
MOVIPAC
Quantum Chemical Calculation of

Vibrational Spectra

Manual written by

Moritz P. Haag, Carmen Herrmann, Bernd A. Hess, Christoph
R. Jacob, Carsten Kind, Sandra Luber, Johannes Neugebauer,

Markus Reiher, Stephan Schenk, Thomas Weymuth

Laboratorium für Physikalische Chemie1, ETH Zurich,
Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland

Version 1.0.1
January 2013

1email: markus.reiher@phys.chem.ethz.ch

Copyright c© 1999 – 2013 The Reiher Research Group, Laboratory for Physical Chem-
istry, ETH Zurich.

Any use of this program that results in published material should cite the follow-
ing:
Thomas Weymuth, Moritz P. Haag, Karin Kiewisch, Sandra Luber, Stephan Schenk,
Christoph R. Jacob, Carmen Herrmann, Johannes Neugebauer, Markus Reiher. MoViPac:
Vibrational Spectroscopy with a Massively Parallelized, Robust and Inverse Meta-Program.
J. Comput. Chem., 33 (2012) 2186–2198.

The cover picture shows the molecular structure of the β-domain of rat metallothionein, alongside

with the corresponding Raman optical activity spectrum which has been calculated with MoViPac. The

structure contains 30 amino acid residues, resulting in a total of 411 atoms. 2466 individual quantum

chemical computations had to be performed in order to obtain the spectrum. This is the largest structure

for which such a spectrum has ever been computed; this was only possible because of the efficient

parallelization and restartability scheme of MoViPac (see also Ref. [2]).

Contents

1 Introduction 7
1.1 The program package Snf . 7
1.2 The program package Akira . 8
1.3 Key references . 10

1.3.1 Algorithms and programs: . 10
1.3.2 Studies of interesting model systems 13
1.3.3 Further references . 14

I Snf 17

2 Introduction 19

3 Quick start 21

4 Installation 23
4.1 Parallel versions . 23

4.1.1 MPI . 23
4.2 Installation of the binaries . 24
4.3 Further programs and scripts needed by Snf 25
4.4 Test suite . 26

5 Frequency analysis with Snf 27
5.1 Overview . 27
5.2 Preparations . 28

5.2.1 Turbomole . 28
5.2.2 Dalton . 29
5.2.3 Adf . 29
5.2.4 Gaussian . 31
5.2.5 Molpro . 31

5.3 Preparations for excited-state calculations 32
5.4 Snfdefine . 33
5.5 Snfdc . 38

3

4 CONTENTS

5.5.1 General input: DCINPUT . 38
5.5.2 Preparations for the MPI versions 39
5.5.3 Snfdc calculations . 39

5.6 Snf . 43

6 Snf options 45
6.1 Input Options . 45

6.1.1 Selection of input files . 45
6.1.2 Selection of isotopes . 46
6.1.3 Options for numerical derivatives 46
6.1.4 Spectrum settings . 47
6.1.5 Thermochemical settings . 47
6.1.6 Excited-state calculation menu . 47
6.1.7 Intensity-only mode . 47
6.1.8 Raman settings . 48
6.1.9 VROA settings . 48
6.1.10 External matrices settings . 48

6.2 Output options . 49
6.3 Additional keywords . 50

7 Visualization of results 53
7.1 Spectra plots . 53
7.2 Normal modes . 54

8 Thermochemistry 55

9 Cartesian Tensor Transfer Method 59

10 Localizing Normal Modes 61
10.1 General . 61
10.2 Installation . 61
10.3 Reading Results from Snf or Akira . 61
10.4 Assigning Normal Modes to Bands . 62
10.5 Localization of Normal Modes . 63
10.6 Coupling Constants . 64
10.7 Advanced Features . 64

11 Parameter studies 65
11.1 Dependence on the step size (cstep) . 65
11.2 Influence of the SCF parameters scfconv and GRID 68
11.3 Influence of the RI-approximation . 71
11.4 Basis set dependencies . 74

CONTENTS 5

11.5 Raman intensities . 76

12 Programmer’s guide 77
12.1 New interfaces . 77

12.1.1 General issues . 77
12.1.2 Steps to take . 77
12.1.3 Changes in the code . 78

13 Program history of Snf 81

14 Supported point groups 87

15 Program modes 89

16 Supported compilers 91

17 Elimination of non-vibrational modes 93
17.1 Determination of translational and rotational

fractions . 93
17.2 Elimination via projection operators . 95

18 Tools and scripts 97
18.1 Scripts helpful for running snfdc . 97
18.2 Graphical tools . 97

II Akira 101

19 Introduction 103

20 Quickstart 105

21 Installation and technical issues 107
21.1 Getting started . 107

21.1.1 General: the commands in the bin and scripts directory 107
21.1.2 The DCINPUT file . 108
21.1.3 Preparations for the MPI versions 109

21.2 Parallelization standards . 109
21.2.1 MPI . 110

21.3 Memory management and pre-processing 110
21.4 Monitoring Akira calculations . 110
21.5 Further programs and scripts needed by Akira 111

6 CONTENTS

22 Methodology 113
22.1 Subspace iteration techniques . 113

22.1.1 Davidson algorithm . 113
22.1.2 Preconditioning: The Davidson algorithm 115
22.1.3 The Jacobi–Davidson algorithm . 117
22.1.4 The Lanczos algorithm . 118
22.1.5 Details of the implementation . 119

22.2 Generation of displaced structures . 120
22.2.1 Displacements in units of length . 120
22.2.2 Calculation of second derivatives 120

23 Running the calculation 123
23.1 Preparations . 123

23.1.1 Structure optimization . 123
23.1.2 Electronically excited states . 123
23.1.3 Molecular symmetry . 124

23.2 Akiradefine: setting up the calculation 124
23.2.1 Program-specific input . 125
23.2.2 Program selection . 128
23.2.3 Convergence criteria menu . 130
23.2.4 Output menu . 131
23.2.5 Hessian guess and rigid modes . 132
23.2.6 Root homing and preconditioning 132
23.2.7 Additional keywords . 134
23.2.8 Data collector options . 135

23.3 Akiradefine: Setting up the initial guess 135
23.3.1 Internal coordinates . 136
23.3.2 Symmetry coordinates . 136
23.3.3 Cartesian coordinates . 137
23.3.4 Normal coordinates from file . 137
23.3.5 Subsystem menu . 139
23.3.6 Other options . 141
23.3.7 Restricting the Subspace . 141

23.4 Subspace iteration with Akira . 142
23.5 Output files . 142
23.6 Restart facilities . 145
23.7 Double-parallel runs . 148

24 Parameter analysis 149

25 Program history of Akira 151

1. Introduction

The aim of this manual is to give a description of the installation, the usage, and the
performance of the vibrational spectra calculations using MoViPac. This package mainly
includes the programs Snf, used for the parallel computation of (conventional) vibrational
spectra, and Akira, which implements the techniques of Mode- and Intensity-Tracking.

For the underlying theory of vibrational spectrocopy we refer to the literature [3–7].
This software is under constant development.

If you applay the MoViPac software please make a proper reference to
Thomas Weymuth, Moritz P. Haag, Karin Kiewisch, Sandra Luber, Stephan Schenk,
Christoph R. Jacob, Carmen Herrmann, Johannes Neugebauer, Markus Reiher. MoViPac:
Vibrational Spectroscopy with a Massively Parallelized, Robust and Inverse Meta-Program.
J. Comput. Chem., 33 (2012) 2186–2198,
and to the specific paper that describes the feature(s) that you are using in order to
make your work reproducable. The following authors have contributed to the MoViPac
software: Noah S. Bieler, Moritz P. Haag, Carmen Herrmann, Bernd A. Hess, Christoph
R. Jacob, Karin Kiewisch, Carsten Kind, Sandra Luber, Johannes Neugebauer, Markus
Reiher, Stephan Schenk, Thomas Weymuth.

1.1 The program package Snf

The program package Snf has been developed [3] for the calculation of vibrational spec-
tra. Infrared, Raman, and vibrational Raman optical activity (VROA) spectra can be
obtained using the harmonic approximation for the frequencies and the double harmonic
approximation for the intensities. Vibrational frequencies are determined using numerical
differentiation of analytical gradients of the total electronic energy, while infrared, Raman
and VROA intensities are obtained by numerical differentiation of dipole moments and
(generalized) polarizability tensor components with respect to Cartesian nuclear coordi-
nates.

Snf takes maximum advantage of the molecular point group1. By using the data col-
lector Snfdc, all required single point calculations can be performed using coarse-grained

1Strictly speaking, we are concerned with the molecular symmetry groups [8–10]. However, as men-
tioned in [10, p. 16] the symmetry group of a molecule is usually referred to as the point group and thus,
we shall use this name in the following

7

8 CHAPTER 1. INTRODUCTION

parallelization (different MPI versions can be applied) with automatic load-balancing on
almost any Unix-compatible operating system.

Many different quantum chemical methods can be applied in order to perform the
single point calculations, because input and output files are used as interfaces between
Snf and different quantum chemical programs. Only their output files are processed
to obtain the data, i.e., gradients of the total electronic energy, dipole moments, and
polarizabilities. Existing interfaces allow one to use the following electronic-structure
programs and methods: 2

• Turbomole [11]: SCF (HF), (RI-)DFT, (RI-)MP2, RICC2

• Dalton [12]: SCF (HF), MCSCF, DFT, CCS, CCSD, CC2

• Gaussian [13]: DFT (other methods possible, but not tested)

• Adf [14]: DFT

• Molpro [15]: test interface for MCSCF calculations

A scheme of the program structure is shown in Fig. 1.1. Due to the numerical differenti-
ation it is possible to use static as well as dynamic (frequency-dependent) polarizabilities
for the calculation of the Raman intensities. By increasing the number of grid points for
the numerical derivatives, it is possible to achieve an accurate error control.

Snf diagonalizes the Hessian and determines the translational and rotational contri-
butions to the normal modes. In a second evaluation of the data, non-vibrational contri-
butions to the matrix containing the second derivatives are projected off. The calculation
is completed by a detailed thermochemical analysis, which takes electronic contributions
into account (spin-only values are considered).

The preparation of the input files and the selection of most program options can be
done by using the interactive program Snfdefine. The results of the calculations can
easily be displayed since spectra plots are automatically created using Gnuplot [16], and
the normal modes can be written to files in Gaussian98 [17] and Mopac [18] format,
such that tools like Molden [19] or Jmol [20] may be utilized to visualize them.

1.2 The program package Akira

The Akira program [21] implements the Mode-Tracking technique, which allows you
to target normal modes directly and circumvents the computer-time demanding calcula-
tion of all normal modes. However, though we have put much effort into setting up a

2Note that VROA calculations are currently only possible for Dalton with HF/DFT, as well as with
a special version of Turbomole, which is, however, not open to the public. Raman intensities are not
available for MP2 methods. However, Snf supports the calculation of MP2 gradients and dipole moments
in combination with a SOPPA calculation of polarizabilities using Dalton.

1.2. THE PROGRAM PACKAGE AKIRA 9

DALTON

TURBOMOLE

ADF

MOLPRO

GAUSSIAN

SNF: symmetry−exploiting evaluation
of raw data for vibrational spectra

SNFDC:

restart file

raw data collector
(parallel [PVM, MPI, LAM] or serial)

ou
tp

ut
 fi

le
s

providing energy gradients)

(external quantum chemistry software

Figure 1.1: Hierarchical structure of programs.

computer program which is almost a black box code, it does not replace thinking about
the particular problem to be solved and requires a basic understanding of vibrational
analyses in general (in order to gain this, the reader is referred to the literature below and
references cited therein). Therefore, when you have installed the program, our advice is
to start with some small toy examples in order to learn about how the algorithm works
(some test examples come with the package). In general, Mode-Tracking is well suited
in cases of

1. very large molecules for which a complete calculation of the spectrum is not feasible,

2. standard systems if only limited computer time is available so that a complete
calculation cannot be carried out, and

3. smaller systems in combination with highly accurate ab initio calculations.

The development of the program Akira started in the Theoretical Chemistry depart-
ment at the University of Erlangen–Nuremberg for an efficient calculation of vibrational
frequencies and normal modes. The Mode-Tracking protocol developed for and used in
Akira allows the specific calculation of characteristic normal modes as introduced in
Ref. [21] (see also [22]), while normal frequency analyses always determine the full set of
normal modes and frequencies of a molecule. This is usually much more information than

10 CHAPTER 1. INTRODUCTION

required, since in many cases only a small subset of characteristic vibrations is desired
and necessary for comparison to or prediction of experimental data.

Akira originated in parts from the vibrational spectroscopy program package Snf of
the Theoretical Chemistry Group at the University of Erlangen–Nuremberg. The original
Snf package aims at the parallelized calculation of complete vibrational spectra within
the double harmonic approximation (Snf [3]).

Akira follows a different strategy for the determination of vibrational normal modes
involving predefined (collective) motions of the atoms in a molecule. These motions (=
cartesian distortions) have to be selected by the user, and the algorithm applied in Akira
will determine all normal modes of vibrations which involve these characteristic motions.
Since the creation of the initial (guess) vibration is the most delicate step for the user,
we have created a setup tool for this purpose:

The setup tool Akiradefine features several modules to create initial motions, either
as Cartesian or internal coordinates, or from lower-level approximations like semiempirical
models or force field calculations. Furthermore it is possible to use normal modes of former
Snf or Turbomole calculations as an initial guess for the desired normal mode, so that
calculations with smaller basis sets can be applied as initial guesses for the mode-tracking
with a larger basis set. Another possibility is to use normal modes for a sub-system of
the molecule as a guess for the normal mode of the complete molecule.

Akira uses subspace iteration techniques in order to find only those roots of the
Hessian Matrix whose eigenvectors show the largest overlap with the initial guess vectors.
Davidson- [23], Jacobi-Davidson- [24], and Lanczos-type [25] diagonalization schemes can
be selected for this purpose.

1.3 Key references

Many details of the implementation of MoViPac and the underlying theory as well
as applications are available in the literature. The following list gives an overview of
references for selected topics:

1.3.1 Algorithms and programs:

• MoViPac:
Thomas Weymuth, Moritz P. Haag, Karin Kiewisch, Sandra Luber, Stephan Schenk,
Christoph R. Jacob, Carmen Herrmann, Johannes Neugebauer, Markus Reiher.
MoViPac: Vibrational Spectroscopy with a Massively Parallelized, Robust and
Inverse Meta-Program. J. Comput. Chem., 33 (2012) 2186–2198.

• Snf, theory of infrared and Raman spectroscopy:
J. Neugebauer, M. Reiher, C. Kind, B. A. Hess. Quantum chemical calculation

1.3. KEY REFERENCES 11

Figure 1.2: Hierarchical structure of the mode-tracking program Akira.

CASSCF
CCSD,

DFT,CC2,
HF,MP2,

SNF: TURBO−
MOLE:

DFT
HF,

G98:

HF,MP2,

DFT,
etc.

MM3,
PCM:

MMX,
MMFF94,

Amber

MOPAC:

PM3,
AM1,

MINDO

interface 2

URBOMOLET DALTON

ADF

data evaluation
data collector and

AKIRA

interface 1

su
b

sp
ac

e
it

er
at

io
n

p
re

p
ar

at
io

n
 o

f

setup tool, preparation of basis modes and preconditioner

subsystem modes

internal coordinates,

Cartesian coordinates,
symmetry coordinates,

AKIRADEFINE:

CCSDCC2
RIDFT

DFTMP2HF CAS
SCFRIMP2

MP2HF

KIRADEFINEA

in
it

ia
l g

u
es

s

AS ABOVE: ALL ELECTRONIC STRUCTURE METHODS
FOR WHICH ANALYTIC GRADIENTS ARE AVAILABLE

AUSSIANG

AS ABOVE: ALL ELECTRONIC STRUCTURE METHODS

FOR WHICH ANALYTIC GRADIENTS ARE AVAILABLE

12 CHAPTER 1. INTRODUCTION

of vibrational spectra of large molecules—Raman and IR spectra for Buckminster-
fullerene. J. Comput. Chem., 23(9) (2002) 895–910.

• Akira, Mode-Tracking:
M. Reiher, J. Neugebauer. A mode-selective quantum chemical method for tracking
molecular vibrations applied to functionalized carbon nanotubes. J. Chem. Phys.,
118(4) (2003) 1634–1641.

• QM/MM vibrational mode tracking:
C. Herrmann, J. Neugebauer, M. Reiher. QM/MM vibrational mode tracking. J.
Comput. Chem., 29(14) (2008) 2460–2470.

• LocVib, localization of normal modes:
Christoph R. Jacob, Markus Reiher. Localizing normal modes in large molecules.
J. Chem. Phys., 130 (2009) 084106.

• CTTM:
N. S. Bieler, M. P. Haag, C. R. Jacob, M. Reiher. Analysis of the Cartesian Tensor
Transfer Method for Calculating Vibrational Spectra of Polypeptides. J. Chem.
Theory Comput., 7 (2011) 1867–1881.

• Infrared Intensity-Tracking:
Sandra Luber, Johannes Neugebauer, Markus Reiher. Intensity tracking for the-
oretical infrared spectroscopy of large molecules. J. Chem. Phys., 130(6) (2009)
064105.

• Raman and ROA Intensity-Tracking:
Sandra Luber, Markus Reiher. Intensity-carrying modes in raman and raman optical
activity spectroscopy. ChemPhysChem, 10 (2009) 2049–2057.

• resonance Raman Intensity-Tracking:
K. Kiewisch, J. Neugebauer, M. Reiher. Selective calculation of high-intensity vi-
brations in molecular resonance Raman spectra. J. Chem. Phys., 129(20) (2008)
204103.

• general review of theoretical vibrational spectroscopy for large molecules:
C. Herrmann, M. Reiher. First-principles approach to vibrational spectroscopy of
biomolecules. Top. Curr. Chem., 268 (2007) 85–132.

• review on Intensity-Tracking:
Karin Kiewisch, Sandra Luber, Johannes Neugebauer, Markus Reiher. Intensity
tracking for vibrational spectra of large molecules. CHIMIA, 63 (2009) 270–274.

1.3. KEY REFERENCES 13

• review of methods for the direct determination of vibrational signatures
(cf., Mode-Tracking) in complex systems:
C. Herrmann, J. Neugebauer, M. Reiher. Finding a needle in a haystack: Direct
determination of vibrational signatures in complex systems. New J. Chem., 31(6)
(2007) 818–831.

1.3.2 Studies of interesting model systems

• vibrational contribution to the entropy change associated with the low-
to high-spin transition in iron complexes:
G. Brehm, M. Reiher, S. Schneider. Estimation of the vibrational contribution to the
entropy change associated with the low- to high-spin transition in Fe(phen)2(NCS)2

complexes: Results obtained by IR and Raman spectroscopy and DFT calculations.
J. Phys. Chem. A, 106(50) (2002) 12024–12034.

• fluorescence kinetics of aqueous solutions of tetracycline:
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, M. Towrie. Fluo-
rescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+

and Ca2+. Photochem. Photobiol. Sci., 2(11) (2003) 1107–1117.

• IR and Raman spectra of tetracycline and derivatives:
C. F. Leypold, M. Reiher, G. Brehm, M. O. Schmitt, S. Schneider, P. Matousek,
M. Towrie. Tetracycline and derivatives—assignment of IR and Raman spectra via
DFT calculations. Phys. Chem. Chem. Phys., 5(6) (2003) 1149–1157.

• chirality induced switch in hydrogen-bond topology:
T. B. Adler, N. Borho, M. Reiher, M. A. Suhm. Chirality-induced switch in hydrogen-
bond topology: Tetrameric methyl lactate clusters in the gas phase. Angew. Chem.,
Int. Ed., 45(21) (2006) 3440–3445.

• IR and Raman spectroscopical investigation of the low- to high-spin tran-
sition in novel iron complexes:
G. Brehm, M. Reiher, B. Le Guennic, M. Leibold, S. Schindler, F. W. Heine-
mann, S. Schneider. Investigation of the low-spin to high-spin transition in a novel
[Fe(pmea)(NCS)2] complex by IR and Raman spectroscopy and DFT calculations.
J. Raman Spectrosc., 37(1–3) (2006) 108–122.

• importance of backbone angles versus amino acid configurations in pep-
tide ROA:
C. Herrmann, K. Ruud, M. Reiher. Importance of backbone angles versus amino
acid configurations in peptide vibrational Raman optical activity spectra. Chem.
Phys., 343(2–3) (2008) 200–209.

14 CHAPTER 1. INTRODUCTION

• VROA signatures of tryptophan side chains:
C. R. Jacob, S. Luber, M. Reiher. Calculated Raman optical activity signatures of
tryptophan side chains. ChemPhysChem, 9(15) (2008) 2177–2180.

• VROA spectra of chiral transition metal complexes:
S. Luber, M. Reiher. Raman optical activity spectra of chiral transition metal
complexes. Chem. Phys., 346(1–3) (2008) 212–223.
Sandra Luber, Markus Reiher. Prediction of raman optical activity spectra of chiral
3-acetylcamphorato-cobalt complexes. ChemPhysChem, 11 (2010) 1876–1887

• VROA signatures of α- and 310-helices:
Christoph R. Jacob, Sandra Luber, Markus Reiher. Understanding the Signatures
of Secondary-Structure Elements in Proteins with Raman Optical Activity Spec-
troscopy. Chem. Eur. J., 15 (2009) 13491–13508.

• VROA signatures of β-turns:
Thomas Weymuth, Christoph R. Jacob, Markus Reiher. Identifying Protein β-Turns
with Vibrational Raman Optical Activity. ChemPhysChem, 12 (2011) 1165–1175.

• VROA spectrum of the β-domain of rat metallothionein:
S. Luber, M. Reiher. Theoretical Raman Optical Activity Study of the β Domain
of Rat Metallothionein. J. Phys. Chem. B, 114 (2010) 1057–1063.

• Calculated ROA spectra of 1,6-anhydro-β-d-glucopyranose:
Sandra Luber, Markus Reiher. Calculated raman optical activity spectra of 1,6-
anhydro--d-glucopyranose. J. Phys. Chem. A, 113 (2009) 8268–8277.

1.3.3 Further references

• benchmark and methods (DFT, CC, MCSCF, . . .) comparison for Ra-
man intensities from static and dynamic polarizabilities:
J. Neugebauer, M. Reiher, B. A. Hess. Coupled-cluster Raman intensities: Assess-
ment and comparison with multiconfiguration and density functional methods. J.
Chem. Phys., 117(19) (2002) 8623–8633.

• methodological and benchmark study on vibrational Raman optical ac-
tivity:
M. Reiher, V. Liégeois, K. Ruud. Basis set and density functional dependence of
vibrational Raman optical activity calculations. J. Phys. Chem. A, 109(33) (2005)
7567–7574.

• role of anharmonicity contributions:
J. Neugebauer, B. A. Hess. Fundamental vibrational frequencies of small polyatomic

1.3. KEY REFERENCES 15

molecules from density-functional calculations and vibrational perturbation theory.
J. Chem. Phys., 118(16) (2003) 7215–7225.

• theoretical Raman scattering cross sections compared to experiment, er-
ror cancellation in harmonic frequencies obtained with the BP86 exchnage–
correlation functional:
M. Reiher, G. Brehm, S. Schneider. Assignment of vibrational spectra of 1,10-
phenanthroline by comparison with frequencies and Raman intensities from density
functional calculations. J. Phys. Chem. A, 108(5) (2004) 734–742.

• intensities for selected vibrations of large systems:
M. Reiher, J. Neugebauer, B. A. Hess. Quantum chemical calculation of Raman
intensities for large molecules: The photoisomerization of [{Fe‘S4’(PR3)}2(N2H2)]
(‘S4’2− = 1,2-bis(2-mercaptophenylthio)-ethane(2−)). Z. Phys. Chem., 217(2) (2003)
91–103.

• resonance Raman calculations, excited-state frequencies:
J. Neugebauer, B. A. Hess. Resonance Raman spectra of uracil based on Kramers–
Kronig relations using time-dependent density functional calculations and multiref-
erence perturbation theory. J. Chem. Phys., 120(24) (2004) 11564–11577.

• Mode-Tracking for a molecular subsystem:
J. Neugebauer, M. Reiher. Mode tracking of preselected vibrations of one-dimensional
molecular wires. J. Phys. Chem. A, 108(11) (2004) 2053–2061. J. Neugebauer,
M. Reiher. Vibrational center–ligand couplings in transition metal complexes. J.
Comput. Chem., 25(4) (2004) 587–597.

• convergence analysis of the Mode-Tracking algorithm (systematic com-
parison of inital guesses, preconditioners, near-degeneracies):
M. Reiher, J. Neugebauer. Convergence characteristics and efficiency of mode-
tracking calculations on pre-selected molecular vibrations. Phys. Chem. Chem.
Phys., 6(19) (2004) 4621–4629.

• comment on gradient-based direct normal-mode analysis:
M. Reiher, J. Neugebauer. Comment on “Gradient-based direct normal-mode anal-
ysis” [J. Chem. Phys. 122, 184106 (2005)]. J. Chem. Phys., 123(11) (2005) 117101.

• theoretical VROA applied to large systems:
C. Herrmann, K. Ruud, M. Reiher. Can Raman optical activity separate axial from
local chirality? A theoretical study of helical deca-alanine. ChemPhysChem, 7(10)
(2006) 2189–2196.

• Mode-Tracking for adsorbates on surfaces, harmonic approximation for
partially relaxed structures:

16 CHAPTER 1. INTRODUCTION

C. Herrmann, M. Reiher. Direct targeting of adsorbate vibrations with mode-
tracking. Surf. Sci., 600(9) (2006) 1891–1900.

• high-performance Raman applications for large molecules:
C. Herrmann, J. Neugebauer, M. Presselt, U. Uhlemann, M. Schmitt, S. Rau,
J. Popp, M. Reiher. The First photoexcitation step of ruthenium-based models
for artificial photosynthesis highlighted by resonance Raman spectroscopy. J. Phys.
Chem. B, 111(21) (2007) 6078–6087.

• relevance of the electric-dipole–electric-quadrupole contribution to VROA
spectra:
S. Luber, C. Herrmann, M. Reiher. Relevance of the electric-dipole–electric-quadrupole
contribution to Raman optical activity spectra. J. Phys. Chem. B, 112(7) (2008)
2218–2232.

• Analysis of secondary structure effects in terms of localized modes:
Christoph R. Jacob, Sandra Luber, Markus Reiher. Analysis of Secondary Struc-
ture Effects on the IR and Raman Spectra of Polypeptides in Terms of Localized
Vibrations. J. Phys. Chem. B, 113 (2009) 6558–6573.

• Predicting extended amide III frequencies with localized vibrations:
Thomas Weymuth, Christoph R. Jacob, Markus Reiher. A Local-Mode Model for
Understanding the Dependence of the Extended Amide III Vibrations on Protein
Secondary Structure. J. Phys. Chem. B, 114 (2010) 10649–10660.

• Enhancement and de-enhancement effects in resonance ROA:
Sandra Luber, Johannes Neugebauer, Markus Reiher. Enhancement and de-enhancement
effects in vibrational resonance raman optical activity. J. Chem. Phys., 132(4)
(2010) 044113.

Part I

Snf

17

2. Introduction

This part of the manual covers the program Snf. It is organized as follows: Sect. 3
gives a short introduction to the most relevant issues for practical applications of Snf.
In Sect. 4, a description of the installation of Snf is given, and the requirements for
the parallelization are explained. Sect. 5 deals with usage of the programs; all parts are
explained in detail, starting at the preparation of the input files with Snfdefine and
ending with the evaluation of the data collected by Snfdc with Snf. Sect. 6 contains
information about all possible keywords for Snf and their meaning. In Sect. 7, the
visualization of the results obtained with Snf is explained. Sect. 8 outlines details of the
implementations of thermochemistry, and in Sect. 11, the influence of step size, basis sets,
SCF convergence, and grid type on the results of an Snf run is discussed. The different
sections at the end concern the program history (chapter 13), the supported point groups
(chapter 14), program modes (chapter 15), and compilers (chapter 16). Moreover, details
of the elimination of vibrational and rotational modes can be found in chapter 17. Finally,
chapter 18 presents an overview of the tools which are provided with the Snf Package.

Note that this program represents experimental code that is under constant devel-
opment. No guarantees of any kind are provided, and the authors do not accept any
responsibilities for the performance of the code or the correctness of the results.

19

20 CHAPTER 2. INTRODUCTION

3. Quick start

This section provides a short summary of the most relevant practical aspects of Snf. For
a detailed discussion of these issues, see the next chapters.

Installation

To install Snf, you need the following steps:

• read this manual

• unpack: tar -xvjf snf-4.2.1.tar.bz2

• change to subdirectory: cd snf-4.2.1

• set up build environment: autoreconf -i -v

• configure package: ./configure --prefix=PREFIX_DIR --with-mpi

• compile package: make

• install binaries to PREFIX_DIR: make install

• clean up installation process: make clean

PREFIX_DIR denotes the directory where the Snf binaries are installed to. The path
to this directory needs to be assigned to the environment variable SNF_PATH. Moreover,
SNF_PATH/bin needs to be added to the environment variable PATH.

