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bstract

While cisplatin and carboplatin are active versus most common cancers, epithelial malignancies are incurable when metastatic. Even if
n initial response occurs, acquired resistance due to mutations and epigenetic events limits efficacy. Resistance may be due to excess of
resistance factor, to saturation of factors required for tumor cell killing, or to mutation or alteration of a factor required for tumor cell

illing. Platinum resistance could arise from decreased tumor blood flow, extracellular conditions, reduced platinum uptake, increased efflux,
ntracellular detoxification by glutathione, etc., decreased binding (e.g., due to high intracellular pH), DNA repair, decreased mismatch repair,
efective apoptosis, antiapoptotic factors, effects of several signaling pathways, or presence of quiescent non-cycling cells. In lung cancer,
attening of dose–response curves at higher doses suggests that efficacy is limited by exhaustion of something required for cell killing, and

everal clinical observations suggest epigenetic events may play a major role in resistance.

2007 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Cisplatin and carboplatin have broad antitumor activity,
ut normal tissue toxicity is largely limited to gastrointestinal
nterochromaffin cells, kidney convoluted tubules, cochlear
air cells, dorsal root ganglia and megakaryocytes [1], sug-
esting an epigenetic influence in toxicity. Normal cells have
everal mechanisms of protection from a noxious environ-
ent [2–4] that may also underlie cancer chemotherapy

esistance.

. Platinum resistance

Cisplatin resistance has been studied to a greater extent
han has carboplatin resistance. However, in reviewing plat-
num resistance mechanisms, the overall available data
trongly suggest that resistance mechanisms are very similar
or cisplatin and carboplatin (although not always identical).
n this review, we will make the assumption that the same
echanisms generally apply to both, recognizing that this
ill not be so in all instances.
For colon and renal cancers, intrinsic resistance limits plat-

num usefulness. For many other malignancies, some patients
nitially respond, but acquired resistance then develops.

hile acquired resistance has been attributed to mutations
5], various clinical [6] and laboratory [7] observations and
he rapid induction of resistance with brief drug exposure in
itro [8] and clinically [9,10] suggest epigenetic changes may
lso be important.
We hypothesized that resistance mechanisms may be
egarded in pharmacodynamic terms and that dose–response
elationships would reflect the major mechanisms underly-
ng resistance [11]. Resistance may be classified as “active”

(
e
m
a

due to excess resistance factor, giving a shoulder on a
ose–response curve [DRC]) (Fig. 1) versus saturable pas-
ive (deficiency of a factor required for drug efficacy, giving
DRC terminal plateau) versus non-saturable passive (due to

actor alteration, giving a decreased DRC slope) [11]. Exam-
les of active resistance factors would include efflux pumps,
NA repair systems, anti-apoptotic factors, etc. Examples
f factors that might give saturable passive resistance if
eficient would include drug uptake or activating systems,
bligate targets (e.g., topoisomerase II for topoisomerase II
nhibitors), proapoptotic factors or factors that are part of the
poptotic cascade, or cells in a sensitive phase of the cell
ycle. Non-small cell lung cancer (NSCLC) DRCs for cis-
latin combinations flatten at higher doses, suggesting that
fficacy is ultimately limited by saturable passive resistance,
.e., by deficiency of a required factor [12]. A potential exam-
le would be the presence of non-cycling cells, in keeping
ith the relative resistance in vitro of quiescent/slowly prolif-

rating cells [13–16]. Overall, several factors may contribute
o resistance (Table 1).

. “Classical” resistance mechanisms

.1. Blood flow and drug delivery

Delivery of chemotherapy and oxygen varies with blood
ow. Hypoxia reduces efficacy of many agents, but has little

mpact on cisplatin [17]. With respect to drug delivery, tissue
rug concentrations conform to either flow-limited models

varying with blood flow [18]) or to membrane-limited mod-
ls (not proportional to flow) [19,20]. Against a flow-limited
odel for cisplatin, concentrations are as high in necrotic

s in viable human tumors [21] and cisplatin concentrations
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Table 1
Mechanisms of resistance to platinums

Mechanism Contributing factor

Impaired blood flow/drug delivery ↑ Tissue pressurea ↑ Plasma fibrinogenb ↑ Blood viscosityb

↓ Blood pressuree ↓ RBC deformabilityb

Extracellular matrix/other factors ↑ Tissue pressurea/↓ diffusion ↑ �-Glutamyltransferase
↑ Fibronectin ↑ Type IV collagen ↑ Laminin

Decreased drug uptake ↑ Cell membrane rigidity ↑ Sphingomyelin ↑ Cholesterol
↑ NaClc ↑ KClc ↑ Mannitolc

↑ Extracellular pH ↑ Protein binding
↓ Copper transporter CTR1 ↑ Copper ↓ CaCl2c

↓ Uptake concurrently of several
factors

Concurrent ↓ expression several
transporters

↓ �-Catenin

Defective endocytosis/formation of
endocytic recycling compartment

↓ Small GTPases (rab5, rac1,
rhoA) which regulate
endocytosis

Increased efflux ↑ Cu transporters ATP7A, -7B ↓ CuCl2c ↑ Intracellular pH
↑ MRP2/cMOAT/GSH-X pumpd ↑ MRP1d ↑ p-Glycoproteind

↑ MVP/LRPd Abnormal sorting into exosomal
pathway

↑ Sequestration intracelluarly

Increased detoxification ↑ GSH ↑ GSTd ↑ GST-pi/GST-pi SNPse

↑ �-Glutamylcysteine synthase ↑ �-Glutamyltransferase ↑ GSH peroxidase
↑ Glutamate cysteine ligase ↑ GSH reductase ↑ Catalase
↑ Dihydrodiol dehydrogenase ↑ Superoxide dismutase ↑ Metallothioneinsd,e

Decreased drug binding ↑ Proton pumps ↑ Intracellular pH ↑ Extracellular pH
↑ In cell cycle G1/ ↓ in G2/M ↑ Histone methylation

Increased DNA repair ↑ Nucleotide excision repair system
(ERCC1 and XPF)

↑ XPAe ↑ BRCA1e

Host ERCC1/XPD SNPse, ↑ Topoisomerase-II ↑ REV1
↑ Base excision repair (DNA
polymerase-�d, -zeta, and -eta)

