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Advice for Program Usage

The Akira program implements the Mode-Tracking technique, which
allows you to target normal modes directly and circumvents the computer-
time demanding calculation of all normal modes. However, though we have
put much effort into setting up a computer program which is almost a black
box code, it does not replace thinking about the particular problem to be
solved and requires a basic understanding of vibrational analyses in general
(in order to gain this, the reader is referred to the literature below and
references cited therein). Therefore, when you have installed the program,
our advice is to start with some small toy examples in order to learn about
how the algorithm works (some test examples come with the package). In
general, Mode-Tracking is well suited in cases of

1. very large molecules for which a complete calculation of the spectrum
is not feasible,

2. standard systems if only limited computer time is available so that a
complete calculation cannot be carried out, and

3. smaller systems in combination with highly accurate ab initio calcu-
lations.

References:

• Mode-Tracking Reference:

M. Reiher, J. Neugebauer, A mode-selective quantum-chemical method for
tracking molecular vibrations applied to functionalized carbon nanotubes, J.
Chem. Phys. 118 2003, 1634–1641.

• Convergence Analysis of Mode-Tracking Algorithm:

M. Reiher, J. Neugebauer, Convergence Characteristics and Efficiency of
Mode-Tracking Calculations on Pre-Selected Molecular Vibrations, Phys.
Chem. Chem. Phys. 6 2004, 4621–4629.

• Mode-Tracking for a Molecular Subsystem:

J. Neugebauer, M. Reiher, Modetracking of Pre-selected Vibrations of One-
Dimensional Molecular Wires, J. Phys. Chem. A 108 2004, 2053–2061.

J. Neugebauer, M. Reiher, Vibrational Center–Ligand Couplings in Tran-
sition Metal Complexes, J. Comput. Chem. 25 2004, 587–597.
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• Reference for Semi-Numerical Harmonic Frequency Calculations:

J. Neugebauer, M. Reiher, C. Kind, B. A. Hess, Quantum Chemical Calcu-
lation of Vibrational Spectra of Large Molecules — Raman and IR spectra
for Buckminsterfullerene, J. Comput. Chem. 23 2002, 895–910.

• Mode-Tracking for Molecules Adsorbed at Surfaces:

C. Herrmann, M. Reiher, Direct targeting of adsorbate vibrations with
mode-tracking, Surf. Sci. 600 2006, 1891–1900.

• QM/MM-Mode-Tracking:

C. Herrmann, J. Neugebauer, M. Reiher, QM/MM Vibrational Mode Track-
ing, J. Comput. Chem. 29 2008, 2460–2470.

For a review on Mode-Tracking see:

• C. Herrmann, J. Neugebauer, M. Reiher, Finding a needle in a haystack:
direct determination of vibrational signatures in complex systems, New J.
Chem. 31 2007, 818–831.



1. Introduction

The development of the program Akira1 started in the Theoretical Chem-
istry department at the University of Erlangen–Nuremberg for an efficient
calculation of vibrational frequencies and normal modes. The Mode-Tracking
protocol developed for and used in Akira allows the specific calculation of
characteristic normal modes as introduced in Ref. [1] (see also [2]), while
normal frequency analyses always determine the full set of normal modes
and frequencies of a molecule. This is usually much more information than
required, since in many cases only a small subset of characteristic vibrations
is desired and necessary for comparison to or prediction of experimental
data.

Akira originated in parts from the vibrational spectroscopy program
package Snf2 of the Theoretical Chemistry Group at the University of
Erlangen–Nuremberg. The original Snf package aims at the parallelized
calculation of complete vibrational spectra within the double harmonic ap-
proximation (Snf [3]).

Akira follows a different strategy for the determination of vibrational
normal modes involving predefined (collective) motions of the atoms in a
molecule. These motions (=cartesian distortions) have to be selected by the
user, and the algorithm applied in Akira will determine all normal modes
of vibrations which involve these characteristic motions. Since the creation
of the initial (guess) vibration is the most delicate step for the user, we have
created a setup tool for this purpose:

The setup tool Akiradefine features several modules to create initial
motions, either as Cartesian or internal coordinates, or from lower-level
approximations like semiempirical models or force field calculations. Fur-
thermore it is possible to use normal modes of former Snf or Turbomole
calculations as an initial guess for the desired normal mode, so that cal-
culations with smaller basis sets can be applied as initial guesses for the
mode-tracking with a larger basis set. Another possibility is to use normal
modes for a sub-system of the molecule as a guess for the normal mode of
the complete molecule.

Akira uses subspace iteration techniques in order to find only those

1download page: http://www.thch.uni-bonn.de/tc/groups/reiher/download akira.html
2see http://www.thch.uni-bonn.de/tc/groups/reiher/download snf.html for download

information of the Snf package
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Figure 1.1: Hierarchical structure of the mode-tracking program Akira.
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roots of the Hessian Matrix whose eigenvectors show the largest overlap
with the initial guess vectors. Davidson- [4], Jacobi-Davidson- [5], and
Lanczos-type [6] diagonalization schemes can be selected for this purpose.

This manual is organized as follows: Sect. 3 contains help on how to
get Akira binaries running on your system. In case you have been given
the source code, a description of the installation of Akira is given and the
requirements for the parallelization are explained. In Sect. 4, the theoretical
background of the subspace iteration methods employed in Akira is illus-
trated and the numerical derivative methods are explained in detail. Sect. 5
deals with how to prepare and to run modetracking calculations using the
commands Akiradefine and Akira, respectively. If an Akira calcula-
tion crashes, you will find some information on first aid in the appendix.
An analysis of the influence of the step size used in numerical differentiation
on the calculation of vibrational frequencies is also given in the appendix.

Any use of this program that results in published material should cite
the following:

• M. Reiher, J. Neugebauer, J. Chem. Phys. 118 (2003), 1634 – 1641.

This article introduces the Mode-Tracking method and describes the
implementation of the algorithm; comparisons of some initial guesses and
preconditioners are also given. We should, however, emphasize that we can-
not warrant that the method is indeed suitable for your particular purpose
(see also page 5).

Further details of the program capabilities and examples for mode-
tracking calculations are given in the following articles (see also page 5):

• extraction of couplings between different parts of a molecule, applica-
tions to large gold clusters:
J. Neugebauer, M. Reiher J. Comput. Chem. 25 (2004), 587 – 597.

• local vibrations in large molecules, applications to molecular-wires type
transition metal complexes:
J. Neugebauer, M. Reiher J. Phys. Chem. A 108 (2004), 2053 – 2061.

• systematic comparison of initial guesses, preconditioners, convergence
characteristics, preconditioning schemes, near-degeneracies:
M. Reiher, J. Neugebauer Phys. Chem. Chem. Phys. 6 (2004), 4621
– 4629.

• applications to molecules adsorbed at surfaces:
C. Herrmann, M. Reiher Surf. Sci. 600 (2006), 1891 – 1900.
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• QM/MM calculations:
C. Herrmann, J. Neugebauer, M. Reiher J. Comput. Chem. 29
(2008), 2460 – 2470.

For further information on the semi-numerical implementation in our
vibrational spectroscopy programs, see the following articles, which do also
give references to important work by other groups:

• general review of theoretical vibrational spectroscopy for large molecules:

– C. Herrmann, M. Reiher Top. Curr. Chem., 168 (2007), 85 –
132.

• parallelized, semi-numerical calculation of vibrational frequencies and
intensities (in particular, Raman intensities [2nd paper]):

– J. Neugebauer, M. Reiher, C. Kind, B. A. Hess. J. Comput.
Chem., 23 (2002), 895 – 910.

– J. Neugebauer, M. Reiher, B. A. Hess. J. Chem. Phys., 117
(2002), 8623 – 8633.

• anharmonicity effects in the density functional framework (1st paper)
and error cancellation of harmonic BP86/TZVP frequencies in com-
parison with fundamental frequencies (both papers below):

– J. Neugebauer, B. A. Hess. J. Chem. Phys., 118 (2003), 7215 –
7225.

– M. Reiher, G. Brehm, S. Schneider. J. Phys. Chem. A, 108
(2004), 734 – 742

• mode-wise calculation of intensities for vibrational spectra:

– M. Reiher, J. Neugebauer, B. A. Hess. Z. Phys. Chem., 217
(2003), 91 – 103.

– J. Neugebauer, M. Reiher, B. A. Hess, in: S. Wagner, W. Hanke,
A. Bode, F. Durst (Eds.), High-Performance Computing in Sci-
ence and Engineering 2000-2002, Springer-Verlag, Berlin 2002,
pp. 157 – 169.



2. Quickstart

The program package Akira has been developed to implement the Mode-
Tracking idea. Selected vibrations (normal modes and wavenumbers) can be
obtained using the harmonic approximation. The vibrational frequencies are
determined using numerical differentiation of analytic gradients of the total
electronic energy with respect to collective Cartesian nuclear coordinates.
Akira requires single-point calculations with either Dalton or Turbo-
mole or ADF or Gaussian, which can be performed using coarse-grained
parallelization (PVM and MPI) with automatic load-balancing. Note that
you need to possess an official licence for any of these quantum chemistry
packages!! Akira does not intermingle with any of these programs but only
scans the output of them in order to extract all relevant raw data for the
Mode-Tracking protocol. Akira will automatically start Dalton, Tur-
bomole, ADF, or Gaussian single-point jobs on slave nodes (if no PC
cluster is available it is possible to run Akira in a single-processor mode).
For the easy set up and handling of the calculations you may start the set-up
tool Akiradefine. Normal modes may be tracked for any electronic struc-
ture method implemented in Dalton, Turbomole, ADF, or Gaussian
for which analytic energy gradients are available.

To install Akira, you need the following steps:

• unpack: tar -xvjf akira-3.4.0.tar.bz2

• change to subdirectory: cd akira-3.4.0

• read help: less INSTALL

• configure package: ./configure --with-pvm --with-scp

• compile package: make -j2

If you encounter any problems with the installation: you might install
the SNF package first in order to make sure that the PVM or MPI libraries,
resp., work properly! If SNF is running on your system, Akira also will!

11
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3. Installation and technical issues

3.1 Getting started

3.1.1 General: the commands in the bin and scripts directory

In the bin directory of the akira directory, you will find two binaries,
akiradefine and akira. You will call akiradefine in order to set up the
modetracking calculation, and akira in order to perform the calculation.

