. Furthermore, the external potentialV and its
damped variantṼ do always appear in combination with two
diagonal Ap-factors. It is thus sufficient for the low-level
stage of our algorithm to represent the productApVAp by the
1-character symbolV.

Note that during the reduction of the Hamiltonian to
low-level form theSi-operators must, of course, not be re-
solved; otherwise we would not gain any computational sav-

ings by their previous introduction. The low-level reduction
of the Si andTi operators has thus to be performed after the
reduction of the Hamiltonian, and higherSi operators might
still depend on lowerSj -operators (j , i ) and on all
Ti-operators in order to achieve the greatest computational
savings possible.

After this brute-force reduction to low-level form the
1-character low-level symbolic expressions have to be suit-
ably reordered. First, everyb-matrix B will be moved to the
very left of each term, taking into account that it anticom-
mutes withP. Afterwards, the DKH resolution of the iden-
tity,

Pp

1

Pp
2 Pp→PQP51, ~28!

with Q=1/Pp
2 is introduced in order to guarantee that the

resulting expressions are strictly functions ofp2 or pVp in-
stead of the linear momentum operatorp alone. It is one of
the most essential features of the Dirac Hamiltonian and its
block-diagonal representation that this is always possible for
even operators, as it has been discussed in part I.1 Finally, the
positions of the brackets ‘@’ and ‘#’ representing energy de-
nominators are reordered, such that the resulting symbolic
expressions have a direct matrix counterpart in step 4. These
final steps of reordering terms and exploiting the DKH reso-
lution of the identity have to be performed separately for the
Hamiltonian and for theSi andTi expressions.

The final step during this reduction to low-level form in
step 3 is the introduction of suitable auxiliary matricesUxx
which represent products of 1-character low-level expres-
sions. Since there will be at most 36 differentUxx expres-
sions occurring in the final DKH Hamiltonian~irrespective
of the chosen order!, this final substitution process will dra-
matically reduce the number of matrix multiplications to be
performed in the next step, cf. Sec. V.

E. Step 4: Transcription of the symbolic expressions
into a matrix code

As soon as the DKH HamiltonianHDKHn and the auxil-
iary operatorsSi andTi are completely reduced to their low-
level form, they might be evaluated by sequences of matrix
multiplications. Since the Hamiltonian depends on bothSi

andTi expressions andSi depends on theTi operators, one
has to evaluate theTi patterns first. Subsequently, theSi

expressions might be processed and finally the Hamiltonian
can be evaluated order by order.

The basic principle of this transcription into matrix mul-
tiplications is exactly the same as for conventional low-order
implementations of the DKH procedure6 and is thus not re-
printed in this study. Details~diagonalization of the nonrela-
tivistic kinetic energy, transformation top2-space, etc.!
might be found in Ref. 8.

After the evaluation of the DKH Hamiltonian up to the
desired order, the DKH modified one-electron integrals
might directly be passed over to the SCF or correlation rou-
tines.
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V. ANALYSIS OF THE SCALING BEHAVIOR
OF THE ARBITRARY-ORDER DKH ALGORITHM

In the last section the basic layout of a fully automatic
symbolic algorithm for the construction and evaluation of the
DKH Hamiltonians up to any predefined order has been pre-
sented. Being very favorable with respect to computational
demandings for low orders, the DKH scheme becomes more
elaborate for higher orders. In this section the scaling behav-
ior of the DKH HamiltoniansHDKHn will thus be analyzed in
detail.

Depending on the chosen parametrization of the unitary
transformationsUi , the number of high-level terms contrib-
uting to the Hamiltonian and thus the number of matrix mul-
tiplications necessary for its evaluation varies. Our analysis
will be focused on parametrizations which can be given in
closed form, i.e., the traditional square-root parametrization
USQ5A11W21W,20 the McWeeny choiceUMcW5(1
1W)•(12W2)21/2,21 the exponential parametrizationUexp

5exp(W), and the Cayley-type expressionUCA5(21W)/
(22W). Furthermore, also the optimal unitary parametriza-
tion Uopt from Ref. 8 is presented which minimizes the de-
viation from unitarity for truncated series expansions of Eq.
~9!. We note in passing that this choice for the parametriza-
tion of the unitary transformations is the best possible from a
fundamental, i.e., theoretical point of view. It has been estab-
lished without reference to any special atomic or molecular
system, but only due to the mathematical properties of trun-
cated series expansions of unitary transformations.8 It does,
however, not guarantee that numerical results obtained with
this parametrization are closer to the exact analytical results
for each order and/or for any particular system.

