
Chapter 2

Atomic structure and spectra

2.1 Atomic structure

2.1.1 The hydrogen atom and one-electron atoms

The Hamiltonian for one-electron atoms such as H, He+, Li2+, . . ., can be written as

Ĥ =
p̂2

2me
− Ze2

4πε0r
, (2.1)

where p̂ is the momentum operator, me is the electron mass (me = 9.10938291(40) ×
10−31 kg), Z is the atomic number (or proton number), e is the elementary charge (e =

1.602176565(35)× 10−19C) and r is the distance between the electron and the nucleus. The

associated Schrödinger equation can be solved analytically, as demonstrated in most quantum

mechanics textbooks. The eigenvalues En�m�
and eigenfunctions Ψn�m�

are then described by

Equations (2.2) and (2.3), respectively

En�m�
= −hcZ2RM/n2 (2.2)

Ψn�m�
(r, θ, ϕ) = Rn�(r)Y�m�

(θ, ϕ). (2.3)

In Equation (2.2), RM is the mass-corrected Rydberg constant for a nucleus of mass M

RM =
μ

me
R∞, (2.4)

where R∞ = mee
4/(8h3ε20c) = 10973731.568539(55)m−1 represents the Rydberg constant

for a hypothetical infinitely heavy nucleus and μ = meM/(me + M) is the reduced mass

of the electron-nucleus system. The principal quantum number n can take integer values

from 1 to ∞, the orbital angular momentum quantum number � integer values from 0 to
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34 CHAPTER 2. ATOMIC STRUCTURE AND SPECTRA

n− 1, and the magnetic quantum number m� integer values from −� to �. In Equation (2.3),

r, θ,and ϕ are the polar coordinates. Rn�(r) and Y�m�
(θ, ϕ) are radial wave functions and

spherical harmonics, respectively. Table 2.1 lists the possible sets of quantum numbers for the

first values of n, the corresponding expressions for Rn�(r) and Y�m�
(θ, ϕ), and the symmetry

designation n�m� of the orbitals.

n � m� Rn�(r) Y�m�
(θ, ϕ) orbital designation

1 0 0 2
(
Z
a

)3/2
e−ρ/2

√
1
4π 1s

2 0 0 2−3/2
(
Z
a

)3/2
e−ρ/2(2− ρ)

√
1
4π 2s

2 1 0 1
2
√
6

(
Z
a

)3/2
ρe−ρ/2

√
3
4π cos θ 2p0 (or 2pz)

2 1 ±1 1
2
√
6

(
Z
a

)3/2
ρe−ρ/2 −

√
3
8π sin θe±iϕ 2p±1 (or 2px,y)

3 0 0 3−5/2
(
Z
a

)3/2
e−ρ/2(6− 6ρ+ ρ2)

√
1
4π 3s

3 1 0 1
9
√
6

(
Z
a

)3/2
ρe−ρ/2(4− ρ)

√
3
4π cos θ 3p0 (or 3pz)

3 1 ±1 1
9
√
6

(
Z
a

)3/2
ρe−ρ/2(4− ρ) −

√
3
8π sin θe±iϕ 3p±1 (or 3px,y)

3 2 0 1
9
√
30

(
Z
a

)3/2
ρ2e−ρ/2

√
5

16π (3 cos
2 θ − 1) 3d0 (or 3dz2)

3 2 ±1 1
9
√
30

(
Z
a

)3/2
ρ2e−ρ/2 −

√
15
8π sin θ cos θe±iϕ 3d±1 (or 3dxz,yz)

3 2 ±2 1
9
√
30

(
Z
a

)3/2
ρ2e−ρ/2

√
15
32π sin2 θe±i2ϕ 3d±2 (or 3dxy,x2−y2)

Table 2.1: Quantum numbers, wave functions and symmetry designation of the lowest eigen-

states of the hydrogen atom. Linear combinations of the complex-valued Rn�(r)Y�m�
(θ, ϕ)

can be formed that are real and correspond to the orbitals actually used by chemists with

designations given in parentheses in the last column. a = a0
me
μ and ρ = 2Z

na r.

The energy eigenvalues given by Equation (2.3) do not depend on the quantum numbers �

and m� and have therefore a degeneracy factor of n2. They form an infinite series which

converges at n = ∞ to a value of 0. Positive energies thus correspond to situations where

the electron is no longer bound to the nucleus, i. e., to an ionization continuum. Expressing

the energy relative to the lowest (n = 1) level

En�m�
= hcZ2RM

(
1− 1

n2

)
= hcTn, (2.5)

one recognizes that the ionization energy of the 1s level is hcZ2RM , or, expressed as a term

value in the wavenumber unit of cm−1, Tn=∞ = RM .
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2.1. ATOMIC STRUCTURE 35

The functions Ψn�m�
(r, θ, φ) represent orbitals and describe the bound states of one-electron

atoms; the product Ψ∗n�m�
Ψn�m�

= |Ψn�m�
|2 represents the probability density of finding the

electron at the position (r, θ, ϕ) and implies the following general behavior:

• The average distance between the electron and the nucleus is proportional to n2, in

accordance with Bohr’s model of the hydrogen atom, which predicts that the classical

radius of the electron orbit should grow with n as a0n
2, a0 being the Bohr radius

(a0 = 0.52917721092(17)× 10−10m).