Checklist

Before running Snf, assure that the Snf environment is properly set up, i.e., that

• the environment variable \$SNF_PATH is set to the SNF directory where the binaries
you want to test are stored (in \$SNF_PATH/bin),

• your are able to log in on all nodes under their full names (e.g.,
yourmachine.somewhere.org and under any shortcut names you want to use (e.g.,
yourmachine) without having to enter any passwords or confirmations,

21

22 CHAPTER 3. QUICK START

• the executables of the quantum chemistry programs needed for the slave jobs, i.e.,
Turbomole, Dalton, Adf, Gaussian, or Molpro, are available on every slave
node directly after opening a shell there. If a special path ”path/to/executable”
is to be used, it needs to be defined in the DCINPUT file of the working directory as
”PROGDIR path/to/

executable”,

• the script mkdcinput (stored in \$SNF_PATH/scripts) is included in your \$PATH.

To apply the Cartesian Tensor Transfer Method (CTTM) the PyVib2 library devel-
oped by Maxim Fedorovsky (http://pyvib2.sourceforge.net) has to be installed. The path
to this library has to be added to $PYTHONPATH or the file cttm.py in the bin directory
has to be changed accordingly.

Essential steps

In order to calculate a vibrational spectrum with Snf, you should proceed as follows:

1. Assure that all necessary input files are present in your working directory. Which
input files are required depends on the quantum chemical program package to be
used for the single-point calculations (see Sect. 5.2).

2. Run snfdefine in order to set up the calculation. Snf settings are written to
snf_control (see Sect. 5.4).

3. Type snfdc in order to start the parallel evaluation of molecular gradients and
properties for the distorted structures. These data will be written to the file restart
(see Sect. 5.5).

4. Type snf in order to evaluate the raw data produced by snfdc. The output is
contained in snf.out (see Sect. 5.6).

4. Installation

The package Snf was developed for large-scale numerical calculations of vibrational fre-
quencies, which require hundreds of calculations for displaced structures. It is therefore
intended to be used in a parallel environment, and the correct setup of such a parallel
environment is thus a prerequisite for installing Snf. This makes the installation process
for Snf somewhat more involved, although much effort was made to simplify this step.
The different parallelization standards which can be used with Snf are described in the
following section.

Since version 4.0.0, Snf also includes a serial version which allows new Snf users to
get acquainted with the Snf machinery under “simplified” conditions, or to run Snf on
single-processor machines. This version is automatically installed if you do not activate
any of the parallelization methods below.

4.1 Parallel versions

Snf may run either serially where all calculations are performed successively on the same
processor or in parallel. In order to use the parallelized version of the data collector
in Snf, it is necessary to provide the software for one of the following parallelization
standards.

4.1.1 MPI

MPI has evolved over time to be the de-facto standard for parallelizing applications.
Different implementations of the MPI standard are available. OpenMPI, MPICH2, and
LAM-MPI, resp., may be obtained from
http://www.open-mpi.org,
http://www-unix.mcs.anl.gov/mpi/mpich2, or
http://www.lam-mpi.org,
respectively. We use OpenMPI for development and, therefore, recommend its usage. Snf
will look for an MPI Fortran77 compiler (like mpif77) and will use it for compilation.

To enable MPI support, you have to set the --with-mpi flag when running the
configure script (see Sect. 4.2).

23

24 CHAPTER 4. INSTALLATION

4.2 Installation of the binaries

Snf comes as a source code tar-ball. To install it, you first need to unpack the archive
using

tar -xvjf snf-4.2.1.tar.bz2

Next, change to the unpacked directory and set up the build environment using

autoreconf -i -v.

Next, execute the configure script:

./configure --prefix PREFIX_DIR.

A more detailed description of this script is given below. After the configuration has
finished, compile the sources using the make command, and install the binaries to the
directory PREFIX_DIR using make install. Finally, you can clean up the installation
process by typing make clean.

The configure script allows you to adjust the installation according to your needs.
It may also be helpful to look at the output of ./configure --help to get a a list of
supported options and influential environment variables. To enable parallel calculations,
you need to give the appropriate option to configure. Use --with-mpi to enable MPI
support. To change the default Fortran compiler to, e.g., ifort run configure as

./configure FC=ifort F77=ifort

where FC is the Fortran90 compiler used for Snf and Snfdefine, whereas F77 is the
Fortran77 compiler used for Snfdc. Using scp for file transfer is usually much faster
than the intrinsic methods provided by the parallel machinery. However, this requires
that scp does not ask for a password if called from within a program. To enable scp
transfers, run

./configure --with-scp

The configure script searches for system BLAS and LAPACK libraries. To use a specific
version, run

./configure --with-blas=<linker flags for linking to BLAS>

and/or

./configure --with-lapack=<linker flags for linking to LAPACK>.

If you have problems with the system libraries, you can use

4.3. FURTHER PROGRAMS AND SCRIPTS NEEDED BY SNF 25

./configure --without-blas

and/or

./configure --without-lapack

to enforce usage of the routines provided by Snf. To build the specplot utility (see
Sect, 18.2), run

./configure --enable-specplot.

The entire build system makes use of autoconf and automake. You need at least
automake-1.11 for the non-recursive build in src/ to succeed. Earlier versions do not
correctly support Fortran in this respect. If you want to change anything inside a Makefile,
make the changes to Makefile.am. All other changes will be lost since Makefile.in and
Makefile are autogenerated. Similarily, aclocal.m4 is autogenerated. If you change
configure.ac or any Makefile.am or any M4 source, run autoreconf -i -v afterwards
to update the build system.

One can run into problems with the installation if the environment variable TMPDIR is
set to a non-existing directory. configure does need to create certain temporary files and
directories. By default, this is done in /tmp. However, if TMPDIR is set, files are created in
the directory indicated by $TMPDIR. Thus, if you have problems with configure aborting
because it is unable to create temporary files you may try to unset TMPDIR. In bash this
is done with unset TMPDIR.

If you want to make a distribution, run simply make dist. This, of course, requires
that configure was run before. To make sure that everything compiles and packs fine,
run make distcheck.

4.3 Further programs and scripts needed by Snf

In order to perform the single point calculations, one of the supported electronic-structure
programs must be available on every node in the parallel machinery in $PATH.

Furthermore, the scripts from the scripts subdirectory of the Snf installation direc-
tory must be available in $PATH. The script choose_nodes also requires the file ELIGIBLE

in the directory $CIPROC, which contains the names of computers available and their
numbers of processors (see Sect. 5.5). An example file is provided with the Snf package.
The variable \$CIPROC must be set by the user. choose_nodes also requires the ruptime

command from the Linux Netkit (rwho). See, however, Section 5.5 for how to circum-
vent the usage of ruptime and ELIGIBLE. For the automatic generation of spectra plots,
gnuplot must also be present in $PATH.

The variable $SNF_PATH should be set to the Snf home directory, so that executables
can be taken from $SNF_PATH/bin.

26 CHAPTER 4. INSTALLATION

4.4 Test suite

Starting from version 4.0.0, a test script, $SNF_PATH/examples/snftest, is available
which runs Snf test jobs and controls the results automatically.

If invoked as $SNF_PATH/examples/snftest all, this script will run a series of test
jobs using all quantum chemistry programs for which interfaces are available (except
for Gaussian98, which may be tested separately). It can be run with one or sev-
eral of the arguments turbomole, dalton, adf, gaussian or molpro, or also with
names of test directories such as turbomole/ridft/ir_raman, in order to restrict the
test to specific programs or test jobs only. It will run the jobs in the test subdirec-
tories of the directory $SNF_TESTDIR, so this path should be set accordingly (usually
to $SNF_PATH/examples/snftest). snftest features an automatic check of the re-
sults of each test run, which is performed by calling the script checkresults. Infor-
mation on whether (and which) test jobs failed is written to the screen and to the file
$SNF_TESTDIR/snftest.log.

5. Frequency analysis with Snf

The frequency analysis and the calculation of vibrational spectra using Snf consists of
three steps, which are described in Sects. 5.4, 5.5, and 5.6. The following two sections
give an overview of the whole procedure and the preparations necessary before starting
the calculation.

5.1 Overview

The first step in the parallelized calculation of vibrational spectra is the preparation of
the input files. Therefore, it is necessary to copy master input files for the single point
calculations into the directory which serves as the working directory for the calculation.
These input files are modified by the preparation tool Snfdefine, which also creates a
restart file for the frequency analysis and the additional input file snf_control. The
latter contains general program and output control flags. The generic names of the input
files needed for the different electronic structure programs are:

• Turbomole: control, coord, basis, mos or (alpha, beta) [, auxbasis]

• Dalton: molecule.dal, molecule.mol

• Adf: adf.in

• Gaussian: gaussian.com

• Molpro: molpro.in

A detailed description follows in Section 5.2.
The next step, the most time-consuming part, is the parallelized calculation of gradi-

ents of the total electronic energy, dipole moments, and polarizabilities for each distorted
molecular structure. These calculations have to be performed in C1 symmetry since the
distortions destroy the molecular symmetry. The calculations are done by the data col-
lector Snfdc, which distributes the single point calculations to all processors available.
The data is stored in the restart file.

When the single point calculations are finished, the data is evaluated by Snf, which
creates the output file snf.out containing the vibrational frequencies, the infrared and
Raman intensities, the thermochemical data, the normal modes and other data depending

27

28 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

on the output control flags. Additional output files can be generated for a graphical
representation of the spectra and the normal modes.1

5.2 Preparations

The program Snf requires master input files, which are distributed to all nodes of the
parallel machine and modified for each slave process. In general, the type of the input
files provided by the user determines the quantum chemical program package which Snf
will use in the single-point calculations on the slave nodes. An exception is possible in
the case of Turbomole input files, which can be automatically converted into Dalton
input files, so that Dalton can be used for the single-point calculations.

In general, the necessary input files are automatically generated by a structure op-
timization. It is recommended to delete sections referring to this preceding structure
optimization (e.g., specifications of frozen coordinates or temporary directories) before
running an Snf calculation.

5.2.1 Turbomole

It is necessary to provide the following files in the working directory for the frequency
analysis:

• control: general input file for the Turbomole calculation

• coord: nuclear coordinates of the atoms; this must be the optimized structure of
the molecule

• basis: basis set information

• mos: molecular orbital coefficients; these MO vectors will be used as starting vectors
for every single point calculation in the frequency analysis

• alpha, beta: the files alpha and beta have to be supplied instead of the file mos

for UHF/UKS calculations

• auxbasis: auxiliary basis set information; only necessary for RI-DFT calculations

If a geometry optimization with Turbomole has been performed, all these files are
already created and Snfdefine can be started.

The type of the calculation is in principle determined by the type of the control file
provided. If the geometry optimization performed was a Hartree–Fock dscf calculation,
Snf will also perform HF single point calculations. If it was a ridft calculation, density

1If no isotope settings are specified Snf uses the masses of the most abundant isotopes for all evalua-
tions (see Sect. 6.1.2).

5.2. PREPARATIONS 29

functional calculations using the RI-approximation will be done. Note that no Raman
intensities can be calculated using MP2/RI-MP2 methods, but it is possible to calcu-
late Raman intensities from SOPPA polarizabilities in combination with frequencies and
infrared intensities from MP2 calculations.

Starting from Turbomole input, it is also possible to request the use of Dalton
for the single-point calculations (which is necessary, for example, if VROA intensities
shall be calculated after a Turbomole geometry optimization). Appropriate input files
in Dalton format will be generated by Snfdefine in this case, where the user has to
specify the Dalton settings in an interactive menu.

5.2.2 Dalton

It is also possible to use Dalton input files. The following two files must be provided for
this type of preparation:

• molecule.dal: general input file for the Dalton calculation.

• molecule.mol: nuclear coordinates of the atoms and basis set specification.

For Dalton applications, the type of the calculation is not determined automatically.
Therefore, the user has to select the type of calculation in an interactive menu during the
snfdefine run.

The user has to take care of the following formal constraints:

• the input files should be named molecule.dal (general input) and molecule.mol

(geometry and basis set input)

• Z-matrix input is not supported; use Cartesian coordinates instead

• if the INTGRL basis set specification is applied, do not use the free format for expo-
nents and coefficients; use either the default or the high precision format (H or h;
see Dalton manual for details)

• do not use symmetry generators; you may either use the automatic symmetry de-
tection routines of Dalton (SYMTXT = ‘ ’) or a C1 input (SYMTXT=‘ 0’). snfdefine
determines the molecular symmetry through its own symmetry detection routines
and sets the symmetry to C1 in the single point calculations.

5.2.3 Adf

Adf users can use the runscript of an Adf geometry optimization directly. Snfdefine
will recognize the GEOMETRY section and replace it by a section requiring a geometry
optimization which is stopped after one cycle. Furthermore, some convergence options
may be altered (see below). This runscript will be distributed onto the slave nodes, where

30 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

the molecular coordinates will be changed. Apart from this, the settings in the Adf
scripts are automatically those which will be used in the single-point calculations on the
slaves. The runscript has to fulfill several conditions:

• it must be named adf.in

• it must be executable

• it must contain exactly the settings used in the preceding geometry optimization

• the geometry must be specified in Cartesian coordinates in units of Å

• the binary output file must be named TAPE21

• it should not contain any blocks requesting other calculations than a geometry
optimization

Snfdefine will check (and modify, if necessary) the following blocks in the adf.in file:

• GEOMETRY—delete it (if present) and write instead:

Geometry

GO

iterations 1

End

• INTEGRATION—if the grid settings are below 6.0 6.0, replace them by 6.0 6.0.

• SCF—if the convergence criteria are below converge 1.0e-6 1.0e-6, replace them
by converge 1.0e-6 1.0e-6.

• OCCUPATIONS—the options KEEPORBITALS=1000000 SMEAR=0.0d0 will be set. If not
present, this keyword will be added. This prevents Adf from using SCF convergence
tools which may lead to results that are only acceptable in a geometric structure
optimization, but not in a frequency run.

If Snfdefine modifies the integration or convergence parameters, it will print a warn-
ing message to the screen remembering the user to redo a geometry optimization with the
new settings.

5.2. PREPARATIONS 31

5.2.4 Gaussian

If Gaussian shall be used for the single-point calculations, the user must provide a
Gaussian input file which must have the following characteristics:

• it must be named gaussian.com

• it must contain the keyword # Force in addition to the keywords for the method
and the basis set to be used

• the equilibrium geometry must be given in Cartesian coordinates—Z-matrix input
is not accepted

For an ethanol molecule, the gaussian.com file might look like this (with the last line
being a blank line, of course):

Force bp86/TZVP

ethanol

0 1

C -1.225747 -0.225340 0.000002

H -1.296072 -0.865520 -0.891479

H -1.296085 -0.865499 0.891496

H -2.083095 0.464915 -0.000013

C 0.079992 0.551234 -0.000000

H 0.131474 1.203598 0.893871

H 0.131470 1.203596 -0.893875

O 1.161283 -0.399398 -0.000003

H 1.996579 0.098737 0.000020

Since this input file will be distributed onto the slave nodes, where nothing will be
changed in it but the molecular coordinates, the settings defined there are automatically
the settings which are used in the single-point calculations.

Optional additional sections (such as user-provided basis sets) are in general supported.
However, sections related to the preceding structure optimization (such as specifications
of frozen coordinates) should be deleted in the gaussian.com file.

5.2.5 Molpro

The Molprointerface in Snf is not yet fully developed, and using Molprowith Snf
therefore requires special caution. Only MCSCF calculations can be carried out with
Molproin connection with Snf at the moment. Furthermore, Snf only supports calcu-
lations with Molpro version 2002.x; the new input/output format in version 2006.x is not
yet supported in all cases. The Molprointerface is suited for calculating IR intensities,
but not for Raman or VROA intensities.

The following requirements apply to the input file:

32 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

• it must be named molpro.in

• it has to start with *** in the first data line

• the coordinates of the equilibrium structure should be given in Å. Therefore, the
keyword geomtyp=xyz is necessary and the geometry block (geometry={ ... })
should contain the Cartesian coordinates in XYZ format. This format consists of
two header lines, the first of them containing the number of atoms, and the second
one an optional title. Each of the remaining lines specifies the coordinates of one
atom, with the chemical symbol in the first field, followed by the x, y, z coordinates.
The coordinates and the chemical symbol have to be separated by a comma. A
sequence number may be appended to the chemical symbol without using a comma.
No blanks should be used.

• The interface is implemented for MCSCF calculations, therefore the keyword mcscf

must be included in the input file.

• For gradient calculations, gradtype=alaska and force must be added.

• The basis is chosen with BASIS= and the name of the basis set.

For further information see http://www.molpro.net.

5.3 Preparations for excited-state calculations

Excited-state calculations can be performed using the egrad module of the Turbomole
package. This module allows it to analytically calculate excited state gradients, which
can in turn be used for a geometry optimization of the excited state using SCF or DFT
calculations. For the particular usage of the egrad program, we refer to the Turbomole
manual. It should be kept in mind, however, that the frequency calculation is performed
in C1 symmetry, and therefore, the number of the excited state to be calculated must
include all lower-lying excited states of the same spin-symmetry. In a calculation with a
non-trivial point-group symmetry, the state-numbering refers always to excited states of
a particular irrep. Note that no Raman spectra can be calculated for these excited states.

Excited-state calculations and optimizations can also be performed using Dalton’s
CASSCF module.

CAUTION: Snf assumes that you are calculating frequencies far away from any
avoided crossing/conical intersection/near-degeneracy situation. If this is not the case,
then there is a potential danger that the electronic character of a certain excited state
changes from the equilibrium to the displaced structures. Additionally, the Born–Oppenheimer
approximation will not be valid in such a context, upon which the frequency analysis in
Snf is based.

5.4. SNFDEFINE 33

5.4 Snfdefine

Using the interactive program Snfdefine you can conviniently set up all necessary input
files. You can run Snfdefine simply by typing snfdefine (see also Sect. 6 for a detailed
description of the most important input options).

First, the program checks whether the mandatory files for running single-point calcu-
lations with the desired quantum chemical program package are present in the working
directory. Then it tries to read the essential information from them. In case of Turbo-
mole single-point calculations, after reading the Schoenflies symbol of the molecular point
group from control, Snfdefine checks the symmetry of the molecule in the coord file
and determines the distortions which are redundant because of symmetry. From version
2.2.1 on, Snfdefine can determine the correct symmetry of the molecule independent
of its orientation in space, while former versions could only validate or falsify the speci-
fied symmetry2. The symmetry detection routines will only be applied if the Schoenflies
symbol in the control file is inconsistent with the geometrical data in the coord file or if
their invocation is selected by the user. If Dalton, Adf, Gaussian, or Molpro input
files are used, Snfdefine will always determine the symmetry on its own.

For an n-point central differences formula, it is necessary to perform (n−1) distortions
in the direction of every Cartesian nuclear coordinate, i.e., 3 · (n − 1) · N single point
calculations are necessary for a molecule with N atoms if no symmetry information is
available. However, the number of non-redundant distortions is by far smaller for highly
symmetric molecules (compare benzene3 (8 distortions instead of 72), SF6 (4 instead of 42)
or the Buckminsterfullerene C60 (5 instead of 360)). Snfdefine creates the file restart
which contains entries for each of the 3 · (n− 1) ·N distorted geometries. As an example,
the restart file for N2 as created by Snfdefine is given below.

snf calculation

(4d20.10)

410 1 1 1 6 8 2

0.1000000000D-01

mydir

tempdir

1 0 1 1 1 0 0

------ ------ ------ ------ ------ ------

2 1 1 1 1 1 1

------ ------ ------ ------ ------ ------

dipoles atom 1

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00

dipoles atom 2

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00

gradients atom 1

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

2The symmetry detection routines available in former versions of Snf require Turbomole’s standard
orientation for a successful determination of the molecular point group (i.e., the z-axis must be the
principal axis of rotation etc.). This is still required for cubic and icosahedral groups.

33-point central differences formula assumed

34 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

gradients atom 2

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

polarizabilities atom 1

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

polarizabilities atom 2

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

The entries have the following meanings:

line No. meaning

1 title
2 format string for data (dipole moments, gradients,

and polarizabilities)
3 version, progno, calcno, numberfreqs, nvar,

naus, nummodes

4 cstep

5 working directory
6 scratch directory

with the variables

• version: version number of this restart file

• progno, calcno: characterizes the type of the calculation (see chapter 15)

• numberfreqs: number of sets of dynamic polarizabilities. Snf allows to calculate
Raman intensities based on frequency-dependent polarizabilities for up to 10 differ-
ent frequencies.

5.4. SNFDEFINE 35

• nvar: number of nuclear coordinates = number of atoms ×3

• naus: number of steps along each coordinate (for a n-point central differences for-
mula for the numerical derivatives, naus= (n − 1); n must be odd).

• nummodes: number of normal modes for which to calculate intensities in “intensities
only” mode. In regular (full) Snf mode, nummodes=0.

• cstep: step size for the numerical derivatives, i.e., distortion of the Cartesian nuclear
coordinates, in Bohr.

The names for the working and scratch directory will automatically be written to the
restart file by Snfdc.

The next paragraph of the restart file contains two lines for every atom. The first line
shows the number of the atom (in order of appearance in the file coord), and a step-flag
for each distortion along one of the Cartesian coordinates of this atom (or along a normal
mode in “intensities only mode”), i.e.,

+x,−x, +y,−y, +z,−z

for a 3-point formula, and

+2x, +x,−x,−2x, +2y, +y,−y,−2y, +2z, +z,−z,−2z

for a 5-point formula, etc. (in units of cstep). Possible values for the step flags are:

0 single point calculation has not been done yet for this
point

−1 calculation for this point is running or aborted
1 calculation for this point is finished (or redundant be-

cause of the molecular symmetry)

The second line for each atom contains sets of 3·naus dashes for each step (or naus

dashes per mode in “intensities only mode”), which are replaced by Snfdc by the name
of the node that calculated the corresponding step. The control flags for the symmetry-
redundant distortions are set equal to 1 by Snfdefine (which represents a point on the
PES that has already been calculated) such that during the run of Snfdc these points
will not be calculated.

Components of the dipole moments, gradients, and polarizabilities are stored in the
data fields, which represents the largest part of the restart file. Snfdefine fills all these
fields with zero entries. If the calculation of Raman intensities is switched off, there are
no data fields for the polarizabilities in the restart file. In “intensities only” mode, no
gradients are included in the restart file.

36 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

In case of Turbomole single-point calculations, Snfdefine will modify the control

file for the Turbomole single point calculations. Be aware that the original control
file, which contained all entries with the correct point group symmetry will be overwrit-
ten by the C1 settings. This is necessary to prepare the calculations of dipole moments,
gradients, and polarizabilities. The first time you run Snfdefine in a particular direc-
tory, it will create a write-protected backup copy of the original <inputfile> (the copy
<inputfile>.bak is only created if it does not already exist).

Moreover, Snfdefine allows to set a lot of options for the calculation and the final
output of Snf (see Sect. 6). All Snf-specific settings are stored in the file snf_control,
which is copied onto every slave node during the Snfdc run.

You can also use Snfdefine to modify options. If calculations have already been
performed, Snfdefine will not overwrite the restart file without creating a backup
copy.

Snfdefine tries to generate the input files USE_NODES and DCINPUT, which are neces-
sary to run Snfdc. Therefore, the scripts choose_nodes and mkdcinput must be available
in $PATH, and the ELIGIBLE file must be present in the directory $CIPROC. While DCINPUT

is a mandatory inputfile for Snfdc, USE_NODES can be used to construct a hostfile for the
MPI version of Snfdc. This will be explained in Sect. 5.5.

Because all following single point calculations have to be performed in C1 symmetry,
the file mos (or alpha and beta in UHF/UKS cases) must contain MO starting vectors
in C1 symmetry. If the original symmetry of the molecule is higher, you can get the C1

start-vector by using Turbomole’s define.

5.4. SNFDEFINE 37

Summary:

⇒ If you have performed a geometry optimization with Tur-
bomole, Dalton, Adf, Gaussian, or Molprojust type
snfdefine in your working directory.

⇒ Select the options in the menus (see Sect. 6 for details).

⇒ Note possible warnings in the output of snfdefine.

⇒ If the symmetry mentioned in the original control file is
higher than C1, create a C1 MO file (e.g., by using Turbo-
mole’s define when using Turbomole for single-points).

• Mandatory files for Snfdefine:
control, coord (Turbomole), molecule.mol and
molecule.dal (Dalton), adf.in (Adf), gaussian.com

(Gaussian), or molpro.in (Molpro)

• Mandatory files and scripts for automatical generation of
Snfdc input files by Snfdefine:
$CIPROC/ELIGIBLE, choose nodes, mkdcinput

• Files created by Snfdefine:
restart, snf control, <inputfile>.bak, DCINPUT,
USE NODES, MACHINES, mpi.sub

38 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

5.5 Snfdc

Some further preparations are necessary to start the parallelized calculation with Snfdc
besides the generation of the restart file and the modification of the control file.

5.5.1 General input: DCINPUT

First of all, it is necessary to supply the separate input file DCINPUT. This file has the
following structure:

DCPATH /usr/local/bin/snfdc

MYDIR /home/<user>/calculations/example

PREFIX TMP<user>%

TMPDIR /tmp

LOGDIR /home/<user>/calculations/example/log

with the variables

• DCPATH: path to the snfdc executable file (optional) (will be set to $SNF PATH/bin/snfdc

if you use mkdcinput to generate DCINPUT)

• MYDIR: your working directory (mandatory)

• PREFIX: prefix for logfiles and temporary files (optional)

• TMPDIR: directory for temporary files (including all temporary files of the single
point calculations); must be available on every machine (optional)

• LOGDIR: directory for logfiles (optional)

If the optional variables are not specified in DCINPUT, Snfdc will try to use $MYDIR/tmp

as TMPDIR and $MYDIR/log as LOGDIR. PREFIX will be set to “TMP”.
The variables DCPATH, TMPDIR, and LOGDIR may be specified individually for some (or

all) of the slave nodes. This is achieved by entries of the form

DCPATH(<nodename>) <pathname>

etc. Additional optional variables are

• PROGDIR: path to the Turbomole, Dalton, Gaussian, or Molpro executable
files. Since Adf always requires to set the directory AdfBIN, Adf binaries will
always be started as specified in the input file.

• CHOOSENOPT: options for the choose_nodes command when executed by Snfdc (or
Snfdefine). Examples for options are:

5.5. SNFDC 39

– -e <ELIGPATH>: sets path to the ELIGIBLE file which shall be used in a calcu-
lation to <ELIGPATH> (default: $CIPROC/ELIGIBLE)

– -ignore: fake call that leaves the file USE NODES unchanged; if USE NODES

does not exist, it creates an USE NODES file without node entries (no reference
to ruptime or ELIGIBLE).

– -local: creates a USE NODES file that just contains the local machine with one
CPU (no reference to ruptime or ELIGIBLE).

– -nlocal <n>: creates a USE NODES file that just contains the local machine
with <n> CPUs (no reference to ruptime or ELIGIBLE).

If you want to perform calculations with values for the variables cstep or scfconv which
are out of the confidence interval (Snfdefine will inform you if this happens; see chapter
6.1.3) the entry

CRAP_OK yes

must be added to DCINPUT.
To create a standard inputfile, you can use the script mkdcinput, which is automati-

cally executed by Snfdefine. This file should be executed in the working directory. The
settings for DCPATH and TMPDIR in this script must be adapted to the local settings before
using it.

5.5.2 Preparations for the MPI versions

The MPI version will run on a static set of nodes. It is therefore particularly suited for
queuing systems because in this case no load-balancing is required.

If run inside a queueing system (e.g., PBS), the mpirun command supplied with Open-
MPI is able to determine the list of nodes and therefore no further setup is required. If,
however, the node list is not determined automatically you must write some kind of wrap-
per script yourself. The number of combinations of existing MPI implementations and
queuing systems is too large to handle this in an easy general way.

If the MPI version shall be used outside a queuing system, the list of nodes must be
created manually. One can then submit the job using a syntax of the following form:

mpirun --hostfile MACHINES /path/to/sndfc &> snfdc.out < /dev/null.
In this example command, MACHINES denotes the hostfile.

5.5.3 Snfdc calculations

Snfdc will first read the most essential input files specifying the settings for the program
to be used in the single-point calculations (that is control and coord in case of Turbo-
mole calculations, for example), as well as the restart file to determine the points which

40 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

have to be calculated. These points are then distributed to the processors chosen in the
file USE NODES. Temporary directories are created in the TEMPDIR directories of the slaves.
A logfile is generated for every slave process. These logfiles—and also the file fort.41,
which is created in the working directory (MYDIR)— can be used to get information about
errors which occur during the run of Snfdc in the master process and the slave processes.

