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1 Magnetic Properties

Practically all materials interact with magnetic fields. Below, a frog levitating

in a high-field magnet is shown:

1.1 Definitions of Magnetostatics

1.1.1 Magnetic Field and Magnetic Induction

The magnetic field  that levitates the frog of Fig. 1.1 is produced by an

(constant) electrical current flowing through a solenoid coil. According to A.M.

Ampère (1775-1836), a current described by its position-dependent current density1

:

[1.1]

creates a magnetic field:

1 Deutsch: Stromdichte

Figure 1.1: Levitating Frog
Picture of a frog levitating in the bore of a 16 T magnet (http://www.ru.nl/hfml/research/
levitation/diamagnetic/) and M.V. Berry and A.K. Geim, Eur. J. Phys. 18, 307-313 (1997)). This
paper is available in electronic form at the URL mentioned above.

H
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. [1.2]

 is the current  per cross-section element  and the direction of  is

perpendicular to the element .

The magnetic field1  is a vector quantity and describes the field generated by the

current. The dimension of  is , accordingly the dimension of the magnetic field

strength  is

. [1.3]

1 Deutsch: Magnetfeld
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For a solenoid coil (N turns and length a) which is

much longer than wide, the field inside the coil,

obtained by evaluating [1.2] is given by

. [1.4]

Furthermore, we define the magnetic induction1 . In

vacuum,  and  are parallel and

proportional: 

[1.5]

They differ in numerical value and also in units. The

proportionality constant  is the so

called permeability2 of the vacuum. The unit of the magnetic induction B (often also

called the magnetic field!!!) is:

. [1.6]

The strength of the earth magnetic induction (“magnetic field”, magnetic flux density)

is between 60 T at the poles and 30 T at the equator. Permanent magnets can reach

about 2 T, superconducting magnets about 25 T and special high-field magnets (Bitter

magnets) 60 T. The older literature also uses the unit Gauss (G) with 1 G = 100 T =

10-4 T.

1.1.2 Magnetic Susceptibility and Magnetization

In a medium, the relationship between  and  is modified by the magnetic

susceptibility3  of the medium

[1.7]

1 Deutsch: magnetische Induktion
2 Deutsch: Permeabilität
3 Deutsch: magnetische Suszeptibilität
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Figure 1.2: Solenoid Coil
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In isotropic media,  is a dimensionless scalar, written as . In anisotropic media 

is, in general, not parallel to  and    it is a tensor that can be described by a 3x3

matrix. In vacuum,  is always 0.

If , the magnetic field is enhanced by the material which is then called

paramagnetic. If , the magnetic field is decreased by the material which is then

called diamagnetic. Electrons can give rise to both paramagnetism (for systems with

unpaired electrons) and diamagnetism. The nuclear effects are always paramagnetic

but usually much smaller than the electronic effects. For water, we have

 and . Equation [1.7] can be rewritten as 

[1.8]

with

. [1.9]

We call  the magnetization1 and it can be interpreted as the magnetic field induced

in the medium by the external field :

[1.10]

1.1.3 An Atomistic Picture for the Magnetization

In the previous chapter, we have described the “medium” as structureless. In

an atomistic picture, the magnetization can be described by elementary magnetic

dipoles  (e.g. of nuclei, electrons) that get aligned by :

[1.11]

1 Deutsch: Magnetisierung
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Here  is the magnetic dipole moment1 ( ) and V the volume of the

sample considered. Note that the magnetic dipole moment is an extensive property,

i.e., it depends on the sample size and is additive so that the property of the entire

sample is the sum of its constituents while the magnetic field and the magnetization

are intensive properties which need no specification of the sample size2.

Note that there are no magnetic monopoles, in contrast to electric phenomena

where monopoles (charges) as well as dipoles (and quadrupoles) exist and are

important.

1.1.4 A Magnetic Dipole in a Homogeneous or Inhomogeneous

Magnetic Field

From a compass needle, we know

that a magnetic dipole moment tends to

align with an external magnetic field. It

experiences a mechanical torque3:

[1.12]

Here  denotes magnetic dipole

moment of the needle. The

corresponding potential energy is

. [1.13]

1 Deutsch: magnetisches Dipolmoment
2 Simple examples for extensive and intensive properties are mass and specific weight, respec-

tively.
3 Deutsch: Drehmoment

Table 1.1: Energy of a magnetic dipole in an static magnetic field:

parallel orientation minimum energy (negative)

m m    A m 2
= =

B

m

T



Figure 1.3: Torque on Magnetic Dipole

T m B=

m
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In inhomogeneous magnetic fields a dipole experiences, in addition to the torque, a

force1  proportional to the field gradient

[1.14]

Note that  is a tensor. For  and  Eq. [1.14]

simplifies to:

. [1.15]

1.1.5 The Levitation of the Frog

A necessary condition for the frog to levitate at a

position  is, that the magnetic force acting on the induced

magnetization, , counterbalances the gravitational

force :

 . [1.16]

The gravitational force is always negative and is given by

. [1.17]

Here  is the mass,  is the density,  the volume and 

the gravitational constant.

For levitation, the force acting at  with  positive must be smaller

than the force at , the force acting at  must be larger. In other words,

the energy at the position z must be at a minimum. Here, we consider only a one-

antiparallel orientation maximum energy (positive)

perpendicular orientation zero point for energy (arbitrarily defined)

1 Deutsch: Kraft

Table 1.1: Energy of a magnetic dipole in an static magnetic field:

F
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Figure 1.4: Force Balance

z
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7

dimensional problem. In three dimensions we must request, in addition, that there is

an energy minimum also with respect to the  and  coordinates.

The magnetic force of Eq. [1.15] can be rewritten, using Eqs. [1.9] and [1.11] and

using  as:

[1.18]

Levitation is obtained for  or

. [1.19]

The frog consists mainly of water. Therefore, we are going to use the susceptibility

and density of water, ,  and obtain the

condition:

. [1.20]

 is always positive and, therefore,  must be negative. This condition is

fulfilled if the frog is positioned above the center of the magnet where the field

decreases with increasing . The quantitative relationship between the magnetic field

strength  and the gradient  depends on the construction details of the

magnet, in the experiments of Fig. 1.1 a magnet with  = -8.13·B0 T/m was used

and for fields larger than 13.1 T, levitation (in one dimension) could be achieved. A

detailed analysis shows that in three dimensions only a limited range of  leads to

minima in all three dimensions and, therefore, to levitation1. For paramagnetic

samples, the samples would hang below the center of the magnet because  is

positive. However, no stable solutions in three dimensions can be found and the

sample escapes in the x/y plane.

1 For details see the literature cited in the caption of Fig. 1.1.

x y

B 0H=

Fm z( )

0
-----VB z( )

zd
d B z( )=

Fm z( ) F– g=

B z( )
zd

d B z( )
0g


-------------=

water 8.8 10 6––=  1000 kg m3=

B z( )
zd

d B z( ) 1400  –
T2

m
------  =

B z( )
zd

d B z( )

z

B
zd

d B z( )

zd
d B z( )

B0





8

1.2 The Gyromagnetic Equation

In Eq. [1.11], we have tentatively assigned the origin of the macroscopic

magnetization to microscopic magnetic moments. The microscopic magnetic moments1

of electrons and nuclei are always connected to a general angular momentum2 :

. [1.21]

Here,  is the gyromagnetic ratio3. For nuclei,  is a constant which is characteristic for

each isotope.

We will not prove [1.21] but only

illustrate it by the magnetic moment and

orbital angular momentum4 of an electron.

For an electron moving around a nucleus,

we can use the picture of Ampere

according to which the magnetic dipole

moment  caused by the electric current

 flowing in a loop around a area  (see Fig. 1.5) is given by:

[1.22]

This result is a consequence of Eq. [1.2]. In this simple picture, the magnetic moment

becomes connected to an angular momentum  as the current is caused by an

electron moving on a circle:

[1.23]

 is the time needed for the electron to complete a circle,  the electron charge. We

can easily compare the magnetic moment

1 Deutsch: magnetisches Moment
2 Deutsch: Drehimpuls (Drall)
3 Deutsch: gyromagnetisches Verhältnis
4 Deutsch: Bahndrehimpuls

L
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Figure 1.5: Orbital Angular Momentum 

I A
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[1.24]

where  is a unit vector normal to the loop with the angular momentum of the

electron:

, [1.25]

Here  is the radius of the circle and  is the (linear) momentum1 of the

electron ( : electron mass). The velocity  can be expressed by the radius  and the

cycle time  as  and we obtain:

. [1.26]

By comparison of Eqs. [1.24] and [1.26] we find the gyromagnetic equation:

[1.27]

with the gyromagnetic ratio:

[1.28]

It will turn out that the electron has in addition to the orbital angular momentum also

a quantum-mechanical spin angular momentum2 which has no classical counterpart.

Nevertheless, a gyromagnetic equation of the form of Eq. [1.21] is still valid. The

gyromagnetic ratio, however, is different from the one given in Eq. [1.28] and the

angular momentum  has no classical counterpart anymore.

In EPR (electron paramagnetic resonance), one often uses the Bohr magneton

defined by

[1.29]

instead of . The gyromagnetic Eq. [1.21] is then written as

1 Deutsch: Impuls
2 Deutsch: Spindrehimpuls

 eA–


-----------n=

n

L r p=

r p mev=

me v r

 v 2 r


------------=

L
2meA


----------------n=
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L
e

2me
-----------–=

L
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[1.30]

where the so called g-factor has been introduced. We have . For the free

electron,  has a value of about 2.0023.

1.3 Dynamic Effects in Homogeneous Fields: The Bloch Equations

Equation [1.12] describes the mechanical torque on a magnetic object. For a

compass needle which has a macroscopic magnetic moment but no angular

momentum, this means that the needle tries to align with the magnetic field. For an

initial condition which is not aligned with the field, the needle will experience a

torque  (see Eq. [1.12]) which tries to align it with the field. This will lead to

an oszillatory motion and, in the presence of damping, to an alignement of  and .

A compass needle is overdamped and no oscillations are seen.

For a system which has, in addition to a magnetic moment, also an angular

momentum we have a different situation. According to the Newton laws of

mechanics the torque and the change in angular momentum must be equal:

[1.31]

Using the gyromagnetic equation  and , we obtain1, after

summation in the unit volume, the equation of the motion for the magnetization

vector ( ).

[1.32]

We are free to assume that the magnetic field vector is along the z axis and we write

. 

1 Note that we have used  because we refer to the sum over microscopic moments (nuclear

spins) whereas we had used  for the macroscopic system of a compass needle. In a classical

description, both systems follow the same laws. 

 g– e
L
�
---=

g– e

�
------------ =

g

T m B=

m B

td
d L T=

L 1

---= T  B=



m

M 1
V
---- 

sample
=

td
d M M B=

B 0 0 B0  =
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Note that we have replaced the magnetic induction  by the vacuum induction 

(the “external field”). This is justified by the small size of the susceptibility ,(see

Chapter 1.1.4). The coupled system of differential equations of Eq. [1.32] has the form

[1.33]

and the solution is easily found to be

[1.34]

with the initial condition  and the abbreviation

. One can easily verify the solution Eq. [1.34] by inserting it into the

differential equations of Eq. [1.33].

In vector form we can write the solution of Eq. [1.34] in the compact form

[1.35]

where  is the rotation matrix that performs a (right-handed) rotation of the

initial magnetization  vector around the z-axis:

. [1.36]

The frequency  is called the Larmor (angular) frequency1 and is defined by:

1 Note that some textbooks use a different sign convention and define  with the same sign as

. However, the sense of rotation for a proton ( positive) is always  for a

magnetic field along the z-axis of a right-handed coordinate system. Electrons have a negative 

and rotate anti-clockwise.

B B0



td
d Mx t  My t B0=

td
d My t  Mx t B0–=

td
d Mz t  0=

Mx t  Mx 0  0tcos My 0  0tsin–=

My t  Mx 0  0sin t My 0  0cos t+=

Mz t  Mz 0 =

M 0  Mx 0  My 0  Mz 0   =

0 B0–=

M t  Rz 0t M 0 =

Rz  

M 0 

Rz 0t 
0t cos 0t sin– 0

0t sin 0t cos 0

0 0 1

=

0

0

 x y– x– y  
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[1.37]

Note that we have attached a sign to the

frequency: a positive frequency describes a

right-handed rotation around the positive

-axis, a negative frequency a left-handed

rotation. For a positive gyromagnetic ratio

, (e.g for protons) the Larmor frequency is

negative and a left-handed (clockwise

rotation) arises: .

For electrons and nuclei with a negative

gyromagnetic ratio (e.g. 15N) a right-handed

(anti-clockwise) rotation arises: 

Often, the free precession frequencies are given in frequencies instead of

angular frequencies and are then denoted by  with . Examples for

precession frequencies of the electron ( ) and the proton

( ) in practically important magnetic fields are given in the

Table 1.2:

The precession motion of the magnetization vector around a magnetic field

vector is in full analogy to the precession of a (mechanical) spinning top1 around the

Table 1.2: Resonance frequencies and magnetic field strengths.

B0 0 (proton) 0 (electron)

0.34 T 9.4 GHz (X-Band)

1 T 28.0 GHz (K-Band)

4.7 T -200 MHz 132 GHz 

14.1 T -600 MHz

18.8 T -800 MHz

1 Deutsch: Kreisel

0 B0–=

x

y

z

Figure 1.6: Larmor Precession
Precession of the magnetization vector
around the z-axis for a nucleus with
positive gyromagnetic ratio.

M
z



x y– x– y  

x y x– y–  

0 0 0 2=

 2 28.02 109Hz T–=

 2 42.58 106Hz T=
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gravitational force field. The equation of the motion for the mechanical gyroscope is

given by (see e.g. Kneubühl, Kapitel 3.4.4):

[1.38]

using , we obtain

[1.39]

which has the same form as Eq. [1.32] and we can

make the following identification:

The top moves always perpendicular to the applied force .

1.3.1 Phenomenological Introduction of Relaxation Processes

It is not very plausible to assume that the (macroscopic) magnetization vector

precesses forever around the magnetic field. In reality, there are damping

mechanisms that return the magnetization vector to its energetically most favorable

orientation parallel to  and to its equilibrium length. We denote the equilibrium

magnetization by . Note that the equilibrium position is always parallel to  (and

never antiparallel) independent of the sign of  because the nuclei are all

paramagnetic .

magnetic gyroscope mechanical gyroscope

d
dt
-----L T r F= =

r r

L
------L=

d
dt
-----L T

r

L
------L F= =

z  L

S

F mg=

r

Figure 1.7: Mechanical Precession

M L

 r L

B F

 B–=  r L 
 F–=

F

B0

M0 B0



 0
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1.3.1.1 Longitudinal Relaxation

We call the magnetization component along the z-direction (the magnetic field

direction) the longitudinal component . Its magnitude and orientation determine

the potential energy of the system according to Eq. [1.13]:

[1.40]

A change in  involves

energy-exchange with the

environment. This process

returns a non-equilibrium

magnetization towards the

equilibrium value . Assuming a first order kinetics, we write

[1.41]

with the time constant , the longitudinal relaxation1 time, also called the spin-lattice

relaxation2 time

1.3.1.2 Transverse Relaxation

Because the equilibrium magnetization has no transverse components, it must

decay to zero. We assume again a first order kinetics. Due to the axial symmetry of

our problem, we assume that both transverse components decay to zero with the

same rate constant  and write

[1.42]

1 Deutsch: Longitudinale Relaxationszeit 
2 Deutsch: Spin-Gitter Relaxationszeit

Mz

Epot m– B VMB– V– MzB0= = =

magnetic 
subsystem environment

longitudinal

relaxation

Figure 1.8: Coupling of Spin System and Environment

Mz

M0

dMz

dt
------------

1
T1
------ Mz M0– –=

T1

1 T2

td
d Mx t  1

T2
------Mx–=

td
d My t  1

T2
------My–=
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 is the transverse relaxation1 time, also called the spin-spin relaxation2 time.

1.3.2  The Bloch Equations 

Combining the relaxation terms of Eqs. [1.41] and [1.42] with the differential

equations for the precession (Eq. [1.33]) we arrive at a set of differential equations

known as the Bloch equations3:

. [1.43]

or, in vector form

[1.44]

where  is the relaxation matrix:

[1.45]

The solution of Eq. [1.44] is given by:

[1.46]

or in a matrix notation

1 Deutsch: Transversale Relaxationszeit
2 Deutsch: Spin-Spin Relaxationszeit
3 F. Bloch, Phys.Rev. 70, 260 (1946).

T2

td
d Mx t  MyB0

Mx

T2
--------–=

td
d My t  MxB0–

My

T2
--------–=

td
d Mz t 

Mz M0–

T1
----------------------–=

td
d M  M B 

   M M0–
 
 
 

–=




1 T2 0 0

0 1 T2 0

0 0 1 T1

=

Mx t  Mx 0  0tcos My 0  0tsin–  t T2– exp=

My t  Mx 0  0sin t My 0  0cos t+  t T2– exp=

Mz t  M0 Mz 0  M0–  t T1– exp+=
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[1.47]

where  is the rotation matrix of Eq. [1.36] and 

is the initial magnetization at time t=0.  is of the form . For

=(0,M(0),0), the motion shown in Fig. 1.9 is obtained (for positive ).

M t  Rz 0t  e – t M 0  M0– 
  M0+=

Rz   M 0  Mx 0  My 0  Mz 0   =

M0 0 0 M0  

Figure 1.9: Bloch Equations
Time evolution of the magnetization vector starting from y magnetization,(0,1,0), as described
by the Bloch equations (for positive ).

x

y

z

Mx

My

Mz

FID

M 0  
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2 A Classical Description of NMR Spectroscopy

2.1 The NMR Spectrum and its Fine Structure

The NMR experiment detects one of the transverse components of the

magnetization (here we define it to be ). The longitudinal magnetization gives

no signal in conventional NMR. Therefore, the equilibrium magnetization  must

be perturbed in the experiment. 

In a pulsed experiment, a short but

intense radio-frequency (rf) pulse is used

to create a non-equilibrium

magnetization , e.g., .

This initial excitation process (  ->

) will be discussed below.

Afterwards, the magnetization  can

be observed in the absence of further rf

irradiation (“free induction decay”, FID).

For an ensemble of non-interacting spins,

the FID is described by the Bloch

equations. For , the

solution of the Bloch equations is

displayed in Fig. 1.9. Included in the

Figure is , which induces the FID. Usually, we do not plot the FID, but its

Fourier transform, the NMR spectrum .

For isolated nuclei, the gyromagnetic ratio is a material constant for each

isotope. For ethanol, CH3-CH2-OH, we would therefore expect a strong proton

resonance signal at the proton resonance frequency and a much weaker signal from

the carbons because only about 1% of the carbon nuclei (the isotope 13C), are NMR

active. The most common carbon isotope 12C is not NMR active. The exact resonance

My t 

M0

Signal

“Free induction
rf pulse

Figure 2.1: Schematic NMR Experiment

 decay, FID”



“spectrum”

Fourier
transform

M 0  0 M0 0  

M0

M 0 

My t 

M 0  0 M0 0  =

My t 

S  
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frequency depends on the susceptibility of the medium (see Eq. [1.7]), e.g., on the

solvent for the nuclei in a dissolved molecule. 

In addition, it also

depends on the local

interactions within the

molecule. The electrons in

the molecule will locally

modify the field, similar to

the susceptibility on a

macroscopic level. We call

this effect the chemical shift.

Its magnitude is on the scale

of parts per million (ppm)

of the applied field and it

leads to the slight

modification of the Larmor

frequency that is

experimentally observed.

We will denote the

modified Larmor frequency

by  The proton

spectrum of ethanol,

reproduced in Fig. 2.2,

consist of three groups of

resonances with different values for . The fine structure within each proton line

comes from the interaction between neighboring protons (“J-coupling”). The

interaction with the rare 13C spins is not seen here. A detailed discussion of these

effects will be given later.

Because of the linearity of the Bloch equations, we can describe a system with

 non-interacting resonance lines just as the superposition of  systems each with a

different resonance frequency .

5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

CH3

CH2

OH

H2O

Figure 2.2:  NMR Resonance Frequencies
NMR spectrum of ethanol measured at 14.1 Tesla field
strength. The frequency axis in the proton spectrum is given
in ppm and frequencies are given with respect to a reference
substance (TMS: Tetramethylsilane).

5.295.305.315.325.335.34 ppm

 150MHz600MHz

0

0

N N

0
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2.2 Generating Non-Equilibrium Magnetization

According to the Bloch equations (Eq. [1.43]), the initial magnetization will be

aligned with the field vector  in a time-constant magnetic field. This process

happens in a time in the order of  (typically  to ) and will reach its equilibrium

magnitude after a time in the order of  (typically  to hours). To observe a

precession, we first have to prepare a state with the magnetization vector tilted away

from the equilibrium z-direction. 

To prepare such a state, the application of time-dependent magnetic fields 

is mandatory. A conceptually simple way to obtain an initial state along the y-axis,

would be to suddenly change the magnetic field  to point along the x-axis. Then

one would wait until the magnetization has precessed around the x-axis by .

Then one would switch the field direction suddenly back to the z -axis. The precession

time should be fast compared to the relaxation times, the field switching is assumed

to be infinitely fast.

In practice, such a procedure is impossible for high-field spectroscopy and the

magnetic field direction must remain fixed. However, exactly the same effect can be

obtained by the (additional) application of a time-dependent field  in the x-y

plane:

[2.1]

with the time-dependent part given by

[2.2]

Because the range of typical frequencies  is in the radio-frequency region (10-

1000 MHz) of the electromagnetic spectrum,  is usually called the radio-frequency

(rf) field. Here, we have chosen to use a time-dependent rf-field that rotates in the x/y

plane with the frequency . Such a field is called circularly polarized1.