In the scripts directory, the following commands are available:

script use of script needs ... produces ...

mkrdcinput specifies paths and directories for
akira

— DCINPUT

mkparainput specifies paths and directories for
akira if the parallelized version of
Turbomole is to be used

— DCINPUT

choose_nodes checks cluster for free nodes and
writes them to file USE_NODES (only
necessary in pvm version)

ELIGIBLE,
ruptime

USE_NODES

clear_pvm kills the user’s pvm daemons and
removes temporary files created by
Akira on the slave nodes (only nec-
essary in pvm version)

— —

dcmore monitors Akira calculation by dis-
playing TMPdcstat file, updating it
by default every 5 seconds. The
update time can be set via dcmore

<val>, <val> = update time in sec-
onds.

— —

In order to assure that akiradefine finds these scripts, you should add
the akira/scripts directory to the $PATH in your .bashrc or copy the scripts
into the bin directory in your home.

mkrdcinput and choose_nodes are called automatically by akiradefine.
For further information on how to monitor a calculation with dcmore, see
section 3.5.

The clear_pvm script contains a list of all machines on which the user’s
pvm daemons still running due to a previous run of a parallelized program

13



14 CHAPTER 3. INSTALLATION AND TECHNICAL ISSUES

using Pvm shall be killed and temporary files created in a previous Akira
run shall be removed:

for m in computer1 computer2 computer3 computer4\

; do

echo ___________________ $m _____________________

ssh $m rm -r ‘ssh $m ls -d ’/tmp/TMP*’‘

‘ssh $m ls -d ’TMPDIR/<username>/TMP*’‘

‘ssh $m ls -d ’TMPDIR/TMP*’

‘ TMPDIR/pvmd.<uid> TMPDIR/pvml.<uid>

TMPDIR/file* TMPDIR/file* TMPDIR/pvmtmp*

ssh $m killpvmd3

done

The machines list must be modified by the user and should contain all
machines listed in the ELIGIBLE file. Furthermore, <uid> must be replaced
by the user ID, and TMPDIR by the scratch directory which is defined in the
DCINPUT file. Of course, if the user has chosen for the temporary directories
on the slaves a prefix which does not start with the default TMP, TMP* has
to be replaced, too.

The ELIGIBLE file is searched by default in your $CIPROC path. Ex-
amples for all in- and output files mentioned here can be found in the
examples/files subdirectory in the akira directory. Furthermore, a de-
tailed explanation of the DCINPUT file and the choose_nodes command is
given in the subsections 3.1.2 to 3.1.4.

As far as akira is concerned, all paths necessary for Pvm and Mpi,
respectively, and for the quantum chemical package you want to use, that
is Turbomole, Dalton, Adf or Gaussian, must be set correctly. In the
examples/files subdirectory, you will find a bashrc file which contains an
example of all paths that need to be set for Akira.

In the following three subsections, more detailed information will be
given on the DCINPUT file and the preparations necessary for Pvm and Mpi,
respectively.

3.1.2 The DCINPUT file

This file has the following structure:

DCPATH /usr/bin/akira

MYDIR /home/<usrname>/calculations/example

PREFIX TMP<usrname>%

TMPDIR /tmp

LOGDIR /home/<usrname>/calculations/example/log

with the variables



3.1. GETTING STARTED 15

• DCPATH: path to the Akira executable file (optional)

• MYDIR: your working directory (mandatory)

• PREFIX: prefix for logfiles and temporary files (optional)

• TMPDIR: directory for temporary files (including all temporary files
of the single point calculations); must be available on every machine
(optional)

• LOGDIR: directory for logfiles (optional)

If the optional variables are not specified in DCINPUT, Akira will try to use
$MYDIR/tmp as TMPDIR and $MYDIR/log as LOGDIR. PREFIX will be set to
“TMP”.
The variables DCPATH,TMPDIR, and LOGDIR may be specified individually for
some (or all) of the slave nodes. This is achieved by the entry
DCPATH(<nodename>) <pathname>

etc. Additional optional variables are

• PROGDIR: path to the Turbomole, Dalton or Gaussian executable
files (note that Adf commands will always be taken from the path
which is set in your shell).

• ARPATH: path for archiving of mos files etc. This option has been
disabled.

• CHOOSENOPT <opt>: option for choose nodes call; in particular, the
following options are possible for the latest version of choose nodes:

– -e <eligfile>: specify alternative path/name of ELIGIBLE file
(default: $CIPROC/ELIGIBLE)

– -local: use only one process on local host in parallel machinery

– -nlocal <n>: use <n> processes on local host in parallel machin-
ery

– -ignore: leave USE NODES file unchanged

If you want to perform calculations with values for the variables cstep or
scfconv, which are out of the confidence interval (Akiradefine will inform
you if this happens), the entry

CRAP OK yes

must be added to DCINPUT.
To create a standard inputfile, you can use the script mkrdcinput, which is
automatically executed by Akiradefine.
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This file should be executed in the working directory. The settings for
DCPATH and TMPDIR in this script must be adopted to the local settings
before using it.

3.1.3 Preparations for the Pvm version

To run the Pvm version of Akira, it is necessary to execute the script
choose nodes, which selects the nodes for the parallelized calculation from
the file $CIPROC/ELIGIBLE. It contains the names of the computers in the
“parallel virtual machine” and the numbers of processors available on each
computer, e.g.,

computer1 1

computer2 1

computer3 2

computer4 2

#computer5 2

Note that this default setting can be modified by passing options to
choose nodes, see Section 3.1.2. By using the script choose nodes, all
processors which are idle will be added to the list in USE NODES. The latter
file is of the form

# 4 nodes with 6 processors are eligible.

# parallel environment is pvm

# Thu Oct 4 12:24:01 MEST 2001

node computer1 1 1

node computer2 2 2

node computer3 1 2

# chosen 3 machines with 4 processors.

Both choose nodes and mkrdcinput are executed by akiradefine, such
that no further preparations are necessary if the file mkrdcinput is in line
with the local settings (path containing the akira executable, TMPDIR).
After these preparations, Akira can be started using the command akira.

3.1.4 Preparations for the Mpi versions

If one of the Mpi versions shall be used, this can be done by the command

mpirun -machinefile MACHINES -np <number of CPU’s> akira

The file MACHINES must contain the names of all computers available for the
parallel calculation. You may create this file by running

choose_nodes -mpi
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and then renaming the file USE NODES, which is created by choose nodes, to
MACHINES. This is done automatically by Akiradefine, which also creates
the runscript mpi.sub. The runscript contains the mpirun command men-
tioned above; the number of CPU’s is extracted from the files USE NODES.
Hence, after running Akiradefine you may immediatly run the Mpi ver-
sion of Akira using the command mpi.sub. Note that it might be necessary
to modify the mpi.sub runscript, since different Mpi installations may use
different options.

Note that the exact syntax of the MACHINES file and the mpirun com-
mand depends on the MPI version. The syntax above corresponds to that
of Mpich. OpenMpi, for instance, follows a slightly different syntax.

3.2 Parallelization standards

Akira uses raw data from several structures displaced from a reference
structure along a set of basis modes, which start with a (or a couple of)
user-defined basis vector(s). Each basis vector represents a collective dis-
tortion of the cartesian coordinates of the molecular (minimum) structure.
The program executes two single-point calculations of electronic energies
and their gradients for each basis vector employed in each iteration. Al-
though parallelization is not as vital as in normal frequency analyses [3],
the total wall clock time can be considerably reduced if these calculations
are executed simultaneously in a coarse-grained parallel manner. In order to
use the parallelized version of the data collection in Akira, it is necessary
to provide the software for one of the following parallelization standards.
Besides these, note that a serial version of the program is also available.

3.2.1 Pvm

To run the Pvm version of Akira, it is necessary to install Pvm. It can be
obtained from

http://www.epm.ornl.gov/pvm/pvm home.html

It is necessary to set the following environment variables for Pvm:

PVM ROOT: Pvm installation directory

PVM ARCH: architecture of the computer (LINUX{,64} or ALPHA)

Akira will look for the file fpvm3.h in $PVM ROOT/include and for Pvm
libraries in $PVM ROOT/lib/$PVM ARCH
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3.2.2 Mpi

Different implementations of the MPI standard are available. OpenMpi,
Mpi, Mpich, and Lam/Mpi, resp., may be obtained from
http://www.open-mpi.org,
http://WWW.ERC.MsState.Edu/misc/mpi/,
http://www-unix.mcs.anl.gov/mpi/mpich, or
http://www.lam-mpi.org/.
We use OpenMpi for development and, therefore, recommend its usage.
Akira will look for a MPI Fortran compiler (like mpif90) and will use it
for compilation.

3.3 Memory management and pre-processing

In the latest Akira version, program-specific setup tools and memory man-
agement constructs were reduced to a minimum. In particular, dynamic
memory allocation is now handled by default Fortran90 allocate/deallocate
calls.

Earlier versions of Akira used a memory managment that relied on
the Memmgr module by B. A. Hess [7], which is also used in Snf [3]. The
memmgr allows dynamical allocation of memory within Fortran routines
which are written entirely in Fortran77. These versions also employed the
preprocessor Delrem by B. A. Hess [8].

3.4 Installation of Akiradefine and Akira

Akira comes as a source code tar-ball. To install it, you first need to
unpack the archive using

tar -xvjf akira-3.4.0.tar.bz2

In the akira-3.4.0 directory you will find a file INSTALL which tells you
how to compile and install the package. You will need at least these steps:

./configure

make

To enable parallel calculations you need to give certain options to configure
which are described in INSTALL. It may also be helpful to look at the output
of ./configure --help.

3.5 Monitoring Akira calculations

Most important to observe the progress of the calculation is the file TMPdcstat
which contains information about the status of each slave process. The file
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can be watched during the calculation by executing the script dcmore which
can be found in the scripts directory. It consists of 11 columns:

2 1 computer1 vbsy 0 90005 1 rdy 1 1 results sent

3 2 computer2 0 90005 1 rdy 2 2 results sent

4 3 computer3 0 103 0 run 3 3 968:15 dscf

5 4 computer4 0 90005 1 rdy 4 4 results sent

The rows contain the following entries:

1 task ID
2 continous numbering
3 node name
4 entry vbsy indicates a “very busy” machine
5 process ID (0 for finished processes)
6 cpu-load times 100, or

90005 for finished calculations, or
70005 for trouble in Turbomole programs, or
80005 for wrong results.

7 number of finished single point calculations on this node
8 status:

rdy = ready for next step,
run = running calculation,
wait = node waiting,
pvme = Pvm error

9 step number
10 step number (redundant)
11 cpu time and name of running program or message

As already indicated by the name of the data file, Akira has got a
restart facility, such that any partly completed restart.akira file can be
supplied in a Akira run, if the program has been aborted.