Most important to observe the progress of the calculation is the file TMPdcstat which
contains information about the status of each slave process. It consists of 11 columns:

2 1 host1 vbsy 0 90005 1 rdy 1 1 results sent

3 2 host2 0 90005 1 rdy 2 2 results sent

11 10 host3 0 103 0 run 16 16 968:15 dscf

13 12 host4 0 102 0 run 18 18 1227:31 escf

The rows contain the following entries:

column description

1 task ID
2 continuous numbering
3 node name
4 entry vbsy indicates a “very busy” machine
5 process ID (0 for finished processes)
6 cpu-load times 100, or

90005 for finished calculations, or
70005 for trouble in Turbomole programs, or
80005 for wrong results.

7 number of finished single point calculations on this node
8 status:

rdy = ready for next step,
run = running calculation,
wait = node waiting

9 step number
10 step number (redundant)
11 cpu time and name of running program or message

As already indicated by the name of the data file, Snfdc has a restart facility, such
that any partly completed restart file can be supplied in an Snfdc run if the program

5.5. SNFDC 41

has been (unexpectedly) terminated before.

42 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

Summary:

⇒ If the files restart and snf control have been prepared by
Snfdefine, generate the input file DCINPUT for Snfdc using
the script mkdcinput (this is done automatically if Snfde-
fine has been used before).

⇒ Create the file USE NODES using the script choose nodes (this
is also done automatically by Snfdefine).

⇒ Type snfdc to start the parallelized calculation.

⇒ You may check the progress of the calculation via the status
file TMPdcstat.

• Mandatory files for Snfdc:
control, coord, basis, mos [or alpha, beta] (Turbomole),
molecule.mol and molecule.dal (Dalton),
gaussian.com (Gaussian),
adf.in (Adf), or
molpro.in (Molpro)
restart, DCINPUT;
MPI versions: MACHINES (for mpirun)

• Mandatory scripts for Snfdc:
choose nodes, dc killtask, ruptime

• Files created by Snfdc in the working directory:
TMPdcstat, fort.41

• Files created by Snfdc in the log directory:
PREFIXdclog.XXXXXXX

5.6. SNF 43

5.6 Snf

If all required data are available in the restart file, the evaluation can be performed
by executing snf. Snf will then create several output files (not all of these output files
are necessarily created, depending on the actual settings in the snf_control file; see
Sect. 6.3).

• snf.out: main output file (see description below)

• line spectrum.dat: list of vibrational frequencies, IR and Raman intensities for a
graphical representation (using, for instance, Gnuplot)

• gauss/lorentz spectrum.dat: data for a model spectrum with peaks in shape of
Gauss/Lorentz-functions (can also be plotted by Gnuplot)

• ir line.gpin: Gnuplot input files for the generation of EPS output of infrared
spectra

• raman line.gpin: Gnuplot input files for the generation of EPS output of Raman
spectra

• ir line.eps, ir gauss/lorentz.eps, raman line.eps,

raman gauss/lorentz.eps: Spectra plots (EPS format)

• g98.out: Gaussian98 fake output for graphical representation of normal modes
using, e.g., Molden (optional)

• mopac.out: Mopac fake output for graphical representation of normal modes using,
e.g., Molden (optional)

• xmol.XYZ.out: Output readable (as XYZ) by Xmol [63] for graphical representa-
tion of normal modes (optional; it seems unclear if Xmol is still maintained)

Note that gnuplot must be found in $PATH, otherwise the automatical generation of
the EPS files by Snf will fail. However, any plotting program can be used to generate
plots from the .dat files manually.

The main output file snf.out briefly summarizes details concerning the calculation,
i.e., the options from the snf control file and settings from the restart file, and the
Cartesian nuclear coordinates of the molecule. The results of a symmetry check for the
molecule and for the entries in the Cartesian Hessian matrix are shown. Moreover, a
charge decomposition according to Cioslowski [64] may be performed (however, note that
it has been found that these charges cannot even qualitatively reproduce the quadrupole
moment of certain molecules and are thus not suited to analyze the electron density or
calculate intermolecular interaction energies [65]).

44 CHAPTER 5. FREQUENCY ANALYSIS WITH SNF

The next part of the snf.out file contains information about the vibrational modes.
Wavenumbers as well as translational and rotational percentages of the modes are shown
for each irrep. It follows a second evaluation, in which the translational and rotational
contributions are eliminated before diagonalizing the Hessian matrix, such that this eval-
uation should yield more accurate results. Infrared and (if selected by the user) Ra-
man/VROA intensities are given in this part of the analysis.

The next paragraph contains moments of inertia, the zero point kinetic energy (ZPE)
and thermochemical data, followed by the mass-weighted normal coordinates and a list
of all output files created. Further information can be obtained by choosing the corre-
sponding output options in the options menu of Snfdefine (see Sect. 6).

Summary:

⇒ If all data are collected by Snfdc and written to the restart
file, run snf in your working directory.

⇒ You may modify the output options by Snfdefine or by
editing the file snf control and rerun Snf.

⇒ Note possible warnings in the output of Snf.

• Mandatory files for Snf:
coord, control (Turbomole),
molecule.mol, molecule.dal (Dalton),
gaussian.com (Gaussian),
adf.in (Adf),
molpro.in (Molpro),
restart, snf control

• Mandatory program for automatic generation of spectra plots:
Gnuplot.

• Files created by Snfdefine:
snf.out, line spectrum.dat, gauss spectrum.dat,
ir line.gpin, ir gauss.gpin, raman line.gpin,
raman gauss.gpin, ir line.eps, ir gauss.eps,
raman line.eps, raman gauss.eps, g98.out, mopac.out,
xmol.XYZ.out

6. Snf options

Most of the options for calculations with Snf can be selected using Snfdefine. Some
additional options, which are less important or only for debugging purposes, can be chosen
by special keywords in the file snf control. Snfdefine is an interactive program, and
short explanations are provided for all menus and options. It works in essentially the
same way like Define of the Turbomole package.

The aim of this chapter is to give detailed information about the meaning of these
options. The menus are explained in order of appearance in Snfdefine.

Snfdefine can, of course, be applied to change program options of existing input
files. The data from existing restart files will be saved. If only program options which
have no influence on the electronic data (gradients, dipole moments, and polarizabilities),
like output options or non-standard isotopes, are modified, one can rerun Snf without
rerunning the data collection process.

6.1 Input Options

6.1.1 Selection of input files

When Snfdefine is started, it will check for old snf control files. If such a file is found,
you can either accept that file as input for Snf or modify it. In the next menu, you can
enter the name of an alternative input file, which will be used as a template for the current
calculation.

Snfdefine furthermore allows to select the program that should be used for the
single point calculations. Depending on whether it finds a mandatory file for one of
the supported quantum chemical program packages (see Section 5.5.3), Snfdefine will
suggest the selection of this program package for the single-point calculations. However,
when Dalton is selected for the single point calculations, it is possible to read input
files either in Turbomole or in Dalton format (default: Dalton; cf. Sect. 5.2.2). In
this case, it is also necessary to specify the type of the single point calculations in an
interactive input menu in Snfdefine.

Furthermore, the program will read the molecular input files, check the point group
given in control (if present), and print some information about the molecule.

The following main menu contains several submenus, which allow to set further input
options. Moreover, it allows to invoke the automatic symmetry detection routines of Snf.

45

46 CHAPTER 6. SNF OPTIONS

6.1.2 Selection of isotopes

The isotope menu can be utilized to select non-standard isotopes. By default, Snfde-
fine will choose the most abundant isotopes. However, the electronic data are—within
the Born–Oppenheimer-approximation—independent of the nuclear masses, such that
only one restart file and one Snfdc run are necessary for all evaluations with different
isotopes.

The selection of isotopes changes the molecular point group symmetry. Thus, that part
of the calculation which depends on the nuclear masses has to be performed using the
symmetry of the molecule with modified isotopes, while the generation of the symmetry-
redundant electronic data is done using the point group symmetry of the original molecule.

The present version of Snf requires that the orientation of the molecule is the same in
both parts of the calculation. This causes the problem that not the full symmetry of the
molecule with modified isotopes can be applied. E.g., the standard orientation of benzene
is in the xy plane, such that the z axis is the principal axis of rotation. If one 12C atom
is replaced by a 13C isotope, the molecular point group is C2v. But the principal axis of
rotation is no longer the z-axis, but maybe the y-axis, such that Snf will detect the point
group Cs instead of C2v.

However, the effect of the symmetry for this part of the evaluation is of minor im-
portance. It affects the assignment of the symmetry races to the peaks in the spectra
and perhaps slightly increases the computational time for the evaluation (which is of the
order of some seconds to some minutes). But the full symmetry can still be used for
the most time-consuming part, the calculation of the gradients, dipole moments, and
polarizabilities.

6.1.3 Options for numerical derivatives

The numerical derivative menu allows to select the number of grid points used for the
differentiation, and to set the cstep value, which characterizes the step size in Bohr.

For the number of grid points, one may choose 3, 5, or 7. Note that the 5-point cen-
tral differences formula will double the computational cost of the data collecting process
compared to the 3-point formula. It is usually not necessary to use the 5- (or even 7-)
point central differences formula, since the accuracy of the 3-point formula is in most
cases sufficient. A higher number of points is neither recommended nor implemented in
the program, since the gain in accuracy can be neglected in almost all cases. If higher
accuracy should be achieved, it is more helpful to apply Richardson extrapolation [66].

As will be shown in chapter 11, the cstep value should be 0.01 ≤ cstep ≤ 0.05, since
smaller values affect the numerical stability of the differentiation, while larger values lead
to a failure of the harmonic approximation. If you would like to use values beyond this
range, you have to set the CRAP OK yes option in the Snfdc input file DCINPUT (see
Sect. 5.5).

6.1. INPUT OPTIONS 47

6.1.4 Spectrum settings

In the spectrum settings menu one can modify the upper and lower bound of the infrared
and Raman spectra. Additionally, one can choose the half-width of the peaks in shape of
Gauss- or Lorentz-type functions in the Gauss/Lorentz spectra, and the number of points
for their graphical representation. It is also possible to specify a scaling factor for the
frequencies (see, e.g., [67] and references cited therein for scaling factors).

The Gauss spectra are plotted using the normalized line shape function

gG(ν̃) =
1

√

2πγ2
· exp

(

−(ν̃0 − ν̃)2

2γ2

)

(6.1)

with the half-width δG,

δG = 2γ
√

2 ln 2, (6.2)

and resembles inhomogeneous line-broadening (e.g., Doppler broadening). For the Lorentz
spectra, the normalized line shape function

gL(ν̃) =
δL/(2π)

(ν̃0 − ν̃)2 + (δL/2)2
, (6.3)

with the half-width δL, and should be used if homogeneous line broadening (e.g., natural
line broadening) is dominant.

6.1.5 Thermochemical settings

The thermochemistry menu can be used to select temperature and pressure for the ther-
mochemical output.

6.1.6 Excited-state calculation menu

This section allows to change settings for the calculation of excited states employing the
TURBOMOLE dscf/ridft and egrad modules or the Dalton CASSCF module. In
case of Hartree–Fock calculations, either the RPA or the CIS method can be chosen for
the calculation of excited state frequencies. Furthermore, the number of excited states to
be treated in egrad, the excited state for which the frequencies shall be calculated, and
the spin state of the excited state can be selected. Note, however, the warnings mentioned
in Section 5.3.

6.1.7 Intensity-only mode

It is possible to calculate intensities for selected precalculated normal modes, which may
have been obtained from a previous Snf run (for example, if the computationally more

48 CHAPTER 6. SNF OPTIONS

demanding Raman intensities shall only be calculated for a few modes), or from a mod-
etracking calculation with Akira. This option can be switched on by typing int on

in the appropriate menu, and then reading in normal modes from a Snf, Akira, or
Gaussian98-style output file. All modes in the file will be read in by default; the desired
modes can then be selected or unselected with the (self-explanatory) commands in the
menu.

6.1.8 Raman settings

There are several options concerning the Raman spectra, which can be found in the Raman
menu. First of all, the calculation of Raman intensities must be switched on by the user.
Since this is very time-consuming the option is switched off by default. If the calculation
of Raman intensities has been selected, you may choose between the calculation using
static polarizabilities (default), or dynamic polarizabilities. If dynamic polarizabilities
are chosen, one can select up to 10 different frequencies for the calculation of the Raman
intensities. These must be given either as wavelengths (in nm) or as angular frequencies
(in a.u., i.e., hartree/~). Default is the wavelength of an argon ion laser (514.5 nm).

It is also possible to change the default rpaconv parameter for the escf run, which
sets the convergency criterion for the residual vector (see Turbomole manual). Further
options concern the type of data to be plotted in the Raman spectrum output (Raman
activities, differential scattering cross sections for different experimental setups) and the
scattering angle for the calculation of scattering cross sections.

6.1.9 VROA settings

The VROA menu is analogous to the Raman menu. The only difference is that the
output is written to snf.out in Dalton format, i.e., intensity differences and CIDs
are printed by default for scattering angles of 0◦ (forward scattering), 90◦, and 180◦

(backscattering). For 90◦ scattering, intensity differences and CIDs are given for both
parallel and perpendicular relative polarization of the incoming and the outgoing laser
beam. In order to plot VROA spectra, you may use the program Specplot which is
distributed along with the Snf package (see $SNF PATH/utilities/specplot). It reads
VROA (and also Raman) intensities from snf.out and generates Gnuplot input files
according to the settings chosen by the user

For a summary of the theoretical background of VROA, see Refs. [7] and [68], and for
the first accounts on theoretical and experimental aspects, Refs. [69–73].

6.1.10 External matrices settings

To be able to calculate spectra from the property tensor derivatives composed employing
the Cartesian Tensor Transferm Method (CTTM) snf needs to read in external matrices.

6.2. OUTPUT OPTIONS 49

The settings are accessible only by manually editing the corresponding keywords in the
snf control file (see also section 6.3).

The working directory has to contain only the control file from the single point
calculations, the coord file of the whole molecule, the external matrices and a snf control

file. As soon as one necessary entity is not given externally also a restart file is needed.
If all keywords are set to none, which is the default value, then a normal snf run is
performed. The CTTM is switched on by defining one or more external matrix files. To
obtain the frequencies by CTTM the keyword $hessian mat has to be set. For IR or
Raman intensities the corresponding keywords are $dipol mat and $pol mat. For ROA
intensities $pol mat, $pol vel mat, $aten mat, $gtenao mat, $gtenlao mat have to be
defined.

If the Hessian matrix and also all necessary property tensor derivatives are available
as external matrix files then snf can be run without a restart file. It is also possible to
combine external property tensor derivatives with a hessian matrix from a restart file.
Also the other way round is possible. Property tensor derivatives from a restart file can
be combined with a external hessian matrix.

All the external matrices have to be in the matrix market file format [74] (*.mtx).
They are created in the correct format by the CTTM script following the composition
rules given in the input file.

6.2 Output options

Many output options are available in Snfdefine. Some output options are hidden to
keep the output options menu clear. They can be displayed by the command “all”.
Alternatively, these options can be (de-)activated by the corresponding keyword in the
file snf control (see Sect. 6.3).

Options available in the standard output menu are:

iat <on/off> turn on/off output of information about symmetry-redundant atoms

idt <on/off> turn on/off output of information about symmetry-redundant distortions
of the non-redundant atoms

hess <on/off> turn on/off output of the Cartesian Hessian

sumdeg <on/off> turn on/off summation of intensities over degenerate modes

gau, mopac, xmol <on/off> turn on/off output of normal modes in format of Gaus-
sian98, Mopac, or as XYZ format readable by Xmol

atcontrib <on/off> turn on/off output of atomic contributions to vibrational intensi-
ties (as .csv files)

50 CHAPTER 6. SNF OPTIONS

tmpcl <on/off> turn on/off removal of temporary directories for single point calcula-
tions

logcl <on/off> turn on/off removal of logfiles for slave processes

elig <PATH> specify an alternative ELIGIBLE file

bak create backup copy of the original mos file (to run Snfdc you need starting MO
vectors in C1 symmetry; if you use Turbomole’s define to get these MO vectors,
the original mos file will be overwritten.)

6.3 Additional keywords

dalmw <val> sets the scratch memory size in Mwords in case of Dalton calculations.
Minimum is <val> = 800000.

dtype [option] selects the type of numerical differentiation to be used. CAUTION:
this is a test option, which works only for two-point formulae. Possible values
of [option] are: centr (central differences, default), fward (forward differences),
bward (backward differences). If forward or backward differences are selected, Snf
tries to read the gradient file for the equilibrium structure. If the gradient can
be read (only Turbomole format at the moment), the numerical precision of for-
ward/backward differences can be expected to be at least one order of magnitude less
accurate than central differences (numerical errors up to 20− 30 cm−1). If the gra-
dient cannot be read, gradient components of 0.0d0 are assumed, which can usually
give rise to numerical errors of > 100 cm−1 (depends on the optimization thresholds).
NOTE: FORWARD AND BACKWARD DIFFERENCES SHOULD NEVER BE
USED IN PRODUCTION CALCULATIONS. THEY CAN ONLY GIVE A FIRST
IMPRESSION OF THE VIBRATIONAL FREQUENCIES OF A MOLECULE.

logdirclean if present in the control file the logfiles are deleted after each run. Note that
setting this keyword is not recommended since the logfiles usually contain valuable
information if a calculation failed for some reason.

maxsym <on/off> turns on/off the determination of symmetry-redundant distortions of
non-redundant atoms. If maxsym off is chosen, only the step flags of distortions of
symmetry-redundant atoms will be set equal to 1 in the restart file (default: on).

override sigma rot <integer> Use this value to explicitly specify the symmetry num-
ber (σ) used in the thermodynamics calculations. If this keyword is missing (or
the value is ’0’), the symmetry number is determined by the point group of the
molecule.
(default: 0)

6.3. ADDITIONAL KEYWORDS 51

print cio <on/off> turn on/off charge decomposition according to Cioslowski [64] (de-
fault: on)

print dip <on/off> turn on/off output of dipole moment derivatives
(default: off)

print force <on/off> turn on/off output of force constant matrix
(default: off)

print pol <on/off> turn on/off output of polarizability derivatives
(default: off)

print symmetry <on/off> turn on/off symmetry information
(default: off)

print thermo <on/off> turn on/off detailed thermochemical output
(default: on)

print transrot <on/off> turn on/off output of translational and vibrational contri-
butions (default: on)

print zpe <on/off> turn on/off output of zero-point kinetic energy and moments of
inertia (default: on)

sleeptime <val> sets the time to wait for the master process between two subsequent
checks of the slave processes. Default: 5. Smaller values decrease the overhead, in
particular in fast calculations, larger values can be helpful to decrease the network
traffic when running the master job via a network file system, in particular for large
calculations with long single-point calculations. The units are milliseconds for the
MPI version. For further explanation look at the comments in parstuff_sleep.c.
The serial version neither needs nor uses this parameter. If you run very large
calculations (thousand or more nodes) you should set the sleeptime to 0 for the
MPI version to be able to handle all MPI messages in a timely manner.

tmpdirclean if present in the control file the temporary directories where the calculations
are performed are deleted after each run.

theta <val> sets the scattering angle θ (in degree) for the calculation of Raman scatter-
ing cross sections, if their calculation has been selected in the Raman menu (default:
90◦).

total electronic energy <val> sets the total electronic energy for the optimized
structure equal to <val>. This can be done if the automatical procedure to read
this value from the files job.last (Turbomole) or molecule.out (Dalton) by
Snfdefine failed. It is only necessary for parts of the thermochemical analysis.

52 CHAPTER 6. SNF OPTIONS

total spin <val> analogously for the total spin value

xmolsc1 <val> sets the scaling factor for normal modes in the Xmol output file equal
to <val>

hessian mat defines an external matrix file for the Hessian matrix (default: none)

dipol mat defines an external matrix file for the dipole derivatives (default: none)

pol mat defines an external matrix file for the polarizability derivatives (default: none)

pol vel mat defines an external matrix file for the polarizability derivatives (velocity
representation) (default: none)

aten mat defines an external matrix file for the A tensor derivatives (default: none)

gtenao mat defines an external matrix file for the G tensor derivatives (default: none)

gtenlao mat defines an external matrix file for the G tensor derivatives (London atomic
orbitals) (default: none)

7. Visualization of results

There are several programs that can be applied to visualize the results of the Snf calcu-
lation. Snf only includes our own tool specplot1. A myriad of other tools are available.
Unfortunately, most major Linux distributions are lacking these programs and one there-
fore has to manually download and install them. For Gentoo however, many such program
packages are included and can thus easily be installed.

For the conversion of images generated by the visualization programs the tools from
the imagemagick package will come in handy. For videos, you may also have a look at
mencoder which is part of the mplayer package. Both packages are included in any major
Linux distribution and can also be downloaded seperately from the Internet.

7.1 Spectra plots

gnuplot generates the following spectra plots in EPS format:

• ir_line_spectrum.eps,

• ir_gauss_spectrum.eps,

• ir_lorentz_spectrum.eps,

• raman_line_spectrum.eps,

• raman_gauss_spectrum.eps, and

• raman_lorentz_spectrum.eps.

Standard tools like gv can be used to display these plots, others—like convert from
the imagemagick package—can convert the format into various others. For Raman and
backscattering VROA spectra, the tool specplot coming with Snf can be employed in
order to generate and visualize gnuplot files with the desired settings (see Section 18.2
for further details).

1You need to supply --enable-specplot to configure to build this tool.

53

54 CHAPTER 7. VISUALIZATION OF RESULTS

7.2 Normal modes

The following list includes a few examples of programs which can read and display normal
mode output by Snf:

molden: can read the output files g98.out or mopac.out created by Snf. Normal mode
output can be generated as a series of GIF images which can be animated by tools
like animate or xanim. They can also be converted to animated GIF using programs
like whirlgif or gifsicle. Another possible output are Postscript files, in which
the normal modes are indicated by vectors. Molden can be obtained from http:

//www.caos.kun.nl/~schaft/molden/molden.html.

xmol: can read the xmol.XYZ.out files created by Snf. Normal modes can be displayed
and exported as vectors (Postscript).

jmol: can read the Snf output files g98.out and xmol.XYZ.out. Output can be generated
using vectors. Additionally, it is possible to create a series of pictures (e.g., PNG),
which can then be animated using animate or xanim. jmol can be obtained from
http://jmol.sourceforge.net/.

8. Thermochemistry

Thermodynamical functions are calculated according to the statistical thermodynamics
of a canonical ensemble of an ideal gas. Rotational contributions are treated classically.
Electronic contributions are taken into account as spin-only values to the entropy in
UHF/UKS cases.

The calculations are based on the following relationships1:

• Enthalpy H = H t + Hr + Hvib

o Translation: H t = 5/2RT
R is the ideal gas constant, and T the temperature.

o Rotation:
non-linear molecules: Hr = 3/2RT
linear molecules: Hr = RT

o Vibration:

Hv = RT
∑

i

hνi

kT

{

1

2
+

[

exp

(

hνi

kT

)

− 1

]−1
}

h is Planck’s constant, νi the frequency of the i-th normal mode, and k the
Boltzmann constant. Note that the zero point vibrational energy (ZPVE) is
included. The sum runs over all normal modes of the molecule.

o Electronical contributions: none

• Entropy S = St + Sr + Svib and partition functions

o Translation

St = R(ln(zt) + 5/2) , zt = (kT)5/2/(ph3) (2πm)3/2

m is the molecular mass, and p the pressure.

1See Ref. [75] for details, but note that it contains some typos in the formulas relevant in our context.

55

56 CHAPTER 8. THERMOCHEMISTRY

o Rotation
non-linear molecules:

Sr = R(ln(zr) + 3/2) , zr =

√
π

σ

√

T 3

T1T2T3

linear molecules:

Sr = R(ln(zr) + 1) , zr =

√
π

σ

√

T 3

T1T2T3

Ti =
h2

8kπ2Ji

σ is the symmetry number, which is connected to the point group of the
molecule. Symmetry numbers for some common point groups can be found
in reference [76]. Ji is the moment of inertia.

o Vibration

Svib = R
∑

i

(

hνi

kT

[

exp

(

hνi

kT

)

− 1

]−1

− ln

[

1 − exp

(

−hνi

kT

)]

)

Partition function with reference to the bottom of the potential well:

zvib,bot =
∏

i

exp

(

− hνi

2kT

)[

1 − exp

(

−hνi

kT

)]−1

Partition function with reference to the vibrational ground state energy:

zvib,v=0 =
∏

i

[

1 − exp

(

−hνi

kT

)]−1

o Electronical contributions:

Se = Rln(g)

g is the spin degeneracy of the ground state (i.e., only the electronic ground
state is assumed to contribute to the entropy; excited electronic states must
be sufficiently higher in energy).

• Heat capacity Cv = Ct
V + Cr

V + Cvib
V

o Translation: Ct
V = 3/2R

57

o Rotation:
non-linear molecules: Cr

V = 3/2R
linear molecules: Cr

V = R

o Vibration

Cvib
V = R

∑

i

(

hνi

kT

)2

exp

(

hνi

kT

)[

exp

(

hνi

kT

)

− 1

]−2

o Electronical contributions: none

• Gibbs free energy G = H − TS

58 CHAPTER 8. THERMOCHEMISTRY

9. Cartesian Tensor Transfer Method

Instead of calculating all necessary property tensor derivatives with the program Snf
one can also employ the Cartesian Tensor Transfer Method (CTTM) [77] to obtain these
quantities. The CTTM is an approximate method to calculate spectra of very large
molecules. Although the method yields good results for the frequencies and reasonable
spectra in case of IR and Raman, the calculation of ROA spectra by this method has
limitations. The CTTM approximates a spectrum by composing the property tensor
derivatives from calculations of smaller fragments. It can be employed in any case, where
the full calculation is not feasible, keeping in mind that the approximation can introduce
severe errors depending on the details of the fragmentation [28].

The CTTM works as follows: Instead of calculating the full Hessian matrix and the
full property tensor derivatives as in a normal snfdc run, the quantatities are calculated
only for the smaller fragments. The results of the smaller subsystem calculations are
then combined to yield an approximation of the Hessian matrix and the property tensor
derivatives of the full molecule. They are then processed by the SnfF routines of the
MoViPac package as in every other calculation.

Since the choice of the fragments and the way they are combined heavily influences
the result of the calculation [28], there is no automatic procedure implemented in the
MoViPac package. Instead the Snf program allows to read in Hessian matrices and prop-
erty tensor derivatives from external files (see section 6.1.10). The extraction and com-
position of the raw data from the subsystem calculations is done by the script run cttm.

To perform a frequency analysis and spectrum calculation employing CTTM the fol-
lowing steps have to be done. Up to now the CTTM is only available for calculations
employing the Turbomole package.

1. Calculate the property tensor derivatives for the chosen fragments with Snf. To
do so one has to perform a Snf calculation with the appropiate options (IR for
the dipoles, Raman for the polarizabilities etc.) and with the print options for
the property tensor derivatives switched on. It is important that the necessary
quantities are present in the output file of Snf, so that they can be obtained from
there in the next step.

2. Extract the property tensor derivatives from the output files of the fragment calcu-
lations and compose them to obtain those of the full molecule running the run cttm

script.

59

60 CHAPTER 9. CARTESIAN TENSOR TRANSFER METHOD

3. Calculate the desired spectra with Snf from these quantities as is described in
section about the usage of external matrices (section 6.1.10).

The second step is the actual application of the CTTM. The parameters are provided
to the run cttm script in an input file. See the example/cttm directory for a sample
input file (together with all necessary files for a complete run). From the full molecule
only the coord file and a complete connectivity table is needed. For each fragment a
coord file and a Snf output file with the printed property tensor derivatives are needed.
The last and most important step is to define how the fragments overlap the full molecule.
For this purpose the input file has an $overlap section. In the first column the atom
IDs of the full molecule are given. In the second row the corresponding atoms of the first
fragment, in the third the ones of the second fragment and so on. If one defines more
than one overlap for a certain atom then the script chooses the one which fits best. For
algorithmic details we refer to Ref. 28.

The run cttm script has several options in order to define which quantities are desired.
They are listed below.

Usage: merge_matrices [options] input-file

Options:

-h, --help show this message

-i, --ir activate creation of matrices necessary for

IR spectra (default: on)

-n, --no-ir deactivate creation of matrices necessary for

IR spectra

-r, --raman activate creation of matrices necessary for

raman spectra (default: off)

-v, --vroa activate VROA creation (default: off)

The run cttm scripts generates the desired composed matrices as matrix market for-
mat [74] files (*.mtx), which can be directly utilized to generate the spectra (see section
6.1.10). It also provides a log file with all the rotation matrices and the RMS values for
each atom pair. The log file is named like the input file with a trailing .out.

Since the run cttm script is written in the Python programming language it is easy
to adjust to the user’s needs.

10. Localizing Normal Modes

10.1 General

The LocVib tools, which are included in the MoViPac package, provide a number of
features for analyzing calculated vibrational spectra in terms of localized modes. For
details on the theoretical background, see

Christoph R. Jacob, Markus Reiher. Localizing normal modes in large molecules. J.
Chem. Phys., 130 (2009) 084106.