1 Deutsch: zirkularpolarisiert

B0

T2 s s

T1 s

B t 

B0

 2

B1 t 

B t  B0 B1 t +=

B1 t  B1 rft excos rfsin t ey+ =

rf

B1 t 

rf
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2.3 Rf Irradiation and the Rotating Coordinate Frame

The solution of the equation of motion of the magnetization vector in the

presence of a (time-dependent) rf-field is difficult. We can, however, apply a trick and

describe our problem in a coordinate system that rotates relative to the laboratory

frame around the z-axis with the frequency . A vector in the “new” (the rotating)

coordinate system is obtained from the vector in the “old” (the laboratory) coordinate

system by the following transformation: 

[2.3]

with1

. [2.4]

where .

The magnetic field in the rotating frame is time-independent

1 Note that the sine terms in the transformation matrix have the opposite sign from the respective

term in Eq. [1.36] because, here, we describe the same object (vector) in a rotated coordinate sys-

tem, while Eq. [1.36] describes the rotation of a (vector) object in a fixed coordinate system.

rf

v
r

Tv=

T  
cos sin 0
sin– cos 0

0 0 1

=

 rft=

ex

ey

vx

vy
v

ex

ey

vx

vy

v

In the “old” coordinate In the “new” coordinate
system system

Figure 2.3: Coordinate Transformations: One and the Same Vector
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. [2.5]

and we have replaced the time-dependent problem by a time-independent one. 

Next, we want to know the equivalent of the Bloch equations,

, in the rotating frame. Multiplying on both sides with

 leads to:

[2.6]

How do we transform the derivative of a vector,  into the rotating frame?

We look at a time-dependent vector  in the lab frame. The change of the

vector which occurs in a (infinitesimal) time interval  is denoted by . The

corresponding change in the rotating frame is denoted by . The simple-minded

solution of just transforming  like an ordinary vector is wrong: . This is

easily seen: a time-independent vector in the lab frame ( ) must be time-

dependent if seen from a rotating frame ( ) while . 

In , the rotating frame has rotated with respect to lab frame by the

infinitesimal angle . The rotation matrix  for an infinitesimal rotation can be

written as  with

. [2.7]

 denotes the 3x3 unity matrix. Note that we have replaced  by  and 

by .

In the more general case of a three-dimensional rotation, we obtain in full

analogy to the one-dimensional case:

B
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[2.8]

We look first at a vector that is constant in the lab frame. The change in the rotating-

frame vector components by the infinitesimal rotation of the coordinate system is

given by  or:

[2.9]

If we define a vector of angular changes, , we can rewrite this

set of equations in vector form as:

[2.10]

Equation [2.10] describes the differential change of a vector that is constant in the lab

frame due to description from a rotating frame. 

We can now calculate the total change in the rotating frame of a general vector

that has a change of  already in the lab frame. It is the sum of the change 

(transformed to the rotating frame) and the change :

[2.11]

Using Eq. [2.10] and dividing by  leads to

[2.12]

The last term is the angular velocity of the frame and, in our case, is given by a

rotation around the z-axis with a constant angular velocity : .

Therefore we write

[2.13]


0 d3 d– 2

d3– 0 d1

d2 d– 1 0

=

v
r

Tv
r

v
r

– v
r

= =

v1
r v2

r d3 v3
r d2–=

v2
r v3

r d1 v1
r d3–=

v3
3 v1

r d2 v2
r d1–=

d d1 d2 d3  =

v
r

v
r

d=

dv dv

v
r

dv
r

Tdv v
r

+=

dt

dv
r

dt
--------- Tdv

dt
------- v

r d
dt
-------+=

rf rf rfez=

Tdv
dt
-------

dv
r

dt
--------- v

r
rf–=
 



23
By inserting Eq. [2.13] into Eq. [2.6] with  we can rewrite the Bloch equation

completely in terms of rotating-frame quantities:

[2.14]

and

[2.15]

with the effective field in the rotating frame given by:

. [2.16]

In the rotating frame, the corrected field

[2.17]

takes the role of the applied field  in the laboratory frame!

The equilibrium magnetization, , is not influenced by the rotating-frame

transformation because it is parallel to the rotation axis. In the special case of a

vanishing rf field ( ) the effective field is then given by:

[2.18]

And the Larmor precession frequency in the rotating frame amounts to:

. [2.19]

or, considering the chemical shift,

[2.20]

With these definitions the FID in the rotating frame is given by

[2.21]
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Close to resonance when  and , the field along the z-axis,  becomes

very small and vanishes altogether at exact resonance. Then, the only effects seen are

the ones of relaxation: .

2.4 Intense Radio-Frequency Pulses

To prepare a certain initial magnetization

vector short intense rf pulses can be applied. In

practice the circularly-polarized fields

 introduced

in Eq. [2.2] are rarely used. Instead, linearly

polarized pulses of the form:

[2.22]

are applied.

Linearly polarized pulses can be looked at

as the superposition of two circularly polarized

fields of opposite polarization:

[2.23]

The component that rotates in the opposite way as the magnetization under the

static field has only a negligible effect on the magnetization1. That the counter-

rotating component alone has no effect on the magnetization can be seen by assuming

a circularly polarized field with the wrong rotation direction and transforming it into

the rotating frame with the “correct” rotation direction rotating at . Then

the term  in the rotating frame is much larger than  and the latter has

almost no influence on the time evolution of the magnetization vector.

Usually, the duration of the pulses can, in NMR, be chosen to be much shorter

than the relaxation times,  and relaxation during the pulses can be

1 see F. Bloch and A. Siegert, Phys.Rev. 57, 522 (1940)
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Figure 2.4: Schematic Representatio
of rf Pulses
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neglected. Typical pulse lengths for excitation of the magnetization from the

equilibrium position are in the range of 1-20 s.

2.4.1 On-Resonance Pulses 

If the pulse is applied exactly on resonance, i.e., , the Bloch equations

are of the form 

. [2.24]

This corresponds to a rotation around the x-axis of the coordinate system. The time

evolution of the magnetization for the initial condition in equilibrium

 is:

with [2.25]

The angle  is called the flip angle of the

pulse. 

 A 90 pulse ( ) flips

the magnetization into the x-y plane

and generates the largest initial FID. 

 A 180 pulse ( ) inverts

the magnetization vector and does not

generate any detectable transverse

magnetization.

Formally, we can write the flip

angle as a vector, 

[2.26]

whose magnitude is the flip angle and whose direction is either parallel or anti-

parallel to the direction of the irradiation field, depending on the sign of . For

positive gyromagnetic ratios ,  and  are antiparallel, for negative  parallel. For
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all systems, the rotation of the magnetization around the  vector is always right-

handed. For pulses along the x or y axes of the rotating frame, the direction of the 

vector is usually denoted by a subscript, e.g.  or .

2.4.2 Off-Resonance Pulses 

If the frequency of the applied rf

pulse  is not equal to the Larmor

frequency , i.e., , we

talk of off-resonance irradiation. The Bloch

equation is given by 

[2.27]

and describes a rotation around the

effective field . The effective field is

larger than the applied  field: 

. [2.28]
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Therefore, the flip-angle  is larger than for on-resonance irradiation with the same

 field. The cone on which the magnetization precesses, on the other hand, becomes

narrower due to the smaller angle between the effective field and the initial

magnetization. For very short pulses, the trajectory of the magnetization becomes

independent of the offset.

Obviously, the off-resonance

effects become smaller as the pulse

becomes more intense (larger ). For

hard pulses that should have the same

effect on all resonance lines in a spectrum

irrespective of their chemical shift, it is

necessary that

. [2.29]

In NMR, the technically achievable field

strengths characterized by the nutation

frequency  are typically in the

order of 10 to 200 kHz which is in fact larger than the spread, e.g., in a proton

spectrum which is in the order of 8 kHz (in a 800 MHz magnet). On the other hand,

some nuclei have a much larger chemical-shift range (13C has about 40 kHz spread on

a 800 MHz magnet) and the hard-pulse condition might not always be fulfilled.

2.4.3 Spin Lock

As we have seen, the component of the magnetization which is perpendicular

to the effective field (in the rotating frame) oscillates around that field with a

frequency of . The component along the effective field direction 

remains (in the absence of relaxation) unchanged. The following pulse sequence first

rotates the magnetization along the x axis and then spin locks it. In the absence of

relaxation, the magnetization stays locked to the x-direction of the rotating frame at

all times. This is also true, if we irradiate slightly off resonance, but have an rf field

strong enough to dominate the off-resonance term: . Then, the 900 pulse
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rotates all spins (irrespective of the chemical shift) to the x-axis and, instead of

precessing at their rotating-frame frequency , all spins stay along the x-axis of

the rotating frame at all times. Taking into account relaxation, the spin-locked

component is given by:

[2.30]

From the steady-state solution of the Bloch equations when , it can

be shown that these components also vanish for long times, given that the irradiation

field is strong enough to fulfill:

. [2.31]

Then the magnetization approaches a vanishing value at equilibrium .

We call this effect saturation. 

2.4.4 Adiabatic Fast Passage

In this experiment the rf-frequency of the applied pulse is changed as a

function of time . Therefore, the z component of the magnetic field in the

rotating frame  is also time dependent. For an initial

condition of , the effective field is approximately aligned with the static

field and the z axis. On approaching the resonance condition, , it rotates in
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Figure 2.9: Spin Lock
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the x-z plane and is parallel with the x axis of the rotating frame at exact resonance. A

further increase of  continues the rotation until the effective field ends up to be

antiparallel to the z axis.

In the course of this motion of the effective field axis, the magnetization tries to

rotate around the effective field direction with the frequency . If

the adiabatic condition is fulfilled:

[2.32]

the magnetization stays spin-locked at all times and is “dragged along” by the

effective-field vector.
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Figure 2.10: Adiabatic Pulses
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2.5 Detecting the Magnetization in the Time Domain

As discussed earlier, the nuclear

precession is induced by applying a current

to a coil which produces a magnetic field. A

precessing magnetic moment produces, in

return, a time-dependent magnetic field

which induces a current into the coil. A

simple one-pulse NMR experiment is

shown in Figure 2.11. Because excitation

and detection of the resulting signal occur in

two different time periods, the same coil can

be used for both processes. The basic block diagram of a NMR spectrometer is shown

in Fig. 2.12.

Signal

“Free induction decay, FID”

900 pulse

Figure 2.11: Schematic NMR Experiment

Figure 2.12: Block Diagram of a NMR Spectrometer
From D. Canet: Nuclear Magnetic Resonance, Wiley.
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The NMR signal as detected by the coil oscillates at the Larmor frequency. It is

circularly polarized but we only detect one component in the laboratory frame

leading to a linearly polarized signal, e.g.,

. [2.33]

The analysis (e.g. the digitization) of a signal at a few 100 MHz with an accuracy of a

few mHz is difficult and, therefore, the signal is often demodulated with respect to

, the carrier frequency. Then it looks like we would have detected the

magnetization in the rotating frame. Note, that the physical detection process always

happens in the laboratory frame. Of course, we are able to calculate the two components,

 and , at the same time. This is referred to as quadrature detection (Fig.

2.13). It allows us to distinguish positive from negative rotating-frame frequencies 

and the carrier frequency  can be set into the center of the spectrum to be detected.

Single channel demodulation (e.g.  only) leads to spectra that are symmetric

around  and the carrier frequency must be set to a value outside the interesting

spectral area.

It is convenient to combine the magnetization components  and  to

the complex signal function:

[2.34]
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2.6 The Spectrum in the Frequency Domain

The NMR spectrum, , is the Fourier transform of the time-domain signal

:

. [2.35]

For the solution of the Bloch equations in the rotating frame with ,

[2.36]

we obtain the complex signal function 

[2.37]

and the associated complex spectrum

[2.38]

(note, that  for ) which amounts to

[2.39]

The real and imaginary part of the spectrum are denoted as absorption and dispersion

signals,  and , respectively:  and have the form:

. [2.40]

S  

s t 

S   s t e it– td

–



=

M0 M0 0 0  =

Mx
r t  M0 t e

t
T2
-----–

cos=

My
r t  M0 t sin e

t
T2
-----–

=

s t  Mx
r t  iMy

r t + M0eite

t
T2
-----–

= =

S   M0 ei  – te
t T2–

td

0



=

s t  0= t 0

S   M0
1

1 T2 i  – –
----------------------------------------=

A   D   S   A   iD  +=

A   M0
1 T2

1 T2 2  – 2
+

--------------------------------------------=

D   M0
 –

1 T2 2  – 2+
--------------------------------------------=
 



33
The absorptive part, , is a Lorentzian line (Fig. 2.14a) centered at the rotating-

frame resonance frequency . The full width at half height (FWHH) of the line is

. Note that the frequency axis is given in angular frequencies . The

FWHH expressed in Hertz is  (see Fig. 2.14b). Therefore, 

must be 0.32 s to yield a line-width of 1 Hz since NMR spectra are almost always

plotted in Hertz and not angular frequencies.

The Dispersion signal is of the form shown in Fig. 2.14c with a distance

between the maximum and minimum equal to .
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1 T2 

 2 





2 T2

Figure 2.14: Lineshape of a Lorentzian Line
a) Absorptive part of a Lorentzian line in angular frequencies. b) Absorptive part of the
Lorentzian in line with a frequency axis in Hertz. c) Dispersive part of a Lorentzian line.
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The measurement of the absorption signal is more advantageous, because it

decays, in the wings, with  while the dispersion signal decays only

linearly with . Therefore, the resolution in an absorption spectrum

containing several lines is better. 

2.7 Continuous-Wave Spectroscopy: Steady-State Solutions

In continuous-wave (cw) spectroscopy we irradiate the spin system with a

constant  field and not with pulses as in Fourier spectroscopy which we discussed

in the previous Chapters. The rf frequency or the static magnetic field are slowly

changed in the course of the experiment and the steady-state response of the signal is

measured as a function of field or frequency. Continuous-wave spectroscopy is

nowadays mostly used in EPR spectroscopy and very rarely in NMR spectroscopy.

The spin system is irradiated at a frequency  with a constant radio-

frequency field along the x direction. This leads to a magnetic-field vector in the

rotating frame given by:

. [2.41]

We reach a steady-state of the system after the initial transient response of the system

is damped out by the relaxation processes. The steady-state solution of the Bloch

equations (Eq. [2.15]) is given by

[2.42]

and leads to the three equations:
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[2.43]

with the solution:

. [2.44]

2.7.1 Weak rf Irradiation

If the cw irradiation is weak in the sense that

[2.45]

we can simplify the solution for the steady state and obtain

. [2.46]

In this case, we have a linear system with respect to the rf-field amplitude  and the

transverse components are given by a Lorentzian line (Eq. [2.40]) where  is the

dispersive part and  is the absorptive part of the line. In this approximation the

longitudinal component is the equilibrium magnetization. 
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The integral over the absorption line

[2.47]

is independent of the relaxation times  and  and proportional to the equilibrium

magnetization . Therefore, the integral of the absorption signal is in the limit of

weak rf fields a measure for the number of spins.

2.7.2 Strong rf Irradiation: Saturation Effects

If the cw irradiation is not in the weak field limit of Eq. [2.45] then we obtain a

broadened Lorentzian line. Setting the line width to 

[2.48]

we obtain the solution

[2.49]

where the absorption part ( ) of the Lorentzian line is scaled by . 

The maximum intensity of the absorption line at  = 0 is given by 

[2.50]

which reaches a maximum for  or  leading to a maximum

absorption signal intensity of
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. [2.51]

The dependence of the peak intensity on the rf-field amplitude  is shown in Fig.

2.15a.

The maximum of the dispersive part of the signal  at 

behaves differently under saturation and reaches asymptotically a value of

[2.52]

as shown in Fig. 2.15b. 
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Figure 2.15: Saturation Behavior Under CW Irradiation
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The longitudinal component is given by

[2.53]

goes also towards zero for large rf-field amplitudes  as shown in Fig. 2.15c.

2.8 Pulse Trickery Part I

2.8.1 Spin Echoes

After a 90 Pulse, the magnetization in the x-y plane (the NMR signal) for an

ensemble of spins decays due to several mechanisms:

 T2 Relaxation 

 Dephasing of the individual signal due to an inhomogeneous applied external

magnetic field .

 Dephasing due to a distribution of chemical shifts. If there is only a small number of

chemical shifts, the absolute value total magnetization  will

increase and decrease do to the constructive and destructive interference of the two

signal oscillating at different rotating-frame frequencies. For a distribution of

chemical shifts (for example in an inhomogeneous material like a polymer), the

signal will decay monotonously and not recover:  for .

The last two mechanisms can be “un-done” by a 180 refocusing pulse (Fig.

2.16): At time , the full signal is restored  if we neglect true

relaxation ( ). This is called a spin echo. The effect was first observed (for a

slightly different pulse sequence, namely 900--900) by Erwin Hahn1, and is also

known as the Hahn echo. 

1 E.L Hahn, Phys.Rev. 80, 580 (1950).
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2.8.2 Composite Pulses

In the preceding chapter, we have assumed that we are able to apply rf pulses

with well-defined rotation axis and flip angles. In a real experimental setup, the rf-

field strength  is always inhomogeneous ( ) and we will not be able to

obtain a well-defined flip angle for all nuclei in the sample. In addition,

experimentally we might not set the pulse length to the correct values. These errors of

a few degrees only in a good experiment can sometimes be avoided by adiabatic

methods (see Chapter 2.4.4). Alternatively, we may use composite pulses instead of a

single pulse. For example, we can replace a  pulse by a composite pulse

. For exact pulses, the two lead obviously to the same result, namely

an inversion of the magnetization. If all pulses are too short (or too long) by a certain

percentage, the composite pulse will lead to a resulting magnetization that is closer to

an inversion than the single pulse. 

 

900
y

a b

b a

1800
x

a b

Figure 2.16: Spin Echo
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2.9 Relaxation Measurements

2.9.1 Longitudinal Relaxation

One way to measure the

longitudinal relaxation time  is the

inversion-recovery experiment. The

time evolution of the (undetectable) z-

component of the magnetization is

indirectly monitored by measuring

 for a whole series of values

.  is initially inverted and

returns to the equilibrium position

with the exponential law:

[2.54]

Instead of measuring only one point in the FID, it is (experimentally) more

accurate to measure the entire (complex) FID for each value of : . According to

Figure 2.17: Composite Pulse

Mz  
Mx t 

  2 y

Figure 2.18: Inversion-Recovery Pulse Sequence

T1

Mx
r t=0 

 Mz  

Mz   Mx
r t=0;   M0 1 2e

 T1–
– = =

 s t;  
 



41
the basic theorems of the Fourier transform (see lecture PC VI), the integral over the

resonance line  is equal to the desired value . This procedure also

allows us to separately determine the  times of different resonance lines if the lines

are separated in the spectrum.

As an example for the information content of the T1 relaxation time, a few

empirical rules for 13C relaxation are given here. 13C nuclei are usually relaxed by the

interaction with close-by protons:

  is proportional to the 6’th power of the distance to the nearest protons.

  is inversely proportional to the number of nearest protons.

  depends on the correlation time  of the random process that modulates the
13C-1H magnetic interaction, in liquids usually the (inverse) molecular tumbling

rate.

2.9.2 Transverse Relaxation

According to the Bloch equations, the decay of the transverse magnetization

can be used to determine . However, as mentioned in Chapter 2.8.1, there are other

effects (e.g. magnetic field inhomogeneities) that lead to a decay of the FID. The

apparent decay is often also exponential and can, phenomenologically be described

by an effective relaxation time . Obviously  must always be true. 

To determine , we can use the echo experiment of Fig. 2.16 and measure the

echo amplitude as a function of . Like for the  experiment, this requires one

experiment per  value to be performed. We can also extend the experiment of Fig.

2.16 and produce a multiple echo train (“Carr-Purcell pulse train”) which allows us to

determine  in a single experiment where all echo-maxima are sampled.
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90y 180x 180x 180x 180x 180x180x

Figure 2.19: Carr-Purcell Sequence
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3 Chemical-Exchange Phenomena

NMR can detect and characterize dynamic processes, e.g. chemical reactions or

conformational changes, in a number of time regimes (Fig. 3.1a). It is a particular

property of NMR spectroscopy that dynamic chemical equilibria can be characterized.

There is no need to first create a non-equilibrium state.

In this chapter, we will use a simple two-site exchange model (Fig. 3.1b) to

discuss the basic properties.
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3.1 The McConnell Equations

In the absence of exchange, the Bloch equations (we will use the rotating-frame

version but leave away the superscripts r) are valid for each of the sites separately (see

Eq. [2.15]):

[3.1]

We assume now the presence of a molecular exchange mechanism of first

order that interchanges the chemical species A1 and A2. The reaction is assumed to be

so fast that the magnetization of the nuclei does not change during the conversion.

Each component of the magnetization of species 1 changes not only due to the

precession, but there is an additional influx of magnetization from species 2 and a loss

of magnetization to species 2:

[3.2]

and

[3.3]

The combination of these two equations with the Bloch equations (eq. [3.1]) leads to

the McConnell Equations:

[3.4]
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This is a set of six coupled differential equations. In the absence of rf irradiation, the

set can be split into a set of 4 coupled equations for the transverse components and a

set of 2 coupled equations for the longitudinal components.

3.2 Line-Shape Analysis

The four coupled equations for the transverse components of the

magnetization are given by:

[3.5]

Using the complex magnetization  introduced in Eq. [2.34], we can

simplify the system of four equations to two coupled equations for the complex

magnetization:

[3.6]

or in vector form:

[3.7]
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[3.8]

 is called the spectral matrix. It contains all the information about the spin system. 

is the relaxation matrix and  the usual kinetic matrix. 

The formal solution of [3.7] is given by

[3.9]

and the observed NMR signal, s(t), is just given by the sum of the two components,

, or in vector notation as the product of the unity vector

 with :

[3.10]

In [3.9] we are faced with the problem to calculate the exponent of a matrix, . For

diagonal matrixes, it can easily be shown that:

[3.11]

Using the rule:

[3.12]

where  is chosen such that  is diagonal, we can, therefore, easily

calculate  numerically. Analytical solutions are only possible if the eigenvalues

and the eigenvectors of , which are identical to the diagonal elements of , can be

evaluated.
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For the symmetric exchange: , and in the absence of relaxation the

eigenvalues of the matrix  are given by:

[3.13]

and the signal function  is of the form

[3.14]

The solutions given in Eqs. [3.13] and [3.14] can easily be obtained using a computer-

algebra program like Mathematica or of course, by manual determination of the

eigenvalues and eigenvectors of the (complex) 2x2 matrix. The initial magnetization

 is assumed to be along the x-axis and the two lines have the same intensity

.