↑ Homologous recombination
repair

↑ DDB2 (damaged-DNA-
binding-protein-2

↑ DNA damage recognition protein
HMG1

Increased tolerance of DNA damage ↓ DNA postreplicational mismatch
repair

↓ hMLH1, hMSH2, hMSH6d ↓ Non-homologous end-joining
repair

Decreased pro-apoptotic factors Down-regulation/↓ expression (p53,
p53-binding-protein-2, Bax, Fas,
caspases 8, 9, other)

↓ Activation (Fas, caspase 9) P53 mutation (with
overexpression of a
non-functional protein)d,e

Mitochondrial abnormalities P53 deletion

Increased apoptosis inhibitors ↑ Bcl-2d,e ↑ Bcl-xLd,e ↑ Bfl-1/A1
↑ Survivin Hypoxia (via ↑ Bcl-xL) ↑ FLIP
↑ Xiap ↑ IAP-2 ↑ COX-2d,e

Altered mitochondria ↑ Fatty acid use for O2 consumption ↑ Mitochondrial-uncoupling-
protein-2

↑ No. mitochondria

↓ Membrane potential

Increased chaperones ↑ HSP27d ↑ HSP90-� ↑ HSP70
↓ GRP78

Altered cell signaling pathways ↑ E-cadherin ↑ EGF/EGFR Catenins: ↑ � & � / ↓ �

↑ Heregulin/ ↑ p21WAF1/CIP1 ↑ Her-2/neud PTEN loss
↑ PI3K ↑ AKT ↑ mTOR
↑ MAPK signaling cascaded ↑ p110� ↑ Hyaluronan-CD44
↑ c-Myc/c-Fos/c-Jun activation ↑ /Mutated ras ↑ c-cot
↑ STAT1/STAT3/JAK2 ↑ PDE2 ↑ PKC-iota
↑ Protein phosphatases 2A & 4 SRPK1 inactivation ↓ SAPK/JNK activation
↓ p38 kinase activation ↓ IP3R1 ↓ HGF

Transcription factors, cell cycle related
factors, checkpoint kinases, etc.

↑ YB-1 ↑ CTF2 ↑ ATF4
↑ ZNF143 ↑ mtTFA ↑ Ets-1
↑ Zipper transcriptional factor ↑ AP-2 ↑ SKP2
↑ NF-kappaBd ↑ Cyclin D1
↓ Chk1 ↓ Chk2
↓ Telomerase mRNA expression ↓ Telomere length ↓ Telomerase activity
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Table 1 (Continued )

Mechanism Contributing factor

Gene arrays: differential expression ↑ FN1 ↑ TOP2A ↑ LBR
↑ ASS ↑ COL3A1 ↑ STK6
↑ SGPP1 ↑ ITGAE ↑ PCNA
↑ MDR1 ↑ MRP1 ↑ MRP2
↑ CD55 ↑ PGK1 ↓ Caveolin 1

Proteomic analyses: differential expression ↑ HSP60/HSP90/heat-shock cognate
71 kDa protein

↑ Calmodulin ↑ Calumenin

↑ Peroxiredoxins PRX 2/PRX 6 ↑ GST ↑14-3-3
↑ Voltage-dependent anion-selective
channel-1

Miscellaneous ↑ Ribosomal proteins RPS13, RPL23 Altered sphingolipid pathway Altered ganglioside expression
Chromosomal abnormalities ↑ Splicing factor SPF45 ↑ Serum LDHd,e

↑ Glucose utilizationf ↑ Lactate productionf ↑ LDH-5e,f

↑ Golgi apparatus ↓ Microsatellite D6S1581 ↓ Pyruvate kinase M2
a Paradoxically associated with improved cisplatin efficacy and patient survival.
b Thought to be important for drugs in general, but not directly tested with platinums.
c Alter platinum cellular uptake and efficacy when added in vitro.

some s

ed platin

i
fl
w
a

b

t
b

F
r
a
(
t

d Effect not seen consistently across all studies, or opposite effect seen in
e Demonstrated in clinical studies.
f Despite cells with low intracellular and extracellular pH having decreas

n human autopsy tissues do not correlate with organ blood
ow rates [22]. Human tumor cisplatin concentrations do vary

ith pulse and blood pressure [23], with metastatic site [23],

nd with tumor type [21,23].
Since blood flow autoregulation is defective in tumors,

lood pressure fluctuations have greater impact on flow to

d
h
i
b

ig. 1. Dose–response relationships and proposed resistance mechanisms. We hy
esistance factor (“active resistance”) would give a shoulder on the dose–respons
lteration of a factor such as a target or drug transport or activating system, etc. (
analogous to decreased affinity of a drug for its receptor), and deficiency of a fa
erminal plateau on the dose–response curve (analogous to non-competitive inhibiti
tudies.

um efflux and increased platinum uptake, binding and efficacy.

umors than to normal tissues [24], and agents that alter
lood pressure may selectively alter tumor blood flow/drug

elivery [24–26]. Decreased red blood cell deformability,
igh fibrinogen levels, etc. may reduce tumor blood flow by
ncreasing blood viscosity [27,28], while agents that reduce
lood viscosity (e.g., pentoxifylline, mannitol or fibrinolytics

pothesize that if log % cell survival is plotted vs. drug dose, excess of a
e curve (analogous to competitive inhibition of drug effect), mutation or
“non-saturable passive resistance”) would decrease the slope of the curve
ctor required for cell killing (“saturable passive resistance”) would give a
on of drug effect).
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27,29–31]) might increase tumor blood flow and drug deliv-
ry. While both blood flow [32] and drug diffusion through
nterstitium from vessel to tumor cell [33] may be impeded by
he abnormally high tissue pressures in tumors, higher inter-
titial fluid pressures may nevertheless be associated with
ncreased cisplatin efficacy and prolonged patient survival
34]. Overall, it is unknown to what extent tissue pressure
nd tumor blood flow affect platinum activity clinically.

.2. Extracellular environment

Cisplatin-induced apoptosis is reduced in the presence of
he extracellular matrix proteins fibronectin, type IV collagen
nd laminin that may bind tumor cells [35], and extracellular
amma-glutamyltransferase (GGT) may cleave glutathione
o yield thiol groups that bind and inactivate cisplatin and
ther electrophilic drugs [36]. The impact of these factors in
he clinic remains unknown.