Please also cite this reference in publications using the LocVib tools. The most recent
versions of LocVib will be made available at http://www.christophjacob.eu/locvib.php.
On this website, a detailed documentation describing all the advanced functionality of
LocVib will also be available soon.

10.2 Installation

The LocVib tools are distributed as a Python library. To use them, you have to include
the subdirectory “LocVib/VibTools” in your PYTHONPATH environment variable.

LocVib relies on additional Python packages, that have to be installed on your system:

• the Openbabel package (http://openbabel.org), including its Python bindings

• the Matplotlib package (http://matplotlib.sourceforge.net)

These are available as standard packages for most Linux distributions.
The LocVib tools can then be used in Python scripts to perform an analysis of

vibrational spectra in terms of localized modes. A few example scripts, that can serve
as starting point for more complicated applications, are provided in the subdirectory
“LocVib/examples”. These will be used to explain the most important features in the
following.

10.3 Reading Results from Snf or Akira

For using the LocVib tools in a Python script, one first has to to import them with

import VibTools

61

62 CHAPTER 10. LOCALIZING NORMAL MODES

The first step is then to read in the results of a previous Snf or Akira calculation; this
can be done with the classes SNFResults and AKIRAResults, respectively. For Snf, one
can use

res = VibTools.SNFResults()

res.read()

This requires the files coord (with the molecular coordinates in Turbomole format), the
“restart” file produced by Snfdc, and the output file from Snf, snf.out, to the present
in the current directory. Alternative names and locations of these files can be passed to
SNFResults. For more details and additional options, see the source code in PySNF.py.

Similarly, Akira results can be read with

res = VibTools.AKIRAResults()

res.read()

This requires the files coord and akira iterations.out. For more details and additional
options, see the source code in PyAKIRA.py.

The resulting instances of the result files then give access to the normal modes, their
frequencies, and the calculated vibrational intensities. See the source code in Results.py
for more details.

10.4 Assigning Normal Modes to Bands

For performing an analysis in terms of localized modes, one has to assign the normal
modes to different vibrational bands. To perform this assignment, it is useful to consider
the contributions of different groups of atoms to each of the normal modes. An example
of a script to assist with such an assignment is included as “1 composition.py”.

This script prints a list of the normal modes and for each mode lists the contributions
of different atom types. For instance, for the included example of an (Ala)10 helix, one
obtains the output:

NH CO CA HA CHB

[...]

236 1500.0 54.6596 0.7737 0.0046 76.0 17.7 2.2 1.4 2.7

237 1503.7 189.3569 1.8920 0.0341 74.5 17.7 2.8 2.3 2.7

238 1506.4 217.9075 7.7164 -0.0585 75.1 16.3 2.8 2.7 3.2

239 1508.5 407.3909 6.8705 -0.0143 76.4 18.1 2.3 1.1 2.2

240 1617.6 53.4093 8.3601 -0.0152 98.4 0.3 0.8 0.2 0.3

241 1644.0 22.0081 1.8999 0.0294 3.0 94.1 0.9 1.5 0.5

242 1650.0 322.4753 17.5984 0.0226 3.3 94.2 0.6 1.4 0.5

243 1651.1 1361.5743 112.2062 0.0108 5.1 93.3 0.2 0.8 0.5

244 1656.1 232.1278 2.5841 -0.0374 3.5 94.3 0.5 1.3 0.4

10.5. LOCALIZATION OF NORMAL MODES 63

245 1657.2 41.6081 1.2601 -0.0010 4.4 93.9 0.3 1.0 0.4

246 1663.7 86.5379 1.8897 -0.0026 3.3 94.5 0.6 1.1 0.4

247 1668.3 247.8201 8.6080 0.0088 2.4 96.2 0.5 0.4 0.5

248 1670.0 290.1721 24.3792 0.0023 4.0 94.4 0.3 0.9 0.4

249 1677.3 217.4265 9.0573 0.0112 3.0 95.6 0.4 0.5 0.4

250 1736.0 326.1756 11.9512 0.0017 2.5 96.7 0.4 0.0 0.3

[...]

Thus, based on the atomic contributions and the vibrational wavenumbers listed in
the second column one can notice that modes 236 to 240 are similar vibrations and form
one band (mode 250 appears at significantly higher wavenumber and is, therefore, not
included). These are the amide I vibrations, which can be further analyzed now.

The assignment of the atom types is, of course, dependent on the class of molecules
considered. For polypeptides, these are assigned with the help of Openbabel, and several
different collections of atom types are provided. See the source code in Molecule.py for
more details.

10.5 Localization of Normal Modes

After identifying which modes contribute to one band, these can be transformed to local-
ized modes for further analysis. An example of this step given in the script “2 locmodes.py”.

First, the relevant subset of the normal modes is selected with

modes = res.modes.get_subset(range(241,250))

The functionality for localizing normal modes is provided by the class LocVib. An instance
of this class is created with

lv = VibTools.LocVib(modes, ’PM’)

where ’PM’ selects the atomic-contribution localization criterion (in analogy to the Pikek-
Mezey orbital localization). Alternatively, ’Boys’ can be used to chose the distance-
criterion for the localization instead. Then,

lv.localize()

performs the iterative localization. If convergence problems are encountered in this step,
the set of normal modes has probably been poorly chosen and the assignment should be
revisted. Finally, in polypeptides the localized modes can be sorted by residue with

lv.sort_by_residue()

After the localization has been performed, the localized modes are available in lv.locmodes.
For instance, they can be saved to a g98-type file for visual inspection with

64 CHAPTER 10. LOCALIZING NORMAL MODES

lv.locmodes.write_g98out(filename="locmodes-amide1.out")

The example script also demonstrates how the composition on the localized modes can
be analyzed and how intensities of localized modes can be obtained. For more details, see
the source code of “2 locmodes.py”.

10.6 Coupling Constants

After the localization has been performed for a set of normal modes, coupling constants
can also be extracted. An example is provided in the script “3 couplings.py”. The sign
of the coupling constants depends on the phase of the localized modes. With

lv.adjust_signs()

the phase of the localized modes is adjusted such that the nearest-neighbor vibrational
coupling constants are positive. However, that does not necessarily imply that the phase
is chosen consistently for all localized modes. This can at present only be ensured
by visually inspecting the localized modes and, if necessary, inverting their signs with
lv.invert_signs([]) (which takes a list of localized mode indices as argument).

The vibrational coupling constants, i.e., the elements of the Hessian matrix in the
basis of the localized modes, can be extracted with

cmat = lv.get_couplingmat()

The intensity coupling matrices are available via the LocModeAnalysis class. See the
example and the source code for further details.

10.7 Advanced Features

The LocVib tools provide a number of additional functionalities, for instance for plotting
vibrational spectra and coupling matrices. For more details on these tools, we refer
to the source code and to the extended documentation that will be made available at
http://www.christophjacob.eu/locvib.eu.

11. Parameter studies: step size, basis sets, SCF

convergence, and grid type

This chapter presents investigations by C. Kind concerning the accuracy and numerical
stability of the calculations for different values of the calculation parameters.

The step size for the numerical differentiation (cstep), the energy convergency crite-
rion for the Turbomole calculations (scfconv), the quality of the grid for the density
functional calculation (GRID), the influence of the RI-approximation, and the basis set
dependence were taken into account in these analyses.

The results presented here shall help to explain our choices of the default parameters
for the calculations, and to provide a basis for error estimations in calculations with Snf.

11.1 Dependence on the step size (cstep)

As has already been mentioned in Sect. 6.1.3, it is dangerous to choose cstep values
which are too small or too large. If the value is too small, there might occur instabilities
in performing the central differences during the differentiation procedure. If it is too large,
the harmonic approximation might fail. The following calculations have been carried out
for trans-diazene using DFT/BP86 to analyse the effect of the cstep parameter.

• SVP/RI using Turbomole default values (SVP default: SD)

• SVP/RI using scfconv=8 and GRID=5 (SVP accurate: SA)

• TZVP/RI using Turbomole default values (TZVP default: TD)

• TZVP/RI using scfconv=8 and GRID=5 (TZVP accurate: TA)

• SVP calculation using Gaussian98 (SVP analyt.)

• TZVP calculation using Gaussian98 (TZVP analyt.)

For each type calculations have been performed using the cstep values 0.001, 0.005, 0.01,
0.015, and 0.02.

Calculations with Gaussian98 should help to compare our numerical results to ana-
lytically determined frequencies, which, of course, are independent of the step size.

65

66 CHAPTER 11. PARAMETER STUDIES

The following tables show the mean and maximum error for different cstep values
compared to the analytical frequencies. All frequencies are given as wavenumbers in
[1/cm], and the infrared intensities, which can also be found in the tables, are given as
absorption coefficients in [km/mol].

mean error
IR intensities frequencies

cstep SD SA TD TA SD SA TD TA

0.001 13.5 33.1 12.6 5.9 53.0 25.7 60.5 22.1
0.005 23.7 1.0 13.7 0.3 42.0 7.0 52.9 5.7
0.010 25.7 0.6 28.4 0.4 35.8 4.6 42.7 5.0
0.015 24.1 0.3 29.2 0.5 35.4 4.0 40.7 4.1
0.020 26.0 0.3 32.1 0.3 31.3 4.1 34.3 3.9

maximum error
IR intensities frequencies

cstep SD SA TD TA SD SA TD TA

0.001 54.9 72.3 42.1 23.7 88.5 46.3 81.5 39.7
0.005 87.4 3.2 38.6 0.9 86.8 9.0 92.2 10.1
0.010 99.9 1.7 102.9 1.3 84.6 7.2 87.3 8.3
0.015 86.1 1.0 98.4 1.7 82.6 7.3 82.6 8.5
0.020 93.9 1.0 110.3 0.9 79.5 7.4 79.4 7.9

1200

1250

1300

1350

1400

0.005 0.01 0.015 0.02

 fr
eq

ue
nc

y
in

 [1
/c

m
]

cstep

 Mode 7: frequency

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

0

20

40

60

80

100

0.005 0.01 0.015 0.02

 in
te

ns
ity

 in
 [k

m
/m

ol
]

cstep

 Mode 7: intensity

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

11.1. DEPENDENCE ON THE STEP SIZE (CSTEP) 67

1200

1250

1300

1350

1400

0.005 0.01 0.015 0.02

 fr
eq

ue
nc

y
in

 [1
/c

m
]

cstep

 Mode 8: frequency

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

0

20

40

60

80

100

0.005 0.01 0.015 0.02

 in
te

ns
ity

 in
 [k

m
/m

ol
]

cstep

 Mode 8: intensity

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

1500

1550

1600

1650

1700

0.005 0.01 0.015 0.02

 fr
eq

ue
nc

y
in

 [1
/c

m
]

cstep

 Mode 9: frequency

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.005 0.01 0.015 0.02

 in
te

ns
ity

 in
 [k

m
/m

ol
]

cstep

 Mode 9: intensity

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

1500

1550

1600

1650

1700

0.005 0.01 0.015 0.02

 fr
eq

ue
nc

y
in

 [1
/c

m
]

cstep

 Mode 10: frequency

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.005 0.01 0.015 0.02

 in
te

ns
ity

 in
 [k

m
/m

ol
]

cstep

 Mode 10: intensity

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

68 CHAPTER 11. PARAMETER STUDIES

3000

3050

3100

3150

3200

0.005 0.01 0.015 0.02

 fr
eq

ue
nc

y
in

 [1
/c

m
]

cstep

 Mode 11: frequency

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

0

20

40

60

80

100

0.005 0.01 0.015 0.02

 in
te

ns
ity

 in
 [k

m
/m

ol
]

cstep

 Mode 11: intensity

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

3000

3050

3100

3150

3200

0.005 0.01 0.015 0.02

 fr
eq

ue
nc

y
in

 [1
/c

m
]

cstep

 Mode 12: frequency

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

0

50

100

150

200

0.005 0.01 0.015 0.02

 in
te

ns
ity

 in
 [k

m
/m

ol
]

cstep

 Mode 12: intensity

SVP/RI default
SVP/RI accurate
TZVP/RI default

TZVP/RI accurate
SVP analyt.

TZVP analyt.

Since the numerical error of these calculations (3-point central differences formula) is
proportional to (cstep)2, the step size should in principle be chosen as small as possible.
The above results demonstrate, that the smallest possible cstep-value which ensures
numerical stability is cstep = 0.01.

11.2 Influence of the SCF parameters scfconv and GRID

Of major importance for the numerical derivatives is the accuracy of the single point data.
Two of the most important parameters for Turbomole DFT calculations have been
investigated to check their influence on the frequencies: the SCF convergency criterion
scfconv and the grid characterization parameter GRID1.

Calculations have been carried out for trans-diazene using a TZVP basis set and
cstep=0.01.

Mean and maximum errors of the numerical frequencies compared to the analytical
ones are shown in the following two tables for different values of the parameters scfconv
and GRID.

1For the meaning of the GRID parameter see the Turbomole manual.

11.2. INFLUENCE OF THE SCF PARAMETERS SCFCONV AND GRID 69

mean error
IR intensities frequencies

scfconv grid 3 grid 4 grid 5 grid 3 grid 4 grid 5

6 23.8 24.3 24.4 40.6 40.4 40.3
7 2.0 1.2 1.1 12.0 14.3 14.2
8 0.4 0.3 0.4 5.2 4.9 4.9
9 0.5 0.9 0.5 2.8 2.7 2.8

maximum error
IR intensities frequencies

scfconv grid 3 grid 4 grid 5 grid 3 grid 4 grid 5

6 128.6 131.2 131.5 85.4 85.2 85.3
7 5.3 4.6 4.5 16.6 20.7 20.4
8 1.4 1.4 1.3 7.2 7.9 7.7
9 1.6 2.6 1.4 4.9 4.3 4.5

It can be concluded from these calculations, that only a simple grid (GRID = 3) is
necessary. However, a scfconv value of 8 or higher is strongly recommended.

1200

1250

1300

1350

1400

6 7 8 9

 fr
eq

ue
nc

y
in

 [1
/c

m
]

 scfconv

 Mode 7: frequency

grid 3
grid 4
grid 5

analyt.

80

85

90

95

100

6 7 8 9

 in
te

ns
ity

 in
 [k

m
/m

ol
]

 scfconv

 Mode 7: intensity

grid 3
grid 4
grid 5

analyt.

70 CHAPTER 11. PARAMETER STUDIES

1200

1250

1300

1350

1400

6 7 8 9

 fr
eq

ue
nc

y
in

 [1
/c

m
]

 scfconv

 Mode 8: frequency

grid 3
grid 4
grid 5

analyt.

40

45

50

55

60

65

70

6 7 8 9

 in
te

ns
ity

 in
 [k

m
/m

ol
]

 scfconv

 Mode 8: intensity

grid 3
grid 4
grid 5

analyt.

1500

1550

1600

1650

1700

6 7 8 9

 fr
eq

ue
nc

y
in

 [1
/c

m
]

 scfconv

 Mode 9: frequency

grid 3
grid 4
grid 5

analyt.

0

0.02

0.04

0.06

0.08

0.1

6 7 8 9

 in
te

ns
ity

 in
 [k

m
/m

ol
]

 scfconv

 Mode 9: intensity

grid 3
grid 4
grid 5

analyt.

1500

1550

1600

1650

1700

6 7 8 9

 fr
eq

ue
nc

y
in

 [1
/c

m
]

 scfconv

 Mode 10: frequency

grid 3
grid 4
grid 5

analyt.

0

0.02

0.04

0.06

0.08

0.1

6 7 8 9

 in
te

ns
ity

 in
 [k

m
/m

ol
]

 scfconv

 Mode 10: intensity

grid 3
grid 4
grid 5

analyt.

11.3. INFLUENCE OF THE RI-APPROXIMATION 71

3000

3050

3100

3150

3200

6 7 8 9

 fr
eq

ue
nc

y
in

 [1
/c

m
]

 scfconv

 Mode 11: frequency

grid 3
grid 4
grid 5

analyt.

0

0.02

0.04

0.06

0.08

0.1

6 7 8 9

 in
te

ns
ity

 in
 [k

m
/m

ol
]

 scfconv

 Mode 11: intensity

grid 3
grid 4
grid 5

analyt.

3000

3050

3100

3150

3200

6 7 8 9

 fr
eq

ue
nc

y
in

 [1
/c

m
]

 scfconv

 Mode 12: frequency

grid 3
grid 4
grid 5

analyt.

60

80

100

120

140

160

180

200

6 7 8 9

 in
te

ns
ity

 in
 [k

m
/m

ol
]

 scfconv

 Mode 12: intensity

grid 3
grid 4
grid 5

analyt.

11.3 Influence of the RI-approximation

The influence of the RI-approximation [78] has been analyzed by varying the auxiliary
basis set. Four different auxiliary basis sets have been investigated; however, for nitrogen
the auxiliary basis set SV is the same as SVP and TZVP is the same as TZVPP. For
hydrogen, all auxiliary basis sets are different.

Mean and maximum errors (taking analytical frequencies without RI approximation
as references) for the different auxiliary basis sets are listed in the tables below.

mean error
IR intensities frequencies

No. Auxbasis SVP TZVP SVP TZVP

1 SV 0.5 3.0 3.9 3.1
2 SVP 1.3 2.6 4.4 3.3
3 TZVP 0.5 0.6 4.5 4.3
4 TZVPP 0.6 0.4 4.8 4.9

72 CHAPTER 11. PARAMETER STUDIES

maximum error
IR intensities frequencies

No. Auxbasis SVP TZVP SVP TZVP

1 SV 2.1 9.6 6.9 10.9
2 SVP 4.3 8.3 8.0 11.6
3 TZVP 2.1 2.0 9.1 8.4
4 TZVPP 2.3 1.4 10.2 12.2

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1 2 3 4

 fr
eq

ue
nc

y
in

 [1
/c

m
]

auxilary basis set

 Mode 7: frequency

SVP
TZVP

SVP analyt.
TZVP analyt.

50

55

60

65

70

1 2 3 4

 in
te

ns
ity

 in
 [k

m
/m

ol
]

auxilary basis set

 Mode 7: intensity

SVP
TZVP

SVP analyt.
TZVP analyt.

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1 2 3 4

 fr
eq

ue
nc

y
in

 [1
/c

m
]

auxilary basis set

 Mode 8: frequency

SVP
TZVP

SVP analyt.
TZVP analyt.

70

75

80

85

90

95

100

1 2 3 4

 in
te

ns
ity

 in
 [k

m
/m

ol
]

auxilary basis set

 Mode 8: intensity

SVP
TZVP

SVP analyt.
TZVP analyt.

11.3. INFLUENCE OF THE RI-APPROXIMATION 73

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550
1 2 3 4

 fr
eq

ue
nc

y
in

 [1
/c

m
]

auxilary basis set

 Mode 9: frequency

SVP
TZVP

SVP analyt.
TZVP analyt.

0

0.0005

0.001

0.0015

0.002

1 2 3 4

 in
te

ns
ity

 in
 [k

m
/m

ol
]

auxilary basis set

 Mode 9: intensity

SVP
TZVP

SVP analyt.
TZVP analyt.

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1 2 3 4

 fr
eq

ue
nc

y
in

 [1
/c

m
]

auxilary basis set

 Mode 10: frequency

SVP
TZVP

SVP analyt.
TZVP analyt.

0

0.0002

0.0004

0.0006

0.0008

0.001

1 2 3 4

 in
te

ns
ity

 in
 [k

m
/m

ol
]

auxilary basis set

 Mode 10: intensity

SVP
TZVP

SVP analyt.
TZVP analyt.

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

1 2 3 4

 fr
eq

ue
nc

y
in

 [1
/c

m
]

auxilary basis set

 Mode 11: frequency

SVP
TZVP

SVP analyt.
TZVP analyt.

0

0.05

0.1

0.15

0.2

1 2 3 4

 in
te

ns
ity

 in
 [k

m
/m

ol
]

auxilary basis set

 Mode 11: intensity

SVP
TZVP

SVP analyt.
TZVP analyt.

74 CHAPTER 11. PARAMETER STUDIES

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

1 2 3 4

 fr
eq

ue
nc

y
in

 [1
/c

m
]

auxilary basis set

 Mode 12: frequency

SVP
TZVP

SVP analyt.
TZVP analyt.

60

62

64

66

68

70

1 2 3 4

 in
te

ns
ity

 in
 [k

m
/m

ol
]

auxilary basis set

 Mode 12: intensity

SVP
TZVP

SVP analyt.
TZVP analyt.

As can be seen from these results, the effects of the auxiliary basis sets are very small.

11.4 Basis set dependencies

Turbomole supplies 5 different standard split-valence basis sets. Contraction schemes
for hydrogen and nitrogen are as follows:

No. Basis H N

1 SV [4s,2s] [7s4p,3s2p]
2 SVP [4s1p,2s1p] [7s4p1d,3s2p1d]
3 TZV [5s,3s] [11s6p,5s,3p]
4 TZVP [5s1p,3s1p] [11s6p1d,5s3p1d]
5 TZVPP [5s3p,3s3p] [11s6p2d1f,5s3p2d1f]

The following table contains maximum and mean errors compared to experimental
frequencies (experimental IR intensities could not be obtained). Experimental frequencies
for IR active modes have been taken from Hallin et al. [79] and from Hegelund and
Burger [80] (gas phase). Frequencies of IR inactive modes have been taken from Raman
experiments by Bondybey and Nibler [81] (N2 matrix).

No. Basis max. error mean error

1 SV 115.78 49.02
2 SVP 46.12 27.17
3 TZV 134.52 57.69
4 TZVP 29.47 14.89
5 TZVPP 21.52 10.73

This indicates that polarization functions are mandatory in order to obtain satisfactory
results; otherwise, errors up to 150 cm−1 may occur for the frequencies (and up to 20%

11.4. BASIS SET DEPENDENCIES 75

for the intensities). The mean error for a TZVP basis set is smaller than 15 cm−1, such
that this basis set should be preferred to obtain accurate results.

1260

1280

1300

1320

1340

1360

1380

1400

1 2 3 4 5

 fr
eq

ue
nc

y
in

 [1
/c

m
]

basis set

 Mode 7: frequency

calc.
exp.

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5

 in
te

ns
ity

 in
 [k

m
/m

ol
]

basis set

 Mode 7: intensity

1260

1280

1300

1320

1340

1360

1380

1400

1 2 3 4 5

 fr
eq

ue
nc

y
in

 [1
/c

m
]

basis set

 Mode 8: frequency

calc.
exp.

70

75

80

85

90

95

100

105

110

115

120

1 2 3 4 5

 in
te

ns
ity

 in
 [k

m
/m

ol
]

basis set

 Mode 8: intensity

1350

1400

1450

1500

1550

1 2 3 4 5

 fr
eq

ue
nc

y
in

 [1
/c

m
]

basis set

 Mode 9: frequency

calc.
exp.

0

0.005

0.01

0.015

0.02

1 2 3 4 5

 in
te

ns
ity

 in
 [k

m
/m

ol
]

basis set

 Mode 9: intensity

76 CHAPTER 11. PARAMETER STUDIES

1560

1580

1600

1620

1640

1 2 3 4 5

 fr
eq

ue
nc

y
in

 [1
/c

m
]

basis set

 Mode 10: frequency

calc.
exp.

0

0.002

0.004

0.006

0.008

0.01

1 2 3 4 5

 in
te

ns
ity

 in
 [k

m
/m

ol
]

basis set

 Mode 10: intensity

3000

3020

3040

3060

3080

3100

3120

3140

1 2 3 4 5

 fr
eq

ue
nc

y
in

 [1
/c

m
]

basis set

 Mode 11: frequency

calc.
exp.

0

0.05

0.1

0.15

0.2

1 2 3 4 5

 in
te

ns
ity

 in
 [k

m
/m

ol
]

basis set

 Mode 11: intensity

3000

3020

3040

3060

3080

3100

3120

3140

1 2 3 4 5

 fr
eq

ue
nc

y
in

 [1
/c

m
]

basis set

 Mode 12: frequency

calc.
exp.

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5

 in
te

ns
ity

 in
 [k

m
/m

ol
]

basis set

 Mode 12: intensity

11.5 Raman intensities

For an analysis of the influence of the choice of basis set size and quantum chemical
method on Raman intensities we refer to the extensive analyses given in [3] and [47].

12. Programmer’s guide

12.1 New interfaces to quantum chemistry programs

Snf can be combined with any quantum chemical program which provides molecular gra-
dients and dipole moments. These data are sufficient to calculate vibrational wavenum-
bers, normal modes and infared intensities. If furthermore electric-dipole–electric dipole
(and electric-dipole–magnetic dipole and electric-dipole–electric quadrupole) polarizabil-
ity tensors are available, calculations of Raman (and Raman optical activity) intensities
are possible.

12.1.1 General issues

In the Snf source code, the programs are identified by the integer variable progno. At
present, its values are defined as follows:

progno Program

1 Turbomole
2 Dalton
3 Gaussian
4 Adf
5 Molpro

Since the in- and output of the single-point calculations may differ within a given
program if different quantum chemical methods are employed, the types of calculations
are distinguishable by the value of the integer variable calcno. The progno and calcno

variables are managed by the subroutines calc type and prog type. In order to check
whether all necessary steps have been taken for programming the interface, it might be
helpful to check the code for these two variables.

12.1.2 Steps to take

1. Construct an input file for the quantum chemical program which yields the desired
information, i.e., energy gradients, dipole moments, and, if neccessary, (generalized)
polarizability tensors. If there is no input keyword avaliable which provides the
gradients directly, it may be helpful to request a molecular structure optimization

77

78 CHAPTER 12. PROGRAMMER’S GUIDE

(“geometry optimization”) which is stopped as soon as possible, for example after
the first cycle.

2. Check where in the output the gradient, dipole moment etc. can be found, and
for which output keywords you have to search in order to identify this information
uniquely.

3. Change the source code in src/snfdc/ and src/snf/ such that the new progno

and calcno are accepted, input files for the displaced structures are written, the
correct quantum chemical program is started on the slave nodes, and the output is
read in correctly when a single-point calculation is finished. The subroutines which
have to be modified or added are listed in detail below. All new files must be added
to Makefile.am. Do not modify either Makfile.in or Makefile since these are
autogenerated files and your changes are lost upon the next invocation of make .

4. Compile the code with all possible combinations of parallelization type, file copying,
and compilers (see INSTALL), and check whether all are still working.

12.1.3 Changes in the code

The following subroutines have to be added (first part of each table) or modified (second
part). Replace <np> by a suitable name. Just to be sure, you should check the code for
progno and calcno and, if the routine was not in the list above, extend these sections as
needed.

Snfdc
File Subroutine Purpose

<np>rslave.F <np>rslave Performs a single-point calculation on
slave node, collects the results, and
sends them to master.

rw<np>.F as you like Contains routines for writing input files
for the displaced structures and read-
ing gradients (i.e., copying the input file
while replacing the equilibrium coordi-
nates by the distorted ones), dipole mo-
ments, and, if neccessary, polarizabili-
ties from the output files of the single-
point calculations.

getgrad.F get<np>grad Reads gradient components from ouput
files of slave calculation.

12.1. NEW INTERFACES 79

Snfdc
File Subroutine Purpose

getpol.F get<np>pol Reads polarizability components from
ouput files of slave calculation.

. . . ? . . . ? Get further information (dipole mo-
ments, energies, if these cannot be read
within one of the routines above) from
ouput files of slave calculation.

rslave.F rslave Driver for preparing input files for elec-
tronic structure programs for displaced
coordinates

islave.F islave Initializes slave (child) processes

cslave.F cslave Driver for calling appropriate
nprslave.

spawn.F spawn Controls file copying through MPI.

util.F nfex Returns the number of files to be copied
to the slaves.

calc type Returns type of calculation (as a char-
acter string) to be done for a given
progno and calcno.

prog type Returns type of program to be used (as
a character string) for a given progno.

basic input.F basic input Driver for reading basic input files for
Snfdc and electronic structure pro-
grams.

Snf
File Subroutine Purpose

snf define.f90 snf define Set up Snfdc run.

snf control.f90 various Initialize and control the frequency cal-
culation.

snf tools.f90 ramanpos .true., if a Raman calculation is pos-
sible in a given program mode.

80 CHAPTER 12. PROGRAMMER’S GUIDE

Snf
File Subroutine Purpose

vroapos .true., if a VROA calculation is pos-
sible in a given program mode.

. . . ?

snf.f90 snf Evaluate results from Snfdc run.

snf <np>.f90 init <np> ctrl Initialize some variables for new pro-
gram (can probably be shifted to
snf <np>mol.f90).

snf <np>mol.f90 as you like Contains routines for assuring that the
right keywords for the gradients etc.
calculations are present in the input
files, and for reading the essential in-
put information such as molecular equi-
librium coordinates (should be unified
with rw<np>.F one day).

13. Program history of Snf

The first version of the Fortran 90 program Snf was developed by C. Kind and M. Reiher
at the University of Erlangen-Nuremberg in 1999. It used the program Numfreq [82] as
the data collector.