We see from [3.14] that the spectrum consists of two lines with intensities

 and  and frequencies 

and , respectively.

The specification of  and  is a very compact way to describe the spectrum

and it can easily be expanded to more than two resonance lines in the spectrum. For 

lines, the length of the two vectors will simply become . The FID is always described

by:

. [3.15]

Here the exponential of the vector is taken element-wise and the dot denotes the usual

scalar product of two vectors. It should be noted that  and  are both complex

numbers. 

Because of the identity , the imaginary part of the

Eigenvalues  characterizes the frequency of the Lorentzian resonance line

while the real part describes the linewidth: . 
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Because the intensity  is complex, the resonance has not only an absorption

component (of intensity ) but also a dispersion component of intensity

 (Fig. 3.2).

The real and imaginary part of the two eigenvalues  as given in Eq. [3.13]

are plotted in Fig. 3.3 as a function of the ratio . For , there are

two different imaginary parts and, therefore, two resonance lines centered at different

frequencies. The linewidth, i.e., the negative of the real part of  is identical for

both resonances and increases with increasing . For , the imaginary parts

become degenerate but there are still two individual components of the line. The two

components differ now in linewidth but they are centered at the same resonance

frequency.

The intensities of the two lines (see Eq. [3.14]) are plotted in Fig. 3.4. For

, the absorption component (the integral of the absorption part) stays constant,

ci

Re ci 

I– m ci 

2 T2
i 

i


Figure 3.2: Lorentzian Line
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Figure 3.3: Eigenvalues for a Two-Site Exchange Model
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while two dispersive parts with opposite sign develop for . For , the

dispersive parts vanish altogether. The intensity of the narrower line approaches (for

 the sum of the two lines at , while the intensity of the broad component

vanishes at larger  values. The total lineshape with its four components at  = 0.3 is

given in Fig. 3.5. 
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Figure 3.4: Intensities for a Two-Site Exchange Model
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Figure 3.5:  Lineshape For an Exchange Problem With r = 0.3
Lineshape for an exchanging two-spin system (r=0.3). For one of the two resonances, the
absorption part (solid line) and the dispersion part (dashed line) are displayed. The
individual contribution from the other resonance are the mirror image of the components
given.
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The total lineshape of the symmetric two-site exchange as a function of  is

given in Fig. 3.6. For  two separated lines appear. At , they are of course

centered at their original resonance frequencies  and . With increasing 

(increasing  or increasing temperature), they broaden and move closer together. At

coalescence

[3.16]

the two lines merge into a single signal. Note, that there are still two different

eigenfrequencies involved and the line is composed of two Lorentzian components

centered at different frequencies. Due to the linewidth they do, however, merge into

one signal. With increasing temperature, the signal sharpens up and at , a single

sharp signal emerges.

The resulting spectra for an asymmetric two-site exchange  are shown

in Fig. 3.7.

3.2.1 The Limit of Slow Exchange

In the limit of slow exchange , the intensity vector  and the

spectral vector simplify to

. [3.17]

The spectrum consists in this limit of two well-separated absorptive Lorentzian lines.

The exchange rate  is encoded in the linewidth as shown in Fig. 3.8 with the full

width at half height equal to . The natural line width due to relaxation processes

gives a lower limit for the rate constant of the exchange processes that can be

measured with this experiment.
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Figure 3.6:  Chemical-Exchange Lineshapes 
for a symmetric two-site exchange problem as a function of the normalized rate constant r.
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Figure 3.7:  Chemical-Exchange Lineshapes
for an asymmetric two-site exchange (K=3) as a function of the normalized rate constant r. 
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3.2.2 The Limit of Fast Exchange

For , the eigenvalues can be simplified in the following way:

[3.18]

and the intensity vector becomes:

[3.19]

The spectrum consists of a single line at the mean position  with a

linewidth (FWHH) of  as plotted in Fig. 3.9.
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Figure 3.8: Slow Exchange
The line width is a measure for the rate constant of the exchange process.
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3.3 2D Exchange Spectroscopy

The line-shape methods are, for the

detection of slow processes, limited to cases

where the exchange broadening exceeds the

natural linewidth . In this chapter, we

will discuss methods that work with

longitudinal magnetization components

instead of transverse magnetization as in the

case of the line-shape methods. With

longitudinal magnetization, we are limited only by  instead of . Because  can

be much longer than  (up to several orders of magnitude), this allows us to

characterize processes that would be too slow to cause any visible line-shape effects.

For simplicity, we restrict the discussion again to the symmetric two-site exchange.

The longitudinal components of the magnetization follow the differential equations

(see Eq. [3.4])

[3.20]
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Figure 3.9: Fast Exchange
The line width is a measure for the rate constant of the exchange process.
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or, in the absence of relaxation

. [3.21]

Instead of solving this matrix equation in a similar manner as for the transverse

components, we can in this special case directly find the “eigenmodes” of the

magnetization by a linear combination of  and :

. [3.22]

Equation [3.22] can easily be solved, because the matrix exponential is now trivial due

to the diagonal K matrix:

. [3.23]

The sum magnetization stays constant while the difference magnetization decays

exponentially with a time constant of . To obtain the time-evolution of

 and , we can write:

[3.24]

To measure , we must prepare the spin system in a non-equilibrium state

. The large magnetization difference is obtained after a selective 

pulse on one of the two resonances. As in the -relaxation experiments, the

magnetization-difference at time  is measured with a  readout pulse applied at

time , just before detection as shown in Fig. 3.11.For more than two exchanging

spins, a series of experiments with different selective inversion at the beginning must

be performed.
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Alternatively, it is also possible, to observe all exchange processes in a single,

two-dimensional experiment. In this experiment, we replace the selective  pulse by a

pair of nonselective  pulses with a separation of . This leads to the pulse scheme

shown in Fig. 3.12.

We assume that  and  are short enough, such that the exchange process can

be neglected during these periods. Then, we obtain

[3.25]

180sel

90

t

t

t




1 2

Figure 3.11: 1D Longitudinal Exchange Experiment
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Figure 3.12: 2D Longitudinal Exchange Experiment
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at the end of the t1 period the x-component of the magnetization is flipped along -z by

a 90 degree pulse:

[3.26]

and analogously:

. [3.27]

If we choose the mixing time  to be longer than  (or if we apply field-

gradient pulses or phase-cycling schemes) the transverse magnetization component

in Eqs. [3.26] and [3.27] decay (or are cancelled out) and we can assume that at the

beginning of the mixing period the magnetization is along the z-direction and the size

of the magnetization depends on the resonance frequencies during :

[3.28]

and analogously:

. [3.29]

In the mixing time, the two magnetization components mix according to Eq.

[3.24]. The resulting components  and  are

rotated (by the third pulse) to the x-axis:

[3.30]

and detected in the course of . Here, we only detect the real part :

[3.31]

By inserting the solution of Eq. [3.24] into [3.31] we obtain

[3.32]
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M1 t1 =0+  M– 0 1t1 ezcos 1t1 eysin– =

M2 t1 =0+  M– 0 2t1 ezcos 2t1 eysin– =

 T2

t1

M1 t1 =0+  M– 0 1t1 ezcos=

M2 t1 =0+  M– 0 2t1 ezcos=

M1z t1  t2=0-   M1z t1  = M2z t  

M1 t1  t2=0+   M1z t1  ex=

t2 Mx

s t1  t2   M1z t1   1t2 cos M2z t1   2t2 cos+=

s t1  t2   M0 a11   1t1  1t2 
a22   2t1  2t2 
a12   1t1  2t2 

a21   2t1  1t2 coscos+
coscos+
coscos+
coscos



–=



58
[3.33]

The NMR signal  consists of four signals with (normalized)

intensities  and with frequencies  and  in the first and second time dimension

of the experiment, respectively.

The Fourier transformation in two dimensions can proceed step wise: first we

transfer with respect to the time variable 

[3.34]

and then with respect to :

[3.35]

 is the two-dimensional frequency domain spectrum shown schematically

in Figure 3.13. 
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Figure 3.13: Two-Dimensional Exchange Spectrum
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The diagonal peaks with intensity  and  represent magnetization located

in the same chemical form in both time periods,  and  represent magnetization

that has been transported between the two chemical forms by the chemical-exchange

process during the mixing time . 

The intensity of diagonal and cross peaks in the presence of a uniform

relaxation with the same time constant  for both sites is 

[3.36]

and the cross-peak intensity goes through a maximum (growth due to chemical

exchange, decay due to relaxation). The time dependence of the peaks with and

without relaxation is plotted in Fig. 3.14.

3.3.1 Examples of 2D Exchange Spectra (EXSY)

3.3.1.1 Exchange Between SNCl4 and SnBr4

In a 1:1 mixture of SnCl4 and SnBr4, the following chemical processes take

place:
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Figure 3.14:  Intensity in a 2D Exchange Spectrum
cross peaks (a12) and diagonal peaks (a11) as a function of the mixing time .

 
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[3.37]

119Sn is a spin 1/2 nucleus (like protons and carbon) with a natural abundance of 8.6%

and a gyromagnetic ratio in-between carbon and hydrogen. It occurs, in the mixture

given above, in five different environments with 0,1,2,3,4 Br in the molecule.

Therefore, the Sn spectrum consists of five lines. The chemical exchange processes are

represented in the 2D EXSY spectra shown in Fig. 3.15.

3.3.1.2 Methyl-Exchange in the Heptamethylbenzenonium Ion.

From the EXSY spectrum in heptamethylbenzenonium ion, it can be seen that

the 2D spectrum is not only useful to obtain the exchange rate constant but that it can

also trace out the exchange mechanism. For methyl exchange in

SnCl4 SnBr4+ SnCl3Br SnClBr3+

SnCl3Br SnBr4+ SnCl2Br2 SnClBr3+

SnCl2Br2 SnBr4+ SnClBr3 SnClBr3+

SnClBr3 SnBr4+ SnBr4 SnClBr3+

Figure 3.15: Two-Dimension Exchange Example
From R. Ramachandran et.al., J.Magn.Reson. 65, 136 (1985).
 



61
heptamethylbenzenonium ion, two mechanisms are conceivable: (A) a 1-2 shift (the

CH3 group always jumps to one of the neighbors (left or right)) or (B) a  transition

state where the CH3 group first moves to the top of the ring (making a  complex)

and then falls, randomly, into one of the six positions. It is clearly seen from the

spectrum of Fig. 3.16 that the 1-2 shift mechanism is the correct one. For a random

shift, cross peaks between all diagonal signals would be expected.





Figure 3.16: T
wo-Dimension Exchange Example
From. B.H. Meier and R.R. Ernst, J. Am. Chem. Soc. 101, 6441 (1979)
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4 Quantum Description of Spin Systems

In the classical description, the time evolution of the observable (the

magnetization ) was described by a system of differential equations in  (see Eq.

[1.31]).

In the quantum description we distinguish between the state of the quantum

system and the observable, the physical quantity we choose to measure:

4.1 The State Function

The state-function  (where  and  denote the space

variables (position and momentum) and spin variables of electrons;  and , the

space and spin variables of the nuclei can be described by a vector in an N-

dimensional vector space:

[4.1]

Here, the  are (orthogonal) basis-

functions that span the space in the same

way as unit-vectors along the x, y and z-

axis span the normal three-dimensional

space. If the wave function  is time

dependent, this will be reflected in a time

dependence of the expansion coefficients

. An example for N=2 is shown in Fig.

4.1.

This N-dimensional space (where N

can be infinite in the general case) is called a Hilbert space. Its properties are listed in 

M M

State of the system: State function 

Observable: Operator 
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Figure 4.1: Vectors and Basis Functions
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Box II. We can represent an abstract state function  by a (complex) vector

. Obviously, the actual value of the vector elements

depends on the choice of the basis set. (See Eq. [4.1]). There is an infinite number of

possible basis sets and, therefore, an infinite number of vector representations of any

given state function . The relation between  and  is an isomorphism:

. [4.2]

Both representations contain the same information about the state and can be mapped

unambigiously onto each other.

4.2 Operators

An operator  transforms the state function  into another state function

in the same Hilbert space

. [4.3]

This is illustrated in Fig. 4.2. If we represent the state function by a vector, the

operator  has the form of a matrix . The relationship is again an isomorphism. The

matrix elements of  in the basis spanned by the set of basis functions  are

obtained through

. [4.4]
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Figure 4.2: Transformation of a State Function By An Operator
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Box II: Hilbert Space

A Hilbert space is a special (“complete”) complex vector space with a scalar

product. The abstract definition of a vector space (often also called a linear space) is

as follows: A vector space is a space of elements , ... (called vectors) on which

a sum  and a multiplication with a scalar, , are defined. The following

conditions (the “axioms” of a vector space) must be fulfilled:

(A1)  

(A2)

(A3) There is a zero element 0 for which 

(A4) For each  there is its inverse : .

(A5)

(A6)

(A7)

(A8) .

For NMR, the most important example of a vector space is the space of ordered “N-

tupels”  of complex numbers together with the sum

 and the multiplication with a complex scalar

. This space is called �N. However, there are many more examples

of vector spaces, e.g., with polynomials or mappings as elements).

A scalar product (often called “inner” product)  has the following axioms:

(B1)

(B2) , where * denotes the complex conjugate

(B3)

(B4)  for all 

(B5)  if and only if .

For the example of �N, the scalar product is defined by . For

most situations encountered in NMR, the relevant Hilbert space can be mapped

“one-to-one” to the well-known space �N with some finite dimension . In other

cases, however, the Hilbert space can be infinite-dimensional. The most important

example is given by the state functions  of a particle, which depend on a

continuous space variable  and forms an infinite-dimensional Hilbert

space. In this case the scalar product has the form .

x y z 

x y+ 

x y+  z+ x y z+ +=

x y+ y x+=

0 x+ x=

x x– x x– + 0=

 x  x =

1x x=

 x y+  x y+=

 + x x x+=

x x1 ... xN  =

x y+ x1 y1  xN yN+ + =

x x1  xN  =

x y  

x y+ z   x z   y z  +=

y x   x y  =

x y     x y  =

x x   0 x

x x   0= x 0=

x y   xiyii 1=

N
=

N

 

r r1 r2 r3  =

     r  r  r1d r2d r3d=
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4.3 Time Evolution of a State Function: The Equation of Motion

The time evolution of a closed quantum system is described by the time-

dependent Schrödinger equation (Schrödinger 1926)

[4.5]

where  is the Hamiltonian. It can easily be shown, that the particular solutions

(stationary states)

[4.6]

are all solutions of Eq. [4.5] where  is a solution of the time-independent

Schrödinger equation:

. [4.7]

The N values  are called the eigenvalues or principal values of the Hamiltonian. They

have the dimension of an energy.

4.4 The Result of a Quantum Measurement

Quantum measurements do not always lead to a reproducible result because

quantum theory allows only probabilistic predictions. The quantity  to be measured

is represented by an operator . The expectation value of an observable, denoted by

, is defined by:

[4.8]

where  can be interpreted as the arithmetic mean of the results of a large number

of measurements of the observable  on a quantum system characterized by the state

function .

Given that we know the initial state of a quantum system , its

Hamiltonian as well as the operator that describes our measurement we can, with the

i�
t
  t   Ĥ  t  =

Ĥ

k t   ̃k  itEk �– exp=

̃k 

Ĥ ̃k  Ek ̃k =

Ek

A

Â

Â 

Â  t   t  Â  t  
 t   t   

----------------------------------=

Â 

Â

 t  

 t=0  
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help of Eq. [4.8], predict the probability distribution result of a measurement at any

point in time given that we are able to solve the equation of the motion (Eq. [4.5]).

4.5 The Hamiltonian I

The question to be answered next is therefore: “How do we know the

Hamiltonian of a given system?”

The recipe to be followed is called the correspondence principle. First we

formulate the classical energy function in the Hamilton form and then we replace the

classical quantities by operators.

Step 1: Reformulation of the Newton mechanics in Hamilton form: In the Newton

form, we describe a system of point masses with mass m1, m2, m3, ..., mn by n position

vectors  and n velocity vectors . In the absence of magnetic

interactions, the energy is given by:

[4.9]

where  is the potential energy of the system.

In The Hamilton form, we describe the system in terms of n position vectors

 and n momentum vectors . In the absence of magnetic interactions,

we have  and the Hamilton function is given by:

. [4.10]

Step 2: Correspondence principle. Make the following replacements:

[4.11]

The vector operators  and  do not commute but fulfil the Heisenberg relation:

q1 ....,qn v1 .... vn 

E 1
2
--- mivi

2 V q1 ...qn +

i 1=

N

=

V q1 qn 

q1 qn p1 .... pn 

pi mivi=

H p1 .... pn q1 qn     1
2
---

pi
2

mi
------ V q1 qn +

i 1=

N

=

pi p̂i

qi q̂i

p̂i q̂i
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[4.12]

4.6 Angular Momentum and Spin

A classical angular momentum  translates, according to the

correspondence principle, to a quantum-mechanical momentum (vector)-operator:

[4.13]

Using the Heisenberg commutation rules for  and , we find the commutation

rules for the dimensionless angular momentum operator :

[4.14]

The isotropy of space requires that the angular momentum is preserved in a closed

system. 

The total angular-momentum operator  consists of two components, namely

the orbital angular momentum, , that is obtained via the correspondence principle

and the so-called spin angular momentum :

[4.15]

The expectation value of the total angular momentum  is a preserved quantity

required by the isotropic property of free space.

The dimensionless quantity  fulfills the same commutation

relationships as :

[4.16]

q̂ p̂  q̂p̂ p̂q̂– i�               ,         x y z = =

L q p=

l̂ q̂ p̂=

q̂ p̂

L̂ 1
�
--- l̂=

L̂x L̂y  iL̂z=

L̂y L̂z  iL̂x=

L̂z L̂x  iL̂y=

ĵ

l̂

ŝ

ĵ l̂ ŝ+=

ĵ

Ŝ 1
�
--- ŝ=

L̂

Ŝx Ŝy  iŜz=

Ŝy Ŝz  iŜx=

Ŝz Ŝx  iŜy=
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We interpret the spin angular momentum as the non-classical part of the total

angular momentum. It cannot be derived through the correspondence principle and is

an inherently quantum-mechanical property. It is, therefore, not possible to find a

classical analogy for the spin! 

4.7 Matrix Representation of Spin Operators

The general recipe to obtain an explicit matrix representation of a quantum

mechanical operator is given in Eq. [4.4]:

[4.17]

The dimension needed to represent the operator  depends on the type of operator.

All operators obtained from classical counterparts through the principle of

correspondence have infinite dimensions. This is easily seen from the Heisenberg

commutation rules of Eq. [4.12]. For a matrix representation with NxN matrices we

would obtain by taking the trace on each side of the equal sign

[4.18]

This equation is obvious wrong, except for the classical limit . Therefore, no

finite-dimensional matrix representations for  and  exist. The well-known

representation by multiplication and differential operators is given in 

Aij i Â j =

Â

Tr qp pq–  Tr qp  Tr pq – 0 i�N= = =

� 0

p̂ q̂

Box III: Schrödinger Representation for Position and Momentum

The representation of the position operator  and the momentum operator  by

the multiplication operator

[4.19]

and the differentiation operator

[4.20]

fulfils the Heisenberg relations.

q̂ p̂

q̂ q=

p̂
�
i
---

q


=
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Spin operators, however, have finite-dimensional matrix representations. They

can be represented in Hilbert spaces of dimension

[4.21]

where  is the spin-quantum number which is a “material constant” for each nuclear

isotope and for the electron. It can be half-integer or integer: I= 0, 1/2, 1, 3/2, 2, ....

The electron and a number of practically important spins (1H,  13C, 15N, 19F, ...)

have a spin-quantum number I = 1/2 and can be represented by 2x2 matrices. A

complete set of orthogonal 2x2 matrices are the so called Pauli matrices together with

the unity matrix:

[4.22]

They fulfill the commutation relationship of Eq. [4.16] which can easily be seen by

inserting and calculating the matrix products. Therefore, they are a valid

representation of an angular momentum operator. The matrix  is diagonal and the

basis function  are the eigenfunctions of the operator :

[4.23]

where  is the magnetic quantum number and can take values from the range:

  = -I, -I+1, ..., 0, ..., I-1, I. [4.24]

For spin-1/2 nuclei, we denote the two basis functions by:

Table 4.1: Spin Quantum Numbers of Some Important Nuclei

nucleus 1H 2H 3H 3He 12C 13C 14N 15N

I 1/2 1 1/2 1/2 0 1/2 1 1/2

nucleus 17O 19F 23Na 27Al 31P 129Xe 131Xe 195Pt

I 5/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2

D 2I 1+=

I

E 1 0
0 1

= Ix

0 1
2
---

1
2
--- 0

= Iy

0 i–
2
----

i
2
--- 0

= Iz

1
2
--- 0

0 1–
2

------

=

Iz

m  Îz

Îz m  m m =

m

m
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[4.25]

An alternative orthogonal set of matrices for spin-1/2 nuclei is formed by ,

 and :

[4.26]

 and  are called raising and lowering operators, respectively. By applying the

matrix representations to the basis vectors  and , we obtain:

[4.27]

The equivalent expression for a general spin quantum number  is:

[4.28]

A third, almost equivalent alternative set of spin operators are the spherical-

tensor operators denoted by Tlm. Here  is the rank of the Tensor and m denotes one

of the components m: -l, -l+1, ..., 0, ..., +l-1, +l. For a spin-1/2 system, we only need

spherical-tensor operators with l = 1:

[4.29]

and in matrix representation:

1 2 =

 1 2– =

Iz

I+  Ix iIy+= I   – Ix iIy–=

E 1 0
0 1

= I+ 0 1
0 0

= I- 0 0
1 0

= Iz

1
2
--- 0

0 1–
2

------

=

Î
+

Î
-

1 0  0 1 

Î
+
  0=

Î
+
   =

Î
-
   =

Î
-
  0=

I

Î
+
m  I I 1+  m m 1+ – m 1+ =

Î
-
m  I I 1+  m m 1– – m 1– =

l

T̂00
1 

Ê=

T̂10
1 

Îz=

T̂11
1  1–

2
------- Î

+
=

T̂1 1–
1  1

2
------- Î

-
=
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. [4.30]

For a spin 1/2 one can easily verify the following expectation values for the 

state:

. [4.31]

For the evaluation with matrices, it is important to note that the so called “bra” state

 has expansion coefficients that are the complex conjugate of the ones of the “ket”

state .