3.6 Further programs and scripts needed by Akira

As a meta-program, Akira starts standard quantum chemical packages on
slave nodes in order to produce the raw data. The output produced on the
slave nodes is then scanned in order to pick up all necessary information
needed by Akira. Thus, Akira does not intermingle with any of these
programs and you do need a license to run these programs, which you have
to acquire separately according to the conditions of the particular vendor
or theoretical chemistry groups, respectively!

For the performance of the single point calculations, the programs of
the Adf [9], Dalton [10], Gaussian [11] or Turbomole [12] package,
respectively, must be available on every node in $PATH. Akiradefine al-
lows to perform semiempirical Mopac [13] calculations automatically as an
initial guess for normal modes and Hessians. If this feature shall be used,
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Mopac must be installed on your system. Akiradefine furthermore re-
quires Molden [14] if the initial guesses selected for the mode-tracking
calculations shall be visualized.

Furthermore, the scripts from the scripts subdirectory of the Akira
installation directory must be available in $PATH. The script choose nodes

also requires the file ELIGIBLE in the directory $CIPROC, which contains the
names of computers available and their numbers of processors (see Chapt.
5). An example file is provided with the Akira package. The variable
$CIPROC must be set by the user. choose nodes also requires the shell-
command ruptime which comes with the rwho package. Therefore, you
need to install this package first as it is essential for the load balancing with
Pvm. This is only necessary for the parallel version of Akira.



4. Methodology

The first section of this chapter explains the theoretical background of the
subspace iteration methods employed in Akira. The next section deals
with details of the numerical derivative methods.

4.1 Subspace iteration techniques

Two different subspace iteration techniques are available in Akira, namely
the Davidson and Lanczos algorithms, which will be explained in the next
subsections (compare also the reference to the original work given above).

4.1.1 Davidson algorithm

In order to calculate the vibrational frequencies, we have to solve the eigen-
value equation

H(m)Qk = λkQk, (4.1)

where H(m) is the mass-weighted Cartesian Hessian, which contains the
(mass-weighted) second derivatives of the total electronic energy with re-
spect to nuclear Cartesian coordinates, and {λk,Qk} is the eigensystem to
be determined (with λk ∼ ω2

k and ωk being the kth vibrational frequency;
see [15, 16]).

The conventional procedure is to calculate all elements of the matrix
H(m) (either analytically or numerically) and to diagonalize this matrix to
obtain all 3N eigenvalues and eigenvectors for a molecule containing N
atoms. If only selected vibrations are of interest, one can apply subspace
iteration methods like those by Lanczos [6] or by Davidson [4]. This has the
major advantage that the full Hessian need not be calculated, which is the
time limiting step in the standard procedure.

Our Davidson-type method starts with a collective displacement b of all
atoms

b =
3N
∑

j=1

bje
(m)
j , (4.2)

where e
(m)
j are the 3N (mass-weighted) nuclear Cartesian basis vectors,

and bj are the components of the displacement. The kth elemof the vector
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σ = H(m) · b, which is the first approximation to the left-hand side of Eq.
(4.1), is then given as

σk = {H(m) · b}k =
∑

l

∂2E

∂R
(m)
l ∂R

(m)
k

bl =
∂2E

∂R
(m)
k ∂b

. (4.3)

∂2E/[∂R
(m)
l ∂R

(m)
k ] is the second derivative of the total electronic energy with

respect to (mass-weighted) nuclear Cartesian coordinates. This relation
allows us to calculate the vector σ as a numerical directional derivative of
the gradient of the total electronic energy E with respect to the collective
displacement b,

σ = H(m) · b =

























∑

l

∂2E

∂R
(m)
1 ∂R

(m)
l

bl

∑

l

∂2E

∂R
(m)
2 ∂R

(m)
l

bl

...
∑

l

∂2E

∂R
(m)
3N ∂R

(m)
l

bl

























=

























∂2E

∂R
(m)
1 ∂b
∂2E

∂R
(m)
2 ∂b
...

∂2E

∂R
(m)
3N ∂b

























. (4.4)

The vector σ can thus be calculated as the numerical derivative of the
analytic gradients of the total energy. For this numerical differentiation
it is necessary to carry out single point calculations for the along-b dis-
torted structures such that n-point central difference formulae [17] for the
numerical finite-difference approximation of the second derivative can be
applied. For the generation of these distorted structures, we use displace-
ments which result in a preselected norm of the corresponding (non-mass-
weighted) Cartesian displacement vector; in general, a step size of 0.01 bohr
proved to yield reliable and numerically stable derivatives [2, 3].

In the ith subspace iteration we build the Davidson matrix H̃(m),i as

H̃(m),i = Bi TH(m)Bi = Bi TΣi (4.5)

where all vectors bl and σ
l (with l = 1, . . . , i and i being the actual iteration

step) are collected in the matrices Bi and Σi, respectively. We then solve
the eigenvalue problem for the small Davidson matrix,

H̃(m),ic(i)
µ = λ(i)

µ c(i)
µ , (4.6)

where λ
(i)
µ is the ith approximation for eigenvalue λµ, from which we can

calculate approximate wavenumber in every iteration step. The desired
eigenvector ci

µ is selected from the set of vectors obtained from Eq. (4.6)
and the residuum vector reads

r(i)
µ =

i
∑

l=1

c
(i)
µ,l

[

σ
l − λ(i)

µ bl
]

, (4.7)
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(note that i always denotes the actual ith iteration and µ marks the selected
vector). The sum is over all basis vectors bl, and the number of basis vectors
is increased in each iteration. In the standard Davidson method, the number
of basis vectors is equal to the number of iterations, since in each iteration
one new basis vector is introduced. For each new basis vector bi+1, we
obtain a new vector σ

i+1 as the numerical derivative of the gradient with
respect to the collective displacement bi+1. The ith approximation vi

s to
the exact eigenvector qs in Eq. (4.1) is obtained as

Q(i)
µ =

i
∑

j=1

c
(i)
µ,jb

j , (4.8)

4.1.2 Preconditioning: The Davidson algorithm

The new basis vectors are generated from the residuum vectors,

bi+1 = D−1,(i)r(i)
µ , (4.9)

where Xi = D−1,(i) is a preconditioner, which should ideally be as close as
possible to [H(m) − λ

(i)
µ 1]−1. The simplest approximation for the inverse

matrix of [H(m) − ρi
s1] is to use a diagonal preconditioner with diagonal

elements Xjj = 1/(H
(m)
jj − ρi

s). However, this is only a good approximation
for diagonally dominant matrices, a condition which is fulfilled for config-
uration interaction matrices, but not for the Hessian matrices investigated
here. This procedure is repeated until the convergence criterion drops below
a predefined threshold. Convergence criteria are: i) the maximum element
of the residuum vector, ii) the norm of the residuum vector, iii) the contri-
bution ui

s,i of the latest basis vector i in Eq. (4.8) to the selected eigenvector
and iv) the change in the wavenumber.

The convergence characteristics of this algorithm strongly depend on
the reliability of i) the initial guess of the first basis vector b1, which is
the first approximation to the desired exact eigenvector qs and of ii) the
preconditioner. The latter problem is delicate since we do not have any in-
formation about the matrix H(m); only matrix–vector products σ

l = H(m)bl

are known.
The Hessian may be approximated using the inverse transformation of

Eq. (4.5)
H(m) = BH̃(m)BT , (4.10)

with B := B3N . This transformation would thus only be exact if we used a
complete set of 3N basis vectors. If the basis set is not complete, we may
use the approximation

H
(m)
nj,appr. =

∑

kl

H̃
(m),i
kl Bi

knB
i
lj (4.11)
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for the default preconditioner, where the sum is over all basis vectors bl (l =
1, . . . , i) stored in the matrix Bi. But this is usually a poor approximation
and yields only as many approximate diagonal elements as basis functions
are used in the current iteration (for the other diagonal elements, one could
use either unit entries or the last diagonal element determined in this way
for all other diagonal entries). However, the more iterations are needed, the
better becomes the preconditioner in this default preconditioning scheme.
Furthermore, 1/(H

(m)
jj − λ

(i)
µ ) is a poor approximation to the inverse of a

matrix (H(m) − λ
(i)
µ 1) if H(m) is not diagonally dominant. Consequently,

this approach is in most cases not better than using a unit matrix as a
preconditioner at the very beginning of the procedure, when only very few
basis vectors are available.

Both problems mentioned above in connection with the convergence cri-
teria can be overcome by using a semi-empirical calculation as an initial
approximation: We calculate an estimate for the Hessian and approximate
normal modes using the PM3 model (of course, other semi-empirical models
can also be utilized). An initial guess for the eigenvector can be chosen from
the set of semi-empirical normal modes, while the semi-empirical Hessian
can be used for the preconditioning procedure. Since the Hessian matri-
ces under investigation are of dimensions of about a few hundred rows and
columns, it is — in contrast with configuration interaction matrices — pos-
sible to explicitly calculate the inverse preconditioner matrix

Xi =
[

H
(m)
PM3 − ρi

s

]

−1

(4.12)

in each iteration. It should be emphasized that the bottleneck of the calcu-
lation is not this matrix inversion, which takes only a couple of seconds, but
the single point calculations of electronic energies and gradients for the dis-
placed structures. Using a 3-point central differences formula [17] for the nu-
merical differentiation, we need two single-point calculations for structures
distorted along each basis vector, which are performed in a coarse-grained
parallelized way using standard parallelization techniques as provided by
PVM and MPI. Unfortunately, it is not possible to perform all single-point
calculations at once as the basis vectors of iteration i depend on the results
of all (i−1) former iterations. Therefore, the little computational effort for
the generation of more accurate preconditioners is easily compensated by
the resulting reduction of the number of iterations.

In course of the calculation of H
(m)
PM3, we also obtain the PM3 normal

modes, which we use as the first approximation b1. Note that this ‘guessing
of normal modes’ is different from the standard projection operator tech-
nique, which always requires a certain point group in order to set up the
projector from the irreducible representations of this point group. Instead,
we project out a selected mode and do not rely on any group theoretical
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tools. Consequently, our approach is applicable also in C1-symmetric cases.
Nevertheless, these projection operator techniques can be used to determine
an initial guess for the desired normal modes.