The original Fortran 77 version of Numfreq was written by S. Grimme at the Uni-
versity of Bonn and contains contributions from C. Marian and M. Gastreich. This PVM
parallelized version of the program has been largely extended in 1999 by B. A. Hess who
also added the MPI, LAM-MPI, and the MPICH versions of the program. This extensive
rewriting of the code, which yielded a program that can now solely be used for the general
parallelized collection of data (gradients, etc.), led to the introduction of Snfdc (dc =
data collector).

Substantial parts of the program Snf are based on subroutines for the utilization of
projection operators and representation matrices, which have been written by C. Kind
at the University of Cologne (1995/96). In winter 2000/2001 M. Reiher and C. Kind
modified the program and included thermochemistry and Raman intensities based on
static polarizabilities. In 2001 J. Neugebauer revised the existing code and included the
cubic and icosahedral point groups as well as the calculation of Raman intensities based on
dynamic polarizabilities. Further extensions by J. Neugebauer concern the treatment of
dummy atoms and linear molecules, the calculation of isotope effects, and several output
options.

Modifications after version 1.4.0 are listed below according to the version numbers.

5.0.1 Increase size of work arrays such that even larger molecules can be treated. Cor-
rected some mistake in the manual regarding usage of Gaussian. General update of
manual. This version is integrated into MoViPac 1.0.1.

5.0.0 Completely revised release for MoViPac 1.0.0.

4.2.1 Several minor bugfixes. Employ a tighter grid in Turbomole DFT calculations.

4.2.0 VROA calculations are now also possible with a modified version of Turbomole.
Note that this modified version is not officially distributed and you need the source
code of Turbomole to actually perform such calculations. The code now generally
assumes that the operation system conforms to Posix.1-2001 and the C compiler
fully supports C99. This is generally true for all systems shipped in 2003 or later.

81

82 CHAPTER 13. PROGRAM HISTORY OF SNF

Furthermore, the code was cleaned up and improved, and many smaller bugs were
fixed (e.g., sleeptime issues with the MPI version).

4.1.0 The build-system was completely revamped and now makes full use of the autotools
(autoconf, automake). The code was cleaned up and the output improved. Support
for systems from the 1990s is dropped now. Support for newer Adf versions which
use three digits for the exponent has been added and reading of polarizabilities from
the escf module of different Turbomole versions has been fixed. The MPI version
had many deadlocks in the communication which where removed. Race conditions
in the parallel code were fixed. The Dalton code was improved. The $rij flag
used by newer Turbomole versions is now recognized by Snf. Finally, a possibility
to explicitly specify a user-defined symmetry number has been added.

4.0.3 This is a bugfix release fixing compiler warnings and problems with the creation of
temporary files.

4.0.2 Many smaller bugs have been fixed. It is now possible to specify the sleeptime
(i.e., the time the master process waits between two subsequent checks of the slave
processes).

4.0.1 The configuration machinery was updated to allow different compilers for the F90
and F77 routines. IBM-AIX support has been added. Hessian-output in Turbomole-
style is now possible. Frequency analyses are now possible with Adf’s QM/MM-
interface.

4.0.0 Snf now features an RICC2 interface to Turbomole. A serial version of Snfdc is
available. Several changes have been made to update the configuration machinery
and to simplify the installation process. A test suite and a tool for plotting in
particular VROA spectra (specplot) have been added. Several smaller bugs were
fixed.

3.5.6 Some minor bugs were fixed.

3.5.5 This is a bugfix release to fix some compiler warnings.

3.5.4 Conventional CIDs can now be calculated for an arbitrary list of normal modes.
Initial blank lines in Gaussian input files are now supported.

3.5.3 The values of the A tensor can now be set to zero for the calculations done for
snf.out.

3.5.1 The Gaussian interface was improved (e.g., user-provided basis sets are now sup-
ported).

83

3.5.0 A test interface to Molpro was added (for MCSCF calculations) and some minor
bugs were fixed.

3.4.2 Normal modes can now be read in from the file tm_normmodes.

3.4.1 Several modifications were done concerning the Adf interface and some smaller
bugs in the intensity-only mode were fixed.

3.4.0 The Gaussian input file is now automatically modified such that any symmetry
keyword is removed for the single point calculations.

3.3.0 Interfaces to the quantum chemical program packages Gaussian and Adf have
been included.

3.2.0 This is a bugfix release.

3.1.0 The program was extended to allow for the calculation of Vibrational Raman Optical
activity (VROA) spectra. These are now possible using the DALTON package. For
the evaluation of the data (derivatives of London and non-London G tensor and of
A tensors), parts of a subroutine from the ABACUS part of DALTON have been
used with permission of K. Ruud.

3.0.0 The entire program has been restructured in order to change its former Turbomole-
specific character to a general structure that allows for an easy interfacing of new
quantum chemical programs.

2.3.1 Output of the escf module of Turbomole 5.6 is now supported.

2.3.0 Snf can calculate vibrational frequencies and infrared spectra for excited states via
the egrad module of the TURBOMOLE 5.6 package, using either RPA or CIS (only
for HF) calculations for the excited state. Snfdefine was extended accordingly to
allow an easy setup of excited state calculations. Gauss- and Lorentz-type spectra
can be plotted.

2.2.2 Individual ELIGIBLE files can be specified for the parallel calculation. Improved error
handling for Snfdc. New options for the Raman spectrum output are available:
all kinds of differential cross sections calculated by the program can be plotted
(keyword rptype <str>, can be set via Snfdefine). Empirical scaling factors can
be applied for the evaluation of the data.

Forward and backward differences are implemented to check the precision of the
numerical differentiation.

84 CHAPTER 13. PROGRAM HISTORY OF SNF

2.2.1 Implementation of orientation independent symmetry detection routines. Snf now
allows to use Dalton input files as well as Turbomole input files for the prepa-
ration of Dalton single point calculations. Based is no longer invoked, neither by
Snfdefine, by Snf, nor by Snfdc.

2.2.0 Snf contains routines for the preparation of Dalton input files, which are invoked
if Based is not available. The molecular charge is determined via occupation num-
bers in control. Snf supports the calculation of HF polarizabilities using Dalton’s
RESPONSE module instead of the ABACUS module. Snf supports the calculation of
Raman intensities from SOPPA polarizabilities in combination with MP2 frequen-
cies and infrared intensities. plotcperu keyword available, replaced by rptype

<str> keyword in V2.2.2.

2.1.6 Output of atomic contributions to vibrational intensities is possible via keyword
$atcontrib.

2.1.5 Setting of rpaconv parameter possible in Snfdefine; 7-point central differences
formula implemented. The code was cleaned up and improved.

2.1.4 Minor corrections in the LAM-MPI version of Snfdc and in module snf control.
Snf is now distributed under the terms of the GNU General Public License; see file
LICENSE in the Snf installation directory.

2.1.3 MCSCF Raman and infrared intensities are available using Dalton. Data from old
restart files can now be used if calculations shall be restarted using a higher number
of grid points for the numerical derivatives.

2.1.2 Configuration script makes use of Turbomole configuration files; optional config-
uration using the PARM file.

2.1.1 Minor error corrections in the MPICH version of Snfdc. Snfdc now prepares input
files and runscripts for the MPI versions of Snfdc. Snf and Snfdefine fulfill
Fortran 95 standard. Infrared intensities are available for Turbomole MP2/RI-
MP2-calculations. Logfiles for slave processes and temporary directories for single
point calculations may be removed automatically.

2.1.0 Snfdc now supports the Dalton program modes.

2.0.1 The scripts choose nodes and mkdcinput are executed by snf define for easier
preparation of Snfdc input files.

2.0.0 The Turbomole version of Snf is available as a package containing the interactive
input program Snfdefine, the data collector Snfdc, the evaluation program Snf,
and all scripts which are necessary to run these programs.

85

1.8.1 Support for new escf module has been added.

1.8.0 A new directory hierarchy has been introduced.

1.7.9 Dynamic polarizabilities are now supported. Some minor bugs were fixed.

1.7.8 This is a bugfix release.

1.7.7 The internode communication has been improved.

1.7.6 An archive facility has been added.

1.7.5 A few minor bugs were fixed.

1.7.3 The internode comunication has been simplified and some small bugs were fixed.

1.7.2 The code was changed to to fully support open shell cases.

1.7.1 All buffers have been increased to 2500 characters such that log filenames do not
cause problems anymore.

1.6.7 An MPI version of Snfdc is now available.

1.6.6 The nodes are now dynamically scheduled.

1.6.5 Some minor bugs were fixed and preparations for an MPI version have been made.

1.6.4 Issues with the load balancing were fixed.

1.6.3 The code was improved.

1.6.1 Load balancing have been introduced.

1.6.0 The restart file format has been adjusted.

1.5.4 Calculation of Raman intensities is now possible.

1.5.2 The code was improved for a better node managing.

1.4.4 The data for the 5-point central-differences formula can now be collected with
Snfdc.

1.4.3 New ESCF versions (binaries denoted as escf.intel and escf.athlon) can be ap-
plied for the calculation of polarizabilities. They allow to use the RI-approximation
in DFT calculations.

1.4.2 Symmetry redundant distortions of non-redundant atoms can be omitted.

86 CHAPTER 13. PROGRAM HISTORY OF SNF

1.4.1 In open-shell cases, total spin expectation values are read to calculate electronic
(spin-only) contributions to the entropy etc.; scattering cross sections can be calcu-
lated for any scattering angle.

1.4.0 Implementation of the Dalton module. Snfdefine can now prepare Dalton cal-
culations using the methods HF(SCF), MP2, CCS, CCSD, and CC2 if Turbomole
input files are available.

14. Supported point groups

Snf supports almost every molecular point group, with the exceptions of C∞v and D∞h.
In version 1.0 and all later versions, the following 45 point groups are implemented:

C1, Ci, Cs,
C2, C3, C4, C5, C6, C7, C8

C2v, C3v, C4v, C5v, C6v,
C2h, C3h, C4h, C5h, C6h,
D2, D3, D4, D5, D6,
D2h, D3h, D4h, D5h, D6h,
D2d, D3d, D4d, D5d, D6d,
S4, S6, S8,
O, Oh, T, Td, Th, I, Ih

87

88 CHAPTER 14. SUPPORTED POINT GROUPS

15. Program modes

The program modes available in Snf are given in the table below, which also shows
the corresponding program number (progno) and calculation number (calcno) which are
stored in the restart file.

progno calcno program package type of calc. note

1 1 Turbomole SCF/DFT
1 2 Turbomole RI-DFT
1 3 Turbomole RI-MP2 no Raman
1 4 Turbomole MP2 no Raman
1 5 Turbomole EGRAD no Raman
1 6 Turbomole EGRAD/RI no Raman
1 7 Turbomole DSCF/RICC2 no Raman
2 1 Dalton HF
2 2 Dalton MP2 no Raman
2 3 Dalton CC2
2 4 Dalton CCS
2 5 Dalton CCSD
2 6 Dalton MCSCF
2 7 Dalton SCF/TDHF
2 8 Dalton MP2/SOPPA
2 9 Dalton DFT
3 1 Gaussian Gaussian98 no frequency-

dependent
Raman
intensities

3 2 Gaussian Gaussian03
3 3 Gaussian Gaussian09
4 1 Adf (all)
5 1 Molpro MCSCF no Raman

89

90 CHAPTER 15. PROGRAM MODES

16. Supported compilers

The program Snfdc is written in Fortran 77 while Snf is written in Fortran 90. In
principle, any compiler supporting these language standards can be used. We test the
program with the GNU compiler collection (gfortran), the Intel Fortran compiler (ifort)
and the Portland Group compilers (pgf77, pgf90).

Since neither Snfdc nor Snf perform any time-consuming operations (in comparison
to the required single-point calculations), there is in general no need for aggressive opti-
mization flags. The configure script tries to determine the compiler automatically but
prefers the GNU compilers gfortran and gcc above all others.

Note that the GNU Compiler Collection (GCC) has some issues with creating 64 bit
code prior to version 4. We therefore neither recommend nor support usage of gcc-3.x.
The current code was tested with gcc-4.4.6.

For the MPI version, a wrapper script called mpif77 is required. This wrapper is
usually provided by the MPI implementation.

91

92 CHAPTER 16. SUPPORTED COMPILERS

17. Elimination of translational and

rotational modes

In this section, two methods will be explained to eliminate the contributions of transla-
tional and rotational modes to the Hessian matrix.

The first method determines the translational and rotational fractions of each mode
after diagonalization of the Hessian, such that the six modes with the largest percentages
of non-vibrational contributions are neglected. The second method explicitly removes the
contributions of pure non-vibrational modes before diagonalizing the Hessian. For details
of the notation utilized here, see [3].

17.1 Determination of translational and rotational

fractions

Every pure vibrational mode must preserve the center of mass, i.e.,

∆M =

∣

∣

∣

∣

∣

N
∑

i=1

R
(c)
i mi

∣

∣

∣

∣

∣

= 0 , (17.1)

where R
(c)
i is the displacement vector of atom i in Cartesian coordinates in this normal

mode. The change ∆Mtrans for a pure translational normal mode may be defined by a
normalized motion of all atoms along a selected direction R

(m)
trans, where the superscript

indicates the mass-weighting. The normalization condition is

N
∑

i=1

|R(m)
i,trans|2 =

N
∑

i=1

|R(c)
i,trans|2mi = |R(c)

trans|2Mtotal = 1 , (17.2)

where we made use of the fact that all displacements R
(c)
i,trans are equal by definition. Mtotal

is the total mass of the molecule. The translational amplitude is thus

|R(c)
trans| =

1√
Mtotal

. (17.3)

With the above equation, we obtain for ∆Mtrans

∆Mtrans =

∣

∣

∣

∣

∣

N
∑

i=1

R
(c)
transmi

∣

∣

∣

∣

∣

=

N
∑

i=1

mi√
Mtotal

=
√

Mtotal , (17.4)

93

94 CHAPTER 17. ELIMINATION OF NON-VIBRATIONAL MODES

such that we get for the translational percentage

ctrans =
∆M

∆Mtrans
=

∆M√
Mtotal

. (17.5)

For the rotational percentage, an analogous procedure can be applied. In this case, the
resulting angular momenta ∆L and ∆Lrot have to be considered,

∆L =

N
∑

i=1

mi(ri × R
(c)
i) , (17.6)

where ri are the Cartesian coordinates of atom i in the center-of-mass coordinate system,
as they may be obtained from the input file. The axes of rotation are per definition the
x-, y-, and z-axis in this ”laboratory coordinate system”. Note that the above formula
only describes angular momenta resulting from differential displacements of the atoms.
But since this also holds for the determination of the normal modes, i.e., since rotational
normal modes are only pure rotational for differential motions, it is legitimate to use the
above definition in this framework.

The resulting angular momentum ∆Lrot for a pure rotation about the axis specified
by the vector ∆L for the normal mode under consideration is normalized as follows:

N
∑

i=1

|√mi(ri × ~ωrot)|2 =
N
∑

i=1

mi|r⊥i | · |~ωrot|2 = 1 . (17.7)

Here, ~ωrot is the angular velocity around the specified axis, which is identical for all atoms
in this pure rotation, and r⊥i is the component of ri perpendicular to this axis. The
absolute value |~ωrot| is then given as

|~ωrot| =
1

√

∑N
i=1 |r⊥i |2mi

. (17.8)

The angular velocity is related to the angular momentum by the moment of inertia I,

~ωi = I−1∆Li . (17.9)

The final result for the rotational percentage to a normal mode is

crot =
∆Li

∆Lrot
=

|~ωi|
|~ωrot|

. (17.10)

The values ctrans and crot may then be used to eliminate the modes with the three largest
percentages of rotational and translational contributions.

17.2. ELIMINATION VIA PROJECTION OPERATORS 95

17.2 Elimination of non-vibrational contributions by means of

projection operators

In the second method, pure translational and rotational modes, i.e., motions along the
coordinates R

(m)
trans and R

(m)
rot , are constructed and projected off the Hessian.

For this purpose, the projection operators

P
(m)
trans = 1(m) −

3
∑

trans

R
(m)
transR

(m)†
trans , (17.11)

P
(m)
rot = 1(m) −

3
∑

rot

R
(m)
rot R

(m)†
rot , (17.12)

are applied on the matrices1 S
(m)
µ and the resulting matrix is orthonormalized with an

appropriate matrix A2. The matrix now obtained,

V(m)
µ = AP

(m)
transP

(m)
rot S(m)

µ , (17.13)

is a transformation matrix in the basis of pure vibrational eigenvectors of the Hessian
matrix. Applying this matrix on the mass-weighted Hessian yields

V(m)†
µ F(m)V(m)

µ = F(v)
µ . (17.14)

The dimensions of matrix F
(v)
µ are reduced by the number of removed translational and

rotational modes, which correspond to the irrep Γµ (compared to the matrix F
(s)
µ , which

would be obtained without projecting off the non-vibrational contributions).
The pure translational and rotational modes are generated as follows:

• As far as the translational modes are concerned, these are assumed as motions along
the axes of the laboratory coordinate system. The absolute value of the normalized
distortion is known from Eq. (17.3). After mass-weighting, we obtain for the entry
corresponding to atom i and the rotational mode j

R
(m)
trans,ji =

√
miR

(c)
j =

√
mi√

Mtotal

ej . (17.15)

• The treatment of the rotational modes is more complicated. They are only orthog-
onal if the axis of rotation are the principal axis of the moment of inertia. This can
be achieved by diagonalizing the matrix of the moment of inertia, I,

ω†
rotIωrot = I(diag) . (17.16)

1These matrices contain the eigenvectors of the projection operators that block-diagonalize the mass-
weighted Hessian; see [3] for details.

2This matrix is constructed via Gram–Schmidt orthogonalization, such that V
(m)
µ is orthonormal and

does not contain any zero vectors.

96 CHAPTER 17. ELIMINATION OF NON-VIBRATIONAL MODES

The absolute value of ωrot is given by Eq. (17.8). After mass-weighting we obtain
for the entry corresponding to atom i and the rotational mode j

R
(m)
rot,ji =

√
miR

(c)
ji (17.17)

=
√

mi(x
⊥
ij × ωrot,j) (17.18)

x⊥
ij = xi −

xi · ωrot,j

ω2
rot,j

ωrot,j . (17.19)

The modes generated with this treatment correspond to circular motions, i.e., to
exact rotations only in case of infinitesimal distortions. However, this is also the case
for exact rotational normal modes, since they can also describe curvilinear motions
only in the limit of infinitesimal steps.

18. Tools and scripts

18.1 Scripts helpful for running snfdc

In the subdirectory scripts of the installation directory, you can find several scripts,
which are either mandatory or useful for running the programs of the Snf package.
Therefore, these scripts should be available in your $PATH. The scripts have the following
purposes:

choose nodes: selects nodes from $CIPROC/ELIGIBLE file to be added to the virtual par-
allel machine; see Secs. 5.4 and 5.5

dc killtask: mandatory script for Snfdc; see Sec. 5.5

mkdcinput: prepares the DCINPUT file; see Secs. 5.4 and 5.5

dcmore: Snfdc status monitor; displays the file TMPdcstat in time intervals of 5 seconds.
The update time can be set via dcmore <val>, <val> = update time in seconds.

18.2 Graphical tools

For the graphical visualization of the spectra obtained with Snf, the Fortran 77 program
Specplot is available under src/utilities/specplot_1.4/. While IR and Raman
spectra are plotted by Snf by default, Specplot is particularly designed for the following
special purposes:

• plot VROA spectra (only backscattering intensities implemented so far),

• plot Raman spectra which are obtained as a “byproduct” of a VROA calculation
(only backscattering intensities implemented so far),

• plot selected peaks of Raman and VROA spectra only,

• plot several IR spectra, which are read from g98.out files, into one figure.

The first three points mentioned above require a control file vroaplot control. Ex-
amples may be found in examples/specplot. Specplot is based on Gnuplot. A

97

98 CHAPTER 18. TOOLS AND SCRIPTS

special feature of the program is that it provides the spectrum as a postscript file, which
is automatically shown via Ghostview, and which is updated after every command you
enter (provided the “watch file” option is selected in your Ghostview settings). Such
commands might request, for example, adjusting axis ranges, selecting and deselecting
individual peaks, or some other features, which can be chosen in the main Specplot
menu:

Generate spectra plots

The current plot of your spectra is just being shown.

The following settings can be changed:

[d]ist : distance between baselines

[xr]ange : minimum and maximum frequency

[ymin] <num>: minimum intensity = <num>

[ymax] <num>: maximum intensity = <num>

[tit]le : title

[xl]<string>: label of x-axis = <string>

[yl]<string>: label of y-axis = <string>

[l]egends : legends of individual plots

[gnu]plot : enter gnuplot commands

[th] <int> : set thickness of lines to <int>

[pg/plo/pli]: plot {\sc Gaussian} / Lorentzian /line data

[ali] : add line spectrum to

: {\sc Gaussian} / Lorentzian plot

[nali] : remove line spectrum

[scli <num>]: scale original line spectrum

by factor <num>

[pw <num>] : use peakwidth = <num>

[spw] : adjust peakwidth for selected region

[rm] <a-b> : extinguish wavenumber range <a> to

[re] <fname> <a-b> : reread peaks in wavenumber

range <a> to from file <fname>

[wi] <num> : width of plot = <num>

[he] <num> : height of plot = <num>

[gr] <a-b> : group peaks in wavenumber range

<a> to

[sqgr] : group peaks in wavenumber range

<a> to and plot them as rectangles

18.2. GRAPHICAL TOOLS 99

Further options:

! <command> : execute shell command <command>

[pr] <int> : print list of freq.s and intensities

for <int>th file (default: file 1)

[sa <file>] : save spectrum as file.eps, file.gpin

and file.dat

[su] <a>-: print sum of intensities of all peaks

in wavenumber range <a> to

<quit> : quit without changes

Please note that Specplot is work in progress — it should work for all the above-
mentioned purposes, but in some cases, you may need to adjust some lines in the code to
get exactly the result you want. The recommended compiler is Intel’s ifort.

100 CHAPTER 18. TOOLS AND SCRIPTS

Part II

Akira

101

19. Introduction

This manual covers the program Akira [21] and is organized as follows:

Sect. 21 contains help on how to get Akira binaries running on your system. A de-
scription of the installation of Akira is given and the requirements for the parallelization
are explained.

In Sect. 22, the theoretical background of the subspace iteration methods employed in
Akira is illustrated and the numerical derivative methods are explained in detail. Sect. 23
deals with how to prepare and to run modetracking calculations using the commands
Akiradefine and Akira, respectively. An analysis of the influence of the step size used
in numerical differentiation on the calculation of vibrational frequencies is given at the
very end.

Any use of this program that results in published material should cite the following:

M. Reiher, J. Neugebauer. A mode-selective quantum chemical method for tracking
molecular vibrations applied to functionalized carbon nanotubes. J. Chem. Phys., 118(4)
(2003) 1634–1641.

This article introduces the Mode-Tracking method and describes the implementa-
tion of the algorithm; comparisons of some initial guesses and preconditioners are also
given. We should, however, emphasize that we cannot warrant that the method is indeed
suitable for your particular purpose.

Further details of the program capabilities and examples for mode-tracking calcula-
tions are given in the following articles:

• extraction of couplings between different parts of a molecule, applications to large
gold clusters:
J. Neugebauer, M. Reiher J. Comput. Chem. 25 (2004), 587 – 597.

• local vibrations in large molecules, applications to molecular-wires type transition
metal complexes:
J. Neugebauer, M. Reiher J. Phys. Chem. A 108 (2004), 2053 – 2061.

• systematic comparison of initial guesses, preconditioners, convergence characteris-
tics, preconditioning schemes, near-degeneracies:
M. Reiher, J. Neugebauer Phys. Chem. Chem. Phys. 6 (2004), 4621 – 4629.

103

104 CHAPTER 19. INTRODUCTION

• applications to molecules adsorbed at surfaces:
C. Herrmann, M. Reiher Surf. Sci. 600 (2006), 1891 – 1900.

• QM/MM calculations:
C. Herrmann, J. Neugebauer, M. Reiher J. Comput. Chem. 29 (2008), 2460 – 2470.

For further information on the semi-numerical implementation in our vibrational spec-
troscopy programs, see the following articles, which do also give references to important
work by other groups:

• general review of theoretical vibrational spectroscopy for large molecules:

– C. Herrmann, M. Reiher Top. Curr. Chem., 168 (2007), 85 – 132.

• parallelized, semi-numerical calculation of vibrational frequencies and intensities (in
particular, Raman intensities [2nd paper]):

– J. Neugebauer, M. Reiher, C. Kind, B. A. Hess. J. Comput. Chem., 23 (2002),
895 – 910.

– J. Neugebauer, M. Reiher, B. A. Hess. J. Chem. Phys., 117 (2002), 8623 –
8633.

• anharmonicity effects in the density functional framework (1st paper) and error
cancellation of harmonic BP86/TZVP frequencies in comparison with fundamental
frequencies (both papers below):

– J. Neugebauer, B. A. Hess. J. Chem. Phys., 118 (2003), 7215 – 7225.

– M. Reiher, G. Brehm, S. Schneider. J. Phys. Chem. A, 108 (2004), 734 – 742

• mode-wise calculation of intensities for vibrational spectra:

– M. Reiher, J. Neugebauer, B. A. Hess. Z. Phys. Chem., 217 (2003), 91 – 103.

– J. Neugebauer, M. Reiher, B. A. Hess, in: S. Wagner, W. Hanke, A. Bode,
F. Durst (Eds.), High-Performance Computing in Science and Engineering
2000-2002, Springer-Verlag, Berlin 2002, pp. 157 – 169.

20. Quickstart

The program package Akira has been developed to implement the Mode-Tracking idea.
Selected vibrations (normal modes and wavenumbers) can be obtained using the harmonic
approximation. The vibrational frequencies are determined using numerical differentia-
tion of analytic gradients of the total electronic energy with respect to collective Cartesian
nuclear coordinates. Akira requires single-point calculations with either Dalton, Tur-
bomole, Adf, or Gaussian, which can be performed using coarse-grained parallelization
(MPI). Note that you need to possess an official licence for any of these quantum chem-
istry packages! Akira does not intermingle with any of these programs but only scans the
output of them in order to extract all relevant raw data for the Mode-Tracking protocol.
Akira will automatically start Dalton, Turbomole, Adf, or Gaussian single-point
jobs on slave nodes (if no computer cluster is available it is possible to run Akira in a
single-processor mode). For the easy set up and handling of the calculations you may
start the set-up tool Akiradefine. Normal modes may be tracked for any electronic
structure method implemented in Dalton, Turbomole, Adf, or Gaussian for which
analytic energy gradients are available.

Akira comes as part of the MoViPac program package. By default, only the pro-
gram Snf is installed. The installation of Akira can be enabled by using the flag
--enable-akira in the configure script, i.e., you need the following steps:

To install Akira, you need the following steps: To install Snf, you need the following
steps:

• read this manual

• unpack: tar -xvjf snf-4.2.1.tar.bz2

• change to subdirectory: cd snf-4.2.1

• set up build environment: autoreconf -i -v

• configure package: ./configure --prefix=PREFIX_DIR --with-mpi --enable-akira

• compile package: make

• install binaries to PREFIX_DIR: make install

• clean up installation process: make clean

105

106 CHAPTER 20. QUICKSTART

PREFIX_DIR denotes the directory where the Snf and Akira binaries are installed to.
The path to this directory needs to be assigned to the environment variable SNF_PATH.
Moreover, SNF_PATH/bin needs to be added to the environment variable PATH.

More detailed information about installing Akira can be found in section 4.2.

21. Installation and technical issues

21.1 Getting started

21.1.1 General: the commands in the bin and scripts directory

In the bin directory of the installation directory, you will find two binaries, akiradefine
and akira. You will call akiradefine in order to set up the modetracking calculation,
and akira in order to perform the calculation.

In the same directory, the following scripts are available:

script use of script needs ... produces ...

mkrdcinput specifies paths and directories for
akira

— DCINPUT

choose_nodes checks cluster for free nodes and
writes them to file USE_NODES

ELIGIBLE,
ruptime

USE_NODES

dcmore monitors Akira calculation by dis-
playing TMPdcstat file, updating it
by default every 5 seconds. The
update time can be set via dcmore

<val>, <val> = update time in sec-
onds.

— —

In order to assure that akiradefine finds these scripts, you can add the scripts
directory to the $PATH in your .bashrc or copy the scripts into the bin directory in your
home.

mkrdcinput and choose_nodes are called automatically by akiradefine. For further
information on how to monitor a calculation with dcmore, see section 21.4.

Examples for all in- and output files mentioned here can be found in the examples/files
subdirectory in the source directory. Furthermore, a detailed explanation of the DCINPUT

file and the choose_nodes command is given in the subsections 21.1.2 to 21.1.3.

As far as Akira is concerned, all paths necessary for MPI and for the quantum
chemical package you want to use, that is Turbomole, Dalton, Adf or Gaussian,
must be set correctly. In the examples/files subdirectory, you will find a bashrc file
which contains an example of all paths that need to be set for Akira.