Unlike tumor intracellular pH (which is neutral-to-
lkaline) [37], tumor extracellular pH is often acidic [37,38].
pH gradient with extracellular pH < intracellular pH favors

ptake of weak acids [37], and cisplatin uptake is markedly
ncreased at low extracellular pH [39]. Hence, diet could
otentially impact cisplatin efficacy, as tumor extracellular
H is increased by bicarbonate [40] and lowered by glucose
dministration [41,42]. One might speculate that some of the
road efficacy and favorable therapeutic index for the plat-
nums may be due in part to the relatively greater acidity in

any tumors compared to most normal tissues.
Other agents could also potentially have an impact. For

xample, mannitol and NaCl, both of which are used to
ecrease cisplatin nephrotoxicity, decrease cisplatin uptake
nd cytotoxicity in vitro [43,44], as does KCl [43,44], while
aCl2 and CuCl2 may increase net cisplatin accumulation
nd cytotoxicity [44].

Binding of drug to proteins either in plasma or the inter-
titium also could contribute to resistance. Protein-bound
latinum is much less cytotoxic than is free cisplatin [45,46],
ith substantially reduced uptake into cells [46] and tissues

47]. Cisplatin binds irreversibly [48] to plasma proteins,
ith a half-life for protein binding of about 2 h [46]. Car-
oplatin takes substantially longer to bind to protein than
oes cisplatin [49–51].

.3. Drug uptake

Many resistant cell lines have reduced cisplatin accumu-
ation [52–54]. Cisplatin cellular uptake is not saturable with
ose, but is altered by metabolic inhibitors [44,54] which
o not affect efflux [55]. While some studies found that
ell membrane fluidity (which could potentially alter either
rug passive diffusion or activity of membrane transport

ystems) did not correlate with cisplatin uptake [56], oth-
rs suggested that resistant lines with reduced uptake have
igid cell membranes [57,58] with high sphingomyelin and
holesterol content [58], and sphingolipid pathway modu-

i
[

i
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ation [59] and cholesterol depletion [60] increase cellular
latinum uptake and efficacy. Cisplatin resistance may also
e associated with altered ganglioside expression [61].

The copper transporter CTR1 contributes to platinum
ellular uptake [62–66], and CTR1-deficient cells are
isplatin-resistant [63]. Copper transporters undergo rapid
ytoplasmic internalization after cisplatin exposure, reducing
ransporter surface expression and limiting further cisplatin
ptake [63,66].

Reduced cisplatin uptake may be associated with a
road reduction in uptake of several factors, including
olates, epidermal growth factor (EGF), iron, glucose, etc.,
n conjunction with downregulation of various transporters,
efective endocytosis, and downregulation of the small
TPases rab5, rac1, and rhoA which regulate endocyto-

is, and this may be reversed via DNA demethylation with
eactivation of silenced genes [67]. Microtubule alterations
ith defective formation of the endocytic recycling compart-
ent may lead to cisplatin resistance and reduced uptake

f cisplatin and other molecules [68]. The extent to which
educed transport and uptake contributes to platinum resis-
ance in the clinic remains unclear. However, note that the
at dose–response curve seen with platinums in non-small
ell lung cancer could hypothetically result from saturation
f drug uptake systems.

.4. Drug efflux

Resistance may also be associated with increased cisplatin
fflux from cells [15,69] or from nucleus into cytoplasm [70].
he copper-transporting P-type adenosine triphosphatases
TP7A and ATP7B have been implicated in platinum efflux
nd resistance [64,71–76]. Copper competes with cisplatin
or uptake into cells, but also reduces cisplatin efflux [55],
nd may increase cisplatin net accumulation and cytotox-
city [44]. ATP7B overexpression is associated with poor
utcome in cisplatin-treated patients with esophageal can-
ers [73] and squamous cell cancers of the head and neck
SCCHN) [74], suggesting that ATP7B-associated platinum
fflux could potentially contribute to clinical platinum resis-
ance.

Other pumps that may also play a role in cisplatin
esistance (±enhanced efflux) include the MRP2 (multidrug-
esistance-associated-protein-2)/cMOAT (canalicular

ultispecific Organic Anion Transporter)/glutathione-X-
onjugate pump [75,77–82], MRP1 [83,84], p-glycoprotein
80,82,84–87], and major vault/lung resistance-related
rotein (MVP/LRP) [70,82,88–90], although there have
lso been negative studies for MRP1 [91], MRP2 [92],
-glycoprotein [91,93], and LRP [84,91]. In ovarian cancer
OC) cells, LRP down-regulation reversed resistance,
ncreased cellular cisplatin accumulation, increased cisplatin

n isolated nuclei, and decreased cisplatin efflux from nuclei
70].

Resistance has also been associated with abnormal sort-
ng of some lysosomal proteins and cisplatin transporters



Oncolo

i
t
s
i
c

h
p
r
t
s
h
h
A
m

3

[
r
G
l
[
i
g
p
w
d

c
g
r
l
s
g

z
c
e
w
m
r
u
e

3

r
c
f
D
a
[
a

p
c
C
e
h
c
f

m
i
[
r
D
[
s
a
a
i
c
i

l
v
t
s
p
u
i
l
e
c
t

a
i
i
i
b
l
i
i
s
(
g
p
a
a
s
[
n
g
[

D.J. Stewart / Critical Reviews in

nto an exosomal pathway [75], and with drug sequestra-
ion in subcellular organelles such as melanosomes, with
ignificantly reduced drug nuclear localization and with
ncreased extracellular transport of melanosomes containing
isplatin [94].

Resistant lines with increased cisplatin efflux also may
ave increased intracellular pH [15]. Intracellularly, cis-
latin’s chlorides are replaced by neutral hydroxy or highly
eactive positively charged aqua groups, with the pKa for
he interconversion between chloro-hydroxy and chloro-aqua
pecies being 6.56 [95]. Hence, if intracellular pH is high, a
igher proportion of drug may be in the uncharged chloro-
ydroxy form, with increased passive efflux of this form.
gain, clinical importance of each of these different efflux
echanisms remains uncertain.

.5. Drug detoxification

Increased glutathione (GSH) may cause resistance
96–100] by binding/inactivating cisplatin, enhancing DNA
epair, or reducing cisplatin-induced oxidative stress [53].
lutathione-S-transferase (GST) [14,86,100–102], particu-

arly GST-pi [103–109] or specific GST-pi polymorphisms
109], may augment resistance by catalyzing GSH-drug bind-
ng, although not all studies agree [96,97]. Clinically, GST-pi
ene amplification [104], immunostaining [105], host gene
olymorphisms [101], and plasma levels [106] correlated
ith cisplatin resistance clinically, suggesting that platinum
etoxification by GSH and GST may be clinically important.

