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ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland 

 

ABSTRACT 

The iridium-catalyzed asymmetric allylic substitution under biphasic conditions is reported. This 

approach allows the use of various unstable and/or volatile nucleophiles including hydrazines, 

methylamine, t-butyl hydroperoxide, N-hydroxylamine, α-chloroacetaldehyde and glutaraldehyde. This 

transformation provides rapid access to a broad range of products from simple starting materials in good 

yields and up to >99% ee and 20:1 d.r. Additionally, these products can be elaborated efficiently into a 

diverse set of cyclic and acyclic compounds, bearing up to four stereocenters. 

 

Enantioselective, transition metal-catalyzed allylic substitution has emerged as a powerful tool for the synthesis 

of chiral building blocks from simple starting materials and a wide range of nucleophiles.1 The electrophilic nature 

of the η3-organometal intermediate typically restricts the conditions to non-nucleophilic organic solvents and with 

few exceptions prescribes rigorous exclusion of water.2 Yet, there are a number of highly reactive and/or unstable 

small molecules such as chloroacetaldehyde, hydrazines or N-hydroxylamine that due to their reactivity or limited 

stability in pure form are stored, sold, and most safely handled as aqueous solutions. To date, only protected versions 

of these reagents including hydroxamic acids and hydrazones have been employed in transition metal-catalyzed 

allylic substitution.2d,3 Developing methods which employ the commercially available aqueous solutions of these 

unstable molecules, however, would significantly expand the synthetic utility of enantioselective catalysis.  

In general, organocatalytic methods based on enamine catalysis or hydrogen bonding catalysts have been shown 

to be compatible with aqueous media.4 For instance, aqueous chloroacetaldehyde has been employed as an 

electrophile in enzymatic or organocatalytic aldol reactions but its use as an nucleophile remains elusive.5 In the 

field of asymmetric transition-metal catalysis, biphasic systems for enantioselective oxidations6 and 

hydrogenations7 have garnered significant attention, but transformations generating carbon-carbon bonds under 

aqueous conditions remain scarce.8 Herein we report the asymmetric substitution reaction of racemic allylic 

alcohols with aqueous nucleophiles such as hydrazines, N-hydroxylamines, and α-halo-acetaldehydes catalyzed by 

a chiral Ir(P,olefin) complex under aqueous biphasic conditions (Scheme 1). The transformations employ aqueous 

solutions that the reagents are supplied in, and thus avoid laborious extraction and dehydration techniques.9 Our 

approach delivers products in good yields and high regio- and enantioselectivities for nucleophiles that have been 

rarely employed to date. 
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Scheme 1. Iridium-Catalyzed Allylic Substitution Using Nucleophiles or their Hydrates in Aqueous 

Solutions. 

 
Excess water can pose a challenge in transition metal-catalyzed allylic substitution not only because it can lead 

to decomposition of the η3-organometal intermediate but also due to its inherent nucleophilicity.2g,10 Thus, for a 

productive catalytic cycle with nucleophiles in aqueous solutions, the nucleophilic addition of water to the activated 

allyl-metal complex needs to be either kinetically disfavored or reversible. This makes allylic substitution reactions 

employing branched, unactivated allylic alcohols prime targets for the development of biphasic reactions, as 

nucleophilic attack by water would regenerate the starting material. With these considerations in mind, we set out 

to develop a general approach to biphasic allylic substitutions using the complex derived from [Ir(cod)Cl]2/(S)-L 

and nucleophiles in aqueous solutions.11 

Our group has previously developed an Ir(P,olefin) complex derived from phosphoramidate ligand (S)-L and 

iridium(I) for the displacement of allylic alcohols with various nucleophiles.11 Key features of this catalytic system 

are its high robustness and its use of branched, unactivated allylic alcohols as substrates, activated by Brønsted 

acids.11b Therefore, we envisioned that this system would be well suited to explore allylic substitutions under 

biphasic conditions with nucleophiles that are stabilized in water and thus readily available as aqueous solutions. 

To demonstrate the feasibility of this approach, we initially focused on aqueous hydrazine. Chiral hydrazine 

derivatives are used in stereoselective [3+2]-cycloadditions,12 as organocatalysts,13 and as commercialized drugs 

for the treatment of Parkinson’s disease.14 Hydrazine is a colorless liquid that decomposes explosively and is 

commonly used as a rocket fuel.15 Thus, aqueous solutions of hydrazine find widespread applications in organic 

synthesis. When a 51% aqueous solution of hydrazine was used in combination with the Ir(P,olefin) complex, allylic 

alcohol 1a (R = 2-Np) and 3,5-dichlorobenzoic acid as a Brønsted acid promoter adduct 2a was obtained in 61 % 

yield and 94% ee (Table 1).16 This result encouraged us to investigate aqueous solutions of various substituted 

hydrazine derivatives (Table 1, 2b-2e). Of particular interest are substrates 2d and 2e. Such 1-amino piperazine and 

4-amino-1,2,3-triazole derivatives have garnered significant attention from medicinal chemists and can be found in 

commercial drugs.17 Due to their limited solubility in aprotic, non-nucleophilic organic solvents and the fact that 

they are freely soluble in water, these substrates demonstrate the synthetic power of a biphasic approach 