Due to vanishing odd coefficientsai ,2k11 (k>1) the
square-root parametrization originally proposed by Douglas
and Kroll20 features the smallest number of terms contribut-
ing to Wi . The symmetry properties of the expansion coef-
ficients ak for the McWeeny parametrizationUMcW (a2k

5a2k11 for k>1) and for the optimum parametrizationUopt

(a2k215a2k for k>3) are the reason for the slightly more
favorable scaling of these two parametrizations as compared
to Uexp and UCA, whose coefficients do not exhibit any
symmetry.8 All other parametrizations feature the same scal-
ing of the number of terms ofWi like the exponential param-
etrization.

This increase of the number of high-level terms contrib-
uting to higher-orderW-operators is reflected by the increas-
ing number of high-level terms comprised by the higher-
order even termsEk of the DKH Hamiltonian. In Table III the
number of these terms contributing to each orderEk is given
for the five different unitary parametrizations mentioned
above. The square-root parametrization features significantly
less terms than all other parametrizations, and due to the
coefficient symmetriesUMcW and Uopt are computationally
less demanding thanUexp and UCA. Note that due to their
factorial suppression the coefficientsak of Uexp tend more
rapidly to zero than forUCA, and since we have chosen a
zero threshold of 10214 there are slightly less terms contrib-
uting to Ek>18 for Uexp than forUCA.

As already mentioned in step 1d, cf. Sec. IV B 4, the

chosen zero threshold of 10214 is very tight, and it might be
relaxed without any loss of accuracy. Since higher-order
terms contribute orders of magnitude less to the total energy
than first- or second-order terms, this zero threshold can be
chosen dynamically depending on the order of the term
which is processed at a given stage of the algorithm. The
higher the order in the external potential of a term is, the
larger~i.e., weaker! the zero threshold might be chosen with-
out loss of accuracy. This will allow efficient prescreening of
terms and will reduce the computational requirements for
very high orders significantly. However, such a prescreening
has not been applied here, and a discussion of computational
savings obtained by this dynamical prescreening scheme will
be presented elsewhere.22

Finally we mention that the number of high-level terms
contributing toEk presented in Table III does not depend on
the number of auxiliary operators~Sxxx, Txxx, and Uxx!
introduced during the symbolic procedure. The introduction
of these auxiliary quantities will, however, strongly influence
the number of matrix multiplications needed for the final
evaluation of the DKH Hamiltonians, as it is shown by Table
IV, where this total number of matrix multiplications re-
quired for the evaluation of the DKHn Hamiltonians without
the introduction of auxiliary operators is compared to the
more favorable approach employingSxxx, Txxx, and Uxx
operators. The analysis of the number of matrix multiplica-
tions in Table IV is presented for two different parametriza-
tions of the unitary transformations (USQ and Uexp). Note,
however, that the multiplication with diagonal matrices like
Q is counted as an ordinary matrix multiplication here
though the implementation takes full advantage of the diag-
onal structure of these matrices

Since the even operatorE1 is frequently used throughout

TABLE IV. Number of matrix multiplications necessary for the evaluation
of the DKHn HamiltoniansHDKHn up to DKH14 for two different param-
etrizations~SQ and exp! of the unitary transformations. The computational
effort for the DKH schemes without the exploitation of auxiliary operators
~brute-force implementation! is compared to our efficient implementation
taking advantage of theSxxx, Txxx, and Uxx auxiliary operators. A zero
threshold of 10214 has been employed for all calculations. Note that the
multiplication with diagonal matrices likeQ is counted as an ordinary ma-
trix multiplication here though the implementation takes full advantage of
the diagonal structure of these matrices.

n

USQ Uexp

brute-force with auxiliary
operators

brute-force with auxiliary
operators

2 12 12 12 12
3 44 30 44 30
4 432 88 432 88
5 1940 191 2116 193
6 20 440 1162 22 296 1174
7 100 716 2860 112 124 3042
8 911 648 17 510 1 021 136 19 523
9 4 861 764 40 476 5 546 132 46 050