• The probability of finding the electron in the immediate vicinity of the nucleus, i. e.,

within a sphere of radius on the order of a0, decreases with n−3. This implies that all

physical properties which depend on this probability, such as the excitation probability

from the ground state, or the radiative decay rate to the ground state should also scale

with n−3.

The orbital angular momentum quantum number �, which comes naturally in the solution of

the Schrödinger equation of the hydrogen atom, is also a symmetry label of the corresponding

quantum states. Indeed, the 2�+ 1 functions Ψn�m�
(r, θ, ϕ) with m� = −�,−�+ 1, . . . , � are

designated by letters as s (� = 0), p (� = 1), d (� = 2), f (� = 3), g (� = 4), with subsequent

labels in alphabetical order, i. e., h, i, k, l, etc. for � = 5, 6, 7, 8, etc. The distinction between

electronic orbitals and electronic states is useful in polyelectronic atoms.

The operators 	̂�2 and �̂z describing the squared norm of the orbital angular momentum vector

and its projection along the z axis commute with Ĥ and with each other. The spherical

harmonics Y�m�
(θ, ϕ) are thus also eigenfunctions of 	̂�2 and �̂z with eigenvalues given by the

eigenvalue equations

	̂�2Y�m�
(θ, ϕ) = �

2�(�+ 1)Y�m�
(θ, ϕ) (2.6)

and

�̂zY�m�
(θ, ϕ) = �m�Y�m�

(θ, ϕ). (2.7)

PCV - Spectroscopy of atoms and molecules



36 CHAPTER 2. ATOMIC STRUCTURE AND SPECTRA

2.1.2 Polyelectronic atoms

Reminder: Exact and approximate separability of the Schrödinger equation

We consider a system of two particles described by the Hamiltonian:

Ĥ = Ĥ1(p̂1, 	q1) + Ĥ2(p̂2, 	q2) (2.8)

Each operator Ĥi only depends on the momentum operator p̂i and coordinates 	qi of

particle i. In such a case, a solution of the Scrödinger equation

ĤΨn = EnΨn (2.9)

can be written as a product

Ψn = φn1,1φn2,2, (2.10)

and the eigenvalues as a sum

En = En1,1 + En2,2. (2.11)

Inserting Equation (2.10) and Equation (2.11) into Equation (2.9) one obtains:

(
Ĥ1 + Ĥ2

)
φn1,1φn2,2 = (En1,1 + En2,2)φn1,1φn2,2, (2.12)

i. e. Ĥ1φn1,1 = En1,1φn1,1 and Ĥ2φn2,2 = En2,2φn2,2.

In general the wavefunction of n non-interacting particles is the product of the one-

particle wavefunctions and the total energy is the sum of the one-particle energies.

In many cases the Schrödinger equation is nearly separable. This is the case when

Ĥ = Ĥ1(p̂1, 	q1) + Ĥ2(p̂2, 	q2) + Ĥ ′, (2.13)

where the expectation values of Ĥ ′ are much smaller than those of Ĥ1 and Ĥ2. The

functions φn1,1(	q1)φn2,2(	q2) are very similar to the exact eigenfunctions of Ĥ and serve

as a good approximation for them. In such a case, perturbation theory is a good approach

to improve the approximation.

The Hamiltonian for atoms with more than one electron can be written as follows:

Ĥ =

N∑
i=1

(
p̂2i
2me

− Ze2

4πε0ri

)
︸ ︷︷ ︸

ĥi

+

N∑
i=1

N∑
j>i

e2

4πε0rij︸ ︷︷ ︸
Ĥ′

+Ĥ ′′ , (2.14)

where Ĥ ′′ represents all weak interactions not contained in ĥi and Ĥ ′, cannot be solved

analytically. If Ĥ ′ and Ĥ ′′ in Equation (2.14) are neglected, Ĥ becomes separable in N
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2.1. ATOMIC STRUCTURE 37

one-electron operators ĥi(p̂i, qi) with ĥi(p̂i, qi)φj(qi) = εjφj(qi) (to simplify the notation, we

use in the following the notation qi instead of 	qi to designate all spatial xi, yi, zi and spin msi

coordinates of the polyelectron wave function)

Ĥ0 =

N∑
i=1

ĥi(p̂i, qi), (2.15)

with eigenfunctions

Ψk(q1, . . . , qN ) = φk1(q1)φk2(q2) . . . φkN (qN ) (2.16)

and eigenvalues

Ek = εk1 + εk2 + ...+ εkN , (2.17)

where φj(qi) = Rnj�j (ri)Y�jm�j
(θi, ϕi)σmsj

represents a spin orbital with σmsj
being the spin

part of the orbital, either α for msj = 1/2 or β for msj = −1/2 .