Other GSH-related enzymes such as gamma-glutamyl-
ysteine synthetase [102], gamma-glutamyltransferase [36],
lutamate cysteine ligase [110], GSH peroxidase [99], GSH
eductase [102,111], and catalase [87,99] have also been
inked to cisplatin resistance, as have the antioxidants
uperoxide dismutase [87,112,113] and dihydrodiol dehydro-
enase [114] in preclinical systems.

Metallothioneins (sulfur-containing proteins involved in
inc homeostasis) have been associated with resistance to
isplatin in some studies [87,96,108,115–118] (but not oth-
rs [97]), presumably through drug binding, and correlated
ith clinical cisplatin resistance in hepatocellular carcino-
as [117] and NSCLC [118], again suggesting its clinical

elevance as a platinum resistance mechanism. Zinc upreg-
lates metallothionein expression and decreases cisplatin
fficacy [119].

.6. Drug binding

As noted above, intracellularly cisplatin’s chlorides are
eplaced by neutral hydroxy or highly reactive positively
harged aqua groups [95]. Chloro-aquated platinum accounts
or most DNA binding [120]. Intrastrand and interstrand

NA crosslinks are responsible for cell killing [121]. DNA

dduct levels in lymphocytes correlate with those in tumor
122] and with platinum efficacy [122–127], although not in
ll studies [122,128,129]. Platinum–DNA adducts are found

s
m
i
a
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rimarily in nuclear high-density chromatin loci and in mito-
hondria, with highest adduct levels in dividing cell [130].
isplatin cytotoxicity and DNA binding are highest with cell
xposure during G1 and lowest during G2/M [131]. Reducing
istone methylation relaxes condensed chromatin, increases
isplatin access to DNA, increases DNA–platinum adduct
ormation, and augments cisplatin efficacy [132].

Decreased DNA adduct formation and cisplatin resistance
ay occur despite high cellular concentrations [52]. Cisplatin

s most effective at low intracellular [133] and extracellular
39] pH, and pH was significantly increased in cisplatin-
esistant cells with reduced DNA binding [15,134]. Cisplatin
NA binding is markedly increased in acidic conditions

134]. Cisplatin-resistant lines had upregulation of expres-
ion of proton pumps [134], and proton pump inhibitors
ugment cisplatin retention [135] and efficacy [134,135],
lthough results varied between lines [136]. Intracellular pH
s lowest during G1 and highest during G2/M, in keeping with
isplatin’s phase-specific relative DNA binding and cytotox-
city [131].

The major determinants of intracellular pH were H+-
inked monocarboxylate transporters in melanoma cells
ersus the Na+/H+ exchanger in normal tissues, suggesting
hat monocarboxylate transporter inhibitors might selectively
ensitize tumors [137]. In other systems, the lactate-/H+ sym-
orter was the most active exchanger regulating tumor cell pH
nder aerobic conditions, while in hypoxia, lactate extrusion
s reduced and a major factor in maintaining normal cytoso-
ic pH despite an acidic extracellular environment may be
nhanced sequestration of protons into acidic cellular vesi-
les [138]. Tumor cell pH may also correlate with nucleoside
riphosphate/inorganic phosphate ratios [139].

Anaerobic glycolysis and other processes drive tumor
cid production [140]. Lowering extracellular pH markedly
ncreases cisplatin uptake and DNA binding, and also lowers
ntracellular pH [39]. In vivo, intravenous glucose admin-
stration lowers tumor extracellular pH [41,42], while oral
icarbonate administration raises it [40]. However, despite
ow pH enhancing cisplatin uptake and binding and reduc-
ng efflux, glucose utilization and lactate production may be
ncreased in resistant lines [15]. Furthermore, tumor expres-
ion of the HIF-1 regulated isoenzyme lactate dehydrogenase
LDH)-5 (the LDH isoenzyme most important in anaerobic
lycolysis and in pyruvate–lactate conversion) predicts poor
rognosis [141], while the LDH isoenzyme most efficient
t converting lactate to pyruvate under aerobic conditions is
ssociated with increased cisplatin sensitivity [142]. High
erum LDH level is associated with poor prognosis in many
143–155] but not all [156–158] platinum-treated malig-
ancies. Expression of pyruvate kinase M2 (another key
lycolytic pathway enzyme) was reduced in resistant cells
159]. In summary, there is substantial preclinical evidence

uggesting that reduced extracellular and intracellular pH
ay be associated with platinum uptake, binding and cytotox-

city, but its importance clinically has not yet been adequately
ssessed, and high LDH expression (which might be expected
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o be associated with reduced tumor pH) is often associated
ith poor outcome in patients with platinum-treated malig-
ancies.

.7. DNA repair

Cisplatin is effective versus testicular carcinoma, which
as a particularly low capacity to repair platinum-induced
NA damage [160]. Cisplatin is most efficiently removed

rom transcribed areas within DNA [161] and gene-
pecific repair efficiency of cross-links correlates with
esistance [162]. Platinum damage is repaired primarily
y the nucleotide excision repair (NER) system (partic-
larly ERCC1 and ERCC1/XPF) and the related genes
PA and BRCA1 [163,164]. ERCC1 overexpression (with-
ut gene amplification [165]) is associated with reduced
latinum-based therapy efficacy in both OC [166] and
SCLC [111,118,167], and response [168] or survival [107]
aries with host genotype ERCC1 polymorphisms. How-
ver, ERCC1 is involved mainly in removal of interstrand
ross-links rather than therapeutically important intrastrand
ross-links [53].