10 243 948 276 924
11 564 064 635 297
12 3 295 045 3 717 944
13 7 443 367 8 457 531
14 42 864 903 48 970 529
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the DKH parser procedure for the set up of higher-order
terms, it is not decomposed into its most basic constituents.
The treatment of this term does thus correspond to exactly
one matrix multiplication each time it occurs in higher-order
terms. As a consequence, the evaluation of the auxiliary op-
eratorS215W3E1W2 , for example, requires only 198 matrix
multiplications with our implementation instead of 4480 ma-
trix multiplications which have been reported for an imple-
mentation of the sixth-order DKH6 Hamiltonian.12

Furthermore, also diagonal matrices likePp
2 and 1/Pp

2

resulting from the DKH resolution of the identity~cf. Sec.
IV D ! were treated as requiring one complete matrix multi-
plication for the analysis presented in Table IV, though their
actual evaluation is coded in a more efficient way. Up to
DKH4 the number of matrix multiplications is, of course,
independent of the chosen parametrization, but for higher-
order schemes the square-root parametrization is slightly
more favorable with respect to computational demandings
than the exponential parametrization. However, these differ-
ences are of the order of magnitude of 10% of the total
number of matrix multiplications required, and do thus
hardly play any role for a significant speedup of the algo-
rithm.

Table IV clearly demonstrates, however, that the intro-
duction of auxiliary operators~Sxxx, Txxx, andUxx! is an
essential and mandatory pre-requisite for the efficient evalu-
ation of the DKH Hamiltonians with higher order. Already
HDKH10 is not feasible at all if one relies on a brute-force
implementation of the DKH scheme without taking advan-
tage of the auxiliary operators. And even for the sixth-order
HamiltonianHDKH6 the brute-force implementation requires
;20 times as much effort than our efficient realization of the
DKH parser algorithm. This ratio is dramatically increased
up to about 50 for DKH9. With our approach even the very
accurate DKH14 scheme becomes feasible, though its evalu-
ation requires approximately 43 (USQ) and 49 (Uexp) million
matrix multiplications, respectively. These numbers will,
however, be significantly reduced if dynamical prescreening

of terms relying on flexible zero thresholds for each order is
exploited, as it will be discussed elsewhere.22

VI. RESULTS

A. One-electron atoms

We have implemented the parser algorithm described in
the last sections as a general purpose code, which can easily
be interfaced with any nonrelativistic electronic structure
program. In order to investigate the convergence behavior of
the DKH series, first test calculations have been performed
for one-electron hydrogenlike atoms with different nuclear
chargesZ, where the DKH results can be compared to the
analytically known exact Dirac energies.

All calculations have been performed with an even-
tempered universal Gaussian basis set comprising exponents
from 0.001 up to about 1013 with an even-tempered ratio of
1.65. This dense basis set contains thus 75 exponents. The
value for the speed of lightc5137.035 989 5 was taken from
Ref. 23, and all calculations have been carried out with 64-
bit accuracy. All DKH calculations have been performed
with DKH Hamiltonians relying on the exponential param-
etrization of the unitary matrices. The dependence of fifth-
and higher-order results on the chosen parametrization of the
unitary transformation is very small and will be discussed in
detail elsewhere.22

In Table V the ground state energies for six different
nuclear chargesZ520 up to Z5120 are presented for the
nonrelativistic case as well as for the DKH Hamiltonians up
to 14th order. For the hydrogenlike ion withZ520 the DKH
series is already completely converged for DKH8, i.e., al-
ready the DKH8 Hamiltonian represents the exactly decou-
pled infinite-order HamiltonianHbd with sufficient accuracy.
The tiny deviation of 231028 Hartree of our decoupled
DKH results from the analytical Dirac energy confirms that
our large basis set is indeed capable of resolving these very
small oscillations. The results forZ520 show that DKH5
and DKH8 are sufficient if one aims at an accuracy for total

TABLE V. One-electron ground-state energies for the DKH scheme employing the exponential parametrization
for the unitary transformations in Hartree atomic units. For all calculations an even-tempered universal Gauss-
ian basis set with 75 exponents has been used. The speed of light wasc5137.035 989 5, and DEQ denotes the
analytical Dirac energies.