The electron wave function in Equation (2.16) gives the occupation of the atomic orbitals

and represents a given electron configuration e. g., for the atom of lithium (Li), one gets:

Ψ1(q1, q2, q3) = 1sα(q1), 1sβ(q2), 2sα(q3). Neglecting the electron-repulsion term Ĥ ′ in Equa-

tion (2.14) is a very crude approximation, and it needs to be considered to get a realistic

estimation of the eigenfunctions and eigenvalues of Ĥ. A way to consider Ĥ ′ without affect-

ing the product form of Equation (2.16) is to introduce, for each electron, a potential energy

term describing the interaction with the mean field of all other electrons. Iteratively solv-

ing one-electron problems and modifying the mean-field potential term lead to the so-called

“Hartree-Fock Self-Consistent Field” (HF-SCF) wave functions, which still have the form

of Equation (2.16) for a single electronic configuration but now incorporate most effects of

the electron-electron repulsion except their instantaneous correlation. Because polyelectronic

atoms are also spherically symmetric the angular part of the improved orbitals can also be

described by spherical harmonics Y�m�
(θi, ϕi). However, the radial functions Rn�(ri) and the

orbital energies (εj) differ from the hydrogenic case because of the electron-electron repulsion

term Ĥ ′.

An empirical sequence of orbital energies can be determined that can be used to predict

the ground-state configuration of most atoms in the periodic system using Pauli’s Aufbau-

principle:

ε1s ≤ ε2s ≤ ε2p ≤ ε3s ≤ ε3p ≤ ε4s ≤ ε3d ≤ ε4p ≤

ε5s ≤ ε4d ≤ ε5p ≤ ε6s ≤ ε4f ≤ ε5d ≤ ε6p ≤ ε7s ≤

ε5f ≤ ε6d.

(2.18)
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38 CHAPTER 2. ATOMIC STRUCTURE AND SPECTRA

This sequence of orbital energies can be qualitatively explained by considering the shielding

of the nuclear charge by electrons in inner shells and the decrease, with increasing value of �,

of the penetrating character of the orbitals.

For most purposes and in many atoms the product form of Equation (2.16) represents an

adequate approximation of the N -electron wave function. However, Equation (2.16) is, not

compatible with the generalized Pauli principle. Indeed, electrons have a half-integer spin

quantum number (s = 1/2) and polyelectronic wave functions must be antisymmetric with

respect to the exchange (permutation) of the coordinates of any pair of electrons. Equa-

tion (2.16) must therefore be antisymmetrized with respect to such an exchange of coordi-

nates. This is achieved by writing the wave functions as determinants of the type:

Ψ(q1, . . . , qN ) =
1√
N !

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φk1(q1) φk1(q2) . . . φk1(qN )

φk2(q1) φk2(q2) . . . φk2(qN )

.

.

.

φkN (q1) . . . . . . φkN (qN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.19)

in which all φi are different spin orbitals. Such determinants are called Slater determi-

nants and represent suitable N -electron wave functions which automatically fulfill the Pauli

principle for fermions. Indeed, exchanging two columns in a determinant, i. e., permuting

the coordinates of two electrons, automatically changes the sign of the determinant. The

determinant of a matrix with two identical rows is zero so that Equation (2.19) is also in

accord with Pauli’s exclusion principle, namely that any configuration with two electrons in

the same spin orbital is forbidden. This is not surprising given that Pauli’s exclusion prin-

ciple can be regarded as a consequence of the generalized Pauli principle for fermions. The

ground-state configuration of an atom can thus be obtained by filling the orbitals in order

of increasing energy (see Equation (2.18)) with two electrons, one with ms = 1/2, the other

with ms = −1/2, a procedure known as the Pauli’s Aufbau-principle.

2.1.3 Singlet and triplet states

The generalized Pauli principle for fermions also restricts the number of possible wave func-

tions associated with a given configuration, as illustrated with the ground electronic config-

uration of the carbon atom in the following example.

PCV - Spectroscopy of atoms and molecules



2.1. ATOMIC STRUCTURE 39

Example: C (1s)2(2s)2(2p)2

Because the (1s)2 and the (2s)2 shells are fully occupied, only the (2p)2 open subshell needs to be con-

sidered. There are six spin orbitals and therefore 62 = 36 possible configurations (2pm�ms)(2pm�′ms′)

with m�,m�′ = 0,±1 and ms,ms′ = ±1/2, corresponding to the 36 entries of the table:

Electron 1

φ2p1α φ2p1β φ2p0α φ2p0β φ2p−1α φ2p−1β

Electron 2

φ2p1α × *

φ2p1β ×
φ2p0α * ×
φ2p0β ×
φ2p−1α ×
φ2p−1β ×

Diagonal elements of the table (designated by a cross) are forbidden by the Pauli principle because

both electrons are in the same spin orbital. According to Equation (2.19), each pair of symmetric

entries with respect to the diagonal can be used to make one antisymmetric wave function. For

example, the entries of the table marked by an asterisk (*) lead to the wave function

Ψ(q1, q2) =
1√
2
(φ2p0α(q1)φ2p1α(q2)− φ2p1α(q1)φ2p0α(q2)) , (2.20)

which is antisymmetric with respect to permutation of q1 and q2 and thus fulfills the generalized Pauli

principle for fermions, and to one symmetric wave function

Ψ(q1, q2) =
1√
2
(φ2p0α(q1)φ2p1α(q2) + φ2p1α(q1)φ2p0α(q2)) (2.21)

which is forbidden by the Pauli principle. In total there are 15 wave functions for the (2p)2 configu-

ration that fulfill the Pauli principle. Not all of these 15 wave functions correspond to states of the

same energy.