107

108 CHAPTER 21. INSTALLATION AND TECHNICAL ISSUES

In the following three subsections, more detailed information will be given on the
DCINPUT file and the preparations necessary for MPI.

21.1.2 The DCINPUT file

This file has the following structure:

DCPATH /usr/bin/akira

MYDIR /home/<usrname>/calculations/example

PREFIX TMP<usrname>%

TMPDIR /tmp

LOGDIR /home/<usrname>/calculations/example/log

with the variables

• DCPATH: path to the Akira executable file (optional)

• MYDIR: your working directory (mandatory)

• PREFIX: prefix for logfiles and temporary files (optional)

• TMPDIR: directory for temporary files (including all temporary files of the single
point calculations); must be available on every machine (optional)

• LOGDIR: directory for logfiles (optional)

If the optional variables are not specified in DCINPUT, Akira will try to use $MYDIR/tmp

as TMPDIR and $MYDIR/log as LOGDIR. PREFIX will be set to “TMP”.
The variables DCPATH,TMPDIR, and LOGDIR may be specified individually for some (or all)
of the slave nodes. This is achieved by the entry
DCPATH(<nodename>) <pathname>

etc. Additional optional variables are

• PROGDIR: path to the Turbomole, Dalton or Gaussian executable files (note
that Adf commands will always be taken from the path which is set in your shell).

• ARPATH: path for archiving of mos files etc. This option has been disabled.

If you want to perform calculations with values for the variables cstep or scfconv, which
are out of the confidence interval (Akiradefine will inform you if this happens), the
entry

CRAP OK yes

must be added to DCINPUT.

21.2. PARALLELIZATION STANDARDS 109

To create a standard inputfile, you can use the script mkrdcinput, which is automatically
executed by Akiradefine.

This file should be executed in the working directory. The settings for DCPATH and
TMPDIR in this script must be adopted to the local settings before using it.

21.1.3 Preparations for the MPI versions

If one of the MPI versions shall be used, this can be done by the command

mpirun -machinefile MACHINES -np <number of CPU’s> akira

The file MACHINES must contain the names of all computers available for the parallel cal-
culation. You may create this file by running

choose_nodes -mpi

and then renaming the file USE NODES, which is created by choose nodes, to MACHINES.
This is done automatically by Akiradefine, which also creates the runscript mpi.sub.
The runscript contains the mpirun command mentioned above; the number of CPU’s is
extracted from the files USE NODES. Hence, after running Akiradefine you may imme-
diately run the MPI version of Akira using the command mpi.sub. Note that it might
be necessary to modify the mpi.sub runscript, since different MPI installations may use
different options.

Note that the exact syntax of the MACHINES file and the mpirun command depends
on the MPI version. The syntax above corresponds to that of Mpich. OpenMpi, for
instance, follows a slightly different syntax.

21.2 Parallelization standards

Akira uses raw data from several structures displaced from a reference structure along a
set of basis modes, which start with a (or a couple of) user-defined basis vector(s). Each
basis vector represents a collective distortion of the cartesian coordinates of the molecular
(minimum) structure. The program executes two single-point calculations of electronic
energies and their gradients for each basis vector employed in each iteration. Although
parallelization is not as vital as in normal frequency analyses [3], the total wall clock time
can be considerably reduced if these calculations are executed simultaneously in a coarse-
grained parallel manner. In order to use the parallelized version of the data collection
in Akira, it is necessary to provide the software for the parallelization standard MPI.
Besides these, note that a serial version of the program is also available.

110 CHAPTER 21. INSTALLATION AND TECHNICAL ISSUES

21.2.1 MPI

Different implementations of the MPI standard are available. OpenMpi, MPI, Mpich,
and Lam/Mpi, resp., may be obtained from
http://www.open-mpi.org,
http://www.erc.msstate.edu/misc/mpi/,
http://www-unix.mcs.anl.gov/mpi/mpich, or
http://www.lam-mpi.org.
We use OpenMpi for development and, therefore, recommend its usage. Akira will look
for a MPI Fortran compiler (like mpif90) and will use it for compilation.

21.3 Memory management and pre-processing

In the latest Akira version, program-specific setup tools and memory management con-
structs were reduced to a minimum. In particular, dynamic memory allocation is now
handled by default Fortran90 allocate/deallocate calls.

Earlier versions of Akira used a memory managment that relied on the Memmgr
module by B. A. Hess [83], which was also used in Snf [3]. The memmgr allows dynamical
allocation of memory within Fortran routines which are written entirely in Fortran77.
These versions also employed the preprocessor Delrem by B. A. Hess [84].

21.4 Monitoring Akira calculations

Most important to observe the progress of the calculation is the file TMPdcstat which
contains information about the status of each slave process. The file can be watched
during the calculation by executing the script dcmore which can be found in the scripts
directory. It consists of 11 columns:

2 1 computer1 vbsy 0 90005 1 rdy 1 1 results sent

3 2 computer2 0 90005 1 rdy 2 2 results sent

4 3 computer3 0 103 0 run 3 3 968:15 dscf

5 4 computer4 0 90005 1 rdy 4 4 results sent

The rows contain the following entries:

21.5. FURTHER PROGRAMS AND SCRIPTS NEEDED BY AKIRA 111

1 task ID
2 continous numbering
3 node name
4 entry vbsy indicates a “very busy” machine
5 process ID (0 for finished processes)
6 cpu-load times 100, or

90005 for finished calculations, or
70005 for trouble in Turbomole programs, or
80005 for wrong results.

7 number of finished single point calculations on this node
8 status:

rdy = ready for next step,
run = running calculation,
wait = node waiting

9 step number
10 step number (redundant)
11 cpu time and name of running program or message

As already indicated by the name of the data file, Akira has got a restart facility,
such that any partly completed restart.akira file can be supplied in a Akira run, if
the program has been aborted.

21.5 Further programs and scripts needed by Akira

As a meta-program, Akira starts standard quantum chemical packages on slave nodes in
order to produce the raw data. The output produced on the slave nodes is then scanned
in order to pick up all necessary information needed by Akira. Thus, Akira does not
intermingle with any of these programs and you do need a license to run these programs,
which you have to acquire separately according to the conditions of the particular vendor
or theoretical chemistry groups, respectively!

For the performance of the single point calculations, the programs of the Adf [14],
Dalton [85], Gaussian [86] or Turbomole [11] package, respectively, must be avail-
able on every node in $PATH. Akiradefine allows to perform semiempirical Mopac [18]
calculations automatically as an initial guess for normal modes and Hessians. If this fea-
ture shall be used, Mopac must be installed on your system. Akiradefine furthermore
requires Molden [19] if the initial guesses selected for the mode-tracking calculations
shall be visualized.

Furthermore, the scripts from the scripts subdirectory of the Akira installation
directory must be available in $PATH. The script choose nodes also requires the file
ELIGIBLE in the directory $CIPROC, which contains the names of computers available
and their numbers of processors (see Chapt. 23). An example file is provided with the
Akira package. The variable $CIPROC must be set by the user. choose nodes also re-
quires the shell-command ruptime which comes with the rwho package. This is only
necessary for the parallel version of Akira.

112 CHAPTER 21. INSTALLATION AND TECHNICAL ISSUES

22. Methodology

The first section of this chapter explains the theoretical background of the subspace iter-
ation methods employed in Akira. The next section deals with details of the numerical
derivative methods.

22.1 Subspace iteration techniques

Two different subspace iteration techniques are available in Akira, namely the Davidson
and Lanczos algorithms, which will be explained in the next subsections (compare also
the reference to the original work given above).

22.1.1 Davidson algorithm

In order to calculate the vibrational frequencies, we have to solve the eigenvalue equation

H(m)Qk = λkQk, (22.1)

where H(m) is the mass-weighted Cartesian Hessian, which contains the (mass-weighted)
second derivatives of the total electronic energy with respect to nuclear Cartesian coordi-
nates, and {λk,Qk} is the eigensystem to be determined (with λk ∼ ω2

k and ωk being the
kth vibrational frequency; see [5, 87]).

The conventional procedure is to calculate all elements of the matrix H(m) (either
analytically or numerically) and to diagonalize this matrix to obtain all 3N eigenvalues and
eigenvectors for a molecule containing N atoms. If only selected vibrations are of interest,
one can apply subspace iteration methods like those by Lanczos [25] or by Davidson [23].
This has the major advantage that the full Hessian need not be calculated, which is the
time limiting step in the standard procedure.

Our Davidson-type method starts with a collective displacement b of all atoms

b =

3N
∑

j=1

bje
(m)
j , (22.2)

where e
(m)
j are the 3N (mass-weighted) nuclear Cartesian basis vectors, and bj are the

components of the displacement. The kth elemof the vector σ = H(m) · b, which is the

113

114 CHAPTER 22. METHODOLOGY

first approximation to the left-hand side of Eq. (22.1), is then given as

σk = {H(m) · b}k =
∑

l

∂2E

∂R
(m)
l ∂R

(m)
k

bl =
∂2E

∂R
(m)
k ∂b

. (22.3)

∂2E/[∂R
(m)
l ∂R

(m)
k] is the second derivative of the total electronic energy with respect to

(mass-weighted) nuclear Cartesian coordinates. This relation allows us to calculate the
vector σ as a numerical directional derivative of the gradient of the total electronic energy
E with respect to the collective displacement b,

σ = H(m) · b =

∑

l

∂2E

∂R
(m)
1 ∂R

(m)
l

bl

∑

l

∂2E

∂R
(m)
2 ∂R

(m)
l

bl

...
∑

l

∂2E

∂R
(m)
3N ∂R

(m)
l

bl

=

∂2E

∂R
(m)
1 ∂b
∂2E

∂R
(m)
2 ∂b
...

∂2E

∂R
(m)
3N ∂b

. (22.4)

The vector σ can thus be calculated as the numerical derivative of the analytic gradients
of the total energy. For this numerical differentiation it is necessary to carry out single
point calculations for the along-b distorted structures such that n-point central difference
formulae [88] for the numerical finite-difference approximation of the second derivative
can be applied. For the generation of these distorted structures, we use displacements
which result in a preselected norm of the corresponding (non-mass-weighted) Cartesian
displacement vector; in general, a step size of 0.01 bohr proved to yield reliable and
numerically stable derivatives [3, 22].

In the ith subspace iteration we build the Davidson matrix H̃(m),i as

H̃(m),i = Bi TH(m)Bi = Bi TΣi (22.5)

where all vectors bl and σ
l (with l = 1, . . . , i and i being the actual iteration step) are

collected in the matrices Bi and Σi, respectively. We then solve the eigenvalue problem
for the small Davidson matrix,

H̃(m),ic(i)
µ = λ(i)

µ c(i)
µ , (22.6)

where λ
(i)
µ is the ith approximation for eigenvalue λµ, from which we can calculate approx-

imate wavenumber in every iteration step. The desired eigenvector ci
µ is selected from the

set of vectors obtained from Eq. (22.6) and the residuum vector reads

r(i)
µ =

i
∑

l=1

c
(i)
µ,l

[

σ
l − λ(i)

µ bl
]

, (22.7)

22.1. SUBSPACE ITERATION TECHNIQUES 115

(note that i always denotes the actual ith iteration and µ marks the selected vector).
The sum is over all basis vectors bl, and the number of basis vectors is increased in each
iteration. In the standard Davidson method, the number of basis vectors is equal to the
number of iterations, since in each iteration one new basis vector is introduced. For each
new basis vector bi+1, we obtain a new vector σ

i+1 as the numerical derivative of the
gradient with respect to the collective displacement bi+1. The ith approximation vi

s to
the exact eigenvector qs in Eq. (22.1) is obtained as

Q(i)
µ =

i
∑

j=1

c
(i)
µ,jb

j , (22.8)

22.1.2 Preconditioning: The Davidson algorithm

The new basis vectors are generated from the residuum vectors,

bi+1 = D−1,(i)r(i)
µ , (22.9)

where Xi = D−1,(i) is a preconditioner, which should ideally be as close as possible to
[H(m) − λ

(i)
µ 1]−1. The simplest approximation for the inverse matrix of [H(m) − ρi

s1] is to

use a diagonal preconditioner with diagonal elements Xjj = 1/(H
(m)
jj −ρi

s). However, this
is only a good approximation for diagonally dominant matrices, a condition which is ful-
filled for configuration interaction matrices, but not for the Hessian matrices investigated
here. This procedure is repeated until the convergence criterion drops below a predefined
threshold. Convergence criteria are: i) the maximum element of the residuum vector, ii)
the norm of the residuum vector, iii) the contribution ui

s,i of the latest basis vector i in
Eq. (22.8) to the selected eigenvector and iv) the change in the wavenumber.

The convergence characteristics of this algorithm strongly depend on the reliability
of i) the initial guess of the first basis vector b1, which is the first approximation to the
desired exact eigenvector qs and of ii) the preconditioner. The latter problem is delicate
since we do not have any information about the matrix H(m); only matrix–vector products
σ

l = H(m)bl are known.
The Hessian may be approximated using the inverse transformation of Eq. (22.5)

H(m) = BH̃(m)BT , (22.10)

with B := B3N . This transformation would thus only be exact if we used a complete set
of 3N basis vectors. If the basis set is not complete, we may use the approximation

H
(m)
nj,appr. =

∑

kl

H̃
(m),i
kl Bi

knB
i
lj (22.11)

for the default preconditioner, where the sum is over all basis vectors bl (l = 1, . . . , i)
stored in the matrix Bi. But this is usually a poor approximation and yields only as many

116 CHAPTER 22. METHODOLOGY

approximate diagonal elements as basis functions are used in the current iteration (for
the other diagonal elements, one could use either unit entries or the last diagonal element
determined in this way for all other diagonal entries). However, the more iterations are
needed, the better becomes the preconditioner in this default preconditioning scheme.
Furthermore, 1/(H

(m)
jj − λ

(i)
µ) is a poor approximation to the inverse of a matrix (H(m) −

λ
(i)
µ 1) if H(m) is not diagonally dominant. Consequently, this approach is in most cases

not better than using a unit matrix as a preconditioner at the very beginning of the
procedure, when only very few basis vectors are available.

Both problems mentioned above in connection with the convergence criteria can be
overcome by using a semi-empirical calculation as an initial approximation: We calcu-
late an estimate for the Hessian and approximate normal modes using the PM3 model (of
course, other semi-empirical models can also be utilized). An initial guess for the eigenvec-
tor can be chosen from the set of semi-empirical normal modes, while the semi-empirical
Hessian can be used for the preconditioning procedure. Since the Hessian matrices under
investigation are of dimensions of about a few hundred rows and columns, it is — in con-
trast with configuration interaction matrices — possible to explicitly calculate the inverse
preconditioner matrix

Xi =
[

H
(m)
PM3 − ρi

s

]−1

(22.12)

in each iteration. It should be emphasized that the bottleneck of the calculation is not
this matrix inversion, which takes only a couple of seconds, but the single point calcu-
lations of electronic energies and gradients for the displaced structures. Using a 3-point
central differences formula [88] for the numerical differentiation, we need two single-point
calculations for structures distorted along each basis vector, which are performed in a
coarse-grained parallelized way using standard parallelization techniques as provided by
MPI. Unfortunately, it is not possible to perform all single-point calculations at once as
the basis vectors of iteration i depend on the results of all (i−1) former iterations. There-
fore, the little computational effort for the generation of more accurate preconditioners is
easily compensated by the resulting reduction of the number of iterations.

In course of the calculation of H
(m)
PM3, we also obtain the PM3 normal modes, which we

use as the first approximation b1. Note that this ‘guessing of normal modes’ is different
from the standard projection operator technique, which always requires a certain point
group in order to set up the projector from the irreducible representations of this point
group. Instead, we project out a selected mode and do not rely on any group theoretical
tools. Consequently, our approach is applicable also in C1-symmetric cases. Nevertheless,
these projection operator techniques can be used to determine an initial guess for the
desired normal modes.

22.1. SUBSPACE ITERATION TECHNIQUES 117

22.1.3 The Jacobi–Davidson algorithm

Let us take another look at the preconditioning problem: In a mode-tracking calculation
however, we iteratively solve the equation

(H− λ(i)
µ)Q(i)

µ = r(i)
µ (22.13)

With the residuum vector, we want to construct the correction ∆Q to the current eigen-
vector approximation with

(H − λµ)(Q(i)
µ − ∆Q) = r(i)

µ − (H − λµ)∆Q = 0. (22.14)

This suggest that
∆Q = (H− λµ)−1r(i)

µ = D−1r(i)
µ , (22.15)

where we used the definition D = (H − λµ). Since the purpose of applying subspace
iteration techniques is to avoid the calculation and/or storage of the full Hessian matrix,
the matrix D is usually not known. The knowledge of this correction vector would allow
us to use ∆Q as the next basis vector, which should immediatly reduce the residual vector
to zero.

The original Davidson procedure is mainly used in CI-type problems, where electronic
energies are identified as eigenvalues of the CI-matrix. These matrices are strongly diag-
onally dominant, which means that an appropriate guess for them can be constructed by
using the diagonal elements of the CI-matrix. Such guesses for D are very successful for
preconditioning and usually lead to rapid convergence. A guess for the eigenvalue λµ is
readily available from the last iteration.

As described in earlier work, the Hessian matrix of a system is usually not diagonally
dominant, and furthermore, a calculation of all diagonal elements of the Hessian is not
much less work than the calculation of the full Hessian. But as mentioned above in many
cases it is possible to get a guess for the Hessian of the system from simpler calculations,
like semi-empirical, force-field or small basis set calculations. In these cases it is possible to
construct the matrix D−1 by direct inversion of the guess Hessian (minus the approximate
eigenvalue),

D−1 = (Hguess − λ(i)
µ). (22.16)

Note that here and in the following, we use the notation D also for guesses of the exact
definition given above.

As pointed out by Sleijpen and Van der Vorst [24], the Davidson diagonalization
scheme has great difficulties if the guess for the Hessian becomes too good. Imagine that
we apply the exact Hessian for preconditioning; in that case, the new basis vector would
be obtained as

b(i+1) := (H − λ(i)
µ)−1r(i)

µ = Q(i)
µ , (22.17)

where we used Eq. (22.13) for the second equality. This means that the better the ap-
proximation for the Hessian is which we employ for preconditioning purposes, the smaller

118 CHAPTER 22. METHODOLOGY

will be the angle between the new basis vector and the old eigenvector approximation. In
the limit of the exact Hessian, no improvement at all will be obtained.

It is, however, difficult to decide what will happen in a practical mode-tracking cal-
culation, since the new basis vectors are always orthogonalized to all preceeding basis
vectors, which should eliminate the problem of linear dependencies. And even for an
exact Hessian, the numerical differentiation of the electronic gradient will introduce some
numerical noise, so that always a component orthogonal to the current basis vectors will
be present. This component might, however, be very small, and therefore we employ
a cyclic procedure of Gram–Schmidt-orthogonalizations and orthogonality checks in our
program in order to ensure orthogonality even in problematic cases. Whether the pre-
conditioning is still efficient in those cases is a question which is investigated in the next
section, since the orthogonal component of our (non-orthogonalized) new basis vector
might just consist of numerical noise.

Sleijpen and Van der Vorst [24] proposed a Jacobi–Davidson diagonalization scheme,
which automatically restricts the new basis vector to the subspace orthogonal to the
current approximation Q

(i)
µ . This is achieved by using the orthogonal projection of the

matrix to be diagonalized onto this subspace. Again, usually neither the matrix itself nor
this orthogonal projection is available. Therefore, they suggest a one-step approximation
to find a new basis vector if a guess for the matrix is available,

b(i+1) := ǫD−1Q(i)
µ + D−1r(i)

µ , (22.18)

where

ǫ =
Q

(i)
µ D−1r

(i)
µ

Q
(i)
µ D−1Q

(i)
µ

(22.19)

The last equation is determined by the requirement that b(i+1) is orthogonal to Q
(i)
µ .

This should definitely fix the problem in Eq. (22.17), which might occur for the Davidson
algorithm.

22.1.4 The Lanczos algorithm

The implementation of the Lanczos-type algorithm is very similar to the Davidson-
diagonalization scheme. The first step is again the calculation of the vector σ

i, Eq. (22.4),
by numerical differentiation of elements of the gradient vector, calculated for structures
perturbed along the basis vector bi. In the next step, the diagonal elements of the small
Hessian matrix for the subspace are calculated,

di = σ
i,Tbi, (22.20)

22.1. SUBSPACE ITERATION TECHNIQUES 119

(note that the Lanczos algorithm is essentially a method to create a tridiagonal matrix

H(m),tridiag = BTH(m)B =

d1 t1 0 0 · · ·
t1 d2 t2 0 · · ·
0 t2 d3 t3 · · ·
0 0 t3 d3 · · ·
...

...
...

...
. . .

, (22.21)

from the original matrix H(m)). With these quantities, the vector

xi+1 = σi − dibi − ti−1bi−1, (22.22)

is calculated, which in turn determines the elements ti via

ti = |xi+1|, (22.23)

and the new basis vector,

bi+1 =
xi+1

|xi+1|
. (22.24)

Note that t0 = 0 in the first iteration. Furthermore, the new basis vector bi+1 is usually
explicitly orthonormalized to the set of all previous basis vectors to avoid (near-)linear
dependencies. The disadvantage of the Lanczos algorithm is that the new basis vector
is in no way preconditioned for better convergence of the eigenvector selected for opti-
mization. Therefore, the convergence characteristics is usually better for the Davidson
diagonalization, unless only very poor preconditioners are available (see below).

Calculation of approximate force constants, wavenumbers and normal modes in each
iteration are carried out in exactly the same manner as for the Davidson diagonalization.
This also holds for the residuum vectors, which are only necessary for convergence control
in the case of the Lanczos method.

22.1.5 Details of the implementation

We have implemented the above-described subspace iteration with a Davidson, a Jacobi–
Davidson, as well as a Lanczos solver in the Akira program. A comparison of both diag-
onalization schemes shows that they perform equally well if the preconditioning is not well
chosen (see below). But, in case of a good preconditioning through a PM3 or similarly
sophisticated guess, we obtain a significantly better convergence of the Davidson-type al-
gorithm. Our implementation allows one to optimize several eigenvectors simultaneously,
which is known as the Davidson–Liu or block-Davidson method [89, 90]. Root homing is
also guaranteed [91]. For root homing, there exist two promising protocols in the case of
normal modes as eigenvectors: i) selection of the eigenvector with the largest overlap with

120 CHAPTER 22. METHODOLOGY

the initial guess vector; ii) selection of the eigenvector with the largest overlap with the
approximate eigenvector chosen in the last iteration. Both methods are implemented in
our program. While the first method can cause convergence problems if only a poor initial
guess vector is available, the second method usually shows better convergence character-
istics; however, it may converge to a different, non-desired eigenvector due to poor initial
vectors in combination with some preconditioners (see [21] for examples) Furthermore, it
is possible to select the vector with minimal residuum or to optimize the lowest root.

22.2 Generation of displaced structures

We use displacements along the mass-weighted basis vectors bi, for which the energies
and gradients have to be calculated. A displacement along the mass-weighted basis vector
of ∆bi gives rise to a displacement in Cartesian coordinates of

∆Ri = ∆biM−1/2, (22.25)

where M−1 is a diagonal matrix with elements M−1
ij = δij/mi; mi is the mass of the atom

corresponding to the Cartesian coordinate Ri
j.

22.2.1 Displacements in units of length

Test calculations have shown that the step size sR should be chosen such that the norm
of the Cartesian displacement vector is sR|∆Ri| ≈ 0.01 bohr. The displacement may be
re-written in terms of normalized displacement vectors for both the Cartesian and the
mass-weighted basis modes,

sQk
∆bi,norm =̂ sQk

∆Ri = sQk
|∆Ri|∆Ri,norm = sR∆Ri,norm (22.26)

which leads to a step size sbi for the numerical differentiation of

sbi = sR/|∆Ri| = sR

(

3N
∑

j=1

(bi,norm
j)2/mj

)−1/2(

[unit of length]

[unit of mass]1/2

)

. (22.27)

The inclusion of the units is necessary in order to keep both coefficients dimensionless
(compare also Ref. [51]). Note that for a given value of sR, the coefficient sbi may have
different values for different normal coordinates bi.

22.2.2 Calculation of second derivatives

The calculation of the elements of the σ vector, Eq. (22.3), can be accomplished by
calculating numerical derivatives of the components of the analytic gradient w.r.t. the

22.2. GENERATION OF DISPLACED STRUCTURES 121

collective displacements along the basis vectors bi,

∂2E

∂R
(m)
k ∂b

. =
1

2s2
bi |∆bi,norm|

[

g
(m)
k (+sR∆Ri,norm) − g

(m)
k (−sR∆Ri,norm)

]

(22.28)

where the g(m) are the mass-weighted components of the gradient vector for the along-bi

displaced structures.

122 CHAPTER 22. METHODOLOGY

23. Running the calculation

In this chapter, the steps necessary to carry out a mode-tracking calculation using Akira
will be described in detail. Starting from the preparations, we will discuss the setup of
the calculation using Akiradefine, the mode-tracking calculation itself, and possible
restart and re-evaluation runs.

Running a mode-tracking calculation with Akira requires two separate steps: (I)
choosing the initial guess vector(s) with Akiradefine and (II) running the mode-tracking
calculation with Akira.

23.1 Preparations

23.1.1 Structure optimization

Since Akira tries to determine the vibrational frequencies and normal modes from the
eigenvalues and eigenvectors of the Hessian matrix, and since these quantities have, in
a strict sense, a well-defined meaning only for structures for which the electronic energy
gradient is zero, it is necessary to perform a geometry optimization first. The mode-
tracking calculation must then start from the optimized structure. A large number of test
calculations with Snf (see Introduction) has shown that the maximum component of the
gradient should be smaller than 0.0001 a.u. in order to obtain accurate results for the
vibrational frequencies.

23.1.2 Electronically excited states

From Akira 2.1.0 on, mode-tracking calculations can be performed for electronically ex-
cited states, provided Turbomole (version 5.6 or higher) is used for the single-point
calculations. Of course, for the reasons mentioned in Section 23.1.1, the molecular struc-
ture has to be optimized in the chosen excited state before starting the Akira program.
In this case, no further Akira-specific settings have to be made, since Akira will rec-
ognize the excited-state keywords in the Turbomole control file and use these settings
automatically for the single-point calculations of the distorted structures on the slave
nodes.

123

124 CHAPTER 23. RUNNING THE CALCULATION

23.1.3 Molecular symmetry

Akira uses a semi-numerical algorithm in which second derivatives of the electronic en-
ergy are calculated as numerical first derivatives of analytical energy gradients. Therefore,
the algorithm will create structures which are displaced from the equilibrium structure
along some basis vectors. In almost all cases, these displacements will lower the molecular
symmetry, which can cause problems if the original calculation explicitly used the higher
symmetry, since the MOs of the originial equilibrium structure are in some cases used by
Akira as an initial guess for the MOs of the displaced structures.

For Turbomole users: If the molecule under investigation is of higher symmetry than
the trivial C1 point group symmetry, the user should run a single-point energy calculation
without taking advantage of the symmetry in order to provide C1-symmetric MOs as start-
MOs for the perturbed structures of the molecule. As an alternative, you may provide any
other initial guess for the MOs (which can, e.g., be generated by Turbomole’s define

program).
There are indeed a few special cases in which the calculations for the displaced struc-

tures can be performed using a higher symmetry: If the basis vectors given in the setup
preserve a higher symmetry than C1, and if also all new vectors generated in the mode-
tracking calculation are guaranteed to keep this symmetry, then also each single-point
calculation can indeed use this higher symmetry. To give the most important example: If
you use Akira not to track a specific vibration, but to calculate all vibrations in a certain
irrep, then it is possible to restrict the calculation to basis vectors of this irrep. If you
want to calculate, e.g., all vibrations in the totally symmetric irrep of the molecule, than
all displaced structures will also exhibit the original symmetry. In that case, the original
MOs can be used as a guess. Another example is the totally symmetric breathing mode
of the buckminsterfullerene C60, for which the calculations for the perturbed structures
can also be done in Ih symmetry. In this case, only one basis vector is needed to achieve
convergence (see [21]).

It is not necessary to provide MOs in the case of Adf, Dalton or Gaussian single
point calculations.

23.2 Akiradefine: setting up the calculation

For an easy preparation of the Akira calculation, most of the input/output and program
options can be controlled and set via the interactive setup tool Akiradefine. All steps
done by this program are explained here in detail. If your PATH variable contains the
instalation directory, you can start Akiradefine simply by typing:

akiradefine

The information which is collected by Akiradefine is written to the file akira_control

.

23.2. AKIRADEFINE: SETTING UP THE CALCULATION 125

23.2.1 Program-specific input

Depending on whether Turbomole, Adf or Gaussian has been used for the molecular
structure optimization, Akira can perform the single-point calculations for the displaced
structures with different programs. If the geometry has been optimized with Turbomole,
it is possible for the user to request either a Turbomole calculation (HF, DFT, RI-DFT,
MP2, RI-MP2) or a Dalton calculation (HF, MP2, CC2, CCSD, CASSCF) for the
perturbed structures. In case of a Gaussian geometry optimization, Gaussian is always
employed in the single-point calculations. and similarly, in case of Adf optimizations,
Akira will automatically use Adf for the perturbed structures.