Polymorphisms of XPD (involved in the NER
ranscription-coupled repair pathway) conferring reduced
epair capacity are associated with increased platinum
ensitivity [169], and are associated with a trend towards
mproved outcome in some NSCLC studies [170], but
ot others [107]. In OC, cisplatin resistance is associated
ith enhanced expression of XPA (but not with XPA gene
utation or amplification [171]), and with upregulation

f expression of the Fanconi Anemia/BRCA pathway
172,173]. BRCA1 mutation augments lymphocyte sen-
itivity to cisplatin [174], and in NSCLC patients treated
ith neoadjuvant cisplatin/gemcitabine, low tumor BRCA1
RNA levels predicted better survival [113].
The base excision repair enzyme DNA polymerase-� is

verexpressed in several cisplatin-resistant cell lines demon-
trating translesion synthesis across platinated crosslinks
175–177]. Incorporation of incorrect bases is frequent dur-
ng platinum adduct repair by DNA polymerase-� [177].
ell transfection with DNA polymerase-� genes increases
isplatin resistance [178], while DNA polymerase-� antag-
nists [179,180] increase cisplatin efficacy, although not in
ll studies [181]. AP-2 transcription factors which are modu-
ated by protein kinase A (PKA) and regulate genes for DNA
olymerase-� and metallothioneins also are associated with
isplatin resistance [182].

DNA polymerase-zeta is associated with cisplatin
esistance [183], and may enable mutagenic bypass of
eplication-blocking DNA adducts [184], as may DNA
olymerase-eta [185]. The bypass replication by DNA
olymerase-eta may be more efficient [177] and less error-

rone [177,186] than with DNA polymerase-�. REV1,
hich interacts with Y-type DNA polymerases and DNA
olymerase-zeta to bypass many types of adducts that block
he replicative DNA polymerases also confers cisplatin resis-

1
a
p
o
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ance [187]. Cytarabine, which inhibits DNA polymerase-�
188,189], is synergistic with cisplatin [190].

Topoisomerase-II [191] and homologous recombination
epair [179,192] may also increase platinum DNA dam-
ge repair, while non-homologous end-joining repair may
nhance platinum efficacy [193]. Cisplatin resistance has also
een associated with overexpression of the DNA damage
ecognition protein HMG1 (which may shield DNA adducts
rom repair) [194] and of damaged-DNA-binding-protein-2
DDB2) (which is involved in UV damage repair) [195]. The

6-alkylguanine-DNA-alkyltransferase repair system does
ot confer cisplatin resistance [196,197].

Cisplatin adduct formation is greater and repair less on
itochondrial DNA versus genomic DNA [198], although the

ignificance of cisplatin mitochondrial DNA binding remains
nknown.

Overall, there are clinical data that support a role for com-
onents of the NER pathway in platinum resistance. While
here is preclinical evidence of a role for various DNA poly-

erases, topoisomerase II and homologous recombination
epair in platinum resistance, there is not yet clinical infor-
ation available on the role of these DNA repair systems.

.8. Decreased DNA mismatch repair

DNA postreplicational mismatch repair (MMR)-mediated
rocessing of platinum adducts results in apoptosis and
ncreased platinum sensitivity [199]. Cells deficient in MMR
199–201] or with reduced nuclear content of the MMR pro-
eins hMLH1, hMSH2 or hMSH6 [202] paradoxically have
ncreased cisplatin resistance and reduced apoptosis [203],
lthough not in all studies [204]. An intact c-Abl and p73
ystem may be required for MMR to enhance apoptosis, and
ells lacking p73 expression after cisplatin exposure may be
esistant [205]. DNA polymerase-zeta may be required for
he resistance from MMR loss, suggesting that resistance is

ediated by enhanced mutagenic translesion synthesis [206].
oncurrent p53 loss also enhances resistance development

206]. From a clinical perspective, hMLH1 gene methyla-
ion and down-regulation is common in treated germ cell
umors [207], suggesting that there may in fact be a clin-
cal role for deficient DNA mismatch repair in platinum
esistance.

.9. Reduced apoptotic response

Several genes regulating DNA damage, apoptosis and sur-
ival signaling may contribute to resistance [208]. Cisplatin
ay induce apoptosis through the Fas/Fas ligand signaling

omplex (with activation of caspase 8, then caspase 3), or by
itochondrial cytochrome-c release [209]. In the presence of
TP and cytochrome-c, apoptotic-protease-activating-factor-

(Apaf-1) activates caspase 9, with subsequent caspase 3

ctivation [209]. Cisplatin may also kill via a caspase-3 inde-
endent apoptotic pathway, by a defective apoptotic pathway
r by necrosis [209].
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Defective apoptosis may contribute to resistance to both
53-dependent and -independent cisplatin cytotoxicity [210].
53 down-regulation may confer resistance, possibly by over-
xpression of the negative feedback regulator Mdm2, with or
ithout downregulation of p14ARF (which moderates Mdm2)

53]. Resistance has also been associated with reduced p53-
inding-protein-2 expression [211].

Cells with p53 deletions [212] or mutations [213] are often
esistant to cisplatin. Cisplatin resistance has been associated
ith p53 mutation in vitro in OC [214] and SCCHN [215] cell

ines, and clinically in germ cell tumors [216] and SCCHNs
106,217].

p53 mutation is generally associated with protein overex-
ression, but mutant protein lacks normal tumor suppressor
unction [218]. p53 overexpression is associated with poor
utcome in platinum-treated OC [219] and NSCLC [118,220]
atients. However, this is not seen in all studies [155], and
lioma cells with mutant p53 paradoxically had enhanced
isplatin-induced apoptosis, while wild-type variants instead
esponded with G2-M arrest [221].

Caspases 3, 8, and 9 are important in cisplatin-induced
poptosis [53]. A cisplatin-resistant line had global down-
egulation of caspase and Bax expression, but increased Bcl-2
222]. Loss of caspase 8 pathway was associated with cis-
latin resistance in a SCCHN cell line [223]. Decreased CD95
Fas) expression or pathway activation after cisplatin may
ead to inhibition of activation of caspases 3 and 8 [53],
nd was associated with cisplatin resistance in germ cell
umors [224] and OC cells [14]. Decreased cisplatin caspase

activation was noted in cells with normal mitochondrial
ytochrome-c release and normal Bcl-2 and Bcl-XL expres-
ion [225]. Cisplatin-resistant cells have also been reported
ith abnormal mitochondrial membrane potential, intracel-

ular distribution, or structure, and with up-regulation of
ytochrome-c in the mitochondria in response to cisplatin
ather than release into the cytoplasm [226].

Overall, there is preclinical evidence of an association
f platinum resistance with abnormalities of a variety of
poptotic factors, but to date this has only been documented
linically for p53.