———————————————————

For an excited configuration with two unpaired electrons such as He (1s)1(2s)1, the Pauli

principle does not impose any restriction, because the two electrons are in different orbitals.

However, the electrostatic repulsion between the two electrons leads to an energetic split-

ting of the possible states. In this configuration, four spin orbitals (1sα, 1sβ, 2sα, and

2sβ) need to be considered, because each electron can be either in the 1s or the 2s orbital

with either ms = 1/2 or ms = −1/2. Four antisymmetrized functions fulfilling the Pauli

principle result, which can be represented as products of a symmetric/antisymmetric spa-

tial part depending on the xi, yi and zi coordinates of the two electrons (i = 1, 2) and an

PCV - Spectroscopy of atoms and molecules



40 CHAPTER 2. ATOMIC STRUCTURE AND SPECTRA

antisymmetric/symmetric spin part (T= triplet, S=singlet):

1√
2
(1s(1)2s(2)− 1s(2)2s(1))α(1)α(2) = ΨT,MS=1 (2.22)

1√
2
(1s(1)2s(2)− 1s(2)2s(1))β(1)β(2) = ΨT,MS=−1 (2.23)

1√
2
(1s(1)2s(2)− 1s(2)2s(1))

1√
2
[α(1)β(2) + α(2)β(1)] = ΨT,MS=0 (2.24)

1√
2
(1s(1)2s(2) + 1s(2)2s(1))

1√
2
(α(1)β(2)− α(2)β(1)) = ΨS,MS=0, (2.25)

where the notation 1s(i)α(i) has been used to designate electron i being in the 1s orbital with

spin projection quantum number ms = 1/2.

The first three functions (Equations (2.22), (2.23) and (2.24)), with MS = ms1+ms2 = ±1, 0,

have an antisymmetric spatial part and a symmetric electron-spin part with respect to the

permutation of the two electrons. These three functions represent the three components of

a triplet (S = 1) state. The fourth function has a symmetric spatial and an antisymmetric

electron-spin part with MS = 0 and represents a singlet (S = 0) state. These results are

summarized in Tables 2.2 and 2.3, where the spin part of the wave functions are designated

with an superscript ”S” and the spatial parts with a superscript “R”. The subscripts “a”

and “s” indicate whether the functions are symmetric or antisymmetric with respect to the

permutation of the coordinates of the two electrons.

α(1)α(2) MS = 1

ΨS
(s)(m1,m2)

1√
2
(α(1)β(2) + α(2)β(1)) MS = 0 S = 1(triplet)

β(1)β(2) MS = −1

ΨS
(a)(m1,m2)

1√
2
(α(1)β(2)− α(2)β(1)) MS = 0 S = 0(singlet)

Table 2.2: Permutationally symmetric and antisymmetric two-electron spin functions

ΨR
(s)(q1, q2)

1√
2
(φ1(1)φ2(2) + φ1(2)φ2(1)) (singlet)

ΨR
(a)(q1, q2)

1√
2
(φ1(1)φ2(2)− φ1(2)φ2(1)) (triplet)

Table 2.3: Permutationally symmetric and antisymmetric two-electron spatial functions

The contribution to the energy of the electron-repulsion term Ĥ ′ = e2

4πε0r12
in Equation (2.14)

can be evaluated in the first order of perturbation theory as:
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2.1. ATOMIC STRUCTURE 41

e2

8πε0
〈1s(1)2s(2)− 1s(2)2s(1)| 1

r12
|1s(1)2s(2)− 1s(2)2s(1)〉 =

e2

8πε0
[〈1s(1)2s(2)| 1

r12
|1s(1)2s(2)〉

+〈1s(2)2s(1)| 1

r12
|1s(2)2s(1)〉

−〈1s(1)2s(2)| 1

r12
|1s(2)2s(1)〉

−〈1s(2)2s(1)| 1

r12
|1s(1)2s(2)〉]

=
1

2
(J12 + J21 −K12 −K21)

= J12 −K12 (2.26)

for the triplet state, and as

e2

8πε0
〈1s(1)2s(2) + 1s(2)2s(1)| 1

r12
|1s(1)2s(2) + 1s(2)2s(1)〉 = J12 +K12 (2.27)

for the singlet state. In Equations (2.26) and (2.27), the integral J12 = J21 and K12 = K21

represent so-called Coulomb and exchange integrals, respectively. The Coulomb integral

can be interpreted as the energy arising from the repulsion between the electron clouds of

the 1s and 2s electrons. The exchange integral results from the repulsion between the two

electron having “exchanged” their orbitals.