Turbomole input files

If Turbomole or Dalton are to be used for the single-points subsequent to a Turbo-
mole structure optimization, all files which are necessary for Turbomole single-point
calculations must be provided (i. e., control, coord, mos or alpha and beta, basis and,
for RI-accelerated calculations, auxbasis).

Gaussian input file

If Gaussian shall be used for the single-point calculations, the user must provide a Gaus-
sian input file named akira.com which contains the keyword #p force, the keywords
for the method and the basis set to be used, information on molecular charge and spin
state and the equilibrium geometry in cartesian coordinates. For an ethanol molecule,
the akira.com file might look like this (with the last line being a blank line, of course):

#p force bp86/TZVP

ethanol

0 1

C -1.225747 -0.225340 0.000002

H -1.296072 -0.865520 -0.891479

H -1.296085 -0.865499 0.891496

H -2.083095 0.464915 -0.000013

C 0.079992 0.551234 -0.000000

H 0.131474 1.203598 0.893871

H 0.131470 1.203596 -0.893875

O 1.161283 -0.399398 -0.000003

H 1.996579 0.098737 0.000020

This file is also contained in the directory examples/files.

126 CHAPTER 23. RUNNING THE CALCULATION

Adf input file

Since Akira will normally be run after performing a geometry optimization, it is designed
to reuse simply the Adf script which has been used to run the geometry optimization.
This script has to fulfill several conditions:

1. It must be named adf.in.

2. It be executable.

3. It must contain exactly the settings used in the preceding geometry optimization.

4. The geometry must be specified in cartesian coordinates using Angstrøm

5. The binary output file must be named TAPE21.

6. It should not contain any blocks requesting other calculations than a geometry
optimization.

Akiradefine will check (and modify, if necessary) the following blocks in the adf.in

file:

• GEOMETRY — delete it (if present) and write instead:

Geometry

GO

iterations 1

End

• INTEGRATION — if the grid settings are below 6.0 6.0, replace them by 6.0 6.0.

• SCF — if the convergence criteria are below converge 1.0e-6 1.0e-6, replace them
by converge 1.0e-6 1.0e-6.

• Sort the list if cartesian coordinates according to their nuclear charge. (This will
facilitate reading in the data of the distorted structure-single point calculations in
the Akira run.) Attention: the reordering of atoms will affect the choice
of internal coordinates in Akiradefine as well as the usability of ADF
restart files!

If Akiradefine modifies the integration or convergence parameters, it will print a
warning message to the screen remembering the user to redo a geometry optimization
with the new settings.

Starting from version 3.1.0, Akira can deal with QM/MM gradients. Furthermore, it
is now possible to provide an Adf restart file, which is distributed onto the slave nodes in

23.2. AKIRADEFINE: SETTING UP THE CALCULATION 127

order to accelerate the single-point calculation for the displaced structures. Based on the
keywords in the adf.in input file, Akiraefine will recognize automatically whether a
QM/MM calculation is requested or whether a restart file shall be copied onto the slaves.
In case an Adf restart file shall be used, the user must necessarily specify the option nogeo

(like in the example below), since otherwise, all displaced structure calculations will be
performed for the geometry given in the restart file, thus leading to nonsense results. It
is not possible to use Adf restart files in combination with QM/MM calculations.

The adf.in input file you provide might look like this:

#! /bin/sh

$ADFBIN/adf -n1 << eor

Create O $ADFRESOURCES/TZP/O.1s

End Input

eor

mv TAPE21 t21.O

$ADFBIN/adf -n1 << eor

Create H $ADFRESOURCES/TZP/H

End Input

eor

mv TAPE21 t21.H

$ADFBIN/adf << eor

Title H2O

INTEGRATION 6.0 6.0

Atoms

O -0.004404 0.000000 -0.003115

H 0.038319 0.000000 0.969951

H 0.927252 0.000000 -0.287190

End

Fragments

O t21.O

H t21.H

End

Geometry

GO

128 CHAPTER 23. RUNNING THE CALCULATION

End

STOPAFTER GGRADS

RESTART restartfile &

nogeo

END

symmetry nosym

XC

LDA VWN

End

savefile TAPE21

SCF

converge 1.0e-6 1.0e-6

End

end input

eor

This example can also be found in the examples/files directory.

23.2.2 Program selection

Akiradefine first of all will ask for the user’s preferences concerning the quantum chem-
ical program package which shall be used in the single-point calculations of the distorted
structures:

Which program would you like to use ?

tm : use TURBOMOLE for single points

d[alton] : use DALTON for single points

g98 : use GAUSSIAN 98 for single points

g03 : use GAUSSIAN 03 for single points

a[df] : use ADF for single points

(<return> = default = tm)

The default program for the single-points is Turbomole. You can select another
program package by typing the abbreviation for this package. For example, g03 will

23.2. AKIRADEFINE: SETTING UP THE CALCULATION 129

select Gaussian03 for the single-point-calculations.
Akiradefine then checks the existence of he Turbomole input files named control

in case of Turbomole or Dalton single-point calculations, akira.com in case of Gaus-
sian single-point calculations and adf.in if Adf shall be used. If the molecule under
study has been optimized with Gaussian or Adf and thus no Turbomole control

and coord files are present, Akiradefine will generate a fake Turbomole control

and coord file from the parameters found in akira.com or adf.in, respectively.
Akiradefine then reads control and coord and prints the general molecule infor-

mation as well as information about the thresholds employed in the electronic structure
calculations.

In the next menu, an overview of the Akira input parameters is given, which may be
changed by the user:

Program settings menu:

Current settings:

cstep = 0.01000000

numderiv = 3

scfconv = 8

maxnbm = 21

mtype = 1

tmpcl = off

logcl = off

Choose one of the following commands:

cstep <real> : set cstep [<real> in bohr]

maxnbm <int> : choose max. no. of basis modes

numderiv <int> : choose <int> point central differences bickley formula

scfconv <int> : choose scfconv parameter

tmpcl : switch on/off removal of temporary directories

logcl : switch on/off removal of log directories

mtype <int> : choose type of masses to be used

(1: most abundant isotopes, 2: average atomic masses,

3: most abundant isotopes, but deuterium mass for hydrogen)

<return> : leave this menu

The parameters which can be modified in this menu are the following:

cstep: step size for the displacements from the equilibrium structure (given as the norm
of the displacement vector in [bohr]; default = 0.01, larger values are recommended
for low-frequency modes).

maxnbm: maximum number of basis vectors for this calculation. This number cannot be
chosen larger than 3N , the number of degrees of freedom for this molecule (which
would correspond to a full harmonic force field calculation).

130 CHAPTER 23. RUNNING THE CALCULATION

numderiv: number of grid points used for the numerical differentiation (default = 3).

scfconv: SCF convergence threshold parameter (cf. Turbomole manual); scfconv ≥ 8
is strongly recommended.

tmpcl: temporary directories on slave nodes are removed after the calculation (default =
off).

logcl: log files for slave node calculations are removed after the calculation (default =
off).

mtype: Type of masses to be used in the calculation (1 = masses of most abundant iso-
topes, 2 = average atomic masses (not recommended), 3 = masses of most abundant
isotopes but deuterium mass for hydrogen atoms). Note that it is not yet possible
in Akira to specify individual atomic masses for all atoms in the molecule.

23.2.3 Convergence criteria menu

In this menu, the thresholds for the convergence checks can be set:

Convergence critera menu:

current thresholds:

|max. component of residuum vector| : 0.00050000

change of max. component of r : 0.50000000E-07

orthonormalization parameter : 8

choose one of the following commands:

rthres <real> : set threshold for max. component of residuum vector

rabsthres <real> : set threshold for norm of residuum vector/(3*natoms)

dvthres <real> : set threshold for change in wavenumber [1/cm]

ecthres <real> : set threshold for expansion coef. of last basis vector

rchthres <real> : set threshold for change of max. component of r

iortho <int> : set orthogonalization parameter

d : default settings

& : go back to program settings menu

<return> : leave this menu

There are several different thresholds to control the convergence of the results:

rthres: maximum component of the residuum vector (default = 0.0005)

rabsthres: norm of the residuum vector divided by the number of degrees of freedom of
the molecule, i.e., 3N .

dvthres: change in wavenumber between two subsequent calculations

23.2. AKIRADEFINE: SETTING UP THE CALCULATION 131

ecthres: expansion coefficient for last basis vector

rchthres: change in the maximum component of the residuum vector

iortho: set orthogonalization parameter

While the first four criteria are direct measures for the quality of the eigenvectors or
eigenvalues of the Hessian, the last value, rchthres is a measure for the improvement
of the eigenvector between two subsequent iterations. If this improvement is smaller
than this threshold, the algorithm assumes that no further improvement for this vector
is possible and stops the iterations for this vector. This can often be traced back to
wrong setups in the calculation and does not mean that the vector is converged. If a very
tight threshold for the residuum has been selected, it may, however, happen that this
convergence criterion cannot be fulfilled: Due to numerical noise, it will never be possible
to reduce the residuum vector to zero. Besides the convergence criteria, it is also possible
to select a threshold for the orthonormality check in Akira, the parameter iortho. This
parameter determines the threshold for the orthonormality of the basis vectors employed
in the subspace iteration (10−iortho). Akira uses a Gram–Schmidt orthogonalization to
keep new basis vectors orthogonal to previous ones. For some preconditioners, the new
basis vectors determined by the Davidson procedure will be almost parallel to the set of
basis vectors in use. In those cases, up to iortho subsequent orthonormalization cycles
and orthonormality checks will be performed to fulfill the orthonormality threshold. If this
cannot be achieved, the program will stop with an error message since it is not possible
to find a new, linearly independent basis vector.

23.2.4 Output menu

In this menu, you can modify the output of the normal mode calculated by Akira and
switch on/off a more detailed output on the subspace iterations:

Output menu:

choose one of the following commands:

g98it off : switch off g98 normal mode output

g98bs off : switch off g98 basis vector output

tmout on : switch on TM output of final normal modes

xmout on : switch on xmol output of final normal modes

prall on : switch on detailed output of subspace iteration

d : default settings

& : go back to program settings menu

<return> : leave this menu

It contains the following options:

132 CHAPTER 23. RUNNING THE CALCULATION

g98it on/off switch output of normal mode approximations in G98 format after each
iteration on/off. Creates files g98.out.itn for each iteration n.

g98bs on/off switch output of basis modes (vectors) in G98 format after each iteration
on/off1. Creates files g98.out.bsn for each iteration n.

tmout on/off switch output of converged normal modes in Turbomole format on/off.
Creates file tm normmodes after convergence.

xmout on/off switch output of converged normal modes in Xmol format on/off. Creates
file xmol.XYZ.out after convergence.

prall on/off switch detailed output of subspace iteration on/off.

The following menu will be discussed in a separate section (Sec. 23.3), since it is the most
important preparation step in a mode-tracking calculation: the selection of the initial
basis vectors. In this section, we proceed with a description of the following menus.

23.2.5 Hessian guess and rigid modes

After the selection of initial basis modes, which is described in Sec. 23.3, you have to
decide whether the basis vectors should be kept orthogonal to translational and rotational
(“rigid”) modes of the molecule:

Do you want to orthogonalize your guess vectors

to translational and rotational modes ?

(y/n, default = yes)

This is always recommended, since it reduces the computational cost and increases the
accuracy of the calculation. However, it might be desired for test purposes to omit the
orthogonalization on these rigid modes, or if, e.g., the full cartesian Hessian shall be
calculated explicitly.

If a Hessian guess is available from the “Initial guess selection”, Akiradefine will
suggest to use this guess for preconditioning purposes.

23.2.6 Root homing and preconditioning

After this input step follows the “Root homing and preconditioning menu”ndexroot hom-
ing menu:

1Wave numbers do not have a physical meaning in this case.

23.2. AKIRADEFINE: SETTING UP THE CALCULATION 133

Root homing and preconditioning menu:

current settings:

root homing by overlap with selected vector of previous iteration

preconditioning scheme: backtra

nbt : 6

choose one of the following commands:

root <string> : set root homing scheme; possible values:

lastsel = default; overlap with last eigenvector

trackgv = overlap with guess vector

minresi = choose vector with minimal residuum

testmin = test for minimum; optimize lowest root

prec <string> : set preconditioner; possible values:

backtra = backtransformation of Davidson Matrix

unitmat = Davidson with unit matrix

lanczos = Lanczos type diagonalization

nbt <int> : min. no. of vectors for backtransformation

genstart on : only one iteration for generation of start vectors

d : default settings

& : go back to convergence criteria menu

<return> : leave this menu

For root homing, the following choices can be made:

lastsel: default; the program selects as a new vector to be optimized that eigenvector
approximation which has the largest overlap with the last vector selected.

trackgv: the vector with the largest overlap with the initial guess vector will be chosen
for further optimization.

minresi: the vector with the lowest residuum will be further optimized, irrespectively of
its nature, i.e., the type of vibration involved.

testmin: the vector with the lowest eigenvalue will be selected in order to test for a
minimum or saddle point.

Note that for each basis vector given in the first iteration, one vector for further opti-
mization will be selected.

For preconditioning, the following options are available:

backtra: backtransformation of the Davidson Matrix according to Eq. (22.11). Default
if no approximate Hessian is available.

unitmat: a unit matrix preconditioner will be applied.

134 CHAPTER 23. RUNNING THE CALCULATION

lanczos: test option: Lanczos algorithm. Only one vector should be selected in this
case, since the block-Lanczos algorithm, which allows to optimize several vectors
simultaneously, is not yet tested.

If an approximate Hessian matrix is available, three additional options will appear on the
screen:

jacobid: use Jacobi–Davidson diagonalization scheme. Default if approximate Hessian
is available.

aphsinv: Davidson algorithm in which the approximate Hessian will be explicitly inverted
to get the preconditioner. Yields similar performance as Jacobi–Davidson.

aphsdia: test option: original Davidson algorithm in which the inverse diagonal elements
are used as a preconditioner. Cannot be recommended for calculations, since this
assumes that the matrix to be diagonalized is diagonally dominant, which is in
general not the case for Hessian matrices.

Note that the first three options can be selected irrespectively of the availability of an
approximate Hessian, while the latter three require such a guess (and will thus not appear
on the screen if no approximate Hessian is present). The jacobid and aphsinv options
usually lead to the best convergence, if appropriate guess Hessians are available. The
backtra option sometimes shows bad performace during the first iterations, even worse
than the most simple unit matrix preconditioner. Therefore, it is possible to use a com-
bined approach in which the first n iterations will employ a unit matrix preconditioner,
while in the following iterations the backtransformation will be used. The number n can
be set with the keyword nbt.

Note that experience with these options is still somewhat limited. It appears, however,
that no big differences occur between the unitmat and backtra preconditioning schemes.

One last option, genstart on/off, can be selected to do exactly one iteration. After
this iteration, you can use one of the vectors created in this cycle as a better approximation
for the desired normal mode.

23.2.7 Additional keywords

Some keywords can only be introduced manually into the file akira control. At the
moment, the following options are available:

sleeptime <time-in-seconds>: sets the time in seconds to wait for the master process
between two subsequent checks of the slave processes. Default: 5. Smaller values
decrease the overhead, in particular in fast calculations, larger values can be helpful
to decrease the network traffic when running the master job via a network file
system, in particular for large calculations with long single-point calculations.

23.3. AKIRADEFINE: SETTING UP THE INITIAL GUESS 135

23.2.8 Data collector options

The next and last step of Akiradefine creates the files necessary for the parallel execu-
tion of the data collection:

===================================

Input completed, calling prepdc ...

===================================

ELIGIBLE file to be used for choose_nodes call:

$CIPROC/ELIGIBLE

Specify name of alternative ELIGIBLE file or press <return>

The file DCINPUT will be created by calling the script mkrdcinput. The DCINPUT file
can be further modified manually afterwards, see Section 21.1.2 for details. A directory
for logfiles, named log, will be created. The logfiles contain valuable information on what
is going on on the slave nodes.

23.3 Akiradefine: Setting up the initial guess

While Akira itself can be used mainly as a black-box program, the setup of the initial
guess must be done by the user, and it requires some idea of the specific problem to be
analyzed. If there is no such specific problem, it is probably not useful to run a mode-
tracking calculation, since either all normal modes are wanted to get an overview, or no
modes at all are of interest.

If, however, the problem is identified, Akiradefine offers a lot of help to construct
an appropriate guess for the modes to be studied in the initial basis vector menu:

Selection of initial basis vectors

No. of basis modes selected: 0

choose one of the following commands:

pint menu : show internal coordinate options

psym menu : show symmetry coordinate options

pcart menu : show cartesian coordinate options

pfile menu : show basis-vector-from-file options

pmop menu : show basis-vectors-from-MOPAC options

136 CHAPTER 23. RUNNING THE CALCULATION

trarot : create translational and rotational modes

submenu : enter subsystem menu

<return> : quit this menu

By typing xxx menu, you can display the menu xxx, and by typing xxx hide, you can
hide it again. In the following, the individual menus are explained in detail.

23.3.1 Internal coordinates

In many cases, the user might be interested in a local vibration of the molecule, like
a stretching mode of a particular bond between two atoms, or a valence angle bend-
ing. In the internal coordinate submenu which can be displayed by typing pint menu,
Akiradefine offers the following possibilities to select such modes:

str i j select a stretching mode between two atoms

bd i j k select a bending mode between three atoms

tor i j k l select a torsional mode between four atoms

oop i j k l select an out-of-plane mode, characterized by four atoms

br select a totally symmetric breathing mode of the molecule

brm select a mass-weighted totally symmetric breathing mode of the molecule

23.3.2 Symmetry coordinates

In some cases, also symmetry coordinates may be a good starting point for the subspace
iteration: Indeed, they sometimes completely determine the vibrational modes.

sym : generate symmetry coordinates as basis vectors

spesym : generate normal modes for special symmetries

psym hide : hide symmetry coordinate options

Some special cases are included with the spesym option, while general symmetry
coordinates for practically every point-group symmetry can be constructed with the sym
option. Note that in Akiradefine does not check the symmetry, which the user has to
specify manually. However, giving a wrong input for the symmetry of your molecule will
only result in an empty set of symmetry coordinates.

All symmetry coordinates for the chosen irrep of a particular symmetry will be put in
a buffer, and may be selected from there as basis vectors in the mode-tracking calculation
(see section 23.3.6).

23.3. AKIRADEFINE: SETTING UP THE INITIAL GUESS 137

23.3.3 Cartesian coordinates

A very simple way to construct a guess for a normal coordinate is simply to select a
Cartesian nuclear coordinate. This might be useful if you want to investigate all vibrations
of a molecule in which a particular atom or a set of atoms is involved. Since this is usually
not very specific, especially when a large number of cartesian coordinates is selected,
we recommend to use the genstart option (Sect. 23.2.6) or a similar procedure: With
that option, the calculation stops automatically after the first iteration (while it has to
be stopped manually after several iterations). After every iteration, an output of the
approximate normal modes is performed2. If you specified several cartesian basis vectors
as initial guesses, then the first iteration will produce linear combinations of these basis
vectors, which are already to a certain extend adapted to the specific molecule. These
might be much better approximations for the normal modes you are looking for than the
cartesian basis vectors themselves, and the interesting linear combinations can be selected
as basis vectors in a second mode-tracking calculation.

at <i> : select all cartesian basis vectors for atom i

atx <i> : select cartesian x-basis vector for atom i

aty <i> : select cartesian y-basis vector for atom i

atz <i> : select cartesian z-basis vector for atom i

aatz : select all cartesian z-basis vectors

cfull : select all cartesian basis vectors

(full frequency analysis)

pcart hide : hide cartesian coordinate options

The command cfull can be used to specify a full frequency analysis. In that case,
all 3N cartesian normal modes will be taken as basis vectors. The rigid motions will be
removed by orthogonalization, so that only 3N−6 (for non-linear molecules) basis vectors
are employed.

23.3.4 Normal coordinates from file

As mentioned earlier in this manual, results from cheap low-level calculations, like force-
field, semiempiric, or small-basis set calculations might already be available for your
molecule. For such cases, it is possible to simply read the output files of some molecular
mechanics or quantum chemistry programs as an input for Akira.

re <i> : read <i> basis vectors from file

resub <i> : read <i> basis vectors for subsystem from file

pfile hide : hide basis-vector-from-file options

re can be used to read normal modes from a file which has to be specified later. It is
also possible to use the resub command and read normal modes for a subsystem. In that
case, it is necessary to specify the number n of atoms in this subsystem:

2If not explicitly suppressed by the user.

138 CHAPTER 23. RUNNING THE CALCULATION

Enter No. of atoms in subsystem:

(the first <No.> atoms will be taken !!!)

It is always assumed that the first n atoms belong to the chosen subsystem. General
subsystems can be handled by the subsystem menu submenu, Sect. 23.3.5. Next, Aki-
radefine will ask the user for the name of the file which contains the normal modes to
be read in as initial basis vectors,

Enter filename:

Then, the format of these basis vectors can be selected:

Select format of basis vectors

snf : SNF normal modes (massweighted MOPAC)

tmn : TURBOMOLE normal modes

tmb : Basis vectors in TURBOMOLE format

tmi : Internal coordinates in TURBOMOLE format

g98 : Gaussian98 normal modes

mop : MOPAC normal modes (not massweighted)

pcm : PCM normal modes (massweighted)

adf : ADF normal modes (not massweighted)

free : free format modes (not massweighted)

<return> : return to main menu

Akiradefine contains routines to read the following input formats:

• Snf - normal modes (massweighted Mopac style)

• Turbomole - normal modes

• Gaussian98 normal modes (Gaussian03 is also supported)

• Mopac - normal modes

• PCModel - normal modes

• Adf - normal modes

• free format normal modes (one number per line, modes separated by wavenumbers)

The modes read from file are stored in a buffer, from which they can be selected as
basis vectors for the Akira calculation (see section 23.3.6).

23.3. AKIRADEFINE: SETTING UP THE INITIAL GUESS 139

23.3.5 Subsystem menu

One of the possible applications of mode-tracking is to study vibrations of a large molecule
which are local in that sense that they are more or less restricted to a certain subunit of
the system. There may still be couplings with motions of the rest of the molecule, but
as a first approximation, only the atoms of the subunit may be involved. In those cases,
it might actually be possible to find a small model for the full (super-)molecule, which
only consists of the subunit (plus a model for the rest of the molecule), and for which a
full frequency analysis is possible. Then these subsystem normal modes can be used as a
guess for the full molecule. Indeed, it might be possible to identify several subunits. The
subsystem menu allows to define a number of subunits, and to read normal coordinates
and wavenumbers for them, which then are used as basis vectors for the full molecule.

Additionally, it is possible to combine the Hessians for these subsystems and copy
them to the corresponding blocks of the full Hessian, so that a guess for the full molecule
is obtained, which can be used for preconditioning purposes. By typing submenu in the
main basis vector menu, you get to the subsystem menu:

==

No. of subsystems specified so far: 0

==

Select one of the following commands:

ns <i> <j> : create new subsystem, ranging from

atom <i> to <j>

rnm <i> : read normal modes for subsystem <i>

chs <i> : create Hessian for subsystem <i>

trarot <i> : create trarot-modes for subsystem <i>

n2fs <i> : copy modes for subsystem <i> to full system

showpr : show print options

c2fh <i> : copy Hessian for subsystem <i> to full Hessian

ints <i j r> : set interaction strength between blocks <i> and <j> to <r>

inta <r> : set interaction strength for all blocks to <r>

whs : write (appr.) hessian to akira_control

for preconditioning purposes

cnm : create normal modes by diagonalization

of current full system (appr.) Hessian

cl : clear all subsystem entries

*,q : return to basis vector menu

In that menu, the following commands are possible:

ns <i j> define a new subsystem, ranging from atom i to atom j.

rnm <i> read normal modes from file for subsystem no. i. For possible input formats,
see Sect. 23.3.4.

140 CHAPTER 23. RUNNING THE CALCULATION

chs <i> create Hessian for subsystem no. i from normal modes and wavenumbers. Only
possible if normal modes and wavenumbers have already been read.

trarot <i> create translational and rotational modes for subsystem no. i. This option
is useful when it can be assumed that modes of a supermolecule can be described
by out-of-phase translations or rotations of different molecules within the super-
molecule. These modes can be constructed automatically, no preceeding subsystem
calculation is necessary.

n2fs <i> copy normal modes for subsystem i to set of normal modes for full system.

showpr show print options (for normal modes, wavenumbers, and Hessians)

c2fh <i> copy Hessian for subsystem i to full Hessian. Only possible if subsystem Hes-
sian has been constructed before.

ints <i j r> artificially set the interaction strength, i.e., the off-diagonal elements be-
tween blocks for subsystems i and j to the constant value r. These blocks are
otherwise always zero in the model Hessian for the full molecule, so that no cou-
pling exists between different subunits.

inta <r> artificially set the interaction strength for all off-diagonal blocks (blocks be-
tween subsystems) to the constant value r. Like ints, this command allows to
empirically correct the model Hessian.

whs write the model Hessian for the full molecule to file akira control in order to be
able to use it for preconditioning purposes.

cnm create model normal coordinates by diagonalization of the model Hessian for the full
system.

cl clear all subsystem entries

To keep an better overview over the subsystems, a table is shown with the relevant
atom numbers, the number of modes read, as well as information about whether the
normal modes have been copied to the full system modes, whether the Hessian is created,
and whether the Hessian is copied to the full system. After leaving this menu, the modes
which are either copied from a subsystem to the full system, or which are created by
diagonalization of the model system hessian, will be stored in a buffer. From there, they
may be selected as basis vectors.

23.3. AKIRADEFINE: SETTING UP THE INITIAL GUESS 141

23.3.6 Other options

Further options which are available in the basis vector menu, are the following:

trarot create translational and rotational modes. For test purposes, they might be
included in the mode-tracking calculation.

cbv <i> copy vector i from buffer to set of selected basis vectors. Only available if there
are modes in buffer.

acbv copy all vectors in buffer to set of selected basis vectors. Only available if there are
modes in buffer.

ort orthogonalize basis vectors to translational and rotational modes. Only available
if basis vectors have been selected. Orthogonalization is carried out automatically
afterwards anyway, unless suppressed by the user.

The following options are available for the set of selected basis vectors (without pre-
ceeding “b”) or for the set of buffer vectors (with preceeding “b”):

[b]disp display modes using Molden [19]

[b]c clear set of modes

[b]p print set of modes

[b]pm print set of mass-weighted modes

[b]g98 write G98 fake output of modes to file g98.out.it0 or g98.out.buf. Is done
automatically when using command [b]disp.

[b]xmol write Xmol fake output of modes to file xmol.XYZ.it0 or xmol.XYZ.buf.

23.3.7 Restricting the Subspace

Under certain circumstances it may be helpful to restrict the search space for the subspace
iteration. Typical examples could be the restriction to basis vectors within a certain
irreducible representation or the exclusion of exact normal modes found in a previous
run. One restriction that is by default always employed is that the basis vectors are kept
orthogonal to translational and rotational motions.

Other restrictions can be applied by specifying a set of orthogonal vectors in the guess
vector menu. Any vector that is available in the buffer (see above) can be copied into the
set of orthogonal vectors with the commands:

cov <i> copy vector i from buffer to set of orthogonal vectors. Only available if there
are modes in buffer.

142 CHAPTER 23. RUNNING THE CALCULATION

acov copy all vectors in buffer to set of orthogonal vectors. Only available if there are
modes in buffer.

If some vectors have been chosen for the orthogonal complement, their number will be
displayed in the menu. Since it is sometimes easier to specify the space in which the
possible solutions should lie (instead of its orthogonal complement), there is an additional
menu appearing after quitting the basis vector selection that allows the user to either
keep the solution vectors within the set of vectors specified in the “orthogonal subspace”
selection, or to keep them orthogonal to that set,

You have selected an additional set of vectors

to restrict the search space for the soluation

vectors. Do you want to ...

sub - keep the solution vectors within this set

(default)

ort - keep the solution orthogonal to this set

q - quit without using this set of vectors

If sub is chosen, akiradefine constructs the complementary space to the one selected
before and keeps the solution vectors orthogonal to that set. Note that the orthogonal
subset vectors are also orthogonalized to translational and rotational modes, as all basis
vectors are per default kept orthogonal to these rigid modes. The orthogonal modes are
written to the file akira control.

23.4 Subspace iteration with Akira

The general procedure for a subspace iteration is outlined in the flow-chart in Fig. 23.1.
To request a subspace iteration with Akira simply call
akira

without any further program options. These must be specified in the Akira control file
akira control and can be selected interactively in Akiradefine.