4.1.3 The Jacobi–Davidson algorithm

Let us take another look at the preconditioning problem: In a mode-tracking
calculation however, we iteratively solve the equation

(H− λ(i)
µ )Q(i)

µ = r(i)
µ (4.13)

With the residuum vector, we want to construct the correction ∆Q to the
current eigenvector approximation with

(H − λµ)(Q(i)
µ − ∆Q) = r(i)

µ − (H − λµ)∆Q = 0. (4.14)

This suggest that

∆Q = (H− λµ)
−1r(i)

µ = D−1r(i)
µ , (4.15)

where we used the definition D = (H− λµ). Since the purpose of applying
subspace iteration techniques is to avoid the calculation and/or storage of
the full Hessian matrix, the matrix D is usually not known. The knowledge
of this correction vector would allow us to use ∆Q as the next basis vector,
which should immediatly reduce the residual vector to zero.

The original Davidson procedure is mainly used in CI-type problems,
where electronic energies are identified as eigenvalues of the CI-matrix.
These matrices are strongly diagonally dominant, which means that an ap-
propriate guess for them can be constructed by using the diagonal elements
of the CI-matrix. Such guesses for D are very successful for preconditioning
and usually lead to rapid convergence. A guess for the eigenvalue λµ is
readily available from the last iteration.

As described in earlier work, the Hessian matrix of a system is usually
not diagonally dominant, and furthermore, a calculation of all diagonal
elements of the Hessian is not much less work than the calculation of the full
Hessian. But as mentioned above in many cases it is possible to get a guess
for the Hessian of the system from simpler calculations, like semi-empirical,
force-field or small basis set calculations. In these cases it is possible to
construct the matrix D−1 by direct inversion of the guess Hessian (minus
the approximate eigenvalue),

D−1 = (Hguess − λ(i)
µ ). (4.16)

Note that here and in the following, we use the notation D also for guesses
of the exact definition given above.
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As pointed out by Sleijpen and Van der Vorst [5], the Davidson diago-
nalization scheme has great difficulties if the guess for the Hessian becomes
too good. Imagine that we apply the exact Hessian for preconditioning; in
that case, the new basis vector would be obtained as

b(i+1) := (H − λ(i)
µ )−1r(i)

µ = Q(i)
µ , (4.17)

where we used Eq. (4.13) for the second equality. This means that the better
the approximation for the Hessian is which we employ for preconditioning
purposes, the smaller will be the angle between the new basis vector and
the old eigenvector approximation. In the limit of the exact Hessian, no
improvement at all will be obtained.

It is, however, difficult to decide what will happen in a practical mode-
tracking calculation, since the new basis vectors are always orthogonalized
to all preceeding basis vectors, which should eliminate the problem of linear
dependencies. And even for an exact Hessian, the numerical differentiation
of the electronic gradient will introduce some numerical noise, so that always
a component orthogonal to the current basis vectors will be present. This
component might, however, be very small, and therefore we employ a cyclic
procedure of Gram–Schmidt-orthogonalizations and orthogonality checks
in our program in order to ensure orthogonality even in problematic cases.
Whether the preconditioning is still efficient in those cases is a question
which is investigated in the next section, since the orthogonal component of
our (non-orthogonalized) new basis vector might just consist of numerical
noise.

Sleijpen and Van der Vorst [5] proposed a Jacobi–Davidson diagonal-
ization scheme, which automatically restricts the new basis vector to the
subspace orthogonal to the current approximation Q

(i)
µ . This is achieved

by using the orthogonal projection of the matrix to be diagonalized onto
this subspace. Again, usually neither the matrix itself nor this orthogonal
projection is available. Therefore, they suggest a one-step approximation
to find a new basis vector if a guess for the matrix is available,

b(i+1) := ǫD−1Q(i)
µ + D−1r(i)

µ , (4.18)

where

ǫ =
Q

(i)
µ D−1r

(i)
µ

Q
(i)
µ D−1Q

(i)
µ

(4.19)

The last equation is determined by the requirement that b(i+1) is orthogonal
to Q

(i)
µ . This should definitely fix the problem in Eq. (4.17), which might

occur for the Davidson algorithm.



4.1. SUBSPACE ITERATION TECHNIQUES 27

4.1.4 The Lanczos algorithm

The implementation of the Lanczos-type algorithm is very similar to the
Davidson-diagonalization scheme. The first step is again the calculation
of the vector σ

i, Eq. (4.4), by numerical differentiation of elements of the
gradient vector, calculated for structures perturbed along the basis vector
bi. In the next step, the diagonal elements of the small Hessian matrix for
the subspace are calculated,

di = σ
i,Tbi, (4.20)

(note that the Lanczos algorithm is essentially a method to create a tridi-
agonal matrix

H(m),tridiag = BTH(m)B =















d1 t1 0 0 · · ·
t1 d2 t2 0 · · ·
0 t2 d3 t3 · · ·
0 0 t3 d3 · · ·
...

...
...

...
. . .















, (4.21)

from the original matrix H(m)). With these quantities, the vector

xi+1 = σi − dibi − ti−1bi−1, (4.22)

is calculated, which in turn determines the elements ti via

ti = |xi+1|, (4.23)

and the new basis vector,

bi+1 =
xi+1

|xi+1|
. (4.24)

Note that t0 = 0 in the first iteration. Furthermore, the new basis vector
bi+1 is usually explicitly orthonormalized to the set of all previous basis vec-
tors to avoid (near-)linear dependencies. The disadvantage of the Lanczos
algorithm is that the new basis vector is in no way preconditioned for better
convergence of the eigenvector selected for optimization. Therefore, the con-
vergence characteristics is usually better for the Davidson diagonalization,
unless only very poor preconditioners are available (see below).

Calculation of approximate force constants, wavenumbers and normal
modes in each iteration are carried out in exactly the same manner as for
the Davidson diagonalization. This also holds for the residuum vectors,
which are only necessary for convergence control in the case of the Lanczos
method.
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4.1.5 Details of the implementation

We have implemented the above-described subspace iteration with a David-
son, a Jacobi–Davidson, as well as a Lanczos solver in the Akira program.
A comparison of both diagonalization schemes shows that they perform
equally well if the preconditioning is not well chosen (see below). But, in
case of a good preconditioning through a PM3 or similarly sophisticated
guess, we obtain a significantly better convergence of the Davidson-type
algorithm. Our implementation allows one to optimize several eigenvec-
tors simultaneously, which is known as the Davidson–Liu or block-Davidson
method [18, 19]. Root homing is also guaranteed [20]. For root homing,
there exist two promising protocols in the case of normal modes as eigen-
vectors: i) selection of the eigenvector with the largest overlap with the
initial guess vector; ii) selection of the eigenvector with the largest overlap
with the approximate eigenvector chosen in the last iteration. Both methods
are implemented in our program. While the first method can cause conver-
gence problems if only a poor initial guess vector is available, the second
method usually shows better convergence characteristics; however, it may
converge to a different, non-desired eigenvector due to poor initial vectors in
combination with some preconditioners (see [1] for examples) Furthermore,
it is possible to select the vector with minimal residuum or to optimize the
lowest root.

4.2 Generation of displaced structures

We use displacements along the mass-weighted basis vectors bi, for which
the energies and gradients have to be calculated. A displacement along the
mass-weighted basis vector of ∆bi gives rise to a displacement in Cartesian
coordinates of

∆Ri = ∆biM−1/2, (4.25)

where M−1 is a diagonal matrix with elements M−1
ij = δij/mi; mi is the

mass of the atom corresponding to the Cartesian coordinate Ri
j .

4.2.1 Displacements in units of length

Test calculations have shown that the step size sR should be chosen such
that the norm of the Cartesian displacement vector is sR|∆Ri| ≈ 0.01 bohr.
The displacement may be re-written in terms of normalized displacement
vectors for both the Cartesian and the mass-weighted basis modes,

sQk
∆bi,norm =̂ sQk

∆Ri = sQk
|∆Ri|∆Ri,norm = sR∆Ri,norm (4.26)
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which leads to a step size sbi for the numerical differentiation of

sbi = sR/|∆Ri| = sR

(

3N
∑

j=1

(bi,norm
j )2/mj

)

−1/2(

[unit of length]

[unit of mass]1/2

)

. (4.27)

The inclusion of the units is necessary in order to keep both coefficients
dimensionless (compare also Ref. [21]). Note that for a given value of sR,
the coefficient sbi may have different values for different normal coordinates
bi.

4.2.2 Calculation of second derivatives

The calculation of the elements of the σ vector, Eq. (4.3), can be accom-
plished by calculating numerical derivatives of the components of the an-
alytic gradient w.r.t. the collective displacements along the basis vectors
bi,

∂2E

∂R
(m)
k ∂b

. =
1

2s2
bi |∆bi,norm|

[

g
(m)
k (+sR∆Ri,norm) − g

(m)
k (−sR∆Ri,norm)

]

(4.28)
where the g(m) are the mass-weighted components of the gradient vector for
the along-bi displaced structures.
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5. Running the calculation

In this chapter, the steps necessary to carry out a mode-tracking calculation
using Akira will be described in detail. Starting from the preparations, we
will discuss the setup of the calculation using Akiradefine, the mode-
tracking calculation itself, and possible restart and re-evaluation runs.

Running a mode-tracking calculation with Akira requires two separate
steps: (I) choosing the initial guess vector(s) with Akiradefine and (II)
running the mode-tracking calculation with Akira. The calculation of
intensities, which are obtained from numerical differentiation of property
tensors along the converged normal modes, is not available in Akira 3.0.0
but will be possible soon via a separate module (note that no re-calculation
of normal modes will be necessary then because the new tool will create
displaced structures for the numerical differentiation from a previous Akira
run!).

5.1 Preparations

5.1.1 Structure optimization

Since Akira tries to determine the vibrational frequencies and normal
modes from the eigenvalues and eigenvectors of the Hessian matrix, and
since these quantities have, in a strict sense, a well-defined meaning only for
structures for which the electronic energy gradient is zero, it is necessary to
perform a geometry optimization first. The mode-tracking calculation must
then start from the optimized structure. A large number of test calculations
with Snf (see Introduction) has shown that the maximum component of
the gradient should be smaller than 0.0001 a.u. in order to obtain accurate
results for the vibrational frequencies.

5.1.2 Electronically excited states

From Akira 2.1.0 on, mode-tracking calculations can be performed for
electronically excited states, provided Turbomole (version 5.6 or higher) is
used for the single-point calculations. Of course, for the reasons mentioned
in Section 5.1.1, the molecular structure has to be optimized in the chosen
excited state before starting the Akira program. In this case, no further
Akira-specific settings have to be made, since Akira will recognize the
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excited-state keywords in the Turbomole control file and use these settings
automatically for the single-point calculations of the distorted structures on
the slave nodes.