.10. Apoptosis inhibitors

Apoptosis may be inhibited by overexpression of Xiap
X-linked inhibitor of apoptosis protein) and its interac-
ion with the PI3-K/Akt pathway [227]. Overexpression
f Xiap and IAP-2 correlated with cisplatin resistance in
ome cell lines [228], down-regulating Xiap increased cis-
latin sensitivity, caspase-3 activity and apoptosis in resistant
varian [229] and prostate cancer cells [230], and cell
ransfection with hRFI (a Ring Finger domain highly homol-
gous to XIAP) induced cisplatin resistance and inactivation

f caspase-3 [231]. Cell line overexpression of survivin
lso correlates with cisplatin resistance [228,232], and sur-
ivin antisense oligonucleotides augment cisplatin-induced
poptosis [233].

p
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r
t
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Bcl-2 [14,234,235] or Bcl-xL [235–237] overexpression
with no change in BAX or Bcl-Xs, but with marked down-
egulation of caspase-3 expression [238]) is often (but not
lways [53]) associated with cisplatin resistance, and was
ssociated with decreased response [239] or disease-free
urvival [237] in OC patients. Hypoxia increases Bcl-XL
xpression and resistance to cisplatin [236], while Bcl-2 or
cl-XL antagonists augment cisplatin efficacy [233,236].
isplatin generation of reactive oxygen species causes
ephosphorylation and degradation of Bcl-2, while nitric
xide (NO) induces its S-nitrosylation, inhibiting its ubiq-
itination and upregulating Bcl-2 expression. NO synthase
ctivity and NO production correlate with resistance in
SCLC cells [240].
Overexpression of ribosomal proteins (RP) S13 and

PL23 in a resistant cell line increased Bcl-2 expression, the
cl-2/Bax ratio, GST activity and intracellular GSH content

241]. Resistant cells also may overexpress the Bcl-2-related
rotein Bfl-1/A1, mediated by NF-kappaB [242].

Other resistant OC lines had increased expression of Fas-
ssociated death domain-like interleukin-1beta-converting
nzyme-like inhibitory protein (FLIP) [243]. Cisplatin
ecreased FLIP and induced caspase-8 and caspase-3 cleav-
ge and apoptosis in cisplatin-sensitive but non-resistant
ells. FLIP downregulation in chemoresistant cells increased
isplatin-induced apoptosis [243].

Hence, several apoptosis inhibitors have been associated
ith platinum resistance in preclinical systems, with clinical

vidence of an association of bcl-2 and bcl-xL with resistance.

. Newer molecular factors linked to platinum
esistance

There are also several new molecular factors that have
een linked to platinum resistance. With only a few excep-
ions, the effect on platinum efficacy has to date been assessed
nly in vitro, with little information on their impact on
esistance in xenograft models or clinically. The extent to
hich they may also mediate resistance to other unrelated

hemotherapy agents is also unclear, as is their potential
mpact on cross-resistance and on synergism versus antag-
nism of cisplatin and carboplatin with other agents. For
ost of these new factors, it is also not yet known whether

heir apparent ability to counteract platinum efficacy is due
o counteracting a specific effect of the chemotherapy agent
r whether it is due instead to a more non-specific abil-
ty to block cell death/promote cell survival and growth.
owever, these potential resistance factors are of substan-

ial interest since inhibitors of several of these are currently
nder development and may eventually prove useful, either
s therapy in their own right or else as a means of reversing

latinum resistance. Ultimately, inhibitors of these factors
ill only prove useful if they can reverse chemotherapy

esistance in tumor without substantially increasing normal
issue toxicity, and their impact on chemotherapy toxi-
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ity to normal tissues remains largely undefined at this
ime.

.1. Cyclooxygenase-2 (COX-2)

In preclinical studies, cisplatin treatment augmented
umor cell COX-2 expression [244] and cisplatin resis-
ance was induced by COX-2 overexpression [83]. COX-2
nhibitors decreased bcl-2 expression [245] and potentiated
isplatin efficacy in some preclinical studies [83,245,246],
ut reduced efficacy in others [247]. Clinically, high COX-
expression was associated with reduced platinum-based

herapy efficacy in esophageal [248,249], bladder [250], cer-
ical [251,252] and ovarian [253] cancers, but not in NSCLC
254]. The fact that a link is seen between therapy efficacy
nd COX-2 expression clinically makes the assessment of
OX-2 inhibitors a particularly interesting focus for further

esearch.

.2. Heat shock proteins (HSP)

HSP27 overexpression [255–257] or gene transfec-
ion [256–258] increased cisplatin resistance in cell lines,
lthough not consistently [259,260]. Growing cells to con-
uence increased HSP27 expression [257]. HSP90-� [261]
nd HSP70 [256] also may augment cisplatin resistance,
nd cisplatin treatment increases HSP70 expression in vitro
262]. On the other hand, glucose-regulated-stress-protein-
8 (GRP78) overexpression was associated with increased
isplatin sensitivity in colon cancer cell lines [263]. HSP
nhibitors are currently undergoing clinical trials, but little
s known regarding the role of HSP in clinical resistance,
nd it remains unknown whether HSP inhibitors will prove
seful.

.3. Cell signaling pathways & molecules

Several signaling pathways and transcription factors may
ugment cisplatin resistance by promoting cell survival [264]:

.3.1. Cadherins/catenins
E-cadherin expression is associated with cisplatin resis-

ance in vitro [14,265], as is increased expression of
pidermal growth factor receptors (EGFR) and �- and �-
atenins [14]. As with HSP, it remains unknown whether
-cadherin plays a role in clinical platinum resistance. How-
ver, this area is of interest since EGFR antagonists may
e particularly effective against lung cancer cells express-
ng E-cadherin [266], raising the possibility that E-cadherin
xpression may eventually help guide the decision whether
o treat a lung cancer patient with a platinum-based regimen
ersus an EGFR inhibitor.
Cisplatin exposure results in proteolysis of �-catenin, with
oss of �-catenin from adherens plaques and rapid reduction
n uptake of subsequent carboplatin in vitro. Cell transfection
ith �-catenin increased cisplatin sensitivity [267].