Z 20 40 60 80 100 120

nr 2200.000 000 00 2800.000 000 00 21800.000 000 23200.000 00 25000.0000 27200.000
DKH1 2201.341 496 11 2823.894 226 33 21934.202 797 23686.447 46 26472.3942 212 134.151
DKH2 2201.072 539 60 2817.615 779 96 21893.897 686 23523.324 90 25906.1919 29594.100
DKH3 2201.076 661 81 2817.820 117 49 21895.844 065 23533.119 58 25942.3695 29712.934
DKH4 2201.076 509 74 2817.804 856 85 21895.627 057 23531.708 57 25936.4739 29698.531
DKH5 2201.076 524 82 2817.808 104 08 21895.702 943 23532.462 50 25941.5411 29731.138
DKH6 2201.076 523 20 2817.807 385 74 21895.676 850 23532.101 20 25938.3144 29703.671
DKH7 2201.076 523 36 2817.807 518 48 21895.683 887 23532.225 33 25939.5876 29714.236
DKH8 2201.076 523 34 2817.807 492 70 21895.681 834 23532.177 00 25938.9700 29708.236
DKH9 2201.076 523 34 2817.807 498 59 21895.682 550 23532.200 16 25939.3620 29713.637
DKH10 2201.076 523 34 2817.807 497 14 21895.682 282 23532.188 44 25939.1072 29709.207
DKH11 2201.076 523 34 2817.807 497 47 21895.682 374 23532.193 69 25939.2439 29711.709
DKH12 2201.076 523 34 2817.807 497 40 21895.682 342 23532.191 26 25939.1649 29709.993
DKH13 2201.076 523 34 2817.807 497 42 21895.682 354 23532.192 49 25939.2167 29711.483
DKH14 2201.076 523 34 2817.807 497 40 21895.682 350 23532.191 84 25939.1821 29710.251
DEQ 2201.076 523 36 2817.807 497 83 21895.682 356 23532.192 15 25939.1954 29710.784
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energies of 1025 and 1028, respectively. The truncation cri-
terion based on the truncation estimate operatorVk presented
in Sec. III is thus indeed a rather conservative measure for
the prediction of the optimal ordernopt.

For the heavier nuclei withZ540 andZ560 DKH14
does still yield an overall accuracy of 1027 and 1025, re-
spectively. This has to be compared to lower-order approxi-
mations like DKH4 and DKH6, which are only capable of
guaranteeing one decimal place forZ560 (Nd591). If one is
interested in highly accurate total energies, i.e., in completely
decoupled two-component Hamiltonians one has thus neces-
sarily to go beyond those low-order approximations. Further-
more it is interesting to note that DKH4, which is the last
order being independent of the chosen parametrization, is
almost as accurate as the next variational Douglas–Kroll–
Hess scheme DKH6 forZ560. Major improvement on the
accuracy is only accomplished with DKH10, which does
give milli- and sub-milli-Hartree accuracy.

Also for even heavier nuclei withZ580 up toZ5120
the necessity of higher orders is evident by inspection of the
results of Table V. ForZ580 (Hg791) DKH14 is at least
capable of guaranteeing milli-Hartree accuracy, whereas, for
example, DKH6 does again only yield one decimal place as
compared to the exact Dirac eigenvalue. But for super-heavy
nuclei even DKH14 appears not to be sufficient to yield ex-
actly decoupled Hamiltonians. According to our truncation
analysis based onVk one would have to go to 27th order in
the DKH series in order to guarantee decoupled results up to
eight digits. Although our automatic decoupling algorithm is
in principle able to achieve decoupling up to this order, we
refrain from carrying out these very extensive calculations.

It should be emphasized that total energies are only of
little importance in quantum chemistry. Furthermore, a cer-
tain number of accurate digits is much harder to obtain for
systems with large total energy than for systems with smaller
total energies. For a more suitable and fair comparison of the
necessary order for exact decoupling one may calculate
scaled ground state energiesEscaled52E/Z2 for the systems
discussed above in Table V. Then, up toZ560 already
DKH12 guarantees exact results, and even forZ580 the
deviation of the scaled energyEscaled from the exact Dirac
eigenvalue is smaller than 1027 for DKH14. However,
lower-order approximations like DKH8 for example seem
not to be suited if one aims at highly accurate~almost! de-
coupled results.