5.1.3 Molecular symmetry

Akira uses a semi-numerical algorithm in which second derivatives of the
electronic energy are calculated as numerical first derivatives of analytical
energy gradients. Therefore, the algorithm will create structures which are
displaced from the equilibrium structure along some basis vectors. In almost
all cases, these displacements will lower the molecular symmetry, which can
cause problems if the original calculation explicitly used the higher symme-
try, since the MOs of the originial equilibrium structure are in some cases
used by Akira as an initial guess for the MOs of the displaced structures.

For Turbomole users: If the molecule under investigation is of higher
symmetry than the trivial C1 point group symmetry, the user should run
a single-point energy calculation without taking advantage of the symme-
try in order to provide C1-symmetric MOs as start-MOs for the perturbed
structures of the molecule. As an alternative, you may provide any other
initial guess for the MOs (which can, e.g., be generated by Turbomole’s
define program).

There are indeed a few special cases in which the calculations for the
displaced structures can be performed using a higher symmetry: If the basis
vectors given in the setup preserve a higher symmetry than C1, and if also
all new vectors generated in the mode-tracking calculation are guaranteed
to keep this symmetry, then also each single-point calculation can indeed
use this higher symmetry. To give the most important example: If you
use Akira not to track a specific vibration, but to calculate all vibrations
in a certain irrep, then it is possible to restrict the calculation to basis
vectors of this irrep. If you want to calculate, e.g., all vibrations in the
totally symmetric irrep of the molecule, than all displaced structures will
also exhibit the original symmetry. In that case, the original MOs can
be used as a guess. Another example is the totally symmetric breathing
mode of the buckminsterfullerene C60, for which the calculations for the
perturbed structures can also be done in Ih symmetry. In this case, only
one basis vector is needed to achieve convergence (see [1]).

It is not necessary to provide MOs in the case of Adf, Dalton or
Gaussian single point calculations.

5.2 Akiradefine: setting up the calculation

For an easy preparation of the Akira calculation, most of the input/output
and program options can be controlled and set via the interactive setup
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tool Akiradefine. All steps done by this program are explained here in
detail. If your PATH variable contains the directory akira/bin, you can
start Akiradefine simply by typing:

akiradefine

The information which is collected by Akiradefine is written to the file
akira_control .

5.2.1 Program-specific input

Depending on whether Turbomole, Adf or Gaussian has been used
for the molecular structure optimization, Akira can perform the single-
point calculations for the displaced structures with different programs. If
the geometry has been optimized with Turbomole, it is possible for the
user to request either a Turbomole calculation (HF, DFT, RI-DFT, MP2,
RI-MP2) or a Dalton calculation (HF, MP2, CC2, CCSD, CASSCF) for
the perturbed structures. In case of a Gaussian geometry optimization,
Gaussian is always employed in the single-point calculations. and similarly,
in case of Adf optimizations, Akira will automatically use Adf for the
perturbed structures.

Turbomole input files

If Turbomole or Dalton are to be used for the single-points subsequent
to a Turbomole structure optimization, all files which are necessary for
Turbomole single-point calculations must be provided (i. e. control,
coord, mos or alpha and beta, basis and, for RI-accelerated calculations,
auxbasis).

Gaussian input file

If Gaussian shall be used for the single-point calculations, the user must
provide a Gaussian input file named akira.com which contains the key-
word #p force, the keywords for the method and the basis set to be used,
information on molecular charge and spin state and the equilibrium geom-
etry in cartesian coordinates. For an ethanol molecule, the akira.com file
might look like this (with the last line being a blank line, of course):

#p force bp86/TZVP

ethanol

0 1

C -1.225747 -0.225340 0.000002

H -1.296072 -0.865520 -0.891479

H -1.296085 -0.865499 0.891496

H -2.083095 0.464915 -0.000013
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C 0.079992 0.551234 -0.000000

H 0.131474 1.203598 0.893871

H 0.131470 1.203596 -0.893875

O 1.161283 -0.399398 -0.000003

H 1.996579 0.098737 0.000020

This file is also contained in the directory examples/files.

Adf input file

Since Akira will normally be run after performing a geometry optimization,
it is designed to reuse simply the Adf script which has been used to run
the geometry optimization. This script has to fulfill several conditions:

1. It must be named adf.in.

2. It be executable.

3. It must contain exactly the settings used in the preceding geometry
optimization.

4. The geometry must be specified in cartesian coordinates using Angstrøm

5. The binary output file must be named TAPE21.

6. It should not contain any blocks requesting other calculations than a
geometry optimization.

Akiradefine will check (and modify, if necessary) the following blocks
in the adf.in file:

• GEOMETRY — delete it (if present) and write instead:

Geometry

GO

iterations 1

End

• INTEGRATION — if the grid settings are below 6.0 6.0, replace them
by 6.0 6.0.

• SCF — if the convergence criteria are below converge 1.0e-6 1.0e-6,
replace them by converge 1.0e-6 1.0e-6.

• Sort the list if cartesian coordinates according to their nuclear charge.
(This will facilitate reading in the data of the distorted structure-single
point calculations in the Akira run.) Attention: the reordering
of atoms will affect the choice of internal coordinates in Aki-
radefine as well as the usability of ADF restart files!
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If Akiradefine modifies the integration or convergence parameters, it
will print a warning message to the screen remembering the user to redo a
geometry optimization with the new settings.

Starting from version 3.1.0, Akira can deal with QM/MM gradients.
Furthermore, it is now possible to provide an Adf restart file, which is
distributed onto the slave nodes in order to accelerate the single-point cal-
culation for the displaced structures. Based on the keywords in the adf.in

input file, Akiraefine will recognize automatically whether a QM/MM
calculation is requested or whether a restart file shall be copied onto the
slaves. In case an Adf restart file shall be used, the user must necessarily
specify the option nogeo (like in the example below), since otherwise, all
displaced structure calculations will be performed for the geometry given
in the restart file, thus leading to nonsense results. It is not possible to use
Adf restart files in combination with QM/MM calculations.

The adf.in input file you provide might look like this:

#! /bin/sh

$ADFBIN/adf -n1 << eor

Create O $ADFRESOURCES/TZP/O.1s

End Input

eor

mv TAPE21 t21.O

$ADFBIN/adf -n1 << eor

Create H $ADFRESOURCES/TZP/H

End Input

eor

mv TAPE21 t21.H

$ADFBIN/adf << eor

Title H2O

INTEGRATION 6.0 6.0

Atoms

O -0.004404 0.000000 -0.003115

H 0.038319 0.000000 0.969951

H 0.927252 0.000000 -0.287190

End

Fragments

O t21.O

H t21.H
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End

Geometry

GO

End

STOPAFTER GGRADS

RESTART restartfile &

nogeo

END

symmetry nosym

XC

LDA VWN

End

savefile TAPE21

SCF

converge 1.0e-6 1.0e-6

End

end input

eor

This example can also be found in the examples/files directory.

5.2.2 Program selection

Akiradefine first of all will ask for the user’s preferences concerning the
quantum chemical program package which shall be used in the single-point
calculations of the distorted structures:

Which program would you like to use ?

tm : use TURBOMOLE for single points

d[alton] : use DALTON for single points

g98 : use GAUSSIAN 98 for single points

g03 : use GAUSSIAN 03 for single points

a[df] : use ADF for single points

(<return> = default = tm)
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The default program for the single-points is Turbomole. You can
select another program package by typing the abbreviation for this package.
For example, g03 will select Gaussian03 for the single-point-calculations.

Akiradefine then checks the existence of he Turbomole input files
named control in case of Turbomole or Dalton single-point calcula-
tions, akira.com in case of Gaussian single-point calculations and adf.in

if Adf shall be used. If the molecule under study has been optimized
with Gaussian or Adf and thus no Turbomole control and coord files
are present, Akiradefine will generate a fake Turbomole control and
coord file from the parameters found in akira.com or adf.in, respectively.

Akiradefine then reads control and coord and prints the general
molecule information as well as information about the thresholds employed
in the electronic structure calculations.

In the next menu, an overview of the Akira input parameters is given,
which may be changed by the user:

Program settings menu:

----------------------

Current settings:

cstep = 0.01000000

numderiv = 3

scfconv = 8

maxnbm = 21

mtype = 1

tmpcl = off

logcl = off

Choose one of the following commands:

-------------------------------------

cstep <real> : set cstep [<real> in bohr]

maxnbm <int> : choose max. no. of basis modes

numderiv <int> : choose <int> point central differences bickley formula

scfconv <int> : choose scfconv parameter

tmpcl : switch on/off removal of temporary directories

logcl : switch on/off removal of log directories

mtype <int> : choose type of masses to be used

(1: most abundant isotopes, 2: average atomic masses,

3: most abundant isotopes, but deuterium mass for hydrogen)

<return> : leave this menu

The parameters which can be modified in this menu are the following:

cstep: step size for the displacements from the equilibrium structure (given
as the norm of the displacement vector in [bohr]; default = 0.01, larger
values are recommended for low-frequency modes).

maxnbm: maximum number of basis vectors for this calculation. This num-
ber cannot be chosen larger than 3N , the number of degrees of freedom
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for this molecule (which would correspond to a full harmonic force field
calculation).

numderiv: number of grid points used for the numerical differentiation (de-
fault = 3).

scfconv: SCF convergence threshold parameter (cf. Turbomole man-
ual); scfconv ≥ 8 is strongly recommended.

tmpcl: temporary directories on slave nodes are removed after the calcula-
tion (default = off).

logcl: log files for slave node calculations are removed after the calculation
(default = off).

mtype: Type of masses to be used in the calculation (1 = masses of most
abundant isotopes, 2 = average atomic masses (not recommended), 3
= masses of most abundant isotopes but deuterium mass for hydrogen
atoms). Note that it is not yet possible in Akira to specify individual
atomic masses for all atoms in the molecule.