Because J12 and K12 are both positive in this case, the triplet state lies lower in energy than

the singlet state by twice the exchange integral. The energy splitting between the singlet and

triplet states can therefore be formally viewed as resulting from an electrostatic (including

exchange) coupling of the motion of the two electrons with spin vectors 	s1 and 	s2, resulting

in states of total spin angular momentum 	S = 	s1 + 	s2 with S = 1 for the triplet state, and

S = 0 for the singlet state.

These considerations can easily be generalized to situations with more than two unpaired

electrons. In atoms with configurations with three unpaired electrons, such as, for instance,

N ((1s)2(2s)2(2p)3), quartet (S = 3/2) and doublet (S = 1/2) states result.

2.1.4 Terms and term symbols in atoms: LS and jj coupling

For all atoms extensive lists of term values are tabulated (see, e. g., C.E. Moore, Atomic

Energy Levels, in reading list). To understand how the different terms arise and derive the

term symbols used to label them, it is necessary to understand how the different orbital and

spin angular momenta in an atom are coupled by electromagnetic interactions and in which

PCV - Spectroscopy of atoms and molecules



42 CHAPTER 2. ATOMIC STRUCTURE AND SPECTRA

sequence the angular momentum vectors are added to form the total angular momentum vec-

tor 	J . This can be achieved by ordering the different interactions according to their relative

strengths and by adding the angular momentum vectors that are most strongly coupled first.

Each angular momentum vector can be described quantum mechanically by eigenvalue equa-

tions of the type of Equations (2.6) and (2.7), e. g.,

	̂S2|SMS〉 = �
2S(S + 1)|SMS〉, (2.28)

Ŝz|SMS〉 = �MS |SMS〉, (2.29)

	̂L2|LML〉 = �
2L(L+ 1)|LML〉, (2.30)

L̂z|LML〉 = �ML|LML〉, (2.31)

	̂J2|JMJ〉 = �
2J(J + 1)|JMJ〉, (2.32)

Ĵz|JMJ〉 = �MJ |JMJ〉. (2.33)

In the absence of coupling between the different angular momenta, all quantum numbers

arising from eigenvalue equations of this type are good quantum numbers. In the presence of

couplings between the different angular momenta, however, only a subset of these quantum

numbers remain good quantum numbers, and the actual subset of good quantum numbers

depends on the hierarchy of coupling strengths (R. Zare, Angular Momentum, in reading

list).

Two limiting cases of angular momentum coupling hierarchy are used to label the terms of

atoms: the LS coupling hierarchy, which adequately describes the ground state of almost all

atoms except the heaviest ones, and the jj coupling hierarchy, which is less frequently encoun-

tered and becomes important in the description of the heaviest atoms and of electronically

excited states.

The LS coupling hierarchy

	L =
N∑
i=1

	�i : Strong coupling of orbital angular momenta resulting from electrostatic interactions

	S =
N∑
i=1

	si : Strong coupling of spins resulting from exchange terms in the electrostatic

interaction (see Equations (2.26) and (2.27))

	J = 	L+ 	S : Weaker coupling between 	S and 	L resulting from the spin-orbit interaction

(relativistic effect)

In LS coupling, one obtains the possible terms by first adding vectorially the orbital angular
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2.1. ATOMIC STRUCTURE 43

momenta 	�i of the electrons to form a resultant total orbital angular momentum 	L. Then,

the total electron spin 	S is determined by vectorial addition of the spins 	si of all electrons.

Finally, the total angular momentum 	J is determined by adding vectorially 	S and 	L. For a

two-electron system, one obtains:

	L = 	�1 + 	�2; L = |�1 − �2|, |�1 − �2|+ 1, . . . , �1 + �2 (2.34)

ML = m�1 +m�2 = −L,−L+ 1, . . . , L (2.35)

	S = 	s1 + 	s2; S = 1, 0 (2.36)

MS = ms1 +ms2 = −S,−S + 1, . . . , S (2.37)

	J = 	L+ 	S; J = |L− S|, |L− S|+ 1, . . . , L+ S (2.38)

MJ = MS +ML = −J,−J + 1, . . . , J. (2.39)

The angular momentum quantum numbers L, S and J that arise in Equations (2.34), (2.36),

and (2.38) from the addition of the pairs of coupled vectors (	�1, 	�2), (	s1, 	s2) and (	L, 	S),

respectively, can be derived from angular momentum algebra as explained in most quantum

mechanics textbooks.

The different terms (L, S, J) that are obtained for the possible values of L, S and J in

Equations (2.34), (2.36), and (2.38) are written in compact form as term symbols

2S+1LJ . (2.40)

However, not all terms that are predicted by Equations (2.34), (2.36), and (2.38) are al-

lowed by the Pauli principle. This is best explained by deriving the possible terms of the C

(1s)2(2s)2(2p)2 configuration in the following example.