[4.32]

From Eq. [4.31], we note that only

the z-component of the angular

momentum has a non-vanishing

expectation value. However, it is not

correct to say that the angular

momentum can be represented by a

vector along the z-direction because the

length of the vector  is

longer than its z-component .

This is, of course, in accordance with the uncertainty principle: because the operators

T00
1  1 0

0 1
= T10

1 

1
2
--- 0

0 1–
2

------

= T11
1  0 1–

2
-------

0 0

= T1 1–
1 

0 0
1
2

------- 0
=



Îz    Îz   1
2
---= =

Îx   Ix   0= =

Îy   Iy   0= =

Î
2

  Îx
2

  Îy
2

  Îz
2

 + + I I 1+  3
4
---= = =

 

 

  c1   c2  +=


c1

c2 
 
 

=

' c1 c2 
 =

  c1   c2  +=

x

y

z

Figure 4.3: Angular Momentum
Î
2

  3 2=

Îz  1 2=
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 do not commute, they cannot have simultaneously well-defined expectation values.

Because the states  and  are chosen such that they yield a well-defined value for

, they do not contain any information about the x and y components any more.

Pictorially, we can represent the possible states as vectors on a cone as shown in Fig.

4.3. 

4.8 The Density Operator

All experimentally observable quantum-mechanical quantities are expectation

values of operators. If we insert the expansion of Eq. [4.1]

[4.33]

into the definition of for an expectation value (Eq. [4.6]) we obtain:

[4.34]

Here we have adopted the convention that the state function is normalized:

.

We see from Eq. [4.34] that the information we need to characterize a system

and to calculate the expectation value of an observable is contained in the product

 of the expansion coefficients. This suggests the construction of an operator

 that contains these products as the elements of its matrix representation:

[4.35]

We call this operator the density operator and the matrix the density matrix. Formally

we can write

[4.36]

and in a matrix representation using :

Îj

 

Îz 

 t   ci t  i 

i 1=

N

=

Â  ci t cj t  i Â j 
j


i
=

 t   t    1=

ci t cj t 

̂ t 

k ̂ t  l  ckcl=

̂ t   t    t   ci t cj t  i  j 
j


i
= =

ij i ̂ t( ) j  ci t cj= =
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[4.37]

For a single spin or a pure state where all the members of the spin ensemble are

in the same state, the density operator contains exactly the same information as the

state function. By inserting Eq. [4.36] into the expression of the expectation value (Eq.

[4.34]), we find:

. [4.38]

This trace can be conveniently evaluated as the product of the matrix representations

of the observable and the density operator:

. [4.39]

Normally we investigate quantum systems that are in a mixed state, e.g., for an

ensemble of spins in thermal equilibrium. In such a system, the different systems in

the ensemble are in different states and the system cannot be described by a single

wave function but a set of wave functions  and their probabilities .

Nevertheless, according to equation Eq. [4.38], the system can still be described by a

single density operator that we define as

[4.40]



c1c1 c1c2 .... c1cN 1–
 c1cN

c2c1 c2c2 .... c2cN 1–
 c2cN

.... .... .... .... ....

cN 1– c1 cN 1– c2 .... cN 1– cN 1–
 cN 1– cN

cNc1 cNc2 .... cNcN 1–
 cNcN

=

A  ci t cj t  i A j 
j


i
=

j ̂ t  i  i Â j 
j


i
=

j ̂ t Â j 
j
=

tr ̂ t Â =

Â  tr ̂ t( ) Â =

k t   Pk

̂ t  Pk k t   k t  
k
 Pk ci

k  t cj
k  t  i  j 

j


i


k
= =

ci t cj t  i  j 
j


i
=
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where the overbar denotes the ensemble average. In all practically important cases,

we refer to this second definition if we write the symbol . Still, Eq. [4.39] is valid

for the new definition of the density operator.

Because we use normalized state functions, the trace of the density operator is

always equal to unity:

. [4.41]

For pure states, we find , for mixed states, in contrast, we find that

.

4.9 The Liouville-von Neumann Equation and its Solution

Because the density operator is a function of the state function, we must be able

to formulate a differential equation for it that is the equivalent to the time-dependent

Schrödinger equation (Eq. [4.5]). By inserting the expansion of Eq. [4.1],

, into the Schrödinger equation, we obtain

[4.42]

multiplying both sides with  leads to

[4.43]

and

[4.44]

With this result, we obtain for the time-derivative of the density operator in matrix

form

[4.45]

̂ t 

tr ̂ t   1=

tr ̂2  1=

tr ̂2  1

 t   ci t  i 
i
=

td
d ci t  i 

i
 
 
  i–

�
----H ci t  i 

i
 
 
 

=

td
d ci t  i 

i


i–
�
----Ĥ ci t  i 

i
 
 
 

=

k 

c·k t  i
�
--- ci t  k Ĥ i 

i
–=

c·k
 t  i

�
--- ci t  i Ĥ k 

i
=

td
d kl td

d k ̂ t  l 
td

d ck t cl t   c·kcl ckc·l
+= = =
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Inserting Eqs. [4.43] and [4.44] leads to

[4.46]

In operator form, the Liouville-von Neumann equation reads as

[4.47]

Its solution is, for time-independent Hamiltonians, easily found to be

. [4.48]

Homework: Confirm the validity of this solution by calculating the derivative of .

With this result, we can formulate the general result for the expectation value

of any time-independent operator as

[4.49]

For the explicit evaluation this expression is usually expressed in a matrix

representation. As a basis set, it is most convenient to use the eigenbasis of the

Hamiltonian, i.e., the basis in which the Hamiltonian  is diagonal. In this basis, the

exponential is easily evaluated as:

[4.50]

and by inserting into Eq. [4.49] we obtain:

[4.51]
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 
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Â  tr ̂ t Â  tr e
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---– H22t
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0 0 ....
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Â  t  kl 0 Alk
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--- Hkk Hll– – t 
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l


k
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Here, the  denote the transition frequencies and the coefficients

 the intensities of the transitions. We can arrange them again into an

intensity vector  and a frequency vector . The time-domain signal is given by (see

Eq. [3.15]:

[4.52]

4.10 The Initial Density Operator

To solve the Liouville-von Neumann equation, we need to know the initial

state of the spin system, described by . Usually, an experiment starts at thermal

equilibrium ( ), where the spin system is in equilibrium with its environment:

[4.53]

This is the so called Boltzmann distribution or canonical distribution. Here,  is the

Boltzmann constant (1.3806 10-23 J/K).

In the Eigenbasis of the Hamiltonian, the matrix elements of the density

operator are, therefore, given by:

[4.54]

Hkk Hll–  � kl=

kl 0 Alk



A
(

)

Integral of line
corresponds to intensity

Figure 4.4: Transition Frequencies and Intensities
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 
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Ek kBT–

e
El kBT–

l

----------------------------=
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and the density operator in matrix form is:

[4.55]

The  are called the population of the states 

and are sometimes represented in energy-level

diagrams as shown in Fig. 4.5.

4.11 The Observable Operator in

NMR

NMR experiments measure the

magnetization  or  in the laboratory frame of reference:

. [4.56]

As mentioned in Chapter 2.5, this observable signal is demodulated with the rf carrier

frequency and the demodulated signal is identical to a hypothetical detection of

 in a rotating frame of reference. 

4.12 The Hamiltonian II

We consider a system with

 K nuclei with position  mass , momentum  electrical quadrupole moment

, charge  and spin angular momentum 

 M electrons with position  mass , momentum , charge  orbital angular

momentum  and the spin angular momentum .

 An external magnetic field  which we will treat as a classical entity.

 An external electric field , also treated classically.

All these quantities interact with each other according to the schematic drawing of

Figure 4.6.
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Figure 4.5: Boltzmann Distribution
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k
=

M̂
+

M̂x iM̂y+=

Qa Ma Pa

Qa Zae0 a� Îa

qk m0 pk e0–

L̂k– gŜk–
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This leads to a rather complicated Hamiltonian

[4.57]

that, even for very simple molecules, cannot be solved analytically. As a first step of

simplification, the Born-Oppenheimer-Approximation is usually applied. The kinetic

energy of the nuclei  is neglected and the position operators  become

parameters with a fixed value instead of being free variables. The resulting

Hamiltonian is still complex and we proceed with a further approximation that leads

us to the spin Hamiltonian.

4.13 The Spin Hamiltonian

The spin energies (and the orbital energies of the unpaired electrons) are the

smallest energies in the Hamiltonian considered in the preceding chapter.

Consequently, they lead to the lowest characteristic frequencies in the entire

Hamiltonian. Typical frequencies for nuclear magnetic resonance spectroscopy are in

the range of 1 to 1000 MHz. The motion of the electrons proceed on a much faster time

scale and for the calculation of the “slow” NMR interactions, we may average over the

“fast” electron motion. This averaged Hamiltonian is called the spin Hamiltonian:

[4.58]

where  indicates that we have integrated over the space coordinates of all electrons

and over the spin coordinates of the paired electrons.For diamagnetic systems

without unpaired electrons, we are, therefore, left with a Hamiltonian that contains

only nuclear spin operators and (constant) numbers:

. [4.59]

Here  denotes the interaction between the nuclear spin and the magnetic field ,

 describes the spin-spin interactions and  the quadrupole interactions (see also

Fig. 4.6). For paramagnetic systems, the spatial coordinates of the unpaired electrons

remain:

Ĥ T̂k T̂e V̂k V̂e V̂ek ĤQ ĤLL .....+ + + + + + +=

T̂k Q̂a

Ĥ
s

 q se sk   Ĥ  q se sk   


=



Ĥ
s

sk  ĤBI ĤII ĤQ+ +=

ĤBI B

ĤII ĤQ
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[4.60]

For the identification of the interactions see Fig. 4.6. 

In the simplified Hamiltonian of Eq. [4.59], the information about molecular

quantities (e.g. structure) is found in numerical constant. Explicitly treated are only

the spin coordinates. Therefore, the resulting Hamiltonian is of finite dimension and

usually relatively easy to manipulate. 

In the following, we will only be concerned with spin Hamiltonians. To

simplify the notation, the superscript(s) will be omitted and, for convenience, we will

express the Hamiltonian in angular frequency units:

[4.61]

4.14 The Spin-Density Operator

We have obtained the spin Hamiltonian from the full Hamiltonian by

eliminating all other degrees of freedom by an integration. The same procedure must

be applied to obtain the density operator in spin space, which we denote by , from

the full density operator . 

For the spin interactions we can work in the high-temperature approximation:

[4.62]

Then we can expand the exponential of [4.53] in a power series. Keeping terms to first

order only, we obtain the following simplified expression for the equilibrium spin

density operator:

[4.63]

Ĥ
s

qup se sk   ĤBS se  ĤBL qup  ĤSS se  ĤLL qup  ĤLS qup se + + + +=

ĤIS sk se  ĤLI qup sk  H s  sk + + +

�̂
1
�
---Ĥ

s
=

̂

̂

Ek kBT«
Nuclear spin:       Ek kB 1mK

Electron spin:       Ek kB 1K

0
1̂ ��̂ kBT–

Tr 1̂ ��̂ kBT– 
---------------------------------------------

1̂

Tr 1̂ 
----------------

��̂

kBT Tr 1̂ 
-------------------------------– 
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The largest term in Eq. [4.63] is the unity operator . This term is irrelevant because

not observable. For NMR experiments, we may, therefore, calculate with an initial

“density operator” of

[4.64]

In practice, the dash is usually left away and we write  instead of . This

sloppy notation is often convenient but can also be dangerous.  is traceless and,

strictly speaking, not a density operator. Its elements do not represent the populations

but the difference populations from an even distribution over all energy levels which

corresponds to a the equilibrium state at infinite temperature.

We have now set the stage to quantum-mechanically calculate the magnetic-

resonance signal  of a spin system in the time domain. The spectrum  is

obtained from  by a Fourier transformation. The necessary steps are summarized

in Box IV.

1̂

'ˆ 0
�–

kBT Tr 1̂ 
-------------------------------�̂

̂0 'ˆ 0

'ˆ 0

s t  S  

s t 
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Box IV: General Recipe to Calculate an NMR Spectrum

I) Get the spin Hamiltonian(s). Many experiments consist of several time periods

with different Hamiltonians. The general principles how to obtain the Hamiltonian

of a given system are mentioned in Chapters 4.5, 4.6, and 4.13. More detailed and

practically applicable recipe will be given in the following section.

[4.65]

II) Determine the initial density operator (the unity part is dropped) according to

Eq. [4.64]:

. [4.66]

III) Evaluate  using the equation of motion, the Liouville-von Neumann

equation (Eq. [4.48])

IV) Determine the density operator as a function of  applying the Liouville-von

Neumann equation again.

V) Determine  by evaluating the trace of Eq. [4.38]. The detection operator

is taken from Eq. [4.56]:

[4.67]

or (often more easily) by applying Eq. [4.51]:

[4.68]

�̂2�̂1�̂0

t=0 t=t1 t=t1+t2

̂ t=0  ̂0
�–

kBT Tr 1̂ 
-------------------------------�0

ˆ= =

̂ t=t1 

t2

M̂x  t2 

s t2  M̂x  t2  tr ̂ t1 t2+ M̂x = =

M̂x  t2  kl t1 t2= 0  Mx lk i Hkk Hll– – t2 exp
l


k
=
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5 The Nuclear Spin Hamiltonian: Information Content of 

NMR Spectra

5.1 Interaction With an External Field B0 

The interaction of a spin with the external magnetic field, that is always

described classically, is called the Zeeman interaction and is of the form:

[5.1]

or, assuming 

. [5.2]

Equation [5.1] can easily be derived from the classical energy of a magnetic dipole 

in a magnetic field ( , see Eq. [1.13]) and the gyromagnetic equation

[1.16] ( ) using the principle of correspondence.

 There is a usually small difference between  (Chapter 4.12) and .  is

the interaction with the applied external field  only. The magnetic field at the site of

the nuclei ,  is modified through the electronic environment. This effect, the

chemical shift, is excluded from the Zeeman Hamiltonian.

5.2 Interaction With an rf-Field B1 

The interaction with either a linearly polarized rf field:

[5.3]

or a circularly polarized rf field:

[5.4]

is described, in complete analogy to the Zeeman Hamiltonian (Eq. [5.1]), as

�̂z i Îi B0
i
–=

B0 0 0 B0  =

�̂z 0iÎiz

i
=



Epot – B=

 L=

�̂BI �̂z �̂z

B0

k Bk

B1 t( ) B1 rft  t +  0 0 cos =

B1 t( ) B1 rft  t +  rft  t + sin 0 cos =
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[5.5]

In multiple-resonance experiments,  consists of a sum of individual fields.

5.3 Interaction-Frame Representation

An interaction-frame representation is a concept that generalizes the rotating-

frame representation that we have discussed earlier. We describe the spin system in

an interaction frame with respect to the interaction . Here,  will

be chosen close to  and . An operator  in the interaction frame of

reference is related to the original operator  by:

. [5.6]

We choose the rotation matrix as

[5.7]

For the case where only one type of nuclei is considered, we have

[5.8]

with the total spin operator .

To evaluate the time dependence of the density operator in the rotating frame

, we need to know the equivalent of the Liouville-von Neumann equation in the

interaction frame. The procedure followed is reminiscent of the transformation to the

rotating frame in the classical description. The relationship between  and  is given

by Eq. [5.6]:

[5.9]

�̂rf t  iÎi B1 t 
i
–=

B1

�̂0 rf i Îizi= rf i

0 i �̂0 �̂z A'ˆ

Â

A'ˆ R̂ t ÂR̂
1–

t =

R̂ t  ei�̂0t
=

�̂0 rf l Îlz

l
 rfF̂z==

F̂z Îlz

l
=

'ˆ

̂ 'ˆ

'ˆ R̂ t ̂R̂
1–

t =

̂ R̂
1–

t 'ˆ R̂ t =
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[5.10]

Here  is the transformed Hamiltonian. In going from line 3 to line 4, we

have multiplied, from the left with  and from the right with . We have used that

 commutes with  because of Eq. [5.8]. Note that the last line in Eq. [5.10] is not just

equal to the Liouville-van Neumann equation for the dashed operators but that:

[5.11]

A new term  appears which represents the fact that the new coordinate

system is accelerated with respect to the original coordinate system. Eq. [5.11] is valid

irrespective of the choice of . Often, the identification  is made and

 is then called the interaction-frame Hamiltonian. Then, we recover the standard

Liouville-van Neumann equation:

[5.12]

Care has to be exercised not to mix up  and . By going into the interaction frame,

we have not only changed the active Hamiltonian  but we have also manipulated

the time dependence of the Hamiltonian which is described by the Liouville-von

Neumann equation.

For the operators ,  and , we find:

td
d R̂

1–
'ˆ R̂  i �̂R̂

1–
'ˆ R̂ R̂

1–
'ˆ R̂�̂– –=

i– rfF̂zR̂
1–
'ˆ R̂ R̂

1–

td
d 'ˆ R̂ R̂

1–
'ˆ irfF̂zR̂+ + i �̂R̂

1–
'ˆ R̂ R̂

1–
'ˆ R̂�̂– –=

R̂
1–

td
d 'ˆ R̂ i �̂R̂

1–
'ˆ R̂ R̂

1–
'ˆ R̂�̂– rf F̂zR̂

1–
'ˆ R̂ R̂

1–
'ˆ F̂zR̂– – –=

td
d 'ˆ i R̂�̂R̂

1–
'ˆ 'ˆ R̂�̂R̂

1–
rf F̂z'ˆ 'ˆ F̂z– – – –=

td
d 'ˆ i �'ˆ rfF̂z– 'ˆ –=

�'ˆ R̂�̂R̂
1–

=

R̂ R̂
1–

F̂z R̂

td
d 'ˆ i �'ˆ �̂0– 'ˆ –=

�̂0–

�̂0 �''ˆ �'ˆ �̂0–=

�''ˆ

td
d 'ˆ i �''ˆ 'ˆ –=

�'ˆ �''ˆ

�''ˆ

Îx Îy Îz
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[5.13]

If we compare Eq. [5.13] with the expression for the transformation of a classical

vector to the rotating frame (Eq. [2.2]) we find that they are fully equivalent.

The rf-Hamiltonian in the interaction frame is given by (for simplicity, we set

):

[5.14]

For arbitrary values of , we have:

[5.15]

Often, the dash in, e.g.,  is left away. The interaction-frame Hamiltonian  for a

spin system with a lab-frame Hamiltonian of  is given by:

[5.16]

where  and for  by

. [5.17]

I'ˆ x Îx rft  Îy rft sin+cos=

I'ˆ y Îy rft  Îx rft sin–cos=

I'ˆ z Îz=

 t  0=

�'ˆ rf iB1I'ˆ ix

i
–=

 t 

�'ˆ rf iB1 I'ˆ x cos t  I'ˆ y  t sin+ 
i
–=

1i I'ˆ x cos t  I'ˆ y  t sin+ 
i
=

I'ˆ x �''ˆ

�̂ �̂z �̂rf+=

�''ˆ �'ˆ rf F̂z+=

 0 rf–=  0=

�''ˆ �'ˆ rf=

Box V: Rotating Frame

By transforming into the rotating frame, we have:

 Changed the Hamiltonian, i.e., for , we have removed the Zeeman term.

 Removed the time-dependence from the rf Hamiltonian.

 Usually, the remaining time-dependent terms are neglected. This approximation

is called the secular approximation and must be justified on a case-by-case basis.

rf 0=
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5.4 The Chemical-Shift or Chemical-Shielding Hamiltonian

The magnetic field at the site of

different nuclei ,  differs from the

applied magnetic field, due to the

interaction with the surrounding

electrons. It is shielded by the electrons

and leads to a shift of the resonance line

in the NMR spectrum. We express the

field at the position of the nucleus as

[5.18]

The correction field  is proportional

to the static field  and we can write:

[5.19]

The Hamiltonian that describes the interaction with the correction field is, therefore,

given by

[5.20]

or, in compact form:

[5.21]

The resulting Hamiltonian is a scalar operator. The quantity  is the anisotropic

chemical-shielding tensor (CSA). 
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Figure 5.1: Local B Field
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In the interaction frame (high-field approximation), the transverse terms 

and  are time-dependent with the Larmor frequency with an average value of zero.

They can, therefore, be neglected as “non-secular” terms in a good approximation. In

the interaction frame, the chemical-shielding Hamiltonian simplifies to:

[5.22]

The transition frequency in the Hamiltonian is

given by  and the spectrum consists of

a single line at position  (if given in angular

frequencies) or at  if given in ppm. If the three

principal values of  are identical, we can replace

them by a scalar quantity, the so-called isotropic

chemical shift, , times a unity matrix.

The isotropic chemical shielding is given by:

[5.23]

Such an isotropic interaction is also obtained in liquid phase where the tumbling of

the molecules leads to an averaged chemical shielding. Here,  takes then the role

of  in Eq. [5.22].