5.2.3 Convergence criteria menu

In this menu, the thresholds for the convergence checks can be set:

Convergence critera menu:

-------------------------

current thresholds:

|max. component of residuum vector| : 0.00050000

change of max. component of r : 0.50000000E-07

orthonormalization parameter : 8

choose one of the following commands:

rthres <real> : set threshold for max. component of residuum vector

rabsthres <real> : set threshold for norm of residuum vector/(3*natoms)

dvthres <real> : set threshold for change in wavenumber [1/cm]

ecthres <real> : set threshold for expansion coef. of last basis vector

rchthres <real> : set threshold for change of max. component of r

iortho <int> : set orthogonalization parameter

d : default settings

& : go back to program settings menu

<return> : leave this menu

There are several different thresholds to control the convergence of the
results:

rthres: maximum component of the residuum vector (default = 0.0005)
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rabsthres: norm of the residuum vector divided by the number of degrees
of freedom of the molecule, i.e., 3N .

dvthres: change in wavenumber between two subsequent calculations

ecthres: expansion coefficient for last basis vector

rchthres: change in the maximum component of the residuum vector

iortho: set orthogonalization parameter

While the first four criteria are direct measures for the quality of the eigen-
vectors or eigenvalues of the Hessian, the last value, rchthres is a measure
for the improvement of the eigenvector between two subsequent iterations.
If this improvement is smaller than this threshold, the algorithm assumes
that no further improvement for this vector is possible and stops the itera-
tions for this vector. This can often be traced back to wrong setups in the
calculation and does not mean that the vector is converged. If a very tight
threshold for the residuum has been selected, it may, however, happen that
this convergence criterion cannot be fulfilled: Due to numerical noise, it will
never be possible to reduce the residuum vector to zero. Besides the conver-
gence criteria, it is also possible to select a threshold for the orthonormality
check in Akira, the parameter iortho. This parameter determines the
threshold for the orthonormality of the basis vectors employed in the sub-
space iteration (10−iortho). Akira uses a Gram–Schmidt orthogonalization
to keep new basis vectors orthogonal to previous ones. For some precondi-
tioners, the new basis vectors determined by the Davidson procedure will
be almost parallel to the set of basis vectors in use. In those cases, up
to iortho subsequent orthonormalization cycles and orthonormality checks
will be performed to fulfill the orthonormality threshold. If this cannot be
achieved, the program will stop with an error message since it is not possible
to find a new, linearly independent basis vector.

5.2.4 Output menu

In this menu, you can modify the output of the normal mode calculated by
Akira and switch on/off a more detailed output on the subspace iterations:

Output menu:

------------

choose one of the following commands:

g98it off : switch off g98 normal mode output

g98bs off : switch off g98 basis vector output

tmout on : switch on TM output of final normal modes

xmout on : switch on xmol output of final normal modes

prall on : switch on detailed output of subspace iteration
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d : default settings

& : go back to program settings menu

<return> : leave this menu

It contains the following options:

g98it on/off switch output of normal mode approximations in G98 for-
mat after each iteration on/off. Creates files g98.out.itn for each
iteration n.

g98bs on/off switch output of basis modes (vectors) in G98 format after
each iteration on/off1. Creates files g98.out.bsn for each iteration n.

tmout on/off switch output of converged normal modes in Turbomole
format on/off. Creates file tm normmodes after convergence.

xmout on/off switch output of converged normal modes in Xmol format
on/off. Creates file xmol.XYZ.out after convergence.

prall on/off switch detailed output of subspace iteration on/off.

The following menu will be discussed in a separate section (Sec. 5.3), since
it is the most important preparation step in a mode-tracking calculation:
the selection of the initial basis vectors. In this section, we proceed with a
description of the following menus.

5.2.5 Hessian guess and rigid modes

After the selection of initial basis modes, which is described in Sec. 5.3,
you have to decide whether the basis vectors should be kept orthogonal to
translational and rotational (“rigid”) modes of the molecule:

Do you want to orthogonalize your guess vectors

to translational and rotational modes ?

(y/n, default = yes)

This is always recommended, since it reduces the computational cost and
increases the accuracy of the calculation. However, it might be desired for
test purposes to omit the orthogonalization on these rigid modes, or if, e.g.,
the full cartesian Hessian shall be calculated explicitly.

If a Hessian guess is available from the “Initial guess selection”, Aki-
radefine will suggest to use this guess for preconditioning purposes.

1Wave numbers do not have a physical meaning in this case.
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5.2.6 Root homing and preconditioning

After this input step follows the “Root homing and preconditioning menu”ndexroot
homing menu:

Root homing and preconditioning menu:

-------------------------------------

current settings:

root homing by overlap with selected vector of previous iteration

preconditioning scheme: backtra

nbt : 6

choose one of the following commands:

root <string> : set root homing scheme; possible values:

lastsel = default; overlap with last eigenvector

trackgv = overlap with guess vector

minresi = choose vector with minimal residuum

testmin = test for minimum; optimize lowest root

prec <string> : set preconditioner; possible values:

backtra = backtransformation of Davidson Matrix

unitmat = Davidson with unit matrix

lanczos = Lanczos type diagonalization

nbt <int> : min. no. of vectors for backtransformation

genstart on : only one iteration for generation of start vectors

d : default settings

& : go back to convergence criteria menu

<return> : leave this menu

For root homing, the following choices can be made:

lastsel: default; the program selects as a new vector to be optimized that
eigenvector approximation which has the largest overlap with the last
vector selected.

trackgv: the vector with the largest overlap with the initial guess vector
will be chosen for further optimization.

minresi: the vector with the lowest residuum will be further optimized,
irrespectively of its nature, i.e., the type of vibration involved.

testmin: the vector with the lowest eigenvalue will be selected in order to
test for a minimum or saddle point.

Note that for each basis vector given in the first iteration, one vector for
further optimization will be selected.

For preconditioning, the following options are available:

backtra: backtransformation of the Davidson Matrix according to Eq. (4.11).
Default if no approximate Hessian is available.
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unitmat: a unit matrix preconditioner will be applied.

lanczos: test option: Lanczos algorithm. Only one vector should be se-
lected in this case, since the block-Lanczos algorithm, which allows to
optimize several vectors simultaneously, is not yet tested.

If an approximate Hessian matrix is available, three additional options will
appear on the screen:

jacobid: use Jacobi–Davidson diagonalization scheme. Default if approxi-
mate Hessian is available.

aphsinv: Davidson algorithm in which the approximate Hessian will be ex-
plicitly inverted to get the preconditioner. Yields similar performance
as Jacobi–Davidson.

aphsdia: test option: original Davidson algorithm in which the inverse
diagonal elements are used as a preconditioner. Cannot be recom-
mended for calculations, since this assumes that the matrix to be
diagonalized is diagonally dominant, which is in general not the case
for Hessian matrices.

Note that the first three options can be selected irrespectively of the avail-
ability of an approximate Hessian, while the latter three require such a
guess (and will thus not appear on the screen if no approximate Hessian is
present). The jacobid and aphsinv options usually lead to the best con-
vergence, if appropriate guess Hessians are available. The backtra option
sometimes shows bad performace during the first iterations, even worse than
the most simple unit matrix preconditioner. Therefore, it is possible to use
a combined approach in which the first n iterations will employ a unit ma-
trix preconditioner, while in the following iterations the backtransformation
will be used. The number n can be set with the keyword nbt.

Note that experience with these options is still somewhat limited. It
appears, however, that no big differences occur between the unitmat and
backtra preconditioning schemes.

One last option, genstart on/off, can be selected to do exactly one
iteration. After this iteration, you can use one of the vectors created in this
cycle as a better approximation for the desired normal mode.

5.2.7 Additional keywords

Some keywords can only be introduced manually into the file akira control.
At the moment, the following options are available:

sleeptime <time-in-seconds>: sets the time in seconds to wait for the
master process between two subsequent checks of the slave processes.
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Default: 5. Smaller values decrease the overhead, in particular in fast
calculations, larger values can be helpful to decrease the network traf-
fic when running the master job via a network file system, in particular
for large calculations with long single-point calculations.

5.2.8 Data collector options

The next and last step of Akiradefine creates the files necessary for the
parallel execution of the data collection:

===================================

Input completed, calling prepdc ...

===================================

ELIGIBLE file to be used for choose_nodes call:

$CIPROC/ELIGIBLE

Specify name of alternative ELIGIBLE file or press <return>

The file DCINPUT will be created by calling the script mkrdcinput. The
DCINPUT file can be further modified manually afterwards, see Section 3.1.2
for details. A directory for logfiles, named log, will be created. The logfiles
contain valuable information on what is going on on the slave nodes (see
also section A in the appendix).

5.3 Akiradefine: Setting up the initial guess

While Akira itself can be used mainly as a black-box program, the setup
of the initial guess must be done by the user, and it requires some idea of
the specific problem to be analyzed. If there is no such specific problem,
it is probably not useful to run a mode-tracking calculation, since either
all normal modes are wanted to get an overview, or no modes at all are of
interest.

If, however, the problem is identified, Akiradefine offers a lot of help
to construct an appropriate guess for the modes to be studied in the initial
basis vector menu:

Selection of initial basis vectors

----------------------------------

No. of basis modes selected: 0

choose one of the following commands:

-------------------------------------------------------------

pint menu : show internal coordinate options

-------------------------------------------------------------

psym menu : show symmetry coordinate options
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-------------------------------------------------------------

pcart menu : show cartesian coordinate options

-------------------------------------------------------------

pfile menu : show basis-vector-from-file options

-------------------------------------------------------------

pmop menu : show basis-vectors-from-MOPAC options

-------------------------------------------------------------

trarot : create translational and rotational modes

submenu : enter subsystem menu

<return> : quit this menu

By typing xxx menu, you can display the menu xxx, and by typing
xxx hide, you can hide it again. In the following, the individual menus are
explained in detail.

5.3.1 Internal coordinates

In many cases, the user might be interested in a local vibration of the
molecule, like a stretching mode of a particular bond between two atoms,
or a valence angle bending. In the internal coordinate submenu which can
be displayed by typing pint menu, Akiradefine offers the following pos-
sibilities to select such modes:

str i j select a stretching mode between two atoms

bd i j k select a bending mode between three atoms

tor i j k l select a torsional mode between four atoms

oop i j k l select an out-of-plane mode, characterized by four atoms

br select a totally symmetric breathing mode of the molecule

brm select a mass-weighted totally symmetric breathing mode of the molecule

5.3.2 Symmetry coordinates

In some cases, also symmetry coordinates may be a good starting point for
the subspace iteration: Indeed, they sometimes completely determine the
vibrational modes.

sym : generate symmetry coordinates as basis vectors

spesym : generate normal modes for special symmetries

psym hide : hide symmetry coordinate options
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Some special cases are included with the spesym option, while general
symmetry coordinates for practically every point-group symmetry can be
constructed with the sym option. Note that in Akiradefine does not
check the symmetry, which the user has to specify manually. However,
giving a wrong input for the symmetry of your molecule will only result in
an empty set of symmetry coordinates.