———————————————————

Example: C (1s)2(2s)2(2p)2. Only the partially filled 2p subshell needs to be considered. In this case

l1 = 1, l2 = 1 and s1 = s2 = 1/2. From Equations (2.34), (2.36), and (2.38) one obtains, neglecting

the Pauli principle:

L = 0(S), 1(P), 2(D)

S = 0(singlet), 1(triplet)

J = 0, 1, 2, 3

which leads to the following terms:

Term 1S0
3S1

1P1
3P0

3P1
3P2

1D2
3D1

3D2
3D3

Degeneracy factor gJ = 2J + 1 1 3 3 1 3 5 5 3 5 7

PCV - Spectroscopy of atoms and molecules



44 CHAPTER 2. ATOMIC STRUCTURE AND SPECTRA

Taking the (2J + 1) degeneracy factor of each term

(which corresponds to all possible values of MJ), a

total of 36 states result. As discussed above, only 15

states are allowed by the Pauli principle for the con-

figuration (1s)2(2s)2(2p)2. The terms allowed by the

Pauli principle can be determined by first finding the

ML, MS and MJ values resulting from all 15 possible

occupations of the six 2p spin-orbitals with the two

electrons in different spin orbitals, as explained in the

following table:

El. 1 El. 2 ML MS MJ

φ2p1α φ2p1β 2 0 2

φ2p0α 1 1 2

φ2p0β 1 0 1

φ2p−1α 0 1 1

φ2p−1β 0 0 0

φ2p1β φ2p0α 1 0 1

φ2p0β 1 -1 0

φ2p−1α 0 0 0

φ2p−1β 0 -1 -1

φ2p0α φ2p0β 0 0 0

φ2p−1α -1 1 0

φ2p−1β -1 0 -1

φ2p0β φ2p−1α -1 0 -1

φ2p−1β -1 -1 -2

φ2p−1α φ2p−1β -2 0 -2

The maximum value of ML is 2 and occurs only in combination with MS = 0. This implies a 1D term

with five MJ components corresponding to (ML MS) = (2 0), (1 0), (0 0), (-1 0) and (-2 0). Elimi-

nating these entries from the table, the remaining entry with the highest ML value has ML = 1 and

comes in combination with a maximal MS value of 1. We can conclude that the corresponding term

is 3P (consisting of 3P0,
3P1 and 3P2). There are 9 components corresponding to (ML MS) = (1 1),

(1 0), (1 -1), (0 1), (0 0), (0 -1), (-1 1), (-1 0) and (-1 -1). Eliminating these entries from the table,

only one component remains, (0 0), which corresponds to a 1S0 state. The terms corresponding to

the (2p)2 configuration allowed by the Pauli principle are therefore 1D2,
3P2,

3P1,
3P0 and 1S0. As

in the case of the He (1s)1(2s)1 configuration discussed above, the electrostatic exchange interaction

favors the triplet state over the singlet states.

———————————————————

The lowest energy term of the ground electronic configuration of almost all atoms can be pre-

dicted using three empirical rules, know as Hund’s rules in honor of the physicist Friedrich

Hund (1896 – 1997). These rules state that

1. The lowest term is that with the highest value of the total spin angular momentum

quantum number S.

2. If several terms have the same value of S, the term with the highest value of the total

angular momentum quantum number L lies lowest in energy.

3. If the lowest term is such that both L and S are nonzero, the ground state is the term
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component with J = |L−S| if the partially filled subshell is less than half full, and the

term component with J = L+ S if the partially filled subshell is more than half full.

According to Hund’s rules, the ground state of C is the term component 3P0, and the ground

state of F is the term component 2P3/2, in agreement with experimental results. Hund’s rules

do not reliably predict the energetic ordering of electronically excited states.

The energy level splittings of the components of a term 2S+1L can be described by considering

the effect of the effective spin-orbit operator

ĤSO =
hcA

�2
	̂L · 	̂S (2.41)

on the basis functions |LSJ〉 with 	̂J = 	̂L + 	̂S. In Equation (2.41), the spin-orbit coupling

constant A is expressed in cm−1. From 	̂J2 = 	̂L2 + 	̂S2 + 2	̂L · 	̂S one finds

	̂L · 	̂S =
1

2

[
	̂J2 − 	̂L2 − 	̂S2

]
. (2.42)

The diagonal matrix elements of ĤSO, which represent the first-order corrections to the

energies in a perturbation theory treatment, are

〈LSJ |ĤSO|LSJ〉 = 1

2
hcA[J(J + 1)− L(L+ 1)− S(S + 1)], (2.43)

from which one sees that two components of a term with J and J +1 are separated in energy

by hcA(J + 1). Hund’s third rule implies that the spin-orbit coupling constant A is positive

in ground terms arising from less than half-full subshells and negative in ground terms arising

from more than half-full subshells.

To illustrate the main conclusions of this subsection, Figure 2.1 shows schematically by which

interactions the 15 states of the ground-state configuration of C can be split. The strong

electrostatic interactions (including exchange) lead to a splitting into three terms 3P, 1D and

1S. The weaker spin-orbit interaction splits the ground 3P term into three components 3P0,

3P1 and
3P2. Each term component can be further split into (2J+1) MJ levels by an external

magnetic field, an effect known as the Zeeman effect.
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Figure 2.1: Schematic energy level structure of the (2p)2 configuration in LS coupling.