Subsequently, we examined methyl, ethyl and dimethyl amine, which are gases at room temperature but are 

readily available as aqueous solutions. Interestingly, for these more basic and less nucleophilic reagents, kinetic 

resolution of allylic alcohol 1a was observed, and the enantioselectivity and conversion was found to strongly 

depend on the acidic promoter used (see supplementary information). With 3,5-dichlorobenzoic acid the 

corresponding secondary and tertiary amines were obtained in good yields along with the enantioenriched starting 

material. We then aimed to expand the scope of aqueous nucleophiles to other heteroatoms. Interestingly, tert-butyl 

hydroperoxide and sodium thiomethoxide, sold as 70% and 21% aqueous solutions respectively, afforded the 
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corresponding adducts (2p and 2q) in good yield and stereoselectivity. It is noteworthy, that the catalytic system 

described herein is compatible with both reductants (hydrazines)18 and oxidants (t-butyl hydroperoxide). 

Encouraged by these results, N-hydroxylamine was also investigated as nucleophile for iridium-catalyzed allylic 

substitution. N-alkylated hydroxylamines are useful precursors for chiral nitrones and find application in the 

synthesis of complex molecules.19 Similarly to hydrazine, hydroxylamine is preferably used as an aqueous solution 

or its hydrochloride salt since the pure compound is unstable.20 Recently Zhao reported the enantioselective 

allylation of H2NOH·HCl requiring DMSO as solvent and triethyl amine to liberate hydroxyl amine.21 Hence, we 

believe the biphasic system utilizing aqueous N-hydroxylamine complements this approach. When a 50% aqueous 

solution of N-hydroxylamine was used in combination with the Ir(P,olefin) complex, allylic alcohol 1a (R = 2-Np) 

and dibenzenesulfonamide as a Brønsted acid promoter a adduct 2k was obtained in 64% yield and 93% ee. This 

transformation was found to be compatible with a series of allylic alcohols with excellent selectivity for N-

alkylation (Table 1, and supporting information). 

Table 1. Scope of the Biphasic Iridium-Catalyzed Allylation of N-, O- and S-Nucleophiles.a 

 
a 0.25 mmol scale. Isolated Yields. ee determined SFC on a chiral stationary phase. 2-Np= 2-naphthyl. b (PhSO2)2NH  (1.3 

equiv), isolated after benzoylation. cDCBA (1.3 equiv), yield determined by 1H NMR with an internal standard, isolated after 

acetylation. dDCBA (1.8 equiv). e2.0 equiv. of nucleophile, DCBA (2.3 equiv). f2.0 equiv. of nucleophile, DCBA (2.8 equiv). 
g(PhSO2)2NH (0.5 equiv). h(PhO)2P(O)OH (1.8 equiv). acid. i(PhSO2)2NH (1.3 equiv). DCBA = 3,5-dichlorobenzoic 
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We next focused on the construction of carbon-carbon bonds under biphasic conditions. Since the synthesis of 

halogenated, biologically active molecules has been an ongoing field of research in our group,22 we first investigated 

chloracetaldehyde (3) as nucleophile. Due to its high reactivity chloroacetaldehyde is only commercially available 

as a 50% aqueous solution.23-25 Notably, the asymmetric α-functionalization of chloracetaldehyde is not known. 

thus, our approach provides a complementary approach to optically active chlorides which are traditionally obtained 

by organocatalytic α-halogenation.26 

We found that using 1b (R = Ph) and aqueous chloroacetaldehyde in combination with proline derived amine 

A1,26b ligand (R)-L, and dimethylphosphate afforded aldehyde 4b in 82% yield, 10:1 d.r. and >99% ee. 

Optimization studies revealed that using solvents that give a homogenous reaction mixture such as 1,4-dioxane or 

acetone did not lead to any product formation, indicating that biphasic conditions were essential for this 

transformation. Furthermore, we found that inorganic salt additives (NaCl, Na2SO4, MgSO4) increased the overall 

conversion of the reaction. Presumably, an increase of ionic strength facilitates transfer of the water-soluble 

aldehyde to the organic phase.27 

Table 2. Allylic Alcohol Scope of the α-Allylation of Aqueous Chloro- and Bromoacetaldehyde.a 

 
a 0.25 mmol scale. Isolated yields. ee SFC on a chiral stationary phase. Diastereomeric ratios (d.r.) determined by 
1H NMR analysis of isolated products. DCE = 1,2-dichloroethane. The (R)-L, (R)-A1 or (S)-L, (S)-A1 ligand 

combination resulted in a d.r. of approximately 1:1. Reaction conditions: bBenzhydrylamine (0.1 equiv), ZnBr2 (50 

mol%), 40°C, then NaBH4, MeOH. c(S)-L, (R)-A1, (PhSO2)2NH (50 mol%) and Na2SO4. 
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With optimized conditions in hand, the substrate scope of the reaction with regard to allylic alcohols was explored 

(Table 2). Electron-poor as well as electron-rich substrates were tolerated, resulting in good yields (41-81%), d.r. 

values between 5:1 and 20:1 and excellent enantioselectivity (>99% ee) (4c-4j). Additionally, hetereoaromatic 

allylic alcohols (1k and 1l) afforded the respective products in good yields and excellent selectivities. 