4

t
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.3.2. EGF family
Possibly linked to the E-cadherin effect is the fact

hat EGFR inhibition increased cisplatin sensitivity in
SCLC [268] and nasopharyngeal cancer cell lines [269].

nduction of tumor cell migration by chemotaxis to
GF up-regulates anti-apoptotic genes, down-regulates pro-
poptotic genes, and decreases cisplatin-induced apoptosis
n vitro [270]. The related growth factor heregulin modu-
ates expression of p21WAF1/CIP1, a resistance-promoting

ediator of DNA repair. Cell lines overexpressing hereg-
lin demonstrate constitutive hyperactivation of Her-2/neu,
ctivation of down-stream PI-3K/AKT and MAPK signal-
ng cascades, up-regulation of p21WAF1/CIP1 expression,
uclear accumulation of p21WAF1/CIP1 [271] and cis-
latin resistance [271,272] that may be reversed by
rastuzumab [272]. However, in other lines, Her-2/neu
ver-expression enhanced cisplatin sensitivity instead of
esistance [273], and there are conflicting data on the
ole of the MAPK pathway in cisplatin resistance
53].

Despite the augmentation of cell line sensitivity to cis-
latin by EGFR inhibitors, administration of EGFR inhibitors
oncurrently with platinum-based regimens has not proven
seful clinically in NSCLC [274–276]. It has been postu-
ated that inhibition of cell growth by the EGFR inhibitor

ay render tumor cells resistant to chemotherapy [277], and
rials are now underway giving these therapies sequentially
ather than concurrently.

.3.3. PTEN/PI3K/AKT
PI3K inhibitors enhanced cisplatin efficacy in resis-

ant lines [278] and OC xenograft models [279], while
iRNA knockdown of PTEN and the expression of
ctive p110� blocked cisplatin-induced apoptosis and
ncreased resistance [278]. Xiap may inhibit apopto-
is through its interaction with the PI3K/Akt pathway
227], and up-regulation of the PI3K/Akt pathway by
er-2/neu may lead to down-regulation of p53 expres-

ion and inactivation of the pro-apoptotic proteins Bad
nd procaspase 9 [53]. Cells expressing Akt1 [280]
r Akt2 and Akt3 [281] display cisplatin resistance,
ith threshold modulation for several apoptotic path-
ays, increased Bcl-x(L) expression and delayed p53

ctivation [280]. Akt knockout reduces resistance [281].
lso, inhibition by rapamycin of mTOR (which acts
ownstream of PI3K/Akt) enhanced carboplatin-induced
poptosis in breast cancer cells [282]. There remains
ittle knowledge about the importance of this pathway
n clinical platinum resistance, but early clinical trials
re underway combining chemotherapy with inhibitors of
TOR (a signaling molecule which is downstream from
KT).
.3.4. Hyaluronan-CD44
Hyaluronan is an extracellular matrix ligand for the

ransmembrane receptor CD44, which acts through mul-
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iple signaling pathways. Hyaluronan-CD44 promotes
hospholipase-C calcium signaling and cisplatin resistance
n SCCHN [283,284]. Nothing is yet known about its clinical
mportance in platinum resisance.

.3.5. IP3R1
A cisplatin-resistant bladder cancer line had reduced

xpression of the endoplasmic reticulum membrane protein
P3R1 (inositol-1,4,5-trisphosphate-receptor-type1) [285].
P3R1 suppression in sensitive variants decreased apopto-
is and cisplatin sensitivity, while overexpression of IP3R1
n resistant cells increased apoptosis and cisplatin sensitivity
285]. Again, clinical data are lacking.

.3.6. SRPK1
Inactivation of serine/arginine-rich protein-specific kinase

(SRPK1) induces cisplatin resistance [286]. In clinical stud-
es, SRPK1 expression was found to be high in testicular
issues, and was lower in resistant than in sensitive germ cell
umors [286].

.3.7. Ras
Cells with ras mutation [287] or overexpression or with

-ras or c-cot gene transfection [288] may be resistant, with
educed cisplatin uptake [287], increased metallothionein
287], ERCC1 induction [289], and enhanced DNA repair
182]. The clinical importance of ras in platinum resistance
emains uncertain.

.3.8. C-myc, c-Fos, c-Jun, SAPK/JNK
C-Myc, c-Fos and c-Jun are activated by the MAPK

athway, and may be overexpressed in cisplatin resis-
ance [53]. The c-fos/AP-1 complex turns on other genes
n response to DNA damage [182]. Cisplatin induces c-
un and AP-1 activity [290], and cell transfection with
-jun increases cellular GSH and cisplatin resistance [291].
n the other hand, attenuated MAPK signaling may be

ssociated with cisplatin resistance in some cell lines, pos-
ibly due to decreased activation of stress-activated protein
inase/c-Jun N-terminal kinase (SAPK/JNK) and p38 kinase
290]. Cisplatin-induced activation of SAPK/JNK [290,292]
nd p38 kinase [290] is significantly decreased in resis-
ant lines, and inhibition of JNK [290,292] or p38 kinase
290] attenuates cisplatin-induced apoptosis. JNK pathway
timulation activates c-Jun and sensitizes resistant cells to
isplatin [292].

.3.9. STATs
OC gene arrays revealed a significant association of

TAT1 expression with cisplatin resistance in cell lines
293]. Cell transfection with Stat1 cDNA induced cisplatin

esistance, but a Jak/Stat inhibitor failed to augment sen-
itivity. STAT3 (involved in signal transduction activated
y various growth factors and cytokines) is overexpressed
n some cisplatin-resistant cell lines [294], and may sup-

p
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ress the apoptotic pathway in cisplatin-resistant NSCLC
ells [295].

.3.10. JAK
Addition of erythropoietin to tumor cells induced cisplatin

esistance that was reversed by JAK2 inhibition, suggesting
rythropoeitin-induced resistance is JAK2-dependent [296].

.3.11. Protein kinase C (PKC)
In human OC cell lines, PKC� had no role in cis-

latin resistance [297], but PKC-iota inhibition sensitized
lioblastoma cells to cisplatin by increasing p38 MAP kinase
xpression [298].

.3.12. Protein phosphatases 2A and 4
Protein phosphatase-2A [299] and -4 increase cisplatin

esistance [300]. Hepatocyte growth factor (HGF) enhances
C cell killing by cisplatin, possibly by up-regulating p38
APK activity and down-regulating protein phosphatase-

A [299]. Protein phosphatase-4 regulates several cellular
unctions and signaling pathways, including NF-kappaB and
TOR pathways, and decreases histone deacetylase activity

300]. Again, the clinical significance of these observations
emains uncertain.

.4. cAMP–phosphodiesterase 2

The gene PDE2, encoding cAMP–phosphodiesterase-2,
ay induce resistance by increasing tolerance of cisplatin-

nduced DNA lesions [301].