The jj coupling hierarchy

	li + 	si = 	ji : Strong spin-orbit coupling

∑
	ji = 	J : Weaker electrostatic coupling.

In heavy atoms, relativistic effects become so large that the spin-orbit interaction can become

comparable in strength, or even larger, than the electrostatic (including exchange) interac-

tions that are dominant in the lighter atoms. In jj coupling, the dominant interaction is

the spin-orbit coupling between 	li and 	si. The possible terms are obtained by first adding

vectorially the orbital angular momentum vector 	li and the electron spin vector 	si of each

electron (index i) to form a resultant electronic angular momentum 	ji. The total electronic

angular momentum 	J results from the vectorial addition of all 	ji.

For a two electron system, one obtains, using the same angular momentum addition rules

that led to Equations (2.34), (2.36), and (2.38):

	j1 = 	l1 + 	s1; j1 = |l1 − 1

2
|, l1 +

1

2
(2.44)

mj1 = ml1 +ms1 = −j1,−j1 + 1, . . . , j1 (2.45)

	j2 = 	l2 + 	s2; j2 = |l2 − 1

2
|, l2 +

1

2
(2.46)

mj2 = ml2 +ms2 = −j2,−j2 + 1, . . . , j2 (2.47)

	J = 	j1 +	j2; J = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 (2.48)

MJ = mj1 +mj2 = −J,−J + 1, . . . , J. (2.49)
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The total orbital and spin angular momentum quantum numbers L and S are no longer

defined in jj coupling. Instead, the terms are now specified by a different set of angular

momentum quantum numbers: the total angular momentum ji of all electrons (index i) in

partially filled subshells and the total angular momentum quantum number J of the atom.

A convenient way to label the terms is (j1, j2, . . . , jN )J .

———————————————————

Example: The (np)1((n+ 1)s)1 excited configuration:

LS coupling: S = 0, 1; L = 1. Termsymbols: 1P1,
3P0,1,2, which give rise to 12 states.

jj coupling: l1 = 1, s1 = 1
2 , j1 = 1

2 ,
3
2 and l2 = 0, s2 = 1

2 , j2 = 1
2 . Termsymbols: [(j1, j2)J ] :

( 12 ,
1
2 )0; (

1
2 ,

1
2 )1; (

3
2 ,

1
2 )1; (

3
2 ,

1
2 )2, which also gives rise to 12 states.

———————————————————

The evolution from LS coupling to jj coupling can be observed by looking at the evolution of

the energy level structure associated with a given configuration as one moves down a column

in the periodic table. Figure 2.2 illustrates schematically how the energy levels arising from

the (np)1((n + 1)s)1 excited configuration are grouped according to LS coupling for n = 2

and 3 (C and Si) and according to jj coupling for n = 6 (Pb). The main splitting between

the (1/2, 1/2)0,1 and the (3/2, 1/2)1,2 states of Pb is actually much larger than the splitting

between the 3P and 1P terms. Figure 2.2 is a so-called correlation diagram, which represents

how the energy level structure of a given system (here the states of the (np)1((n+1)s)1 con-

figuration) evolves as a function of one or more system parameters (here the magnitude of the

spin-orbit and electrostatic interactions). States with the same values of all good quantum

numbers (here J) are usually connected by lines and do not cross in a correlation diagram.

1
P

J=0

1st + 2nd row
C, Si

1

2

3
P

J=1

(1/2, 1/2)J=1

J=0

(3/2, 1/2)J=1

J=2

Pb

Figure 2.2: Correlation diagram depicting schematically, and not to scale, how the term

values for the (np)((n + 1)s) configuration evolve from C, for which the LS coupling limit

represents a good description, to Pb, the level structure of which is more adequately described

by the jj coupling limit.
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The actual evolution of the energy level structure in the series C, Si, Ge, Sn and Pb, drawn

to scale in Figure 2.3 using reference data on atomic term values, enables one to see quan-

titatively the effects of the gradual increase of the spin-orbit coupling. For the comparison,

the zero point of the energy scale was placed at the center of gravity of the energy level

structure. In C, the spin-orbit interaction is weaker than the electrostatic interactions, and

the spin-orbit splittings of the 3P state are hardly recognizable on the scale of the figure. In

Pb, it is stronger than the electrostatic interactions and determines the main splitting of the

energy level structure.

C

0

1

J

3
P

1
P

1
2

0
1
2

1
1

2

1

0

1

0

1

2

1

2

1

0

(3/2,1/2)

(1/2,1/2)

PbSi Ge Sn

0

E hc/ ( cm )
-1

5000

- 10000

- 5000

Figure 2.3: Evolution from LS coupling to jj coupling with the example of the term values of

the (np)1((n+1)s)1 configuration of C, Si, Ge, Sn and Pb. The terms symbols are indicated

without the value of J on the left-hand side for the LS coupling limit and on the right-hand

side for the jj coupling limit. The values of J are indicated next to the horizontal bars

corresponding to the positions of the energy levels.