For Z5120 there is one further subtlety, which has al-
ready been observed in earlier studies5,8,12 and which can
now be explained in view of higher orders: For systems with
Z larger than 104 the third-order result DKH3 yields energies
which are atypically too large and do thus approximate the
exact Dirac eigenvalue better than the formally superior
schemes DKH5, DKH7, and DKH9. However, even for these
highly charged nuclei the DKH series does not feature any
convergence problems, such that this atypical behavior of
DKH3 seems to be due to some favorable internal error can-
cellation of the DKH operators. The alternating pattern of the
DKH series, i.e., even orders do always increase the energy
as compared to the previous odd scheme is, however, not
affected.

The one-electron investigations presented in this subsec-
tion have proven that exact decoupling is in practice possible
with DKH Hamiltonians. The necessary ordernopt strongly
depends on the system under investigation, and for moder-
ately charged systems~up to Z560) already DKH14
achieves this goal.

B. Many-electron systems

Besides the one-electron calculations presented in the
last subsection we have also performed all-electron calcula-
tions on the neutral gold atom in its2S ground state. Its
electronic configuration is characterized by@Xe#5d106s1.
Exactly the same universal Gaussian basis set provided by
Malli et al.24 has been employed as in an earlier study on the
generalized DKH transformation up to DKH5.8 This basis set
contains 32s, 29p, 20d, and 15f exponents with an even-
tempered ratio of 2.05. The smallest exponent is 0.02 and its
largests-exponent is given by;109.

We have performed nonrelativistic~nr! as well as rela-
tivistic DKH calculations up to 14th order, and the results are
given in Table VI. All these calculations have been per-
formed with an atomic Hartree–Fock program based on the
work by Roothaan and Bagus,25 which has been modified in
order to include our arbitrary-order DKH package. The four-
component Dirac–Fock–Coulomb~DFC! result has been ob-
tained withMOLFDIR.26

Similar to the one-electron calculations presented above,
also the total DKH energies of the gold atom feature the
same characteristic alternating convergence behavior: Odd
DKH orders do always lower the energy, while even orders
yield a positive contribution to the energy and do thus in-
crease it as compared to the value corresponding to the pre-
vious DKH order. The standard second-order DKH approxi-
mation, DKH2, is not able to yield reliable total energies for
the gold atom, but the DKH series exhibits a quite rapid
convergence pattern. Already DKH14 gives a total energy
with better than milli-Hartree accuracy. Since the deficiency

TABLE VI. Hartree-Fock all-electron ground state (2S) energiesE of the
gold atom. A universal Gaussian basis set of the form 32s29p20d15f ~Ref.
24! and the speed of lightc5137.035 989 5 have been used for all calcula-
tions. The four-component Dirac–Fock~DFC! results have been obtained
with MOLFDIR ~Ref. 26!.

E

nr 217 865.394 387
DKH1 219 339.308 840
DKH2 218 993.722 129
DKH3 219 014.295 209
DKH4 219 011.347 295
DKH5 219 012.812 403
DKH6 219 012.147 430
DKH7 219 012.364 326
DKH8 219 012.284 261
DKH9 219 012.318 821
DKH10 219 012.303 145
DKH11 219 012.309 484
DKH12 219 012.306 813
DKH13 219 012.307 995
DKH14 219 012.307 457
DFC 219 039.585 625
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of the basis set ('0.005 Hartree for the nonrelativistic cal-
culation! is of the same order of magnitude~or even larger!,
transition to higher DKH orders and further decoupling of
the Hamiltonian would not make any sense. Consequently, in
combination with this basis set DKH14 represents the final
relativistic scheme for the gold atom.

As already discussed in extenso in Ref. 8 we should
emphasize that the four-component DFC result, which is
given in the last line of Table VI, must not be considered as
the DKH limit, since we have applied the usual scalar-
relativistic DKH variant for the one-electron terms only. The
gap between the DFC result and this scalar-relativistic DKH
limit is ;27 Hartree and is due to the neglect of the DKH
transformation of the two-electron terms and the spin-
dependent terms.8

The convergence behavior of the DKH series is illus-
trated graphically by Fig. 1. We have chosen two different
scales for the~vertical! energy axis in order to resolve the
tiny fluctuations of higher-order DKH corrections as com-
pared to the comparatively large oscillations of the energy up
to DKH8. The shaded rectangular block~DKH6–14! on the
left hand side of Fig. 1 is magnified on the right side of Fig.
1, where the energy axis does only cover a region of 0.2
Hartree~as compared to 20 Hartree on the left hand side of
the diagram!. Otherwise the higher-order corrections could
not be resolved at all, reflecting the fast convergence of the
DKH series.