23.5 Output files

• Akira writes an output file named akira.out, which contains intermediate data for
every iteration. In particular, the following quantities are reported:

– vector σ
i, Eq. (22.3)

– approximate Hessian matrix for subspace (Davidson matrix), H̃(m),i, Eq. (22.5)

– approximate eigenvalues and eigenvectors of the Davidson matrix, ρi and ui,
Eq. (22.6)

23.5.
O

U
T

P
U

T
F
IL

E
S

143

F
igu

re
23.1:

O
u

tlin
e

of
th

e
p

arallelized
m

o
d

e-track
in

g
algorith

m
as

im
p

lem
en

ted
in

A
k
ir

a
(fi

gu
re

taken
from

R
ef.

[54]).

as first basis vectors

provide initial guess
for normal coordinates

(several modes possible)

calculate gradient

distribute single points
to slave nodes

(coarse/fine−grained)
for restart facility
save intermediate data

of basis vectors
as linear combination
obtain normal coordinate

C1

2+ C

+ ...

parallelization
fine−grained

possible

ITERATION

SUBSPACE

calculate approximate
frequencies, residua,
preconditioner,
new basis vector

use mode−wise approach
for intensities

converged ?

co
ar

se
−

gr
ai

ne
d

pa
ra

lle
liz

at
io

n

144 CHAPTER 23. RUNNING THE CALCULATION

– approximate wavenumbers calculated from the eigenvalues

– approximate normal modes, vi
s, Eq. (22.8)

– information about the root-homing procedure; three quantities are calculated
in order to select the eigenvector to be optimized from the set of the vi

s:

∗ the unsigned difference between the eigenvalues of current iteration and
the eigenvalue(s) of the eigenvector(s) selected in the last iteration

∗ the squared norm of the difference vector between the eigenvectors in the
current iteration and the eigenvector(s) selected in the previous iteration.

∗ the unsigned overlap of the current eigenvectors and the eigenvector(s)
selected in the previous iteration.

Note that the root-homing is necessary for all eigenvectors which shall be op-
timized simultaneously. If the three criterions lead to different eigenvectors,
the overlap criterion will be used to determine the new eigenvector(s) to be
optimized.

– residuum vectors ri
s for all approximate eigenvectors vi

s, Eq. (22.7)

– convergence control parameters:

∗ norm of residuum vector(s) for selected eigenvector(s)

∗ change of residuum vector norm

∗ maximum component of the residuum vector

∗ contribution of the last basis vector to the new approximate normal mode
vector

– new Cartesian basis vector(s) bi+1, Eq. (22.9)

– intermediate results: wavenumbers, |r|, |rmax| and convergence status for all
approximate normal modes in the current iteration

• akira iterations.out: Contains information on the input settings, the molecule,
and the results of the subspace iterations such as basis vector coefficients, conver-
gence control, root homing, intermediate and final vibrational normal modes and
wave numbers. When choosing $printall on in the akira control file, more de-
tailed output will be written to akira iterations.out.

• g98.out.itn: Vibrational normal modes and wave numbers in iteration n in Gaus-
sian98 format.

• g98.out.bsn: Basis vectors in iteration n in Gaussian98 format. Wave numbers
are meaningless here and are therefore set to 10000.0 for all basis vectors.

• Furthermore, the file wavenumbers is updated after each iteration, which contains
the wavenumber of the residuum vector for each approximate normal mode.

23.6. RESTART FACILITIES 145

• Also, the information in restart.akira and the basis modes in akira control will
be updated during the Akira run.

23.6 Restart facilities

The single-point data obtained for structures perturbed along the basis vectors are stored
in the file restart.akira. Besides the gradients for all displaced structures, which enter
Eq. (22.3), the energies, the equilibrium structure and all perturbed structures are written
to this file. The general structure of the restart file is essentially the same as for the
program package Snf (see introduction), with the difference that gradients and energies
are collected in groups for every basis vector, not in groups for Cartesian displacements
of a particular atom (as in Snf) or in groups for the normal modes of the molecule. In
earlier Akira versions, the number of basis-vector entries in the restart file was equal to
the number of degrees of freedom of the molecule for convenience. In version 3.1.2, this
was changed into the number of basis modes present up to the current iteration. This
was necessary for the QM/MM interface of Akira, which allows to treat systems with a
huge number of degrees of freedom, in order to keep the size of the restart file small.

The stepflag entries in the restart file determine which calculations have to be done in
a particular iteration step. Further restart information is written in the program control
file akira control in the following form:

$nnbm 3

1

1

1

This means that the current iteration is the third, and the three “1” entries specify the
number of basis vectors added in each iteration, i.e., there are now three basis vectors,
one of which was generated per iteration step. This information allows — in combination
with the stepflags — to restart the calculation at every point of the subspace iteration,
irrespectively of the current process (single point calculations for perturbed structures or
solution of the Davidson matrix eigenvalue problem/generation of new basis vectors).

It is sometimes necessary or convenient to restart the calculation at an earlier iteration.
This is possible by introducing the additional keyword

$restartit n

in the file akira control, where n is the iteration number after which the calculation
should be restarted, i.e., restart information will only be used up to iteration n. CAU-
TION: This will remove all previous raw data from iteration n+1 on your
restart file !!!

146 CHAPTER 23. RUNNING THE CALCULATION

Summary Akiradefine:

⇒ If you have performed a geometry optimization with Turbo-
mole, just type akiradefine in your working directory.

⇒ If you have used Gaussian for the optimization, create a
akira.com file (see Sect. 23.2.1) and then type akiradefine

in your working directory.

⇒ For Adf users: assure that you have a runscript named
adf.in in your working directory which contains all settings
used in the preceding geometry optimization.

⇒ Select the options in the menus (see Sect. 23.2 for details).

⇒ Note possible warnings in the output of Akiradefine.

⇒ For Turbomole users: If the symmetry mentioned in the
original control file is higher than C1, create a C1 MO file
by using Turbomole’s Define.

• Mandatory files for Akiradefine:
control, coord (Turbomole, Dalton) or akira.com

(Gaussian) or adf.in (Adf).

• Mandatory files and scripts for automatical generation of
Akira input files by Akiradefine:
$CIPROC/ELIGIBLE, choose nodes, mkrdcinput or
mkparainput

• Files created by Akiradefine:
restart, akira control, control.bak, DCINPUT,

USE NODES, MACHINES, mpi.sub

23.6. RESTART FACILITIES 147

Summary Akira:

⇒ Create the files USE NODES using the script choose nodes

(this is also done automatically by Akiradefine).

⇒ Start the Akira calculation by typing akira in your working
directory, or, in order to prevent the Akira from crashing
when you log out, to send the command to the background
and to pipe the screen output to a file:
nohup akira > filename &

⇒ You may check the progress of the calculation via the sta-
tus file TMPdcstat, which can be constantly viewed by the
command dcmore.

• Mandatory files for Akira:
control, coord, restart, DCINPUT, akira control;
Turbomole, Dalton: basis[and auxbasis], mos [or
alpha, beta];
Gaussian: akira.com
Adf: adf.in

MPI versions: MACHINES (for mpirun)

• Mandatory scripts for Akira:
choose nodes, ruptime

• Files created by Akira in the working directory:
TMPdcstat, fort.41, g98.out.itn, g98.out.bsn

• Files created by Akira in the log directory:
PREFIXdclog.XXXXXXX

⇒ Note possible warnings in the output of Akira.

148 CHAPTER 23. RUNNING THE CALCULATION

23.7 Double-parallel runs

The maximum number of processors in the parallel machine is restricted by the number
of tracked vibrations (2 per vibration, if a 3-point central-difference formula is used for
numerical differentiation). Thus, it may be desirable to run also the single-point calcu-
lations in parallel to exploit the full capacity of a computer cluster. At present, this has
only been tested for the Akira—Adf interface on a PC cluster built from machines with
2 dual-core AMD Opteron processors (⇒ 4 processors) each, using the MPI version of
Akira. The Adf calculations were parallized employing PVM, so any interference of the
two parallel processes was avoided. To control the parallel execution of the Adf jobs, the
following lines were inserted at the very beginning of the Adf input file adf.in:

/usr/bin/pvm << eor

quit

eor

echo ‘uname -n‘ > adfhosts

echo ‘uname -n‘ 4 > nodeinfo

export SCMSPAWNSCRIPT=$ADFBIN/adfs

export NSCM=4

Furthermore, it should be checked that the main Adf run is not started as $ADFBIN/adf -n1 << eor,
but as $ADFBIN/adf << eor by adf.in.

24. Parameter analysis: step size for numerical dif-

ferentiation

To determine an optimum step size for the numerical differentiation, we carried out dis-
placements of the atoms in the ethane molecule along the lowest-frequency normal mode,
and along one high-frequency mode, and calculated the force constants as numerical
derivatives of the analytical gradients (BP86/TZVP). The resulting frequencies as a func-
tion of the step size are displayed in Fig. 24.1. Note that these issues have been discussed
in detail in Ref. [22].

Figure 24.1: Vibrational wavenumbers in cm−1 as a function of the step size for the
numerical differentiation for the lowest-frequency (left) and a high-frequency mode (right)
of ethane. The analytical wavenumbers are indicated by the dashed lines.

0.0010 0.0100 0.1000 1.0000
cstep [bohr]

250

300

350

400

450

500

550

600

 ω
 [

1/
cm

]

lowest−frequency mode

0.0010 0.0100 0.1000 1.0000
cstep [bohr]

2900

3000

3100

3200

3300

3400

 ω
 [1

/c
m

]

high−frequency mode

From this figure it can be seen that it might be advantageous — though the general
recommendation is 0.01 — to increase the step size cstep to values of up to 0.1 for
low-frequency modes.

149

150 CHAPTER 24. PARAMETER ANALYSIS

25. Program history of Akira

Modifications after version 4.0.0 are listed below according to the version numbers.

4.0.1 Serial version of Akira now available. This version is integrated into MoViPac
1.0.1.

4.0.0 Completely revised version for integration into MoViPac 1.0.0.

151

152 CHAPTER 25. PROGRAM HISTORY OF AKIRA

Bibliography

[1] Thomas Weymuth, Moritz P. Haag, Karin Kiewisch, Sandra Luber, Stephan Schenk,
Christoph R. Jacob, Carmen Herrmann, Johannes Neugebauer, Markus Reiher.
MoViPac: Vibrational Spectroscopy with a Massively Parallelized, Robust and
Inverse Meta-Program. J. Comput. Chem., 33 (2012) 2186–2198.

[2] S. Luber, M. Reiher. Theoretical Raman Optical Activity Study of the β Domain of
Rat Metallothionein. J. Phys. Chem. B, 114 (2010) 1057–1063.

[3] J. Neugebauer, M. Reiher, C. Kind, B. A. Hess. Quantum chemical calculation
of vibrational spectra of large molecules—Raman and IR spectra for Buckminster-
fullerene. J. Comput. Chem., 23(9) (2002) 895–910.

[4] G. Herzberg. Molecular Spectra and Molecular Structure II: Infrared and Raman
Spectra of Polyatomic Molecules. Van Nostrand Reinhold, New York, 1945.

[5] E. Bright Wilson, Jr., J. C. Decius, P. C. Cross. Molecular Vibrations: The Theory
of Infrared and Raman Vibrational Spectra. McGraw-Hill, New York, 1955.

[6] D. A. Long. The Raman Effect: A Unified Treatment of the Theory of Raman
Scattering by Molecules. John Wiley & Sons, New York, 2002.

[7] L. D. Barron. Molecular Light Scattering and Raman Optical Activity. Cambridge
University Press, Cambridge, 2nd ed., 2004.

[8] P. R. Bunker, P. Jensen. Molecular Symmetry and Spectroscopy. NRC Research
Press, Ottawa, Canada, 2nd ed., 1998.

[9] W. Miller, Jr. Symmetry Groups and their Applications. Academic Press, New York,
1972.

[10] D. S. Schonland. Molecular Symmetry: An Introduction to Group Theory and its
Uses in Chemistry. Van Nostrand Reinhold Company, London, 1971.

[11] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel. Electronic structure calculations
on workstation computers: The program system Turbomole. Chem. Phys. Lett.,
162(3) (1989) 165–169.

153

154 BIBLIOGRAPHY

[12] C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani,
P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hättig, K. Hald,
A. Halkier, H. Heiberg, T. Helgaker, H. Hettema, H. J. Aa. Jensen, D. Jons-
son, P. Jørgensen, S. Kirpekar, W. Klopper, R. Kobayashi, H. Koch, A. Ligabue,
O. B. Lutnæs, K. V. Mikkelsen, P. Norman, J. Olsen, M. J. Packer, T. B. Ped-
ersen, Z. Rinkevicius, E. Rudberg, T. A. Ruden, K. Ruud, P. Sa lek, A. Sanchez
de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. O. Sylvester-Hvid,
P. R. Taylor, O. Vahtras, D. J. Wilson, H. Ågren. Dalton Release 2.0, 2005.
http://www.kjemi.uio.no/software/dalton/dalton.html.

[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.
Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannen-
berg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, C. Gonzalez, J. A. Pople. Gaussian03 revision D.01, 2004. Gaussian, Inc.,
Wallingford, CT. http://www.gaussian.com.

[14] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van
Gisbergen, J. G. Snijders, T. Ziegler. Chemistry with Adf. J. Comput. Chem.,
22(9) (2001) 931–967.

[15] H.-J. Werner, P. J. Knowles, R. Lindh, M. Schütz, P. Celani, T. Korona, F. R. Manby,
G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Dee-
gan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas,
W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll,
A. J. Stone, R. Tarroni, T. Thorsteinsson. Molpro version 2002.6, 2003. Birming-
ham, U.K. http://www.molpro.net.

[16] T. Williams, C. Kelley. Gnuplot. http://www.gnuplot.info.

[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Bu-
rant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,

BIBLIOGRAPHY 155

J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, , P. Sal-
vador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Fores-
man, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle,
J. A. Pople. Gaussian98 revision A.11.4, 2002. Gaussian, Inc., Pittsburgh, PA.
http://www.gaussian.com.

[18] J. J. P. Stewart, I. Rossi, W.-P. Hu, G. C. Lynch, Y.-P. Liu, Y.-Y. Chuang, J. Li, C. J.
Cramer, P. L. Fast, D. G. Truhlar. Mopac 5.09mn, 1999. University of Minnesota,
Minneapolis.

[19] G. Schaftenaar, J. H. Noordik. Molden: a pre- and post-processing program for
molecular and electronic structures. J. Comput. Aided Mol. Des., 14(2) (2000) 123–
134.

[20] Jmol: an open-source Java viewer for chemical structures in 3D.
http://www.jmol.org.

[21] M. Reiher, J. Neugebauer. A mode-selective quantum chemical method for tracking
molecular vibrations applied to functionalized carbon nanotubes. J. Chem. Phys.,
118(4) (2003) 1634–1641.

[22] M. Reiher, J. Neugebauer. Convergence characteristics and efficiency of mode-
tracking calculations on pre-selected molecular vibrations. Phys. Chem. Chem. Phys.,
6(19) (2004) 4621–4629.

[23] Ernest R. Davidson. The Iterative Calculation of a Few of the Lowest Eigenvalues
and Corresponding Eigenvectors of Large Real-Symmetric Matrices. J. Comp. Phys.,
17 (1975) 87–94.

[24] H. A. Van der Vorst G. L. G. Sleijpen. A Jacobi–Davidson Iteration Method for
Linear Eigenvalue Problems. SIAM Review, 42 (2000) 267–293.

[25] C. Lanczos. J. Res. Nat. Bur. Stand., 45 (1950) 255.

[26] C. Herrmann, J. Neugebauer, M. Reiher. QM/MM vibrational mode tracking. J.
Comput. Chem., 29(14) (2008) 2460–2470.

[27] Christoph R. Jacob, Markus Reiher. Localizing normal modes in large molecules. J.
Chem. Phys., 130 (2009) 084106.

156 BIBLIOGRAPHY

[28] N. S. Bieler, M. P. Haag, C. R. Jacob, M. Reiher. Analysis of the Cartesian Tensor
Transfer Method for Calculating Vibrational Spectra of Polypeptides. J. Chem.
Theory Comput., 7 (2011) 1867–1881.

[29] Sandra Luber, Johannes Neugebauer, Markus Reiher. Intensity tracking for theoret-
ical infrared spectroscopy of large molecules. J. Chem. Phys., 130(6) (2009) 064105.

[30] Sandra Luber, Markus Reiher. Intensity-carrying modes in raman and raman optical
activity spectroscopy. ChemPhysChem, 10 (2009) 2049–2057.

[31] K. Kiewisch, J. Neugebauer, M. Reiher. Selective calculation of high-intensity vi-
brations in molecular resonance Raman spectra. J. Chem. Phys., 129(20) (2008)
204103.

[32] C. Herrmann, M. Reiher. First-principles approach to vibrational spectroscopy of
biomolecules. Top. Curr. Chem., 268 (2007) 85–132.

[33] Karin Kiewisch, Sandra Luber, Johannes Neugebauer, Markus Reiher. Intensity
tracking for vibrational spectra of large molecules. CHIMIA, 63 (2009) 270–274.

[34] C. Herrmann, J. Neugebauer, M. Reiher. Finding a needle in a haystack: Direct
determination of vibrational signatures in complex systems. New J. Chem., 31(6)
(2007) 818–831.

[35] G. Brehm, M. Reiher, S. Schneider. Estimation of the vibrational contribution to the
entropy change associated with the low- to high-spin transition in Fe(phen)2(NCS)2

complexes: Results obtained by IR and Raman spectroscopy and DFT calculations.
J. Phys. Chem. A, 106(50) (2002) 12024–12034.

[36] S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, M. Towrie. Flu-
orescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+

and Ca2+. Photochem. Photobiol. Sci., 2(11) (2003) 1107–1117.

[37] C. F. Leypold, M. Reiher, G. Brehm, M. O. Schmitt, S. Schneider, P. Matousek,
M. Towrie. Tetracycline and derivatives—assignment of IR and Raman spectra via
DFT calculations. Phys. Chem. Chem. Phys., 5(6) (2003) 1149–1157.

[38] T. B. Adler, N. Borho, M. Reiher, M. A. Suhm. Chirality-induced switch in hydrogen-
bond topology: Tetrameric methyl lactate clusters in the gas phase. Angew. Chem.,
Int. Ed., 45(21) (2006) 3440–3445.

[39] G. Brehm, M. Reiher, B. Le Guennic, M. Leibold, S. Schindler, F. W. Heine-
mann, S. Schneider. Investigation of the low-spin to high-spin transition in a novel
[Fe(pmea)(NCS)2] complex by IR and Raman spectroscopy and DFT calculations.
J. Raman Spectrosc., 37(1–3) (2006) 108–122.

BIBLIOGRAPHY 157

[40] C. Herrmann, K. Ruud, M. Reiher. Importance of backbone angles versus amino acid
configurations in peptide vibrational Raman optical activity spectra. Chem. Phys.,
343(2–3) (2008) 200–209.

[41] C. R. Jacob, S. Luber, M. Reiher. Calculated Raman optical activity signatures of
tryptophan side chains. ChemPhysChem, 9(15) (2008) 2177–2180.

[42] S. Luber, M. Reiher. Raman optical activity spectra of chiral transition metal com-
plexes. Chem. Phys., 346(1–3) (2008) 212–223.

[43] Sandra Luber, Markus Reiher. Prediction of raman optical activity spectra of chiral
3-acetylcamphorato-cobalt complexes. ChemPhysChem, 11 (2010) 1876–1887.

[44] Christoph R. Jacob, Sandra Luber, Markus Reiher. Understanding the Signatures
of Secondary-Structure Elements in Proteins with Raman Optical Activity Spec-
troscopy. Chem. Eur. J., 15 (2009) 13491–13508.

[45] Thomas Weymuth, Christoph R. Jacob, Markus Reiher. Identifying Protein β-Turns
with Vibrational Raman Optical Activity. ChemPhysChem, 12 (2011) 1165–1175.

[46] Sandra Luber, Markus Reiher. Calculated raman optical activity spectra of 1,6-
anhydro--d-glucopyranose. J. Phys. Chem. A, 113 (2009) 8268–8277.

[47] J. Neugebauer, M. Reiher, B. A. Hess. Coupled-cluster Raman intensities: Assess-
ment and comparison with multiconfiguration and density functional methods. J.
Chem. Phys., 117(19) (2002) 8623–8633.

[48] M. Reiher, V. Liégeois, K. Ruud. Basis set and density functional dependence of
vibrational Raman optical activity calculations. J. Phys. Chem. A, 109(33) (2005)
7567–7574.

[49] J. Neugebauer, B. A. Hess. Fundamental vibrational frequencies of small polyatomic
molecules from density-functional calculations and vibrational perturbation theory.
J. Chem. Phys., 118(16) (2003) 7215–7225.

[50] M. Reiher, G. Brehm, S. Schneider. Assignment of vibrational spectra of 1,10-
phenanthroline by comparison with frequencies and Raman intensities from density
functional calculations. J. Phys. Chem. A, 108(5) (2004) 734–742.

[51] M. Reiher, J. Neugebauer, B. A. Hess. Quantum chemical calculation of Raman inten-
sities for large molecules: The photoisomerization of [{Fe‘S4’(PR3)}2(N2H2)] (‘S4’2−

= 1,2-bis(2-mercaptophenylthio)-ethane(2−)). Z. Phys. Chem., 217(2) (2003) 91–
103.

158 BIBLIOGRAPHY

[52] J. Neugebauer, B. A. Hess. Resonance Raman spectra of uracil based on Kramers–
Kronig relations using time-dependent density functional calculations and multiref-
erence perturbation theory. J. Chem. Phys., 120(24) (2004) 11564–11577.

[53] J. Neugebauer, M. Reiher. Mode tracking of preselected vibrations of one-dimensional
molecular wires. J. Phys. Chem. A, 108(11) (2004) 2053–2061.

[54] J. Neugebauer, M. Reiher. Vibrational center–ligand couplings in transition metal
complexes. J. Comput. Chem., 25(4) (2004) 587–597.

[55] M. Reiher, J. Neugebauer. Comment on “Gradient-based direct normal-mode anal-
ysis” [J. Chem. Phys. 122, 184106 (2005)]. J. Chem. Phys., 123(11) (2005) 117101.

[56] C. Herrmann, K. Ruud, M. Reiher. Can Raman optical activity separate axial from
local chirality? A theoretical study of helical deca-alanine. ChemPhysChem, 7(10)
(2006) 2189–2196.

[57] C. Herrmann, M. Reiher. Direct targeting of adsorbate vibrations with mode-
tracking. Surf. Sci., 600(9) (2006) 1891–1900.

[58] C. Herrmann, J. Neugebauer, M. Presselt, U. Uhlemann, M. Schmitt, S. Rau,
J. Popp, M. Reiher. The First photoexcitation step of ruthenium-based models
for artificial photosynthesis highlighted by resonance Raman spectroscopy. J. Phys.
Chem. B, 111(21) (2007) 6078–6087.

[59] S. Luber, C. Herrmann, M. Reiher. Relevance of the electric-dipole–electric-
quadrupole contribution to Raman optical activity spectra. J. Phys. Chem. B, 112(7)
(2008) 2218–2232.

[60] Christoph R. Jacob, Sandra Luber, Markus Reiher. Analysis of Secondary Struc-
ture Effects on the IR and Raman Spectra of Polypeptides in Terms of Localized
Vibrations. J. Phys. Chem. B, 113 (2009) 6558–6573.

[61] Thomas Weymuth, Christoph R. Jacob, Markus Reiher. A Local-Mode Model for
Understanding the Dependence of the Extended Amide III Vibrations on Protein
Secondary Structure. J. Phys. Chem. B, 114 (2010) 10649–10660.

[62] Sandra Luber, Johannes Neugebauer, Markus Reiher. Enhancement and de-
enhancement effects in vibrational resonance raman optical activity. J. Chem. Phys.,
132(4) (2010) 044113.

[63] XMol version 1.3.1, 1993. Research Equipment Inc., Minnesota Supercomputer
Center, Inc.

BIBLIOGRAPHY 159

[64] J. Cioslowski. A new population analysis based on atomic polar tensors. J. Am.
Chem. Soc., 111(22) (1989) 8333–8336.

[65] Harald Solheim, Kenneth Ruud, Per-Olof Åstrand. J. Chem. Phys., 120 (2004)
10368–10378.

[66] L. F. Richardson. The approximate arithmetical solution by finite differences of
physical problems involving differential equations, with an application to the stresses
in a masonry dam. Philos. Trans. R. Soc. A, 210(459–470) (1911) 307–357.

[67] G. Rauhut, P. Pulay. Transferable scaling factors for density functional derived
vibrational force fields. J. Phys. Chem., 99(10) (1995) 3093–3100.

[68] L. D. Barron, L. Hecht, I. H. McColl, E. W. Blanch. Raman optical activity comes
of age. Mol. Phys., 102(8) (2004) 731–744.

[69] P. W. Atkins, L. D. Barron. Rayleigh scattering of polarized photons by molecules.
Mol. Phys., 16(5) (1969) 453–466.

[70] A. D. Buckingham, M. B. Dunn. Optical activity of oriented molecules. J. Chem.
Soc. A, (1971) 1988–1991.

[71] L. D. Barron, A. D. Buckingham. Rayleigh and Raman scattering from optically
active molecules. Mol. Phys., 20(6) (1971) 1111–1119.

[72] L. D. Barron, M. P. Bogaard, A. D. Buckingham. Raman scattering of circularly
polarized light by optically active molecules. J. Am. Chem. Soc., 95(2) (1973) 603–
605.

[73] W. Hug, S. Kint, G. F. Bailey, J. R. Scherer. Raman circular intensity differential
spectroscopy. Spectra of (−)-α-pinene and (+)-α-phenylethylamine. J. Am. Chem.
Soc., 97(19) (1975) 5589–5590.

[74] Ronald F. Boisvert, Roldan Pozo, Karin A. Remington. The matrix market exchange
formats: Initial design. NISTIR, 5935 (1996.

[75] Donald A. McQuarrie, John D. Simon. Molecular Thermodynamics. University
Science Books, Sausalito, 1999.

[76] A. Fernández-Ramos, B. A. Ellingson, R. Meana-Pa neda, J. M. C. Marques, D. G.
Truhlar. Symmetry numbers and chemical reaction rates. Theor. Chem. Acc., 118(4)
(2007) 813–826.

[77] P. Bouř, J. Sopková, L. Bednárová, P. Maloň, T. A. Keiderling. Transfer of Molecular
Property Tensors in Cartesian Coordinates: A New Algorithm for Simulation of
Vibrational Spectra. J. Comput. Chem., 18 (1997) 646–659.

160 BIBLIOGRAPHY

[78] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs. Auxiliary basis sets to
approximate Coulomb potentials. Chem. Phys. Lett., 240(4) (1995) 283–290.

[79] K-E. J. Hallin, J. W. C. Johns, A. Trombetti. The infrared spectrum of di-imide
near 7.6 µm. Can. J. Phys., 59(5) (1981) 663–672.

[80] F. Hegelund, H. Bürger, O. Polanz. The High-Resolution Infrared Spectrum of the
ν4, ν5, and ν6 Bands of trans-Di-imide Revisited. J. Mol. Spectrosc., 167(1) (1994)
1–10.

[81] V. E. Bondybey, J. W. Nibler. Infrared and Raman spectra of solid and matrix
isolated diimide, HNNH. J. Chem. Phys., 58(5) (1973) 2125–2134.

[82] B. A. Hess. Numfreq. University of Erlangen-Nürnberg, 2001. [Based on work by
S. Grimme, C. Marian and M. Gastreich, University of Bonn, 1998].

[83] Bernd A. Hess. Memmgr (Version 1.19), 1999.

[84] Bernd A. Hess. Delrem (Revision 1.66), 2001.

[85] T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H. Ågren, A. A.
Auer, K. L. Bak, V. Bakken, O. Christiansen, S. Coriani, P. Dahle, E. K. Dalskov,
T. Enevoldsen, B. Fernandez, C. Hättig, K. Hald, A. Halkier, H. Heiberg, H. Hettema,
D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman,
M. J. Packer, T. B. Pedersen, T. A. Ruden, A. Sanchez, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras. Dalton,
Release 1.2, 2001.

[86] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-
man, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Za-
krzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clif-
ford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonza-
lez, J. A. Pople. Gaussian03, revision D.02. Gaussian, Inc., Wallingford, CT.
http://www.gaussian.com.

BIBLIOGRAPHY 161

[87] Ira N. Levine. Molecular Spectroscopy. Wiley, New York, 1975.

[88] W. G. Bickley. Formulae for numerical differentiation. Math. Gaz., 25 (1941) 19–27.

[89] B. Liu. Numerical Algorithms in Chemistry: Algebraic Methods (edited by C. Moler
and I. Shavitt). Lawrence Berkeley Laboratory LBL-8158. Livermore, CA, 1978.

[90] Christopher W. Murray, Stephen C. Racine, Ernest R. Davidson. Improved Algo-
rithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matri-
ces. J. Comp. Phys., 103 (1992) 382–389.

[91] W. Butscher, W. J. E. Kammer. J. Comput. Phys., 20 (1976) 13.