.5. Cell-cycle related factors

S-phase-kinase-associated-protein-2 (SKP2) controls sta-
ility of cell cycle-related proteins. SKP2 overexpression
educed expression of p27Kip1, cyclin E, and p21Cip1,
ncreased S-phase cells, and increased cisplatin resistance,
hile SKP2 down-regulation increased sensitivity in vitro

302]. Cyclin D1 overexpression augmented pancreatic can-
er cell chemoresistance both by promoting cell proliferation
nd by inhibiting drug-induced apoptosis in association with
pregulation of NF-kappaB activity [303]. However, while
estoration of wild-type p16 to melanoma cell lines restored
adiation sensitivity, it had no impact on cisplatin sensitivity
304].

.6. Checkpoints

Checkpoint-kinase-2 (Chk2) is a critical kinase govern-
ng the cell cycle checkpoint, DNA damage repair, and cell
poptosis in response to DNA damaging signals. Cisplatin
nduces Chk2 degradation through the ubiquitin-proteasome

athway, and Chk2 expression is decreased in cisplatin-
esistant OC cells [305]. Chk1 may also be important
n the cellular response to cisplatin [306]. Cisplatin-
nduced apoptosis in gastric cancer cells is also reduced
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ubstantially if Mitotic Arrest Deficient 2 (MAD2, an
ssential mitotic spindle checkpoint pathway component) is
own-regulated [307].

.7. NF-kappaB

Up-regulation of expression of antiapoptotic factors
y NF-kappaB may antagonize cisplatin-induced apop-
osis [242,308,309], and cisplatin significantly increases
F-kappaB DNA binding activity [310,311]. NF-kappaB

nhibitors augment platinum activity against some can-
er cell lines [60,311–322] and tumor xenograft models
310], but not against normal cells [311,312] nor against
ome other cancer cell lines [311,314]. NF-kappaB acti-
ation actually augmented cisplatin efficacy in some lines
323,324], or antagonized apoptosis with low cisplatin
oncentrations but enhanced efficacy of higher cisplatin
oncentrations [325].

.8. Other transcription factors

Other transcription factors that may contribute to DNA
epair and cisplatin resistance include Y-box-binding-
rotein-1 (YB-1), CCAAT-binding-transcription-factor-2
CTF2), activating-transcription-factor-4 (ATF4), zinc-
nger-factor-143 (ZNF143), mitochondrial-transcription-
actor-A (mtTFA) [326], Ets-1 [327], AP-2 [182] and a
rotein related to zipper transcriptional factor [328]. YB-1
uclear localization was increased in resistant cells [329].
ts-1 [327] and AP-2 transcription factors (which are modu-

ated by PKA) [182] contribute to transcriptional activation of
ther resistance genes including metallothioneins and DNA
epair enzymes, and Ets-1 overexpression is associated with
oor prognosis [327]. OC cell transfection with the splicing
actor SPF45 (RBM17) also conferred resistance to carbo-
latin [330].

.9. Chromosomal alterations

Platinum-resistant cells may have several chromosomal
bnormalities [331–338]. Telomere length, telomerase activ-
ty, and telomerase mRNA expression were reduced in
isplatin-resistant OC cell lines [339], and OCs with a loss
f microsatellite D6S1581 were cisplatin-resistant [340].

.10. Miscellaneous

Cells with pleiotropic drug resistance may also have
ltered metabolic pathways, with low mitochondrial mem-
rane potential, increased fatty acid use for mitochondrial
xygen consumption, and high levels of mitochondrial-

ncoupling-protein-2 [341]. Cisplatin-resistant cells also
ay have ultrastructural changes [342], with increased Golgi

pparatus and mitochondria, and altered nuclear structure
130,343]
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.11. Gene arrays

Carboplatin-resistant versus -sensitive OC cells differen-
ially expressed genes associated with apoptosis, cell–cell
ommunication, cell adhesion, DNA repair, and cell prolif-
ration [344]. In tumors from OC patients, the genes FN1,
OP2A, LBR, ASS, COL3A1, STK6, SGPP1, ITGAE, and
CNA correlated with platinum resistance [345]. Cisplatin-
esistant SCCHN cell lines had up-regulated expression of
TP-binding cassette transporter genes (MDR1, MRP1, and
RP2), CD55, and PGK1 and down-regulated Caveolin 1

xpression [80].

.12. Proteomics

In proteomic analyses of cervix carcinoma cells, cisplatin-
ensitive versus -resistant lines differentially expressed
everal proteins, including molecular chaperones (e.g.,
SP60, HSP90, heat-shock cognate 71 kDa protein),

alcium-binding proteins (e.g., calmodulin, calumenin), pro-
eins involved in drug detoxification (e.g., the peroxiredoxins
RX 2 and PRX 6, and GST), anti-apoptotic proteins (e.g.,
4-3-3) and ion channels (e.g., voltage-dependent anion-
elective channel-1) [346]. Cisplatin exposure was associated
ith up-regulation of HSP60 and HSP90, 14-3-3 protein,
ST in sensitive cells and PRX6 in resistant cells [346]. The

tudy suggested a constitutive expression of defense factors
y resistant cells, with further increase in expression upon
isplatin exposure [346].

. Summary

It is unknown which of these numerous resistance mech-
nisms are most important clinically. NSCLC DRCs flatten
t higher doses for cisplatin combinations, suggesting ther-
py efficacy is ultimately limited by exhaustion of a required
actor [12], and this may also apply to other epithelial
alignancies. Several clinical observations suggest epige-

etic factors play a major role in resistance [6], and platinum
esistance has been reported with down regulation of expres-
ion (e.g., by gene hypermethylation) of a variety of factors,
ncluding membrane transporters, hMLH1, and caspases
67,207,222,238]. In addition, when tumors shrink with
hemotherapy, some patients have rapid tumor regrowth,
hile others have prolonged stability after therapy com-
letion. Based on several observations, we propose the
ollowing model of resistance: cells with sufficient active
esistance mechanisms [11] to withstand initial chemother-
py will continue to divide between therapy cycles. If active
esistance mechanisms are insufficient for protection, non-
ycling cells will nevertheless survive based on their intrinsic

aturable passive resistance. Cells that do not have suf-
cient active resistance mechanisms to permit continued
rowth would down-regulate growth and remain quies-
ent until treatment cessation. While increasing drug doses
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ould overcome active resistance, the larger problem may
emain identification of exploitable targets in non-cycling
ells.
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