The isotropic chemical shielding is zero for a bare nucleus. Nuclei in molecules

are almost always more shielded than the bare nucleus. They have positive values of

the chemical shielding and, therefore, lower resonance frequencies (because

). Often chemical shifts denoted by  are used instead of the chemical

shielding :

[5.24]

The second relationship is usually a very good approximation because shieldings are

in the order of some parts per million (ppm). For proton and carbon spectroscopy

TMS (tetramethylsilan) is often taken as the reference compound. Protons as well as
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k B0Îkz

k
=
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Figure 5.2: Chemical Shift
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carbons are well shielded in this compound and the chemical shifts of most

compounds on this scale is positive. It should be noted that NMR spectra of nuclei

with a positive  are conventionally drawn with the frequency axis going from right

to left (see Box VI). This is quite natural because the frequencies are negative. Often

the sign of the frequency is, however, dropped and then it looks like the frequency

axis would increase from right to left. Typical values for 13C are given in Box VII.



Box VI: : Conventions for the Representation of an NMR Spectrum 

larger chemical shift
higher resonance frequency (more negative !)
downfield
less shielded

smaller chemical shift
lower resonance frequency

upfield

more shielded

 scale

 scale





(reference
compound)

(bare
nucleus)

(less negative)

Box VII: : Typical Chemical-Shift Values For Carbons (Isotropic Values)

 scale

 scale

ppm

TMS

0 ppm185.43 ppm

bare nucleus

0 ppm 185.40 ppm
(range of other compounds)

 scale, shifted origin

-185.40 ppm
0 ppm
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5.4.1 Origin of the Chemical Shielding

The numerical values for the tensor elements of  can be calculated by

quantum-chemical methods for isolated molecules which are not too large (density-

functional methods). We can distinguish four important effects that contribute to the

chemical shielding. There are diamagnetic and paramagnetic effects. 

5.4.1.1  Diamagnetic Effect

In a magnetic field  the electron cloud

precesses and generates a reaction field  that

counteracts . This effect is called the Lamb-

Shift.

An elementary calculation using the

Biot-Savart law leads to:

 [5.25]

Note the increasing weight of the electron density  at larger distances .

Differences in the diamagnetic Lamb shift are the dominant effect for observed proton

shifts but are less important for the heavier nuclei.

5.4.1.2 Paramagnetic Effect

The paramagnetic effect is caused

by a (partial) excitation of the electrons (by

the magnetic field) into a paramagnetic

state. This leads to a amplification of the

applied field. Low-lying electronic states



B0Bd

Figure 5.3: Lamb Shift
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

=

 r  r

B0
induced

Figure 5.4: Paramagnetic Shift
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cause a stronger paramagnetic effect. For the understanding of the isotropic carbon

shifts the paramagnetic shift is an important contribution.

5.4.1.3 Ring-Current Effects

A magnetic field can induce a ring-

current within a  system. The effect is

similar to the Lamb shift except that the

current flows through several bonds. The

current produces a field of the form

shown in the figure. Inside the ring, a

diamagnetic effect is observed, outside

the ring a paramagnetic effect. The effect

is anisotropic and depends on the

direction of the field  with respect to

the ring plane.

Figure 5.6a shows an example for strong ring-current effects in 15,16-

Dihydro,15,16-dimethylpyren on the isotropic chemical shifts. The chemical shifts of

protons of the CH3 groups on top of the rings are shifted upfield to -4.23 ppm while

the protons outside the ring are shifted downfield to +8.6 ppm. The proton chemical-

shift effects close to a benzene ring as a function of the position are graphically shown

in Fig. 5.6b.

excited states paramagn. 13C shift 13C shift (TMS)

alkanes high lying small 10-50 ppm

alkenes medium medium 110-150 ppm

aromatics medium medium 110-140 ppm

ketones low high 170-230 ppm

current

B0

Figure 5.5: Ring-Current Effect



B0
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horizontal distance from center of benzene ring (in units of the ring radius)
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From: H. Günter: “NMR Spectroscopy”, Wiley.

Figure 5.6: Ring-Current Effects
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5.4.1.4 Anisotropic Neighbor Effect

The electron density

centered at a neighboring

nucleus polarizes the electron

density and leads to an induced

dipolar moment . The field

of this induced moment at the

position of spin  leads to an

additional field. If the induced

moment has a magnitude which

is independent of the direction of

, the effect vanishes in the

isotropic average and is only

observed in oriented phases, if  depends on the direction of the external field, an

isotropic contribution arises.

Figure 5.8 shows as an example the molecule acetylene. If the axis of the

molecule is parallel to the field, a large  is induced leading to a diamagnetic

shielding, if the axis is perpendicular, a weak paramagnetic shielding is obtained.

ind

S
Ba

Ba

Figure 5.7: Anisotropic Neighbor Effects

ind

S

B0

ind

C CH H

C

C

H

H

strong diamagnetic
shielding

weak paramagnetic
(de)shielding

B0

B0

Figure 5.8: Anisotropic Neighbor Effects
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5.4.2 Some Examples for Isotropic Chemical-Shift Values

The typical proton chemical-shift range lies between 0 and 11 ppm. For

carbons, a range between 0 and 180 ppm is most commonly found. Figure 5.9 shows

the typical chemical-shift ranges for protons and carbons found for characteristic

groups in organic molecules.

From: H. Günter: “NMR Spectroscopy”, Wiley.

From: H. Günter: “NMR Spectroscopy”, Wiley.

Figure 5.9: Typical Chemical Shifts for protons and Carbons
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5.4.3 Single-Crystal Spectra

The resonance frequency is proportional to the zz-element of the shielding

tensor in the laboratory frame. Because the chemical shielding tensor is defined with

respect to a molecule-fixed coordinate system we must first transform it into the

laboratory frame to obtain the resonance frequency by:

[5.26]

A particular molecular fixed coordinate system is the principal axis system (PAS),

where  is diagonal:

[5.27]

The diagonal values of this matrix are called the principal values of the chemical-

shielding tensor, the direction of the axis system, the principal directions. The ordering

of the principal values is chosen such that:

  is the least shielded component (see Box VI),

  is the most shielded component,

  lies in between.

The rotation matrices R that transform from one coordinate system to the other

are usually expressed in term of the three Euler angles   The rotation matrix

 is constructed from three successive rotations:

[5.28]

This convention implies three rotations of the coordinate system:

 first by  around the original z-axis

 second by  around the new y’-axis

 last by around the new z”-axis

The original axes (x,y,z) are rotated to the new axis (x”,y”,z”)

The inverse rotation  is given by:

 k  RMF
k  R 1–

=





11
k  0 0

0 22
k  0

0 0 33
k 

=

11
k 

33
k 

22
k 

  

R     

R      Rz''   Ry'   Rz   =







R      1–
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[5.29]

If we transform from the PAS (original) to the Lab (final) system (Fig. 5.11), we call the

Euler angles , if we transform from the Lab (original) to the PAS (final), we

call them . They fulfill the relationship:

[5.30]

: [5.31]



z=z’

z”=zfinal

x
y

x”

yfinal





finaloriginal

x’

y’=y”



zfinal

Figure 5.10: Euler-Angle Rotations

R       1– R   – ,–,– Rz'' –  Ry' –  Rz –  = =

PAS Lab
(,,)

Lab PAS
 (,,)

Figure 5.11: Coordinate Transformations

    

    

 –=  –=  –=

R      R       1–=
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Since the definition of the Euler angles allows only for rotations about the y

and z axis, rotations around other axis have to be constructed from these using the

sequence:

 Rotation by  around z-axis: 

 Rotation by  around y-axis: 

 Rotation by  around x-axis: 

The cartesian matrix representation of R is, for the rotation around the z axis:

[5.32]

and around the y-axis:

[5.33]

and, therefore, for the combination of the three Euler rotations:

[5.34]

5.4.4 Determination of Principal Axes and Principal Values in a

Single Crystal

In a single crystal the principal value and the principal directions of the CSA

tensor with respect to a crystal-fixed coordinate system can be determined by

measuring at least six different, non-degenerate orientations ( , , ) of the single

crystal with respect to the external field. 

In practice, the orientation dependence is measured by rotating the single

crystal around an axis perpendicular to the magnetic field and measuring the

 R 0 0  ( )

 R 0  0 ( )

 R  2–   2 ( )

Rz

cos sin 0
sin– cos 0

0 0 1

=

Ry

cos 0 sin–

0 1 0
sin 0 cos

=

  coscoscos  sinsin–   coscossin  sincos+  cossin–

 cossin–      sincoscos–   sincossin–     coscos+  sinsin
 sincos  sinsin cos

R      =

  
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spectrum as a function of the rotation angle (e.g. ). An example for such a rotation

pattern is given in Fig. 5.12. Usually, 3 rotations around orthogonal axes are

performed, in principle, two around non-orthogonal axes are sufficient. The diagram

of the resonance frequency as a function of each of the rotation angles is called the

rotation plot and from these data, the six parameters ( , , , , , ) that define

the chemical-shielding tensor can be determined. 

If the orientation of the molecule with respect to the crystal axis system is

known, i.e., if the X-ray or neutron structure is known, the orientation of the CSA in



Figure 5.12:  13C spectrum of a benzoic acid single crystal
13C enriched at the carboxylic position, as a function of the rotation angle.

   11 22 33
 



101
the molecular coordinate system can be calculated. If the orientation of the CSA with

respect to the molecular axes is known (see below), the orientation of the molecule in

the crystal axes system can be determined.

5.4.5 The Spectrum of a Powder Sample

For a powder sample, the FID (and the spectrum) is the weighted

superposition of the possible crystallite orientations:

[5.35]

Because of the axial symmetry around the direction of the applied field, the last

rotation  which is around the direction of  does not influence the NMR signal and

can be evaluated immediately in the above integral, leading to:

. [5.36]

The spectrum of a powdered sample (Fourier transform of Eq. [5.36]) is shown

in Fig. 5.13. 

From the edges of the powder pattern, the principal values of the CSA tensor

can immediately be determined. If two of the principal values are identical, the tensor

is called axially symmetric.

s t  1

82
---------     s    t       sin

0

2


0




0

2

=

 B0

s t  1
4
------   s   t     sin

0




0

2

=

Figure 5.13: Powder patterns observed in solid phase.

11 33

11 22

33

22

22

11 33
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Instead of , ,  one sometimes uses the isotropic value , the

anisotropy  and the asymmetry  to characterize a tensor:

[5.37]

, ,  are the same as the , ,  except of the ordering which is done

using the convention:

[5.38]

Here,  denotes an axially symmetric tensor and  varies between 0 and 1. The

shape of the tensor is only determined by  while  gives the width of the pattern

and a negative  leads to the mirror image of the tensor.

The orientation of the principal axes of the CSA tensor with respect to a

molecular frame of reference, however, cannot be determined from powder spectra. It

is sometimes fixed by symmetry constraints but in general it must either be calculated

or estimated using the empirical rules given in Box VIII. The width of the tensors is

often in the same order of magnitude as the entire isotropic chemical shift range

(examples for 13C see Fig. 5.14)

A partially ordered sample will lead to a different pattern as illustrated in Fig.

5.15.

11 22 33 iso

 

iso
1
3
---tr 

˜
  1

3
--- xx yy zz + += =  zz iso–= 

yy xx–


-----------------------=

xx yy zz 11 22 33

zz iso– xx iso– yy iso– 

 0= 

 


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Box VIII: Empirical rules for the orientation of the 13C tensor principal axis with

respect to a molecular coordinate system:

1) Methyl carbons have almost axially symmetric tensor with the unique axis along

the local threefold symmetry axis. 

The tensor is averaged due to classical or tunnelling motion around the C3 axis. 

2) Ring carbons possess three distinct tensor elements with 

 the most shielded axis perpendicular to the plane and 

 the least shielded axis bisecting the C-C-C angle of the ring carbons

3) The most shielded direction is 

 perpendicular to the ring in aromatic carbons,

 along the C3 axis for methyl carbons, and

 perpendicular to the sp2 plane for carbonyl and carboxylic carbons

4) The least shielded direction is

 in the ring plane for carbon rings, bisecting the C-C-C angle,

  perpendicular to the C3 axis for methyl carbons and perpendicular to a plane of

symmetry in which the methyl group is connected

 in the sp2 plane for carbonyl and carboxyl carbons

5) The intermediately shielded direction is

 tangential to the ring for aromatic carbons,

 for non-averaged methyl groups perpendicular to the C3 axis in the plane of

symmetry,

 in the sp2 plane and perpendicular to the C-C bond for carboxyl carbons
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Figure 5.14: Typical 13C Chemical-Shift Tensors

Figure 5.15: 13C Spectra of powdered and uniaxially oriented samples of spider silk
(Nephila edulis) (13C enriched at the alanine carboxylic position)

050100150200250300

fiber perpendicular to B0

fiber parallel to B0

Powder sample
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5.5 The Indirect Spin-Spin Coupling (J-Coupling)

Here we consider the coupling between

two nuclei which is mediated through the

electrons. An exact description is, as in the case of

the chemical shielding, a formidable task

involving the quantum description of the

electrons. If we restrict ourselves to the isotropic

coupling, we can write the J-coupling

Hamiltonian between two spins in the general

form

 [5.39]

The coupling constant  can be obtained by quantum-chemical methods similar to

the chemical shieldings. In general, the J coupling will be anisotropic, but the

anisotropy is seldom of practical significance and we neglect it here. 

Note that the J-coupling Hamiltonian is the same in the laboratory frame and

in the rotating frame

[5.40]

for homonuclear spins because the scalar product of two vectors is independent of the

coordinate system the two individual vectors are described in. For heteronuclear

spins, the rotating-frame Hamiltonian is given by

. [5.41]

One contribution to the indirect spin-spin coupling is the Fermi contact

interaction between electrons and nuclei. This interaction is proportional to the

probability density of the electron at the nuclear position: 

. [5.42]

I1

I2

e1

e2

Fermi Contact 

Fermi ContactPauli 
Principle

Figure 5.16: J Coupling

�̂J 2J12Î1Î2=

J12

�'ˆ J �̂J=

�'ˆ J 2J12Î1zÎ2z=

J
30

4
--------- re rN– =
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The Fermi-contact interaction favors an antiparallel orientation of a nuclear spin.

Through the correlation of the spins of two electrons in the same bonding orbital

(Pauli principle), this leads to an (opposite) polarization of the other electron. As a

consequence, the energy of a system with two spins that share an electron pair

depends on the relative orientation of the two spins. An antiparallel arrangement is

favored. Note that the Fermi-contact interaction is isotropic: it does not depend on the

orientation of the molecules in the magnetic field. 

For a multi-spin system, the J Hamiltonian is just the sum of the individual

two-spin interactions 

 . [5.43]

No term with more than two spin operators appears! This is a general property of

NMR Hamiltonians, only one-particle interactions (e.g. chemical shift) and two-particle

interactions (e.g. J coupling) must be taken into account.

For a one-bond coupling

between two like spins,  is usually

positive (see Fig. 5.16) leading to

antiparallel spins in the ground state,

for a two-bond coupling,  is often

negative because the exchange integral

of overlapping orbitals favors parallel

electron spins. 

These rule are, however, only

valid, if the Fermi contact interaction is the dominant source for the indirect coupling,

e.g. for proton-proton couplings but not for fluorine-fluorine couplings. There is

another source for J-coupling interactions: a dipolar interaction between the nuclear

and electron spins, combined again with the Pauli principle. This mechanism

provides a source for anisotropic J interactions. The anisotropy plays, however, no

�̂J 2 Jij Îi Îi

i j
=

I1
e1

e2

Fermi Contact 

Exchange interactionPauli 
Principle

e3

e4 I2

Figure 5.17: J Coupling

J

J
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important role except for very heavy nuclei. Typical values for isotropic J couplings

are:

Multi-bond couplings are usually dependent on the conformation of the

molecule and are an important source for structural information. For vicinal protons

(3-bond coupling), the Karplus relation for the dihedral angle  holds:

[5.44]

where, for two carbons in between the protons one possible parametrisation is A = 9,

B = -0.5 C = -0.28.

5.6 Spectrum of a Two-Spin System in Liquid Phase

In isotropic liquid phase, the isotropic chemical shift and the J coupling are the

only interactions necessary to describe the spin system. The Hamiltonian in the

laboratory frame of reference is given by the Zeeman term (Eq. [5.2]) the chemical-

shielding term (Eq. [5.21]) and the J coupling (Eq. [5.43]).

spins involved     J

H-H 280 Hz

H-C-H (“geminal”) 8-12 Hz

H-C-C-H (“vicinal”) 0-10 Hz

H-C-F 40-80 Hz

F-C-F 150-270 Hz

H-13C 100-250 Hz

H-C-13C 0-60 Hz

13C-13C 30-80 Hz

15N-13C 2-20 Hz

1H-15N  70-110 Hz



Jiso
vic A cos2 B cos C+ +=
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[5.45]

In the rotating frame, we have

[5.46]

where  and  are the rotating frame frequencies of the two nuclei

. The  can be interpreted as the chemical shifts of the nuclei

(in angular frequencies, not in ppm) measured with respect to the rf irradiation

frequency.

We now calculate the spectrum after a  pulse following the steps

outlined in Box IV for the schematic pulse sequence shown in Fig. 5.18

I) The Hamiltonian before and after the pulse is given by  of Eqs. [5.45] and [5.46] in

the laboratory or rotating frame, respectively. During the pulse, the Hamiltonian is

given in the rotating frame by

[5.47]

if we assume that the rf-field amplitudes are much stronger than all the internal

interactions.

II) The initial density operator is given by  (see Eq. [4.64]).  is the

laboratory-frame Hamiltonian and in a good approximation we only need to consider

the dominant Zeeman term:

�̂ �̂z �̂S �̂J+ +=

0 Î1z Î2z+  0– iso
1  Î1z iso

2  Î2z+  2J12Î1Î2+=

�''ˆ 1 Î1z 2 Î2z+ 2J12Î1Î2+=

1 2

i 1 – iso
i  0 rf–= i

 2 y

�̂�̂p�̂

t=0

y

t= detection

Figure 5.18: Simple 1D Pulse Sequence

�̂

�̂p'' 1 Î1z 2 Î2z+ 2J12Î1Î2 1 Î1y Î2y+ + += 1 Î1y Î2y+ 

̂0 c �̂= �̂
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[5.48]

Here,  is a proportionality factor and the part of the density operator proportional to

the unity operator has been omitted as discussed in Chapter 4.14.

Note that the initial density operator  and the rotating-frame

Hamiltonian  only consist of one-spin terms. We can, therefore, evaluate the

evolution during the pulse for each of the spins separately.

The initial density operator in matrix representation is:

[5.49]

while the Hamiltonian during the pulse is given by:

. [5.50]

We can now calculate  by application of the Liouville van Neumann equation:

. [5.51]

We calculate  according to

[5.52]

where  is the transformation into the eigenbase of M where  is a

diagonal matrix. For diagonal matrices, we know that:

. [5.53]

Therefore, we need to diagonalize the matrix

̂0 c Î1z Î2z+ =

c

̂0' ̂0=

�p''ˆ

'ˆ 0 c 1 2 0
0 1 2–

=

�''p 1
0 i 2–

i 2 0
=

'ˆ  

'ˆ   i�''ˆ p– exp 'ˆ 0 i�''ˆ p exp=

c i1
0 i 2–

i 2 0
–
 
 
 

exp 1 2 0
0 1 2–

i1
0 i 2–

i 2 0 
 
 

exp=

eM

eM R 1– eRMR 1–

R=

RMR 1– = 

11 0

0 22

exp e
11 0

0 e
22

=
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. [5.54]

The eigenvalues are obtained as solutions of

[5.55]

and the transformation is found (by determining the eigenvectors) as:

[5.56]

Now we can determine  as:

[5.57]

and the density operator after the pulse is given by

. [5.58]

We call  the flip angle of the pulse which we chose to be .

Then we obtain for the density operator after the  pulse

[5.59]

To evaluate the NMR signal during detection, we need the two-spin

Hamiltonian . To calculate the matrix

representation of this two-spin Hamiltonian, we need to know how to calculate the

matrix representation of products and sums of spin operators. These rules are

summarized in Box IX. 

0 i 2–

i 2 0

E2 i
2
---– 

  i
2
---– E2 1

4
---– 0= =     ;           E 1

2
---=

1
2

------- i 1
i– 1

0 i 2–

i 2 0
i– i

1 1
1
2

------- 1 2 0
0 1 2–

=

e
i1 Îy–

1
2
--- i– i

1 1
e

i1
2

-----------–

0

0 e

i1
2

-----------

i 1
i– 1

1
2

---------cos
1

2
---------sin–

1
2

---------sin
1

2
---------cos

=

'ˆ   c

1
2

---------cos
1

2
---------sin–

1
2

---------sin
1

2
---------cos

1
2
--- 0

0 1
2
---–

1
2

---------cos
1

2
---------sin

1
2

---------sin–
1

2
---------cos

c
2
---

1cos 1sin

1sin 1cos–
= =

 1=  1  2= =

2
---

'ˆ   c 0 1 2
1 2 0

cÎx= =

�'' 1 Î1z 2 Î2z+ 2J12Î1Î2+=
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The matrix representation of the density operator 

[5.61]

in the combined two-spin Hilbert space of both spins (of dimension ) is given

by

. [5.62]

The basis functions of the combined Hilbert space of two spin 1/2 are , ,

 and .

The Hamiltonian is given by:

Box IX: Direct Product and Direct Sum of Spin Operators

 Let  and  be operators that act on the same spin.

 The matrix product is defined as , normal matrix product.

 The matrix sum , normal element-wise matrix sum.

Note, both matrices have to be expressed in the same basis system.

 Let  and  be operators that act on different spins. The spin space where  is

defined (e.g. spin 1) has dimension N, the one of  dimension M.

 The matrix product is defined as , the direct matrix product:

[5.60]

 The matrix sum is defined as  where  and

 are identity matrices of dimension N and M respectively.