Finally, we emphasize that our flexible implementation
of the DKH parser algorithm discussed in this study can
immediately be transferred to molecular electronic structure
calculations as its interface requires onlyT, V, and pVp
integral matrices.

VII. CONCLUSION

In this second part of our series of papers on exact de-
coupling of the Dirac Hamiltonian we have successfully pur-
sued to implement a general evaluation scheme for arbitrary-
order Douglas–Kroll–Hess calculations. With this machi-

nery, we have obtained results up to 14th order for one- and
many-electron systems for the first time, and have demon-
strated that exact decoupling can be achieved in practice
within the DKH scheme~as predicted from our rigorous for-
mal analysis in part I!. In order to shortly recall the achieve-
ments in this work, we may summarize the following points:

• An infinite-order DKH scheme requires a step-by-step
symbolicevaluation of DKH Hamiltonians~as shown in
part I!. This automatic symbolic evaluation has been
described and implemented into a general purpose pro-
gram package, which can be easily interfaced with any
nonrelativistic electronic structure program.

• A corner stone of the infinite-order DKH method is the
a priori determination of the highest order necessary for
decoupling up to machine precision. Here, we have uti-
lized the formal analysis from part I to obtain a trunca-
tion error criterion, which allows us to determine the
necessary decoupling order for ade factoinfinite-order
DKH calculation prior to its evaluation.

• The truncation criterion for thea priori determination
of the DKH order was chosen to be very tight. The
actual calculations show that it may be softened by
some orders of magnitude to account for other method-
inherent approximations like the size of the basis set.

• Special care has been taken for the reduction of the
number of matrix multiplications, which increases dra-
matically from order to order. The efficiency of our al-
gorithm becomes evident at, for instance, tenth order,
where the evaluation of the DKH10 Hamiltonian took
only a couple of minutes on a modern personal com-
puter. Although the standard second-order DKH2
method will be sufficient in most cases of chemical in-
terest ~see Ref. 27!, DKH Hamiltonians with orders
even as high as DKH10 or DKH12 do not require much
more additional effort.

• We obtained energy eigenvalues from exactly decou-
pled DKH Hamiltonians for highly charged one-
electron ions in excellent agreement with the analyti-
cally known Dirac energies.

FIG. 1. Schematic representation of the ground state (2S) energy of the gold atom for different orders of the DKH scheme. Left: DKHn energies forn52 up
to n514. Right: DKHn energies forn>6, in order to resolve the convergence behavior of the DKH series.
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Since it is desirable to have an unambiguous and well-
defined relativistic Douglas–Kroll–Hess method at hand, we
may recommend the use of either the fourth-order DKH4
Hamiltonian or the infinite-order scheme as suitable DKH
models. The reasons for this recommendation are twofold:
First, the fourth-order Hamiltonian is the highest even order
not depending on the chosen parameterization of the unitary
matrices.8 Second, though the dependence on the parametri-
zation, which shows up in the fifth- and all higher-order
Hamiltonians, is small, it is diminished only in the infinite-
order limit, which makes the very high DKH orders attrac-
tive from a puristic point of view. Following this philosophy,
a recent implementation of the two-component Douglas–
Kroll–Hess method has been carried out up to fourth-order
DKH4.17

The present implementation comprises a scalar-
relativistic version of the Douglas–Kroll–Hess method, but
due to the modular and symbolic character of the code it is
straightforward to extend the implementation to the two-
component domain. In future work, we will discuss the cal-
culation of molecular properties within the arbitrary-order
DKH scheme, the inclusion of spin–orbit terms and the
transformation of the electron–electron interaction poten-
tials. For the latter, it will be very useful to fall back on
recent results obtained by Boettger18 and by Majumder,
Matveev, and Ro¨sch16 in order to arrive at efficient imple-
mentations which can compete with four-component meth-
ods. Work in these directions is currently in progress in our
laboratory.
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