All symmetry coordinates for the chosen irrep of a particular symmetry
will be put in a buffer, and may be selected from there as basis vectors in
the mode-tracking calculation (see section 5.3.6).

5.3.3 Cartesian coordinates

A very simple way to construct a guess for a normal coordinate is simply
to select a Cartesian nuclear coordinate. This might be useful if you want
to investigate all vibrations of a molecule in which a particular atom or a
set of atoms is involved. Since this is usually not very specific, especially
when a large number of cartesian coordinates is selected, we recommend
to use the genstart option (Sect. 5.2.6) or a similar procedure: With that
option, the calculation stops automatically after the first iteration (while it
has to be stopped manually after several iterations). After every iteration,
an output of the approximate normal modes is performed2. If you specified
several cartesian basis vectors as initial guesses, then the first iteration will
produce linear combinations of these basis vectors, which are already to
a certain extend adapted to the specific molecule. These might be much
better approximations for the normal modes you are looking for than the
cartesian basis vectors themselves, and the interesting linear combinations
can be selected as basis vectors in a second mode-tracking calculation.

at <i> : select all cartesian basis vectors for atom i

atx <i> : select cartesian x-basis vector for atom i

aty <i> : select cartesian y-basis vector for atom i

atz <i> : select cartesian z-basis vector for atom i

aatz : select all cartesian z-basis vectors

cfull : select all cartesian basis vectors

(full frequency analysis)

pcart hide : hide cartesian coordinate options

The command cfull can be used to specify a full frequency analysis.
In that case, all 3N cartesian normal modes will be taken as basis vectors.
The rigid motions will be removed by orthogonalization, so that only 3N−6
(for non-linear molecules) basis vectors are employed.

5.3.4 Normal coordinates from file

As mentioned earlier in this manual, results from cheap low-level calcu-
lations, like force-field, semiempiric, or small-basis set calculations might

2If not explicitly suppressed by the user.
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already be available for your molecule. For such cases, it is possible to sim-
ply read the output files of some molecular mechanics or quantum chemistry
programs as an input for Akira.

re <i> : read <i> basis vectors from file

resub <i> : read <i> basis vectors for subsystem from file

pfile hide : hide basis-vector-from-file options

re can be used to read normal modes from a file which has to be specified
later. It is also possible to use the resub command and read normal modes
for a subsystem. In that case, it is necessary to specify the number n of
atoms in this subsystem:

Enter No. of atoms in subsystem:

(the first <No.> atoms will be taken !!!)

It is always assumed that the first n atoms belong to the chosen subsys-
tem. General subsystems can be handled by the subsystem menu submenu,
Sect. 5.3.5. Next, Akiradefine will ask the user for the name of the file
which contains the normal modes to be read in as initial basis vectors,

Enter filename:

Then, the format of these basis vectors can be selected:

Select format of basis vectors

------------------------------

snf : SNF normal modes (massweighted MOPAC)

tmn : TURBOMOLE normal modes

tmb : Basis vectors in TURBOMOLE format

tmi : Internal coordinates in TURBOMOLE format

g98 : Gaussian98 normal modes

mop : MOPAC normal modes (not massweighted)

pcm : PCM normal modes (massweighted)

adf : ADF normal modes (not massweighted)

free : free format modes (not massweighted)

<return> : return to main menu

Akiradefine contains routines to read the following input formats:

• Snf - normal modes (massweighted Mopac style)

• Turbomole - normal modes

• Gaussian98 normal modes (Gaussian03 is also supported)
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• Mopac - normal modes

• PCModel - normal modes

• Adf - normal modes

• free format normal modes (one number per line, modes separated by
wavenumbers)

The modes read from file are stored in a buffer, from which they can be
selected as basis vectors for the Akira calculation (see section 5.3.6).

5.3.5 Subsystem menu

One of the possible applications of mode-tracking is to study vibrations of
a large molecule which are local in that sense that they are more or less
restricted to a certain subunit of the system. There may still be couplings
with motions of the rest of the molecule, but as a first approximation, only
the atoms of the subunit may be involved. In those cases, it might actually
be possible to find a small model for the full (super-)molecule, which only
consists of the subunit (plus a model for the rest of the molecule), and for
which a full frequency analysis is possible. Then these subsystem normal
modes can be used as a guess for the full molecule. Indeed, it might be
possible to identify several subunits. The subsystem menu allows to define
a number of subunits, and to read normal coordinates and wavenumbers for
them, which then are used as basis vectors for the full molecule.

Additionally, it is possible to combine the Hessians for these subsystems
and copy them to the corresponding blocks of the full Hessian, so that a
guess for the full molecule is obtained, which can be used for preconditioning
purposes. By typing submenu in the main basis vector menu, you get to the
subsystem menu:

====================================================

No. of subsystems specified so far: 0

====================================================

Select one of the following commands:

ns <i> <j> : create new subsystem, ranging from

atom <i> to <j>

rnm <i> : read normal modes for subsystem <i>

chs <i> : create Hessian for subsystem <i>

trarot <i> : create trarot-modes for subsystem <i>

n2fs <i> : copy modes for subsystem <i> to full system

showpr : show print options

c2fh <i> : copy Hessian for subsystem <i> to full Hessian

ints <i j r> : set interaction strength between blocks <i> and <j> to <r>

inta <r> : set interaction strength for all blocks to <r>
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whs : write (appr.) hessian to akira_control

for preconditioning purposes

cnm : create normal modes by diagonalization

of current full system (appr.) Hessian

cl : clear all subsystem entries

*,q : return to basis vector menu

In that menu, the following commands are possible:

ns <i j> define a new subsystem, ranging from atom i to atom j.

rnm <i> read normal modes from file for subsystem no. i. For possible
input formats, see Sect. 5.3.4.

chs <i> create Hessian for subsystem no. i from normal modes and wave-
numbers. Only possible if normal modes and wavenumbers have al-
ready been read.

trarot <i> create translational and rotational modes for subsystem no. i.
This option is useful when it can be assumed that modes of a super-
molecule can be described by out-of-phase translations or rotations
of different molecules within the supermolecule. These modes can
be constructed automatically, no preceeding subsystem calculation is
necessary.

n2fs <i> copy normal modes for subsystem i to set of normal modes for
full system.

showpr show print options (for normal modes, wavenumbers, and Hessians)

c2fh <i> copy Hessian for subsystem i to full Hessian. Only possible if
subsystem Hessian has been constructed before.

ints <i j r> artificially set the interaction strength, i.e., the off-diagonal
elements between blocks for subsystems i and j to the constant value
r. These blocks are otherwise always zero in the model Hessian for the
full molecule, so that no coupling exists between different subunits.

inta <r> artificially set the interaction strength for all off-diagonal blocks
(blocks between subsystems) to the constant value r. Like ints, this
command allows to empirically correct the model Hessian.

whs write the model Hessian for the full molecule to file akira control in
order to be able to use it for preconditioning purposes.

cnm create model normal coordinates by diagonalization of the model Hes-
sian for the full system.
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cl clear all subsystem entries

To keep an better overview over the subsystems, a table is shown with
the relevant atom numbers, the number of modes read, as well as informa-
tion about whether the normal modes have been copied to the full system
modes, whether the Hessian is created, and whether the Hessian is copied to
the full system. After leaving this menu, the modes which are either copied
from a subsystem to the full system, or which are created by diagonalization
of the model system hessian, will be stored in a buffer. From there, they
may be selected as basis vectors.

5.3.6 Other options

Further options which are available in the basis vector menu, are the fol-
lowing:

trarot create translational and rotational modes. For test purposes, they
might be included in the mode-tracking calculation.

cbv <i> copy vector i from buffer to set of selected basis vectors. Only
available if there are modes in buffer.

acbv copy all vectors in buffer to set of selected basis vectors. Only available
if there are modes in buffer.

ort orthogonalize basis vectors to translational and rotational modes. Only
available if basis vectors have been selected. Orthogonalization is
carried out automatically afterwards anyway, unless suppressed by
the user.

The following options are available for the set of selected basis vectors
(without preceeding “b”) or for the set of buffer vectors (with preceeding
“b”):

[b]disp display modes using Molden [14]

[b]c clear set of modes

[b]p print set of modes

[b]pm print set of mass-weighted modes

[b]g98 write G98 fake output of modes to file g98.out.it0 or g98.out.buf.
Is done automatically when using command [b]disp.

[b]xmol write Xmol fake output of modes to file xmol.XYZ.it0 or xmol.XYZ.buf.
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5.3.7 Restricting the Subspace

Under certain circumstances it may be helpful to restrict the search space
for the subspace iteration. Typical examples could be the restriction to
basis vectors within a certain irreducible representation or the exclusion of
exact normal modes found in a previous run. One restriction that is by
default always employed is that the basis vectors are kept orthogonal to
translational and rotational motions.

Other restrictions can be applied by specifying a set of orthogonal vectors
in the guess vector menu. Any vector that is available in the buffer (see
above) can be copied into the set of orthogonal vectors with the commands:

cov <i> copy vector i from buffer to set of orthogonal vectors. Only avail-
able if there are modes in buffer.

acov copy all vectors in buffer to set of orthogonal vectors. Only available
if there are modes in buffer.

If some vectors have been chosen for the orthogonal complement, their num-
ber will be displayed in the menu. Since it is sometimes easier to specify
the space in which the possible solutions should lie (instead of its orthogo-
nal complement), there is an additional menu appearing after quitting the
basis vector selection that allows the user to either keep the solution vectors
within the set of vectors specified in the “orthogonal subspace” selection,
or to keep them orthogonal to that set,

You have selected an additional set of vectors

to restrict the search space for the soluation

vectors. Do you want to ...

sub - keep the solution vectors within this set

(default)

ort - keep the solution orthogonal to this set

q - quit without using this set of vectors

If sub is chosen, akiradefine constructs the complementary space to the
one selected before and keeps the solution vectors orthogonal to that set.
Note that the orthogonal subset vectors are also orthogonalized to trans-
lational and rotational modes, as all basis vectors are per default kept or-
thogonal to these rigid modes. The orthogonal modes are written to the file
akira control.

5.4 Subspace iteration with Akira

The general procedure for a subspace iteration is outlined in the flow-chart
in Fig. 5.1. To request a subspace iteration with Akira simply call
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akira

without any further program options. These must be specified in the Akira
control file akira control and can be selected interactively in Akirade-
fine.