Â B̂

A B  A  B =

A B+  A  B +=

Â B̂ Â

B̂

A B  A  B =

A C 
a11 C  .... a1N C 

.... .... ....
aN1 C  .... aNN C 

a11c11 .... a11c1M

.... .... ....
a11cM1 .... a11cMM

....
a1Nc11 .... a1Nc1M

.... .... ....
a1NcM1 .... a1NcMM

.... .... ....

aN1c11 .... aN1c1M

.... .... ....
aN1cM1 .... aN1cMM

....
aNNc11 .... aNNc1M

.... .... ....
aNNcM1 .... aNNcMM

= =

A B+  A  E2  E1  B += E1 

E2 

̂   c Î1x  E2  E1  Î2x  + =

2x2 4=

'   c

0 1 2 1 2 0
1 2 0 0 1 2
1 2 0 0 1 2

0 1 2 1 2 0

=

12  12 

12  12 
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[5.63]

or, in matrix representation:

[5.64]

The detection operator is given by  (see Eq. [4.56]) which has

a matrix representation of 

. [5.65]

If all matrices were in the eigenbase of the Hamiltonian, the NMR signal could easily

be evaluated by:

[5.66]

with the four transition frequencies  and the intensities

 which, in our specific experiment, evaluate to  because

. To diagonalize the Hamiltonian

�'' 1 Î1z  E2   2 E1  Î2z  +=

2J Î1x  Î2x  Î1y  Î2y  Î1z  Î2z + + +

�'' 1

1 2 0 0 0
0 1 2 0 0
0 0 1 2– 0
0 0 0 1 2–

2

1 2 0 0 0
0 1 2– 0 0
0 0 1 2 0
0 0 0 1 2–

2J

1 4 0 0 0
0 1 4– 1 2 0
0 1 2 1 4– 0
0 0 0 1 4

+ +=

1 2+

2
--------------------

J
2
-----+ 0 0 0

0
1 2–

2
--------------------

J
2
-----– J 0

0 J
2 1–

2
--------------------

J
2
-----– 0

0 0 0
1 2+ –

2
----------------------------

J
2
-----+

=

M̂x  Î1x Î2x+  F̂x= =

F̂x 

0 1 2 1 2 0
1 2 0 0 1 2
1 2 0 0 1 2

0 1 2 1 2 0

=

M̂x  t   'kl   Fx lk ikl– t exp
l


k
=

kl �'' kk �'' ll–=

'kl   Fx lk c Fx lk
2

̂   F̂x=
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[5.67]

we only need to diagonalize the center 2x2 block.Using the general relation for 2x2

matrices:

[5.68]

where  is given by  we obtain

[5.69]

with

. [5.70]

Transforming the detection operator into the eigenbase of the Hamiltonian

using the 4x4 transformation matrix

[5.71]

1 2+

2
--------------------

J
2
-----+ 0 0 0

0
1 2–

2
--------------------

J
2
-----– J 0

0 J
2 1–

2
--------------------

J
2
-----– 0

0 0 0
1 2+ –

2
----------------------------

J
2
-----+

cos sin
sin– cos

a b
b c

cos sin–

sin cos

E2 0

0 E3

= 2 2b
a c–
----------- 
 atan=

 2 2J
1 2–
-------------------- 
 atan=

�''

1 2+

2
--------------------

J
2
-----+ 0 0 0

0 J
2
-----– S+ 0 0

0 0 J
2
-----– S– 0

0 0 0
1 2+ –

2
----------------------------

J
2
-----+

=

S
1 2–

2
-------------------- 
 

2
J 2

+=

U

1 0 0 0
0 cos sin 0
0 sin– cos 0
0 0 0 1

=
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leads to

[5.72]

and we obtain the intensities of the four “allowed” single-quantum transitions:

For the particular solution we have assumed that  is positive. In principle one

should distinguish according to the sign of J.

The basis functions that span the eigenbase of the Hamiltonian are

 . [5.73]

frequency intensity

ÛF̂xÛ
1–

0  sin+cos
2

--------------------------------
 sin–cos

2
------------------------------- 0

 sin+cos
2

-------------------------------- 0 0  sin+cos
2

--------------------------------

 sin–cos
2

------------------------------- 0 0  sin–cos
2

-------------------------------

0  sin+cos
2

--------------------------------
 sin–cos

2
------------------------------- 0

=

12
1 2+

2
-------------------- J

2 1–

2
-------------------- 
 

2
J 2+–+= I12

 sin+cos
2

-------------------------------- 
  2 1 2sin+

4
-------------------------= =

13
1 2+

2
-------------------- J

2 1–

2
-------------------- 
 

2
J 2++ += I13

 sin–cos
2

------------------------------- 
  2 1 2sin–

4
------------------------= =

24
1 2+

2
-------------------- J–

2 1–

2
-------------------- 
 

2
J 2++= I24

 sin+cos
2

-------------------------------- 
  2 1 2sin+

4
-------------------------= =

34
1 2+

2
-------------------- J–

2 1–

2
-------------------- 
 

2
J 2+–= I34

 sin–cos
2

------------------------------- 
  2 1 2sin–

4
------------------------= =



12 

cos 12  sin 12 +

sin– 12  cos 12 +

12 
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The resulting spectrum is shown in Fig. 5.19. The appearance of the spectrum as a

function of the ratio  is displayed in Fig. 5.20.

5.7 Allowed and Forbidden Transitions

In the example presented above, we have seen that only the transitions (12),

(13), (24), and (34) out of the six possible ones lead to a non-zero intensity in the

spectrum. They are called allowed transitions. Such transitions can only appear where

the detection operator has nonzero elements. The detection operator is always a linear

combination of  and . This operator has only matrix-elements between states

with a difference in the total magnetic quantum number of 1.

[5.74]

Here, the  denote the magnetic quantum numbers of the individual nuclei

contained in the spin system considered (in this example, there are only two spins).

This is the selection rule for magnetic resonance:

[5.75]

only one-quantum transitions are allowed. The zero-quantum transition (23) and the

double-quantum transition (14) are forbidden.

JJ

WW

JJ

W
2 1–

2
--------------------

34 12 24 13

Figure 5.19: Spectrum of a J-Coupled Two-Spin System

k 2 1–  2J =

F̂
+

F̂
-

M� m�k
k
=

m�k

Mk Mj– 1=
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2 J 2 1–»

2 J 2 1–«

strong coupling

weak B0 field

weak coupling

strong B0 field

Figure 5.20: J-Coupled Spectra of a Two-Spin System 
for a constant J as a function of the difference in resonance frequency .The
parameter k is defined as .

2 1–
k 2 1–  2J =

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9
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5.8 The Magnetic Dipole Interaction

The magnetic dipole-dipole interaction has

a classical analogy, the interaction between two

magnetic (dipole) moments  and . The

classical interaction energy of two magnetic

moments located at positions connected by the

vector  is given by:

[5.76]

For the special case where the two magnetic

moments are aligned with the z-axis ( ), the

classical energy function reduces to:

[5.77]

The quantum-mechanical spin Hamiltonian is obtained from Eq. [5.76] as:

[5.78]

 is a 3x3 matrix with the elements:

[5.79]

where the  are the components of a unit vector parallel to . For ,

we have

[5.80]



r12

1

2

B0

Figure 5.21: Dipole Moment

1 2

r12

E
0

4
------   1

r12
3

------- 1 2 3

r12
2

------- 1 r12  2 r12 –
 
 
 

=

B0

E
0

4
------   1

r12
3

-------12 1 3 cos 2
– =

�̂D
0

4
------   

12�

r12
3

------------- Î1 Î2 3

r12
2

------- Î1 r12 
  Î2r12 

 –
 
 
 

=

Î1DÎ2=

D̃

D
˜

 
0

4
------   

12�

r12
3

-------------  3ee–                     x y z = =

e r12 r12 0 0 r12  =

D
˜

0

4
------   

12�

r12
3

-------------
1 0 0
0 1 0
0 0 2–

=
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Using spherical coordinates for :

and the shift operators, the dipolar interaction can be rewritten in the so-called

dipolar alphabet:

[5.81]

with:

[5.82]

In the presence of a strong Zeeman interaction, one transforms into the rotating

frame. The operators  and  become time dependent and the terms  to  can be

neglected as non-secular terms leading to

. [5.83]

r12

rx r  cossin=

ry r  sinsin=

rz r cos=





�̂D
0

4
------   

12�

r12
3

------------- Â B̂ Ĉ D̂ Ê F̂+ + + + + =

Â Î1zÎ2z 1 3 2cos– =

B̂ Î1
+

Î2
-

Î1
-
Î2
+

+ 3 2cos 1–
4

---------------------------=

Ĉ Î1
+

Î2z Î1zÎ2
+

+  3  e i–cossin–
2

-----------------------------------------=

D̂ Î1
-
Î2z Î1zÎ2

-
+  3  eicossin–

2
---------------------------------------=

Ê Î1
+

Î2
+ 3– 2e 2i–sin

4
---------------------------------=

F̂ Î1
-
Î2
- 3– 2e2isin

4
-------------------------------=

Î
+

Î
-

Ĉ F̂

�̂D'
0

4
------   

12�

r12
3

------------- Â B̂+ =
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The term  remains obviously always invariant when going into the rotating

frame since it contains only  operators. For the term , two situations must be

distinguished:

 Homonuclear case (both nuclei have the same Zeeman-frequency and the same

rotating frame transformation applies): Here  is time-independent and

must be taken into account. 

 Heteronuclear case: Here we need two different rotating frames for the two spins

rotating at their specific Larmor frequencies. In the rotating frame, the term

 is time-dependent with a frequency equal to the difference of the two

Larmor frequencies. Therefore, it can be neglected as non secular in excellent

approximation.

The simplified secular rotating-frame dipolar-coupling Hamiltonian is of the

form

 for a homonuclear spin pair:

[5.84]

 for a heteronuclear spin pair:

[5.85]

The constant 

[5.86]

is often called the dipolar coupling constant. Due to the dependence on the angle ,

the dipolar coupling constant changes mangnitude and sign for different orientations. 

5.8.1 Spectrum of a Heteronuclear Dipolar-Coupled Spin Pair

Assuming that the rotating-frame Hamiltonian consists only of the dipolar

interaction, it has the form:

Â

Îz B̂

Î1
+

Î2
-

Î1
-
Î2
+

+

Î1
+

Î2
-

Î1
-
Î2
+

+

�'ˆ D
– 0

4
---------   

12�

r12
3

-------------
3 2cos 1– 

2
-------------------------------- 2Î1zÎ2z

1
2
--- Î1

+
Î2
-

Î1
-
Î2
+

+ –=

�'ˆ D
– 0

4
---------   

12�

r12
3

-------------
3 2cos 1– 

2
--------------------------------2Î1zÎ2z=

d
– 0

4
---------   

12�

r12
3

-------------
3 2cos 1– 

2
--------------------------------=


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[5.87]

with the matrix representation

[5.88]

This leads to the transition frequencies for the

allowed transitions of:

[5.89]

and a spectrum with two lines with a splitting of 

as shown in Fig. 5.22.

5.8.2 Spectrum of a Homonuclear Dipolar-Coupled Spin Pair

Here the term  must also be taken into account. In this case  has

permutation symmetry with respect to an exchange of the two nuclei:

[5.90]

As a consequence, the eigenfunctions transform according to the irreducible

representations A and B of the permutation group of two elements. From this

argument we obtain immediately the Eigenfunctions:

 Symmetric representation A:

[5.91]

 Anti-symmetric representation B:

�''ˆ �'ˆ D 2dÎ1zÎ2z= =

�''  2d

1 4 0 0 0
0 1 4– 0 0
0 0 1 4– 0
0 0 0 1 4

=

2d

Figure 5.22: Dipolar Splitting for
a Single Crystal Orientation

1 �'' 11 �'' 22– d= =

2 �'' 33 �'' 44– d–= =

2d

B̂ �̂

P̂ 12 �̂ �̂=

1 =

2
1
2

-------  + =

3 =
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[5.92]

We can now calculate the diagonal elements of  in this basis and obtain

[5.93]

The transition frequencies for the allowed transitions

are

[5.94]

and the spectrum has two lines with a splitting of 

as shown in Fig. 5.23

Exercise: Show that the allowed transitions in this case are indeed the 1-2 and

2-3 transitions.

5.8.3 Intermediate Cases

The spectrum of two dipolar-coupled nuclei can be calculated in almost

complete analogy to the one of two J-coupled nuclei. The matrix representation of the

Hamiltonian is given by (compare to Eq. [5.67]!):

4
1
2

-------  – =

�D'

E1 1 � 1  d
2
---= =

E2 2 � 2  d–= =

E3 3 � 3  d
2
---= =

E4 4 � 4  0= =

3d

Figure 5.23: Dipolar Splitting
for a Single Crystal orientation

1 E1 E2–  3d
2

-------= =

2 E2 E3–  3d–
2

----------= =

3d
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Figure 5.24:  Measured Dipolar Splitting
between the two protons in p-toluoic acid at room temperature and at 10 K. The experiment
manifests the proton tautometrism.
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[5.95]

Note that the off-diagonal matrix elements have the same size as the diagonal matrix

elements while, in the case of the J-coupling Hamiltonian, they were a factor two

larger!

With  we obtain again four “allowed” transitions with the

following frequencies and intensities:

The resulting spectra are plotted in Fig. 5.25.

5.8.4 Powder Spectra of Dipolar Couplings

In the case of powders, we obtain again a powder pattern which is the

superposition of the splittings weighted by their probabillity. Since the dipolar-

frequency intensity

�D 

1 2+

2
--------------------

d
2
---+ 0 0 0

0
1 2–

2
--------------------

d
2
---–

d
2
---– 0

0 d
2
---–

2 1–

2
--------------------

d
2
---– 0

0 0 0
1 2+ –

2
----------------------------

d
2
---+

=

2 d–
1 2–
-------------------- 
 atan=

12
1 2+

2
-------------------- d

2 1–

2
-------------------- 
 

2 d
2
--- 
  2

+–+= I12
 sin+cos

2
-------------------------------- 
  2 1 2sin+

4
-------------------------= =

13
1 2+

2
-------------------- d

2 1–

2
-------------------- 
 

2 d
2
--- 
  2

++ += I13
 sin–cos

2
------------------------------- 
  2 1 2sin–

4
------------------------= =

24
1 2+

2
-------------------- d–

2 1–

2
-------------------- 
 

2 d
2
--- 
  2

++= I24
 sin+cos

2
-------------------------------- 
  2 1 2sin+

4
-------------------------= =

34
1 2+

2
-------------------- d–

2 1–

2
-------------------- 
 

2 d
2
--- 
  2

+–= I34
 sin–cos

2
------------------------------- 
  2 1 2sin–

4
------------------------= =
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coupling tensor is always axially symmetric ( ), the dipolar powder pattern (also

called Pake pattern) can be described by the superposoition of two axially symmetric

strong coupling

weak B0 field

weak coupling

strong B0 field

Figure 5.25: D-Coupled Spectra of a Two-Spin System 
for constant D as a function of the difference in resonance frequency .The parameter
k is defined as .

2 1–
k 2 1–  d=

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

d 2 1–»

d 2 1–«

3d

2d

 0=
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second-rank tensor powder patterns (Fig. 5.26). The distance of the two horns is equal

to  for the heteronuclear case and to  for the homonuclear case.

5.9 The Nuclear Quadrupole Interaction

For nuclei with a non-spherically symmetric charge distribution, the energy

depends on the orientation of the nucleus with respect to the electric field gradient.

Only spins with a spin quantum number  have a non-symmetric charge

distribution. The classical potential energy of a nucleus with a charge density of 

in an electrostatic potential  caused by electrons and other nuclei is given by:

[5.96]

where the integral covers the entire space.

We can expand this energy in a Taylor expansion centered at . With

, we obtain

[5.97]

with

Figure 5.26: Dipolar Powder Patterns (Pake Pattern)
a) for a heteronuclear spin system (weak-coupling limit) and b) for a homonuclear spin
system (strong-coupling limit).
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[5.98]

The first term is the electrostatic energy: , the second

term is the energy of the electric dipole moment in the electric field. It can be shown

that the electric dipole moment of any nucleus vanishes based on symmetry

considerations. The third term is the classical electric quadrupole energy. It is

convenient to use the quantities  defined by

[5.99]

which we call the components of the electric quadrupole tensor. For the quadrupole

energy, we obtain (in the absence of electrical charges):

[5.100]

To obtain the quadrupole Hamiltonian

from the classical form Eq. [5.100] demands a

rather lengthy derivation. The interested

reader is refereed to C.P. Slichters book

“Principles of Magnetic Resonance”, 3rd

edition, Chapter 10). The result is:

[5.101]

Here,  is the electron charge,  the spin-quantum number ( ) and  is the

quadrupole moment of the nucleus.

In the eigenbase of the field-gradient tensor , the Hamiltonian takes the

particularly simple form

[5.102]

with the abbreviations:
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V
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
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E 1
6
--- VQ
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2
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2
–
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------------------------ 3Îz
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2
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2

– – =
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[5.103]

The quadrupole interaction leads to observable signals even in the absence of a

magnetic field.

Vzz eq electric field gradient= =

Vxx Vyy–

Vzz
-------------------------  asymmetry parameter= =
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6 Product-Operator Formalism

Instead of performing the calculations in an explicit matrix representation for

the density operator and the Hamiltonian as done in Chapter 5.6, it is for simple

Hamiltonians often more convenient to use a symbolic notation with spin operators.

6.1 One Spin I=1/2

As discussed earlier the evolution of a one-spin system during a strong pulse

or the free evolution under the chemical shift is described by the Liouville-von

Neumann equation as , where  is  or  and  for an

rf pulse and  and  for a free precession period. The density operator can

always be expanded in terms of the complete set of base operators . As

usual, we neglect the part proportional to unity and write:

. [6.1]

For the special case where  and , we have found that

 and we symbolically write:

[6.2]

This can be understood as a rotation of  around the  axis by an angle  and is

fully analogous to the classical description (see Fig. 2.5). Equivalently, we obtain:

[6.3]

 Generalizing Eqs. [6.2] and [6.3] we can write:

[6.4]

̂ t  e i Îp– ̂ 0 ei Îp= p x y  1t=

p z=  t=

Ê Îx Îy Îz  

̂ t  cx t  Îx cy t  Îy cz t  Îz+ +=

̂ 0  Îz= p y=

̂ t  Îz  cos Îx  sin+=

Îz  cos Îx  sin+Îz

Îy  

Îz Îy 

Îx  cos Îy  sin+Îx

Îz  

Îq
Îp   Îq

Îq  cos i Îq Îp   sin+

if  Îq Îp  0=

else
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with . Note that this relation only holds for spin 1/2! For multiple-pulse

experiments, the notation of Eq. [6.4] can lead to long formulas with many sine and

cosine terms. If one is only interested in what terms can be generated (without

knowing their time-dependent weights) one can use the so-called branch diagram:

[6.5]

as a short-hand notation.

6.2 Two Spins I=1/2

For systems of two spins with I = 1/2, the 16-dimensional space as used in

Chapter 5.6 can be spanned by basis operators that are products of the cartesian

single-spin operators:

[6.6]

It can be shown (e.g. by matrix calculation) that these operators all fulfill a

generalization of the set of rules given in Eq. [6.4]:

[6.7]

where  can be any operator out of Eq. [6.6]. Note that Eq. [6.7] holds for any

number of spin 1/2, not only for a two-spin system.

To evaluate the commutators , the following rules are useful:

p q x y z =

Îq
Îp   Îq

i Îq Îp 

Q 0=

Q 1=

1
2
---Ê

Î1x Î1y Î1z Î2x Î2y Î2z    

Q 2= 2Î1xÎ2x 2Î1xÎ2y 2Î1xÎ2z 

2Î1yÎ2x 2Î1yÎ2y 2Î1yÎ2z 

2Î1zÎ2x 2Î1zÎ2y 2Î1zÎ2z 

Ĉq
Ĉp   Ĉq

Ĉq  cos i Ĉq Ĉp   sin+

if  Ĉq Ĉp  0=

else

Ĉq

Ĉq Ĉp 
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[6.8]

A table of commutators for two-spin systems is given in Fig. 6.1. The one- and two-

spin operators in Eq. [6.6] are denoted as follows:

Operator Name

unity

polarization, longitudinal spin order

longitudinal two-spin order

single-quantum coherence (of spin k), in-phase coherence

anti-phase coherence (of spin k)

multiple-quantum coherence 
(mixture of zero- and double-quantum coherence)

Î1p Î2q  0= for all p q

2Î1pÎ2q Î1r  2 Î1p Î1r  Î2q=

2Î1pÎ2q Î2r  2Î1p Î2q Î 2r =

2Î1pÎ2q 2Î1rÎ2s  =

0

Î2q Î2s 

Î1p Î1r 

0

if  p r   and  q s
if  p = r
if  q = s
if  p r=   and  q s=

Ê

Îkz

2ÎkzÎlz

Îkx

2ÎkxÎlz

2ÎkxÎlx
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Figure 6.1: Commutators.
All commutators should be multiplied by  and all products of two spin operators should be
multiplied by 2. These constants were left away for brevity. Example:  stands for

i
IySz

i 2IySz
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The different types of coherences

can be related to the elements of the

density operator in the matrix

representation for a two spin

system. The shading of the elements

shows which type of operators

contribute to which elements of the

density operator.

A longitudinal two-spin order operator which describes the scalar or dipolar

coupling in the “weak coupling” situation (see below) acts on one-spin coherence as: 

[6.9]

Note the close analogy to the evolution under  of Eq. [6.3]:

[6.10]

The rotation of Eq. [6.9] can be described in a 3-dimensional subspace. This is actually

true for any rotation around a product operator as illustrated for a few examples in

Fig. 6.2.

6.3 The Spectrum of a Weakly-Coupled Two-Spin System in

Liquids

The use of the product-operator formalism is particularly useful in liquid-state

NMR in the “weak-coupling” situation where . Then, the

Hamiltonian of Eq. [5.46]

[6.11]

simplifies to

longitudinal
spin order

single-quantum
coherences

double-quantum
coherences

zero-quantum
coherences

Îkx Jklt cos 2ÎkyÎlz Jklt sin+Îkx

2ÎkzÎlz Jklt 

Îz  

Îx  cos Îy  sin+Îx

Îz  

2 1–  2J  1»

�'' 1 Î1z 2 Î2z+ 2J12Î1Î2+=
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. [6.12]

Heteronuclear J couplings are always in the “weak coupling” limit because the

transverse components are non secular in the rotating frame as discussed in Chapter

5.8 for the dipolar coupling Hamiltonian.