When dichloroacetaldehyde (3b), commercially available as its solid hydrate, was employed under identical 

reaction conditions, no allylated product was obtained. Optimization studies revealed that for this sterically 

hindered aldehyde, primary amine catalysts were required. The iridium-catalyzed reaction of solid 

dichloroacetaldehyde hydrate, diphenylmethane amine, allylic alcohol 1a and Zn(OTf)2 as a Lewis acid promoter 

afforded the corresponding dichlorinated aldehyde, which was isolated as primary alcohol 4m in 55% yield and 

>99% ee after reduction with NaBH4. Bromoacetaldehyde could also be allylated by slight alteration of the reaction 

conditions and several adducts (4n-4w) could be obtained in 62–83% yield, high diastereomeric ratios (10:1–20:1 

d.r.) and excellent enantioselectivity (98 - >99% ee). 

In an effort to demonstrate the synthetic versatility of the product chiral α-chloro- and α-bromoaldehydes, a 

variety of functionalization reactions were carried out (Scheme 2). Diverse heterocycles with various ring sizes 

including aziridines (8), tetrahydrofurans (10) and β-lactams (7) could be accessed efficiently. Addition of 

acetophenone to 4b followed by syn-selective reduction allowed the installation of two additional stereocenters 

with good selectivity (product 5). Furthermore, reduction of 4b and 4o to the primary alcohol with NaBH4 enables 

the synthesis of β-chloronitrile 6 and hydroxylthio ether 11. 

Scheme 2. Functionalization of γ,δ-Unsaturaded Aldehydesa 

 
aReagents and conditions: For detailed experimental procedures see supporting information. (a) 1) 4b, acetophenone, LDA; 2) 

DIBAL-H. (b) 1) 4b, NaBH4; 2) Tf2O, 2,6-lutidine, then KCN, 18-crown-6. (c) 4b, cyclohexylamine, MgSO4, then 2-

(benzyloxy)acetyl chloride, NEt3. (d) 1) 4b, NaBH4; 2) Tf2O, 2,6-lutidine, then H2NBn. (e) 4n, imidazole, ethyl nitroacetate. 

(f) 1) 4n, NaBH4; 2) K2CO3, I2. (g) 1) 4n, NaBH4; 2) PhSH, NaOH. (h) 1) 4n, NaBH4; 2) NaOH.  
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To further extend the synthetic potential of this iridium-catalyzed α-allylation of aldehydes in biphasic media, 

glutaraldehyde was examined as a substrate. Like many small dialdehydes, glutaraldehyde is unstable and readily 

forms polymeric solids.28 In aqueous solutions, glutaraldehyde forms cyclic hydrate 13 which can be stored for 

extended periods of time (Scheme 3).29 

We found that 13 also participates in dual-catalytic α-allylation reactions with allylic alcohol 1b. Interestingly, 

the reaction proceeds with high selectivity for the mono-allylated aldehyde. Since attempts to isolate the resulting 

dialdehyde were unsuccessful, the crude reaction mixture was reduced to the corresponding diol 14, which could 

be further elaborated into tetrahydropyran 15 Alternatively, the mono-allylated aldehyde could be reductively 

aminated in one pot to afford piperidine 16, demonstrating the synthetic potential of the method for the 

enantioselective synthesis of chiral saturated heterocycles. Additionally, we found that with an excess of allylic 

alcohol bis-allylated product 17 could be obtained with high enantio- and diastereoselectivity. Oxidation of diol 17 

using tetrapropylammonium perruthenate afforded unsymmetrical, lactone 18. Sequential addition of two distinct 

allylic alcohols, followed by reduction furnished asymmetric diol 19 in >99:1 ee and >10:1 d.r., which is remarkable 

considering that the reaction could in principle afford 16 different stereoisomers.  

In conclusion, we have developed a biphasic aqueous system for the enantioselective iridium-catalyzed allylic 

substitution. This approach allows the use of readily available aqueous solutions of various nucleophiles which are 

otherwise highly volatile or unstable when anhydrous. These biphasic conditions rely on a robust catalyst system 

and allow for the synthesis of a broad range of synthetically useful chiral intermediates such as hydrazines, 

peroxides, N-hydroxylamines, α-halo-aldehydes, and diols. Their use in asymmetric transition-metal catalysis has 

been largely unexplored because of the requirements to use them in anhydrous forms for most other catalyst 

systems. We believe that the concepts disclosed in this report will serve as inspiration for other transition metal-

catalyzed transformations employing these readily available, yet rarely used reagents. 

Scheme 3. Iridium-Catalyzed α-Allylation of Glutaraldehyde a 

 
aFor detailed experimental procedures see supporting information. Ellipsoids shown at 50% probability. Ts = toluenesulfonyl, 

NMO = 4-methylmorpholine N-oxide. b2.0 equiv. of 19. c(R)-A was used.d1.0 equiv. of 19. 
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