Akira writes an output file named akira.out, which contains interme-
diate data for every iteration. In particular, the following quantities are
reported:

• vector σ
i, Eq. (4.3)

• approximate Hessian matrix for subspace (Davidson matrix), H̃(m),i,
Eq. (4.5)

• approximate eigenvalues and eigenvectors of the Davidson matrix, ρi

and ui, Eq. (4.6)

• approximate wavenumbers calculated from the eigenvalues

• approximate normal modes, vi
s, Eq. (4.8)

• information about the root-homing procedure; three quantities are
calculated in order to select the eigenvector to be optimized from the
set of the vi

s:

– the unsigned difference between the eigenvalues of current iter-
ation and the eigenvalue(s) of the eigenvector(s) selected in the
last iteration

– the squared norm of the difference vector between the eigenvec-
tors in the current iteration and the eigenvector(s) selected in
the previous iteration.

– the unsigned overlap of the current eigenvectors and the eigen-
vector(s) selected in the previous iteration.

Note that the root-homing is necessary for all eigenvectors which shall
be optimized simultaneously. If the three criterions lead to different
eigenvectors, the overlap criterion will be used to determine the new
eigenvector(s) to be optimized.

• residuum vectors ri
s for all approximate eigenvectors vi

s, Eq. (4.7)

• convergence control parameters:

– norm of residuum vector(s) for selected eigenvector(s)

– change of residuum vector norm

– maximum component of the residuum vector
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– contribution of the last basis vector to the new approximate nor-
mal mode vector

• new Cartesian basis vector(s) bi+1, Eq. (4.9)

• intermediate results: wavenumbers, |r|, |rmax| and convergence status
for all approximate normal modes in the current iteration

Furthermore, the file wavenumbersis updated after each iteration, which
contains the wavenumberof residuum vector for each approximate normal
mode.

5.5 Restart facilities

The single-point data obtained for structures perturbed along the basis
vectors are stored in the file restart.akira. Besides the gradients for all
displaced structures, which enter Eq. (4.3), the energies, the equilibrium
structure and all perturbed structures are written to this file. The general
structure of the restart file is essentially the same as for the program pack-
age Snf (see introduction), with the difference that gradients and energies
are collected in groups for every basis vector, not in groups for Cartesian
displacements of a particular atom (as in Snf) or in groups for the normal
modes of the molecule. In earlier Akira versions, the number of basis-vector
entries in the restart file was equal to the number of degrees of freedom of
the molecule for convenience. In version 3.1.2, this was changed into the
number of basis modes present up to the current iteration. This was nec-
essary for the QM/MM interface of Akira, which allows to treat systems
with a huge number of degrees of freedom, in order to keep the size of the
restart file small.

The stepflag entries in the restart file determine which calculations have
to be done in a particular iteration step. Further restart information is
written in the program control file akira control in the following form:

$nnbm 3

1

1

1

This means that the current iteration is the third, and the three “1” entries
specify the number of basis vectors added in each iteration, i.e., there are
now three basis vectors, one of which was generated per iteration step.
This information allows — in combination with the stepflags — to restart
the calculation at every point of the subspace iteration, irrespectively of
the current process (single point calculations for perturbed structures or
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solution of the Davidson matrix eigenvalue problem/generation of new basis
vectors).

It is sometimes necessary or convenient to restart the calculation at an
earlier iteration. This is possible by introducing the additional keyword

$restartit n

in the file akira control, where n is the iteration number after which the
calculation should be restarted, i.e., restart information will only be used up
to iteration n. CAUTION: This will remove all previous raw data
from iteration n+1 on your restart file !!!
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Summary Akiradefine:

⇒ If you have performed a geometry optimization with Turbo-
mole, just type akiradefine in your working directory.

⇒ If you have used Gaussian for the optimization, create a
akira.com file (see Sect. 5.2.1) and then type akiradefine

in your working directory.

⇒ For Adf users: assure that you have a runscript named
adf.in in your working directory which contains all settings
used in the preceding geometry optimization.

⇒ Select the options in the menus (see Sect. 5.2 for details).

⇒ Note possible warnings in the output of Akiradefine.

⇒ For Turbomole users: If the symmetry mentioned in the
original control file is higher than C1, create a C1 MO file
by using Turbomole’s Define.

• Mandatory files for Akiradefine:
control, coord (Turbomole, Dalton) or akira.com

(Gaussian) or adf.in (Adf).

• Mandatory files and scripts for automatical generation of
Akira input files by Akiradefine:
$CIPROC/ELIGIBLE, choose nodes, mkrdcinput or
mkparainput

• Files created by Akiradefine:
restart, akira control, control.bak, DCINPUT,

USE NODES, MACHINES, mpi.sub
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Summary Akira:

⇒ Create the files USE NODES using the script choose nodes

(this is also done automatically by Akiradefine).

⇒ If necessary, stop all old Pvm demons and remove Pvm log-
files. This can be done by the clear pvm script.

⇒ Start the Akira calculation by typing akira in your working
directory, or, in order to prevent the Akira from crashing
when you log out, to send the command to the background
and to pipe the screen output to a file:
nohup akira > filename &

⇒ You may check the progress of the calculation via the sta-
tus file TMPdcstat, which can be constantly viewed by the
command dcmore.

• Mandatory files for Akira:
control, coord, restart, DCINPUT, akira control;
Turbomole, Dalton: basis[and auxbasis], mos [or
alpha, beta];
Gaussian: akira.com
Adf: adf.in
Pvm version: $CIPROC/ELIGIBLE, USE NODES

Mpi versions: MACHINES (for mpirun)

• Mandatory scripts for Akira:
choose nodes, ruptime

• Files created by Akira in the working directory:
TMPdcstat, fort.41, g98.out.itn, g98.out.bsn

• Files created by Akira in the log directory:
PREFIXdclog.XXXXXXX

• Files created by Pvm during the parallelized calculation:
pvml.<uid>, pvmd.<uid>

⇒ Note possible warnings in the output of Akira.
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5.6 Double-parallel runs

The maximum number of processors in the parallel machine is restricted
by the number of tracked vibrations (2 per vibration, if a 3-point central-
difference formula is used for numerical differentiation). Thus, it may be
desirable to run also the single-point calculations in parallel to exploit the
full capacity of a computer cluster. At present, this has only been tested
for the Akira—Adf interface on a PC cluster built from machines with 2
dual-core AMD Opteron processors (⇒ 4 processors) each, using the MPI
version of Akira. The Adf calculations were parallized employing PVM,
so any interference of the two parallel processes was avoided. To control the
parallel execution of the Adf jobs, the following lines were inserted at the
very beginning of the Adf input file adf.in:

/usr/bin/pvm << eor

quit

eor

echo ‘uname -n‘ > adfhosts

echo ‘uname -n‘ 4 > nodeinfo

export SCMSPAWNSCRIPT=$ADFBIN/adfs

export NSCM=4

Furthermore, it should be checked that the main Adf run is not started
as $ADFBIN/adf -n1 << eor, but as $ADFBIN/adf << eor by adf.in.
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A. First aid

Since parallel calculations on a computer cluster can be sensitive to dis-
turbances on the nodes (for example, a slave node might crash during the
calculation, or the installation of the quantum chemical program package
you chose for the distorted-structure calculations might be inappropriate or
deficient on one some nodes), it is possible that the Akira mode-tracking
calculation will crash. Due to the restart facilities provided by Akira,
this will in general not pose a serious problem. The following hints are
given assuming that the Pvm version of Akira is used: After executing
the clear_pvm script, you can restart the calculation by simply calling
choose_nodes and then akira in your working directory. All information
which has been collected from the slaves before the crash is stored in the
restart.akira file and will be used in the restarted calculation.

In order to know why the calculation crashed and to prevent it next
time, there are some files and directories which will help you.

• Akira distributes perturbed molecular structure single point calcula-
tions to the processors chosen in the file USE NODES. If you think that
there is one special slave node in your cluster which is causing the
calculation to crash, you can take this node out of your the ELIGI-
BLE file. No single-point calculations will be performed on this node
anymore. Of course, the calculation will also crash if there are no free
nodes available und thus no entries in the USE NODES file.

• Temporary directories are created in the TMPDIR/TMPxxxxx directories
(TMPDIR is specified in the DCINPUT file) on the slaves, which
contain the input and output files of the distorted-structure single-
point calculations. They will be removed by executing the clear_pvm
script.

• A logfile is generated for every slave process in the LOGDIR directory.
These logfiles can be used to get information about errors which occur
during the run of Akira in the master process and the slave processes.

• The file fort.41, which is created in the working directory (MYDIR),
can also be useful to get information about errors in the master process
and the slave processes.
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• To check for errors in the Pvm machine, the Pvm files pvml.<uid>

and pvmd.<uid> can be used.

Some error messages you might get, and possible remedies:

• Prints “Killed” when trying to start Akiradefine or Akira ⇒
check mxwrk in defs.h — this variable specifies the total memory
taken and might be too large for your machine. Lower the value of
mxwrk and recompile (make clean; make)



B. Parameter analysis: step size for numer-

ical differentiation

To determine an optimum step size for the numerical differentiation, we
carried out displacements of the atoms in the ethane molecule along the
lowest-frequency normal mode, and along one high-frequency mode, and
calculated the force constants as numerical derivatives of the analytical
gradients (BP86/TZVP). The resulting frequencies as a function of the step
size are displayed in Fig. B.1. Note that these issues have been discussed in
detail in Ref. [2].

Figure B.1: Vibrational wavenumbers in cm−1 as a function of the step
size for the numerical differentiation for the lowest-frequency (left) and a
high-frequency mode (right) of ethane. The analytical wavenumbers are
indicated by the dashed lines.
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From this figure it can be seen that it might be advantageous — though
the general recommendation is 0.01 — to increase the step size cstep to
values of up to 0.1 for low-frequency modes.
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H. Ågren, A. A. Auer, K. L. Bak, V. Bakken, O. Christiansen, S. Cori-
ani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hättig,
K. Hald, A. Halkier, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar,
R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer,
T. B. Pedersen, T. A. Ruden, A. Sanchez, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras.
DALTON, a molecular electronic structure program, Release 1.2, 2001.

63



64 BIBLIOGRAPHY

[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dap-
prich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian
03, Revision C.02. Gaussian, Inc., Wallingford, CT, 2004.

[12] Reinhart Ahlrichs, Michael Bär, Marco Häser, Hans Horn, Christoph
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