Such a Hamiltonian is particularly simple because all its terms commute with

each other and we are able to evaluate their action on the density operator

sequentially. For a general N-spin system in the “weak-coupling” limit, we have

[6.13]

We now describe the same experiment as in Chapter 5.6 with the Hamiltonian

our
example

Figure 6.2: Rotations in a Three-Dimensional Subspace
From: Ernst, Bodenhausen, Wokaun: Principles of Nuclear Magnetic Resonance in One and
Two Dimensions, Oxford.

�'' 1 Î1z 2 Î2z+ 2J12Î1zÎ2z+=

̂ t  iktÎkz–  iJklt2ÎkzÎlz–  0 exp
k l
exp

k
=

iktÎkz  iJklt2ÎkzÎlz exp
k l
exp

k

 



135
 . [6.14]

The initial density operator is of the form . The term  evolves

according to the branch diagram:

[6.15]

and  according to:

[6.16]

For a detection operator of , we only have to evaluate a single

term in each branch diagram, namely  and  which have the weight

�̂�̂p�̂

t=0

y

t= detection

Figure 6.3: Simple 1D Pulse Sequence

�p''ˆ 1 Î1y Î2y+ =

̂0
1
2
--- Î1z Î2z+ = Î1z

Î1xÎ1z

Î1y

2
--- 
  Î2y


2
--- 
 

Î1x
Î1z 1t 

Î1x

Î1y

2Î1zÎ2z Jt  Î1x

2Î1yÎ2z

2Î1zÎ2z Jt  Î1y

2Î1xÎ2z

Î2z 2t 

Î2z 2t 

Î1x

Î1y

Î2z

Î2zÎ2z

Î1y

2
--- 
  Î2y


2
--- 
 

Î2x
Î1z 1t 

Î2x
Î2z 1t 

Î2x

Î2y

2Î1zÎ2z Jt  Î2x

2Î1zÎ2y

2Î1zÎ2z Jt  Î2y

2Î1zÎ2x

M̂x  Î1x Î2x+ =

Î1x Î2x
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 and , respectively. Therefore, the NMR signal

is given by:

[6.17]

and consist of four lines of equal intensity: 

A schematic drawing of such a spectrum is given in Fig. 6.4.

frequency intensity

1
2
--- 1t  Jt coscos 1

2
--- 2t  Jt coscos

s t  1
4
--- 1 J+ t cos 1 – J t cos 2 J+ t cos 2 – J t cos+ + + =

12 1 J+= I12
1
4
---=

13 2 J+= I13
1
4
---=

24 1 J–= I24
1
4
---=

34 2 J–= I34
1
4
---=

JJJJ

34 13
24 12

12

Figure 6.4: Schematic Spectrum of a Weakly-Coupled Two-Spin System
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6.4 More Than Two Spins I=1/2

The product-operator basis can easily be built up also for larger spin systems.

For  spins 1/2, the basis operators are given by

[6.18]

where =x, y, or z, and  is the number of operators in the product, and  is 1 for

the  spins whose operators appear in the product operator and  = 0 for the

remaining  spins.

N

B̂s 2 q 1–  Ik 
aks

k 1=

N

=

 q aks

q aks

N q–
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7 J-Coupled Spectra of Larger Spin Systems

7.1 Weakly-Coupled Spin Systems

As already seen for two spins, each transition in a weakly-coupled spin system

can be assigned to a flip of a given spin. For  coupled spins 1/2

[7.1]

lines of equal intensity appear in the NMR spectrum. The

subspectrum of each spin  is split into  lines by the

additional shift of  from the coupling term to the 

other nuclei. Figure 7.1a shows the level diagram and the

spectrum of a two-spin AX spin system.

N

N Z

1 1

2 4

3 12

4 32

Z N 2N 1–=

p 2N 1–

J N 1–

Figure 7.1: Two-Spin System AX
a) two spin-1/2 nuclei, b) spin-1/2 and spin-1 nuclei.

a)

b)
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If nuclei with spin-quantum numbers  are involved, the number of

transitions increases as can be seen in Fig. 7.1b for a AX spin system with one I = 1/2

and one I = 1 spin.

From weakly-coupled spectra, the chemical shifts and the J couplings can be

directly read off. We use the following notation: 

 Nuclei with different chemical shift have a different letter.

 The farther the letters are from each other in the alphabet, the weaker the coupling.

(AB: strongly coupled, AX: weakly coupled).

Figure 7.2 shows the level diagram and the spectrum of a weakly-coupled three-spin

AMX system.

I 1 2

Figure 7.2: Three-Spin AMX System (Spin 1/2)
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7.2 Strongly-Coupled Spin Systems

In strongly coupled spin systems the observed transitions cannot be assigned

to a transition of a single spin anymore. Without degeneracies, the NMR spectrum

consists of 

[7.2]

lines of sometimes vastly different intensity. The chemical

shifts and the J-coupling constants cannot be read off the

spectrum anymore.

Spectra of systems with 3 and more nuclei can not be

solved analytically either. To obtain the numerical values of the

chemical shifts and the J-coupling constants, one has to simulate the spectrum of the

spin system as a function of the parameters. On a personal computer, spin systems

with up to about 12 nuclei can easily be simulated numerically.

7.3 Systems With Equivalent Spins

While strong coupling complicates the NMR spectra, symmetry elements

simplify them. Simple spectra arise for magnetically equivalent nuclei, while chemically

equivalent nuclei or crystallographic equivalent nuclei still lead to complicated spectra

with strong coupling.

7.3.1 Definitions

Magnetic equivalence:

Magnetic equivalence of a group of spins is a property of the Hamiltonian. It may

depend on the phase (oriented vs. isotropic) and on the experiment if two nuclei can

be considered magnetically equivalent. A group of spins is magnetically equivalent, if

the system Hamiltonian is invariant under a permutation  of these nuclei:

[7.3]

N Z

1 1

2 4

3 15

4 56

5 216

Z 2N
N 1– 
 =

P

P�̂ �̂=
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e.g. if  then . We just change the labels

in the Hamiltonian and see if it remained invariant. Magnetically equivalent nuclei

are denoted as, e.g. A2, A3, A2X3 etc.

Chemical equivalence: 

This definition is only useful in isotropic liquid phase. There, chemically equivalent

nuclei are the ones that are related to each other by molecular symmetry operations.

Magnetically equivalent nuclei are always chemically equivalent, the opposite is not

true. Chemically equivalent nuclei have the same chemical shift and identical

chemical properties but different J-coupling patterns. They are denoted by, e.g., AA’,

AA’A’’, AA’XX’X’’.

Crystallographic equivalence: 

This is the equivalent of chemical equivalent in a crystalline compound.

Crystallographic equivalent nuclei are related by a symmetry element of the crystal.

Crystallographic equivalent nuclei have the same chemical properties and the same

principal values of the chemical-shielding tensor. The principal axis, however, may

differ and therefore, crystallographic equivalent nuclei can give rise to different

resonance lines (because of different chemical shifts) in a single-crystal spectrum.

Under magic-angle spinning conditions (see later) where only the isotropic chemical

shift is measured, their chemical shifts do coincide.

It can be shown that the J-coupling between

magnetically equivalent nuclei does not influence

the spectrum because it commutes with the rest of

the Hamiltonian as well as with the observable

operator. The spectrum and the level diagram of an

AXn spin system is shown in Fig. 7.3a. The X-

spectrum is a doublet, the A-spectrum consists of

n+1 lines with intensities . These

intensities are given by the binomial coefficients

which can be visualized in the Pascal triangle (see

Fig. 7.4). As a second example the spectrum and the level diagram for an A2X2 spin

�̂ �̂ Î1 Î2 Î3 ...,ÎN   
 = P�̂ �̂ Î2 Î1 Î3 ...,ÎN   

 =

Figure 7.4: Pascal Triangle
n
0 
  n

1 
  n

2 
  ....  
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Figure 7.3: Spectra AmXn Spin System

a)

b)
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system are shown in Figure 7.3b. In these spectra only the J couplings between the A

and the X spins are visible in the spectrum and each line is split into a triplet.

Note that the proton spectrum of an A2X2 spin system is considerably simpler

than the one of difluorethylen, an AA’XX’ spin system (Fig. 7.5) which must be

calculated numerically.

Rules for the localization of magnetically equivalent nuclei in isotropic phase:

 Magnetically equivalent nuclei are connected by a symmetry operation of the

molecule which leaves the positions of all other magnetic nuclei in the molecule

invariant.

 The coupling constants to all other nuclei must be identical.

More examples for systems with magnetically or chemically equivalent nuclei

can be found in Fig. 7.6. Magnetic equivalence can also be generated by dynamic

6

Figure 7.5: Spectrum of a AA’XX’ Spin System

JFH

JFH
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processes that are fast on the NMR time scale. The three protons of a methyl group are

always magnetically equivalent if the methyl group rotates fast with respect to the

rest of the molecule.

Figure 7.6: Examples For Magnetic And Chemical Equivalence
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8 Pulse Techniques in NMR

In NMR spectroscopy, experiments are often build up from a few basic

building blocks which are combined in different ways. These building blocks serve a

certain function and can be analyzed independent from the details of how they are

combined. In this Chapter we will discuss some of these building blocks and look at a

few simple one-dimensional experiments which make use of them.

Many NMR experiments operate simultaneously on two different spin species,

e.g., 13C and 1H. To make a clear distinction whether two spins are homonuclear, i.e.,

the same isotope with the same Larmor frequency, or heteronuclear, i.e., different

isotopes with different Larmor frequencies, we will use different symbols,  and 

for the spin operators of heteronuclear spins.

8.1 The Role of 180Pulses

We have already seen in Chapter 2.8.1 that 180 pulses can be used to refocus

the dephasing of signals due to a distribution of chemical shifts. In this Chapter we

will analyze in more detail the role of 180 pulses in homonuclear and heteronuclear

two-spin systems. Figure 8.1 shows the basic pulse sequence for homonuclear and

Î Ŝ

 




I

S

 



Figure 8.1: Spin-Echo Pulse Sequence
in a) homonuclear spin systems and b) and c) in heteronuclear spin systems.

 



I

S

a)

b) c)
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heteronuclear spin systems. There are different sequences possible for the

heteronuclear case because we can include a 180 pulse on only one of the two spin

species or on both spin species simultaneously.

8.1.1 Spin Echoes in Homonuclear Spin Systems

The Hamiltonian of a homonuclear two-spin systems in liquids assuming weak

coupling is given in the rotating frame by

. [8.1]

We now have to calculate the time evolution of the density operator under the pulse

sequence shown in Fig. 8.1a. Starting from an initial density operator

[8.2]

we obtain before the 180 pulse the evolution during the delay  under the chemical-

shift and the J-coupling Hamiltonian. Since the different parts of the Hamiltonian

commute, we can calculate the time evolution sequential:

. [8.3]

The 180 pulse will invert the sign of some of the spin operators. The phase of the

pulse is not important and we will arbitrarily assume it to be a (180)x pulse:

. [8.4]

The time evolution during the second delay  will lead to 16 (4x4) terms which can be

simplified to

[8.5]

using trigonometric transformations. The equivalent result will be obtained starting

from an initial density operator  with the indices 1 and 2 interchanged.

�''ˆ 1 Î1z 2 Î2z+ 2J12Î1zÎ2z+=

̂ 0( ) Î1x=



̂ -
( ) Î1x 1  J12 coscos 2Î1yÎ2z 1  J12 sincos+=

Î1y 1  J12 cossin 2Î1xÎ2z 1  J12 sinsin–+

̂ +
( ) Î1x 1  J12 coscos 2Î1yÎ2z 1  J12 sincos+=

Î1y 1  J12 cossin– 2Î1xÎ2z 1  J12 sinsin+



̂ 2( ) Î1x J122 cos 2Î1yÎ2z J122 sin+=

Î2x
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Exercise: Write down all the terms that are generated by the time evolution

under the second delay  and show that one gets indeed the result given in Eq. [8.5]. 

The result given in Eq. [8.5] shows that the spin-echo sequence refocuses the

chemical shifts even in the presence of homonuclear dipolar couplings but leaves the

time evolution under the weak homonuclear J coupling unaffected.

The calculation for the strong coupling case is more complicated due to the fact

that the J-coupling and the chemical-shift Hamiltonian do not commute and there is

no simple general analytical solution.

8.1.2 Spin Echoes in Heteronuclear Spin Systems

The Hamiltonian of a heteronuclear spin system is always a weak-coupling

Hamiltonian 

[8.6]

and the only difference to the homonuclear case is that one can easily apply selective

pulses on the two nuclei. Figure 8.1 shows the two possible cases: b) shows a spin-

echo sequence with 180 pulses are applied simultaneously on both spins while in c) a

spin-echo sequence is shown where the 180 pulse is only applied to the I spin.

The first case with pulses on both spins is fully equivalent to the homonuclear

case and starting from

[8.7]

we obtain a final density operator

. [8.8]

Again, we obtain the equivalent result when starting from  with the I-spin and S-

spin operators interchanged.

In the case of a single 180 pulse, we obtain the same intermediate density

operator



�''ˆ I Îz S Ŝz+ 2JISÎzŜz+=

̂ 0( ) Îx=

̂ 2( ) Îx JIS2 cos 2ÎyŜz JIS2 sin+=

Ŝx
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. [8.9]

We now apply only a 180 pulse on the I spins leading to the density operator

. [8.10]

The time evolution during the second delay  will again lead to 16 terms which can be

simplified using trigonometric expressions to

. [8.11]

In this case the chemical shift of the I spin as well as the heteronuclear J coupling is

refocused by the 180 pulses.

Starting from the S spin with 

[8.12]

leads to a final density operator of 

. [8.13]

The role of 180 pulses in homonuclear and heteronuclear weakly-coupled spin

systems is summarized in Box X.

̂ -
( ) Îx I  JIS coscos 2ÎyŜz I  JIS sincos+=

Îy I  JIS cossin 2ÎxŜz I  JIS sinsin–+

̂ +
( ) Îx I  JIS coscos 2ÎyŜz I  JIS sincos–=

Îy I  JIS cossin 2ÎxŜz I  JIS sinsin––



̂ 2( ) Îx=

̂ 0( ) Ŝx=

̂ 2( ) Ŝx S2 cos Ŝy S2 sin+=

Box X: The Role of 180 Pulses in Weakly-Coupled Spin Systems

 A 180 pulse refocuses the chemical shifts.

 A 180 pulse leaves the homonuclear J coupling unaffected.

 A 180 pulse on a single channel refocuses the heteronuclear J coupling.

 A 180 pulse on both channels leaves the heteronuclear J coupling unaffected.
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8.2 Heteronuclear Spin Decoupling

We have seen in the Chapter discussing the Hamiltonians that couplings

between different spin species leads to a splitting of the lines. These couplings can

either be isotropic J couplings (in liquid and solid samples) or dipolar couplings

which are orientation dependent (only in solids). 

We consider a heteronuclear two-spin system where the irradiation

frequencies of both spins are set on resonance with a coupling that can be described in

the rotating frame by the Hamiltonian

. [8.14]

Such a Hamiltonian will lead to a splitting in the I-spin and the S-spin spectrum of

magnitude  as illustrated in Fig. 8.2a. Often these splittings are unwanted because

they lead to more lines in the spectrum and make the spectrum more crowded and

�''ˆ bIS2ÎzŜz=

bIS

rf irradiation

S-Spin SpectrumI-Spin Spectrum

bISbIS

a)

b)

Figure 8.2: Heteronuclear Spin Decoupling
Spectra of a heteronuclear two-spin system a) without decoupling and b) with rf irradiation
on the I spins.
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complicated. Such splittings can be removed by irradiating the spin that is not

observed with either cw irradiation ore more complicated multiple-pulse sequences.

The schematic representation of the pulse sequence for acquiring an S-spin spectrum

with I-spin decoupling is shown in Fig. 8.3. After the 90 pulse on the S-spin channel,

the signal is detected on the S-spin channel while the I-spin channel is irradiated with

an rf-field of amplitude .

To explain the working of the decoupling sequence we can imagine that we

replace the cw irradiation of Fig. 8.3 by many closely spaced 180 pulses. We have

seen in Chapter 8.1 that 180 pulses lead to a refocusing of the heteronuclear

couplings. Therefore, we expect to see a spectrum without the splitting if we sample

the spectrum in the center of the delays between the 180 pulses as illustrated in Fig.

8.4. If we make the I-spin pulses in Fig. 8.4 weaker, the pulses get broader and broader

until they start to touch each other. Then we end up with continuous wave (cw)

irradiation on the “decoupler (I-spin) channel”. It also turns out that the condition of

“synchronous sampling” is not needed as long as . 

Homonuclear couplings will, however, remain unaffected by the rf irradiation.

In the practically important case of 13C spectroscopy, the 13C-13C homonuclear

couplings are negligible, because of the low natural abundance of 13C: only about 1%

of the carbons are magnetic and each given 13C has most probably only 12C neighbors. 

Figure 8.3: Decoupling Pulse Sequence
Schematic pulse sequence for acquiring the S-spin spectrum under I-spin decoupling.
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So far, we have assumed that the irradiation on the I spin is performed “on

resonance”. In general, this will not be possible for all spins because of the chemical-

shift dispersion. In the case of off-resonance cw irradiation where a chemical-shift

term  appears in the Hamiltonian, the coupling is not averaged to zero but scaled

to:

[8.15]

where  is the decoupler field amplitude.

To render the dependence on chemical-shift offset smaller than given by Eq.

[8.15], broadbanded decoupling schemes have been invented (MLEV, WALTZ, DIPSI,

GARP, WURST). The MLEV sequence, for example, uses composite pulses (see

Chapter 2.8.2) of the type R=( ) and combines them into a “supercycle”

according to:

[8.16]

where  is the phase-inverted composite pulse given by ( ).

These broadbanded pulse schemes are very effective for liquid state

spectroscopy. In solids where the I-spins are usually strongly coupled amongst

themselves (note that the spin systems are essentially infinitely large because the

Figure 8.4: Decoupling Pulse Sequence
Schematic pulse sequence for acquiring the S-spin spectrum under I-spin decoupling.
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dipolar through-space interaction couples all spins in a solid) other design principles

must be applied. 

8.3 Pulsed Polarization-Transfer Experiments

Polarization-transfer pulse sequences cause the transformation .

Obviously, the two spins must be coupled to make such a transfer possible.There are

several reasons why such a polarization transfer is desirable:

 To enhance the polarization of spins with a low gyromagnetic ratio . The

equilibrium polarization of a nucleus is proportional to its gyromagnetic ratio.

Almost all spectroscopically important nuclei have a lower gyromagnetic ratio than

protons, e.g. 13C with , 15N with  and 2D with . If

we can transfer the polarization from the protons to these low-  spins, we can

improve the signal-to-noise on these nuclei by a factor of 4, 10 and 6 respectively. In

terms of the measurement time needed to record a spectrum of a given target

signal-to-noise ratio, this means a time saving of a factor 16, 100 and 36,

respectively.

 The T1-relaxation times of protons are often considerably shorter than the T1-

relaxation times of low-  nuclei. If we use the equilibrium polarization of the

protons, then we can chose a repetition rate of the experiment based on the build up

of the equilibrium polarization of the protons.

 Polarization-transfer experiments can be used to correlate the chemical shifts of two

spin species to elucidate the coupling network and the bonds that connect the spins.

This will be discussed in more details in the next Chapter.

8.3.1 Principles of Polarization Transfer

If we consider the matrix representation of the  and the  operator in the

default two-spin basis ( , ,  and ) we find

Îz Ŝz

S

H C 4 H N 10 H D 6





Îz Ŝz

       
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. [8.17]

The energy level scheme for the such a two-spin system is given by

. [8.18]

From the matrix representation, we can immediately see that our desired

transformation  could be realized by a population exchange between the

levels 2 and 3. This could be realized by a selective 180 pulse applied to the (23)

transition, except that this is a forbidden zero-quantum transition that cannot be

excited by a radio-frequency field. Using rf fields we can only irradiate the four one-

quantum transitions shown by solid lines in Eq. [8.18].

It is also immediately verified from the matrix representation that another way

to achieve our goal is a pair of selective 180 pulses applied to the one-quantum

transitions (24) and (34). Note that the one-quantum transitions (13) and (12) must

remain untouched by the pulses. If there is no coupling between the two spins, the

transitions (13)/(24) and (12)/(34) are degenerate and selective pulses on a single

transition are impossible. From the matrix representation we can deduce the density

operator after the first and second selective pulse

[8.19]

Such a pulse sequence can be realized but requires a precise knowledge of the

transition frequencies and very selective pulses that invert only one line of the J-

Ŝz 

1 2 0 0 0
0 1 2– 0 0
0 0 1 2 0
0 0 0 1 2–

=Îz 
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coupled multiplet. In practice a pulse sequence that uses pulses and free evolution

during delays is used that leads to the same result.

8.3.2 The INEPT Experiment

The refocused INEPT (Insensitive Nuclei Enhanced by Polarization Transfer)

pulse sequence is schematically shown in Fig. 8.5. We assume again a heteronuclear

two-spin system with the weak-coupling Hamiltonian

. [8.20]

The initial density operator after the first 90 pulse is given by 

[8.21]

and evolves during the first interval  according to Chapter 8.1.2 to

. [8.22]

Setting  leads to

[8.23]

a pure anti-phase term on the I spin. The two 90 pulses on the I-spin and S-spin

channel lead to

Figure 8.5: Refocused INEPT Pulse Sequence
Schematic pulse sequence for the refocused INEPT experiment.
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[8.24]

pure anti-phase magnetization on the S spin. This term evolves now during the

second interval  under the heteronuclear spin-echo sequence to

. [8.25]

Setting again  leads to

[8.26]

If we now apply the last 90 pulse (the gray pulse in Fig. 8.5) we have achieved the

desired polarization transfer . Without the last 90 pulse we can directly detect

the  magnetization with or without proton decoupling as shown on Fig. 8.5. 

