Last Name	
First Name	
Legi-No.	
Branch of Studies	

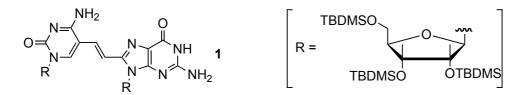
Written Exam Supramolecular Chemistry (OC VII) Fall 2005

F. Diederich, C. Thilgen

Please check:

This exam paper includes 4 pages (in addition to the cover).

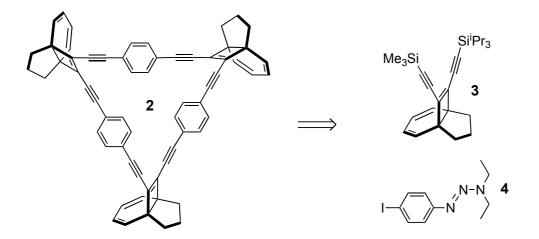
Please note:


- All problems have to be solved.
- Unreadable texts or drawings will not be credited any points.
- If you use additional sheets, make sure to mark them with your name and attach them to this paper.

Points		
Problem 1		
Problem 2		
Problem 3		
Problem 4		
Total		

Grades

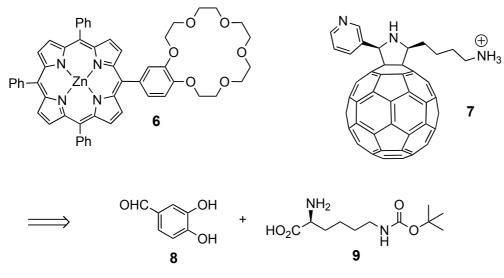
Written	
Oral	
Final	


a. In chloroform, guanosine-cytidine conjugate **1** self-assembles into a trimeric supramolecule. Draw the trimeric structure and indicate the intermolecular interactions.

Bonus question: How could you prove the trimeric nature of the supramolecule?

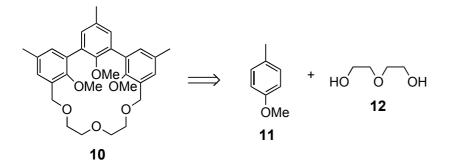
b. How would you prepare **1** using, among others, halogen derivatives of the nucleobases and tributylvinyltin? (Synthetic scheme including reagents, solvents, relevant reaction conditions.)

a. Propose a synthesis for macrocycle **2** (formed as major product next to cyclotetramer and cyclopentamer), starting from **3** and using, among others, component **4**.



b. What is the structure of **5**⁻, generated from **2** under the conditions of laser-desorption time-of-flight mass spectrometry (LD-TOF, negative ion mode)? What is an important driving force for the observed reaction?

 $\begin{array}{c} \mathbf{2} \xrightarrow{hv \text{ (laser)}} \mathbf{5} \\ \hline \\ \text{gas phase} \\ \text{LD-TOF MS} \end{array}$


A supramolecular porphyrin-fullerene assembly **6**·**7** with defined distance and orientation of the components **6** and **7** was prepared as model system mimicking natural photosynthetic reaction centers.

a. Propose a synthesis for the components **6** and **7** using, among others, starting materials **8** and **9**. (You can represent the fullerene moiety by a simple circle in your reaction scheme.)

b. Propose a (schematic) structure for the supramolecular associate **6**·**7** and show the intermolecular interactions that are operative in the ditopic binding mode.

Propose a synthesis for hemispherand **10**, using the *Suzuki* cross-coupling reaction, and *p*-cresol methyl ether (**11**), as well as diethylene glycol (**12**) as main carbon sources.