Using the INEPT pulse sequence we have achieved the same result as using the

two selective pulses by using only hard unselective pulses and delays. Since most

one-bond J couplings are of similar magnitude (130-150 Hz) we can adjust the delay 

simultaneously for all spin pairs.

The efficiency of the polarization transfer is 1 for a two-spin system if

. If this is not fulfilled, the efficiency is  (the square comes

from the two sine factors for the two periods of the experiment). For I2S and I3S spin

systems modified conditions hold:

[8.27]

As mentioned above, we can gain a factor of four in signal for the case of

carbons and protons. Note that the gain in S/N can even be bigger than expected

from our arguments because the relevant relaxation time ( ) is the one of the

protons, instead of the one of the carbons in direct excitation. Usually, the proton

relaxation times are shorter than the ones of low-  nuclei and more experiments per

time unit can be performed, resulting in a further improved S/N of the averaged

signal.
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
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It should be noted that the experiment described above is the so called

“refocused INEPT” experiment. An enhanced signal can also be obtained if one starts

to detect after the first  pulse on the S channel as shown in Fig.8.6. All pulses during

the second  period are left away. In this case, the FID starts with no intensity,

because the state  is not observable. Under the action of the J-coupling,

observable magnetization develops during the FID. In such a spectrum, the S-spin

multiplets are in antiphase and not in phase as in the refocused INEPT experiment as

shown in Fig. 8.7. No decoupling can be used in this experiment since the

heteronuclear coupling is needed during the acquisition time to generate detectable

magnetization.


2
---

Figure 8.6:  INEPT Pulse Sequence
Schematic pulse sequence for the INEPT experiment.
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2ÎzŜx
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Figure 8.7: In-Phase and Anti-Phase Multiplet
Multiplet structure in an IS spin system for the refocused INEPT and the INEPT experiment.
 



159
8.3.3 Other Pulsed Polarization-Transfer Experiments

There are quite a few other experiments which implement polarization-

transfer schemes in a similar way to the INEPT experiment. They are all based on the

 motif that is also used as the basis of the INEPT experiments. One example

for such a sequence is the DEPT experiment (Fig. 8.8) leading to intensities that are

modulated by the length of final -angle pulse on the I channel

[8.28]

and not by the size of the coupling as in the INEPt experiement. 

Another example for such experiments is the APT sequence which is used to

determine the number of directly bound protons on a 13C atom. All these sequences

can be incorporated as building blocks into more complicated one-dimensional or

two-dimensional experiments.

8.4 Cross Polarization

An alternative way for heteronuclear polarization transfer is the so-called

cross-polarization experiment (Fig. 8.9). This experiment is particularly important in

  ––

Figure 8.8: DEPT Pulse Sequence
Schematic pulse sequence for the DEPT experiment.
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solid-state NMR where INEPT-based polarization transfer is difficult to achieve due

to the strong homonuclear dipolar couplings.

For an isolated heteronuclear two-spin system the Hamiltonian neglecting

chemical-shift terms is given by:

[8.29]

or if we tilt the coordinate system such that the new z-axis is along the old x axis:

[8.30]

The matrix representation of this Hamiltonian in the tilted frame is given by

[8.31]

with  and .

Such a Hamiltonian can be decomposed into two non-interacting 2x2 blocks, or

pictorially speaking, into two fictitious spin-1/2 systems, known as double-quantum

( ) and zero-quantum ( ) subspaces. The double-quantum subspace  contains the

1I

1S

90
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S

decoupling
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Figure 8.9: Pulse Sequence for Cross Polarization
In a cross-polarization experiment the rf-field amplitudes  and  are matched in order
to allow polarization transfer from the I spins to the S spins. 
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energy levels 1, 4 and coherences between these two, the zero-quantum subspace 

the energy levels 2, 3 and the coherences between them. We can write the

Hamiltonian in these two subspaces in operator form as 

. [8.32]

Inspection of the Hamiltonian of Eq. [8.31] shows that for 

the dipolar coupling can lead to an inversion of the population of the energy levels 2

and 3. The condition  is the so-called Hartmann-Hahn condition:

[8.33]

The operator in the fictitious spin-1/2 subspace is then  and this can be used to

apply a selective  pulse to the (23) transition. As mentioned earlier, such a pulse

causes a complete transfer of polarization

[8.34]

The “pulse length” is given by  and as function of  the

magnetization oscillates back and forth between the I and the S spin. For a powdered

solid sample, where  is the dipolar interaction, the superposition of different

cosine functions due to the orientation dependence of the dipolar coupling, gives rise

to a damped oscillation as depicted in  Fig. 8.10.

The cross-polarization experiments can also be performed in the liquid state,

with the J-coupling as the transfer mechanism. It is, however, much more sensitive to

the precise setting of the Hartmann-Hahn matching condition due to the smaller

magnitude of the J coupling.
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Figure 8.10:  Cross Polarization
a) Evolution in a powder of the -spin polarization for an isolated two-spin system  with
the initial condition . The time is given in units of the dipolar coupling period

. b) Pake doublet obtained from the Fourier transform of the oscillation . The
frequency scale is in units of the dipolar coupling constant. 
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9 Two-Dimensional NMR Spectroscopy

We have briefly discussed the principles of two-dimensional NMR

spectroscopy in Chapter 3.3 in the context of the longitudinal chemical-exchange

experiment. Schematically, we can represent a 2D experiment as shown in Figure

9.1with four different time periods. The preparation period generates the initial state

of the spin system for the time evolution during . It can be a simple 90 pulse or a

more complicated pulse sequence that generates the desired initial density operator.

The state evolves then during the evolution time which is not a fixed time but

incremented by an interval  after each experiment. The mixing time converts the

coherences which evolved during the evolution time into observable one-quantum

coherences. These one-quantum coherences are then detected during the detection

time . 

A typical example for the mixing time are either a change in the coherence

order, i.e., the conversion of multiple-quantum coherences that evolved during the

time  into observable single-quantum coherences during . A second important

example is the transfer of magnetization from one spin to another spin during the

mixing time to obtain correlation spectra that correlate the chemical shifts of different

spins. The mixing period is a very important part of the pulse sequence because it

determines the information content of the spectrum.

Such an experiment leads to a two-dimensional data set which can be

described in the time domain by the signal . After Fourier transformation of

both dimensions, one obtains a two-dimensional frequency-domain spectrum

Figure 9.1: Two-Dimensional NMR Experiment
Schematic design of a two-dimensional NMR experiment.
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. The details of the data-acquisition scheme and of the processing are not so

important in the context of the present course and will not be discussed here. This

topic can be found in detail in the textbooks about modern multi-dimensional NMR

spectroscopy.

In the following we will discuss the pulse sequences and the resulting spectra

of some important two-dimensional NMR experiments and their information content.

In addition, important applications of the experiments will be shown.

9.1 Homonuclear 2D Correlation Spectroscopy (COSY)

One-dimensional NMR spectra cannot always be analyzed unambiguously.

The spectrum shown in Fig. 9.2, for example, could be the one of a weakly coupled

two-spin system but it could also be the spectrum of 4 uncoupled spins with different

chemical shifts. To remove this ambiguity, homonuclear two-dimensional correlation

spectroscopy can be employed. In such a spectrum, we can detect two-spin and multi-

spin correlations as they appear between coupled spins where the Hamiltonian

contains two-spin terms, e.g., the isotropic J-coupling Hamiltonian . 

Spins belonging to a coupled spin system can be identified by polarization-

transfer or coherence-transfer experiments. Several examples for heteronuclear

polarization transfer have been discussed in the preceding chapter. The

corresponding 2D-spectra will have cross-peaks between correlated spins, while

single spins appear only on the diagonal of the spectrum.

In the following, we discuss the example of the COSY experiment: The general

principles of 2D spectroscopy as discussed in Chapter 3.3 also apply to this

S 1 2( )

Figure 9.2: One-Dimensional Spectrum

2J12Î1zÎ2z
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experiment. As already discussed in the previous section, the signal is detected as a

function of the time t2 while the time t1 is varied systematically to generate a two-

dimensional time-domain data set . After double Fourier transform, the 2D

spectrum, , is obtained.

For the COSY experiment we consider two spins with chemical shifts and a

weak J coupling. The Hamiltonian and the main features of the different time periods

are:

 The preparation period consists of a relaxation delay where equilibrium

magnetization  is established and a 90 pulse that creates x

magnetization. In the calculation here, we will only look at magnetization

originating from spin 1 to simplify the discussion. Of course, magnetization of spin

2 must be considered the same way:

[9.1]

 In the evolution period, the magnetization evolves under the chemical shift and the

scalar coupling (weak-coupling case) with the Hamiltonian:

. [9.2]
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y

Preparation Evolution Mixing Detection

Figure 9.3: COSY Pulse Sequence
Schematic drawing of the COSY pulse sequence with two 90 pulses and the evolution time 
and the detection time .
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[9.3]

 The mixing time consists of a single 90 pulse that interconverts coherences. Note

that we have converted anti-phase coherence of spin 1 to anti-phase coherence on

spin 2.

[9.4]

 During the detection period, the system evolves under the influence of chemical-

shift and J coupling. We detect . Only the third and fourth term

listed above contribute to the final signal. The fourth term does only contribute at

times t2>0 because it can evolve into observable magnetization:

[9.5]
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[9.6]

The total signal is then given by:

[9.7]

and looks, after Fourier transform, as plotted in Fig. 9.4. The cross-peaks are in anti-

phase absorption mode, i.e., each of the lines in the multiplet is an absorption line but

the different lines in the multiplet have different signs. The diagonal peaks are in-

phase dispersion mode, i.e., each of the multiplet lines is dispersive but all the lines in

the multiplet have the same sign.

The cross peaks in a COSY spectrum appear only between spins that are

directly coupled by a J coupling and they identify, therefore, neighbors. No relay

peaks can be found. In an AMX spin systems with , no cross peaks will

appear between the resonances of spins A and X. Figure 9.5 shows an example of a

COSY spectrum of a smaller protein. The magnitude and the relative sign of the J

couplings can be extracted from the cross-peak patterns. There are, however, better

experiments available to obtain this information.

There are many variations of the basic COSY experiment that are, nowadays,

used more often than the original COSY sequence. The most important variation is

the double-quantum-filtered COSY (DQF COSY) experiment. Figure 9.6 shows the

pulse sequence which differs from the basic COSY sequence in an additional 90

pulse. The third pulse in combination with an appropriate phase cycle is used to select

double quantum coherence and convert it into antiphase magnetization. This is the
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2Î1zÎ2y
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second term in Eq. [9.4]. Through the phase cycle all the other terms are eliminated

and the strong anti-phase diagonal peaks in the COSY spectrum are eliminated. The

resulting spectrum has anti-phase absorption-mode lines for the diagonal and the

cross peaks as shown in Fig. 9.7. 

Other variations of the COSY experiment include the E.COSY experiment

which has a simplified multiplet structure that allows better extraction of coupling

constants. 

Figure 9.4: Peak Line Shapes in a COSY Spectrum
from F.J.M. van de Ven: Multidimensional NMR in Liquids, VCH Publishers
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9.2 Nuclear Overhauser Effect Spectroscopy (2D NOESY)

Relaxation in spin systems is caused by fluctuations in the local magnetic field.

Such fluctuations can be produced by a change in the anisotropic interactions (dipolar

coupling, chemical shift, or quadrupolar coupling) due to molecular tumbling.

Relaxation leads to a damping of the coherences (T2 relaxation) and to an

Figure 9.5: Example of an COSY Spectrum
1H COSY spectrum of the small protein ubiquitin.
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equilibration of the populations towards the equilibrium density operator (T1

relaxation) as was already discussed in the classical description using the Bloch

equations. Besides such a decay of the magnetization towards the thermal

equilibrium, relaxation can also lead to polarization and coherence transfer between

different nuclei. A detailed quantum-mechanical description of these phenomena is
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--- 
 

y

Preparation Evolution Mixing Detection

Figure 9.6: DQF COSY Pulse Sequence
Schematic drawing of the DQF COSY pulse sequence with three 90 pulses and the evolution
time  and the detection time .t1 t2
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
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Figure 9.7: COSY Line Shapes
Line shapes of the diagonal and cross peaks in a) the COSY and b) the DQF COSY
experiment. (From J. Keeler, Understanding NMR Spectroscopy)
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beyond the scope of this lecture and we will only discuss them on a

phenomenological level. For a two-spin system in a classical picture, we can write the

following system of coupled differential equations for the z magnetization:

. [9.8]

Note the formal identity of Eq. [9.8] with the

equations describing the 2D chemical exchange

process (see Chapter 3.3). The auto-relaxation rate

constant  and the cross-relaxation rate

constant  can be expressed in terms of the

transition probabilities in the four energy levels

of a two-spin 1/2 system (see Fig. 9.8). In a

perturbation approach (Fermi’s Golden Rule), the

transition probabilities are given by:

[9.9]

where  is the time-dependent dipolar Hamiltonian and  (Fig. 9.9) is the

spectral-density function of the random process that modulates  evaluated at the

frequency . For isotropic tumbling with a correlation time , we obtain
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[9.10]

For the homonuclear case (two identical nuclei), the transition probabilities simplify

to:

[9.11]

with

 . [9.12]

For the relaxation-rate constants, we obtain:

[9.13]

Note, that the cross-relaxation rate constant  is proportional to . It

allows, therefore, to measure internuclear distances. This is the basis for NMR

structure determination. The correlation time  is often unknown and no absolute

distances can be determined. However, a known distance in the structure can be used

for a calibration of the data.

Cross-relaxation rates are usually determined by 2D spectroscopy. The pulse

sequence used is exactly the same as for 2D chemical exchange (Fig. 9.10). For

,  is positive and the 2D spectrum looks the same as for chemical

exchange (see Chapter 3.3) with positive cross peaks. For , the cross peaks

have a negative intensity, but still a pure absorption line shape. For ,

cross relaxation is quenched. The intensities of diagonal and cross peaks for different

correlation times are plotted in Fig. 9.11. At 500 MHz the zero-crossing of the cross-

relaxation rate constants appears at a correlation time of = 3.6 ns.
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9.3 Double-Quantum Filtered Spectroscopy: INADEQUATE

The homonuclear methods described so far apply mostly to 1H spectroscopy

where we have a high abundance (100%) of the nuclei. The methods do not work for
13C or 15N where we have a natural abundance of only 1.1% and 0.4%, respectively.

There is a very low probability that we have two magnetically active nuclei close to

each other and the spectra (COSY and NOESY) will be dominated by the isolated

nuclei and have, therefore, little information content. The DQF COSY spectrum

eliminates the contributions from isolated spins and could in principle be applied to

diluted spin systems.

In practice, however, a different experiment is used which is a double-

quantum single-quantum correlation experiment named INADEQUATE (Incredible

Natural Abundance DoublE QUAntum Transfer Experiment). The basic pulse

sequence is shown in Fig. 9.12. A typical spectrum shows peaks at the sum chemical-

shift frequency in  and the chemical shifts in  if two spins have a one-bond J

coupling as is shown for the example of ethyl benzene in Fig. 9.13. Such a spectrum

allows the tracing out of the coupling network and, therefore, the connectivity of the

carbon atoms. Such a spectrum is very useful for the assignment of the 13C

resonances. 

The pulse sequence generates double-quantum coherence during the

preparation period where only the J coupling and no chemical shifts are active (see


2
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 

y
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Figure 9.10: NOESY Pulse Sequence
Schematic drawing of the NOESY pulse sequence with three 90 pulses and the evolution
time  and the detection time .t1 t2
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Chapter 8.1). The double-quantum coherence then evolves during  at a frequency

which is the sum of the chemical shifts. It is then converted to observable one-

quantum coherence by the mixing pulse. The advantage of the INADEQUATE

experiment over the DQF COSY experiment is the improved suppression of the

isolated spins due to the absence of diagonal peaks.

Figure 9.11: Peak Intensities in NOESY Spectra

t1
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9.4 Heteronuclear Correlation Spectroscopy

We can also correlate the chemical shifts of different nuclei by including a

polarization-transfer sequence (see Chapter 8) into the pulse sequence. The

polarization transfer can either be based on the J coupling or a dipolar coupling

between the two spins. Such experiments allow the assignment of the chemical shifts

of the X nuclei if the proton chemical shifts are known. In addition, the chemical-shift

range of the X nuclei is often larger and provides better resolution for crowded proton

spectra.

To obtain the highest possible sensitivity, it is important to optimize the way

the experiment is designed. There are three points to consider: (i) The initial

Boltzmann population that determines the amount of polarization that can be used in

the experiment is proportional to the Larmor frequency. It is, therefore, advantageous

to start the experiment on the nucleus with the higher resonance frequency. Typically,

this will be the protons. (ii) The detection frequency determines the voltage induced

in the coil which is proportional to the square of the Larmor frequency while at the

same time the noise goes up with the square root of the Larmor frequency. It is,

therefore, advantageous to detect the magnetization at the highest possible frequency

which is typically protons. (iii) The efficiency of the polarization-transfer process

determines how much of the initial polarization can be detected. Important points to

Figure 9.12: Pulse Sequence of the INADEQUATE Experiment
Pulse sequence of the 2D INADEQUATE experiment to detect the coupling network of
diluted spin pairs. The delay is set to . 1 4 J1
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consider here are the number of polarization-transfer steps, their length (relaxation)

and the theoretical efficiency of the transfer.

In total we find for the signal-to-noise ratio of an experiment assuming a 100%

efficient polarization transfer

[9.14]

where  is the gyromagnetic ratio of the starting nucleus while  is the

gyromagnetic ratio of the detection nucleus.

Figure 9.13: 13C INADEQUATE Spectrum
2D INADEQUATE spectrum of ethyl benzene showing the connectivity of the carbon atoms.
(copied from http://drx.ch.huji.ac.il/nmr/techniques/2d/inad/inad.html)
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A good overview over the various heteronuclear experiments can be found at

“http://www.chem.queensu.ca/FACILITIES/NMR/nmr/webcourse/”.

9.4.1 X-Nucleus Detected Experiments

Experiments that start on protons and transfer the polarization to the X nucleus

(13C, 15N, ...) where it is detected have not the highest possible sensitivity but they are

very robust and easy to implement. The simplest experiment would use a refocused

INEPT polarization-transfer (see Chapter 8.3) or a cross-polarization sequence as a

mixing step (Fig. 9.14). Due to the low sensitivity of such experiments, they are not

widely used in liquid-state NMR. In solid-state NMR, however, X-nuclei detection is

still widely used due to the broad lines of the protons. There are more advanced

implementations of this experiment which combine the evolution and the mixing time

(constant-time experiments) and have better relaxation properties.

9.4.2 Proton-Detected Experiments

In liquid-state NMR, most heteronuclear correlation experiments are done

using initial proton polarization and proton detection. They require, therefore,

multiple polarization-transfer steps with high efficiency.

Figure 9.14: Heteronuclear Correlation Spectroscopy
Schematic heteronuclear correlation experiment with X-nucleus detection. The mixing
sequence can be any heteronuclear polarization-transfer sequence.
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The conceptually simplest proton-detected 2D

chemical-shift correlation experiment is the HSQC

(heteronuclear single-quantum correlation

spectroscopy) experiment which is a double INEPT

experiment (Fig. 9.15a). A more sensitive experiment is

the HMQC (heteronuclear multiple-quantum

correlation spectroscopy) experiment (Fig. 9.15b) which

requires fewer pulses but has the same length of the

mixing sequence. Both pulse sequences give the same

type of spectra. The main difference is that in the HSQC

spectrum we have single-quantum coherences during 

while in the HMQC spectrum we have multiple-

quantum coherences during  with the chemical shifts

of the I spins refocused due to the  pulse in the center

of . This difference will lead to different behavior

under relaxation leading to differences in sensitivity of

proton frequency
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Figure 9.16: HSQC Spectrum
15N-1H HSQC spectrum of the
protein ubiquitin. 

Figure 9.15: HSQC and HMQC Experiment
Schematic drawing of the a) HSQC and b) HMQC sequence for acquiring heteronuclear
correlation spectra with I-spin detection. The delay is set to .  1 4JIS =
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the two experiments as a function of the molecular weight. An example of an 15N-1H

HSQC spectrum of the protein ubiquitin is shown in Fig. 9.16.

Heteronuclear correlation spectra can be used to resolve a crowded proton 2D

spectrum (NOESY, COSY, ...) into a third S-spin chemical-shift frequency dimension,

i.e., the nitrogen frequency (heteronuclear-edited spectroscopy). This leads to three-

or higher-dimensional (3D, ND) spectra (Fig. 9.17). 

9.5 Structure Determination by Multidimensional NMR

One of the main application of multi-dimensional liquid-state NMR is the

three-dimensional structure determination in biomolecules, especially proteins and

RNA. A combination of the COSY and NOESY schemes allows for a three-

Figure 9.17: Three-Dimensional Spectra
Heteronuclear correlation spectra can be used to increase the resolution in crowded proton 2D
spectra.
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dimensional structure determination of dissolved molecules with a molecular weight

smaller than about 50 kDa (Fig. 9.18).

The COSY experiment allows to identify protons that are J-coupled and,

therefore, belong to the same amino acid. The NOESY experiment allows to

determine distances of protons located on different amino acids (Fig. 9.19). These

NOESY distances are used as constraints in structure determination programs. The

two main procedures used are:

 Distance geometry algorithm

 Restrained molecular dynamics

For larger proteins, more advanced methods that involve heteronuclear multi-

dimensional spectroscopy are used to increase the resolution of the spectra as

described earlier. 

It should be noted, that the NOESY intensities lead to rather imprecise distance

constraints. The large number of such constraints makes up for this uncertainty and

leads to very-well determined structure. Keep, however, the time scale of the NMR

experiments in mind (see Chemical Exchange chapter). The NMR method determines,

Figure 9.18: Protein Structure
Example: Stereo view of the 3D-NMR-structure of Interleukin-16 (Nat. Struct. Biol. 5, 682-686).
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in case of fast dynamics, an “average” structure. Note the unusual averaging law,

because the distance inter as the inverse sixth power.
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