2.1.5 Hyperfine coupling

Magnetic moments arise in systems of charged particles with nonzero angular momenta to

which they are proportional. In the case of the orbital angular momentum of an electron, the
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origin of the magnetic moment can be understood by considering the similarity between the

orbital motion of an electron in an atom and a ”classical” current generated by an electron

moving with velocity v in a circular loop or radius r. The magnetic moment is equal to

	μ = − e

2me
	r ×me	v = − e

2me

	� = γ	�. (2.50)

For the orbital motion of an electron in an atom, Equation (2.50) can be written using the

correspondence principle as

	̂μ = γ	̂� = −μB

�

	̂�, (2.51)

where γ = −e/(2me) represents the magnetogyric ratio of the orbital motion and μB =

e�/(2me) = 9.27400968(20) × 10−24 JT−1 is the Bohr magneton. By analogy, similar equa-

tions can be derived for all other momenta. The electron spin 	s and the nuclear spin 	I, for

instance, give rise to the magnetic moments

	̂μs = −geγ	̂s = ge
μB

�
	̂s, (2.52)

and

	̂μI = γI 	̂I = gI
μN

�

	̂I, (2.53)

respectively, where ge is the so-called g value of the electron (ge = −2.0023193043622(15)),

γI is themagnetogyric ratio of the nucleus, μN = e�/(2mp) = 5.05078353(11)×10−27 JT−1

is the nuclear magneton (mp = 1.672621777(74)×10−27 kg is the mass of the proton), and gI

is the nuclear g factor (gp = 5.585 for the proton). Because μN/μB = me/mp, the magnetic

moments resulting from the electronic orbital and spin motions are typically 2 to 3 orders of

magnitude larger than the magnetic dipole moments (and higher moments) of nuclear spins.

The spin-orbit interaction is in general much stronger than the interactions involving nuclear

spins. The hyperfine interaction can therefore be described as an interaction between 	I, with

magnetic moment (gIμN/�)	̂I, and 	J , with magnetic moment

	̂μJ = gJγ 	̂J, (2.54)

rather than as two separate interactions of 	I with 	L and 	S. In Equation (2.54), gJ is the g

factor of the LS-coupled state, also called Landé g factor, and is given in good approximation

by

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.55)
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The hyperfine interaction results in a total angular momentum vector 	F of norm |	F | =

�
√

F (F + 1) and z-axis projection �MF . The possible values of the quantum numbers F

and MF can be determined using the usual angular momentum addition rules:

F = |J − I|, |J − I|+ 1, . . . , J + I, (2.56)

and

MF = −F, −F + 1, . . . , F. (2.57)

The hyperfine contribution to Ĥ arising from the interaction of 	̂μJ and 	̂μI is one of the terms

included in Ĥ ′′ in Equation (2.14) and is proportional to 	̂μI · 	̂μJ , and thus to 	̂I · 	̂J . Following
the same argument as that used to derive Equation (2.43), one obtains

	̂I · 	̂J =
1

2

[
	̂F 2 − 	̂I2 − 	̂J2

]
(2.58)

with 	̂F = 	̂I + 	̂J and 	̂F 2 = 	̂I2 + 	̂J2 + 2	̂I · 	̂J . The hyperfine energy shift of state |IJF 〉 is

therefore

〈IJF |ha
�2

	̂I · 	̂J |IJF 〉 = ha

2
[F (F + 1)− I(I + 1)− J(J + 1)] (2.59)

as can be derived from Equation (2.58) and the eigenvalues of 	̂F 2, 	̂I2 and 	̂J2. In Equa-

tion (2.59), a is the hyperfine coupling constant in Hz. Note that choosing to express A in

cm−1 and a in Hz is the reason for the additional factor of c in Equation (2.41). Examples

of the fine and hyperfine structure of atoms will be given in Section 2.2.

2.2 Atomic spectra

2.2.1 Transition moments and selection rules

The intensity I(νfi) of a transition between an initial state of an atom or a molecule with

wave function Ψi and energy Ei and a final state with wave function Ψf and energy Ef is

proportional to the square of the matrix element V̂fi, where the matrix V̂ represents the

operator describing the interaction between the radiation field and the atom or the molecule

I(νfi) ∝ |〈Ψf |V̂ |Ψi〉|2 = 〈f|V̂ |i〉2 = V̂ 2
if . (2.60)

The transition is observed at the frequency νfi = |Ef − Ei|/h.
A selection rule enables one to predict whether a transition can be observed or not on the

basis of symmetry arguments. If 〈Ψf |V̂ |Ψi〉 = 0, the transition f ← i is said to be “forbidden”,

PCV - Spectroscopy of atoms and molecules



2.2. ATOMIC SPECTRA 51

i. e., not observable; if 〈Ψf |V̂ |Ψi〉 	= 0, the transition f ← i is said to be “allowed”.

The interaction between atoms or molecules and electromagnetic radiation within the dipole

approximation is given by

V̂ = − 	̂
M · 	E. (2.61)

In the case of linearly polarized radiation, the electric field vector, defined in the laboratory-

fixed (X,Y, Z) frame, is (0, 0, E), and, therefore, V̂ = −M̂ZE. When studying the spectra

of atoms, the laboratory-fixed (or space-fixed) reference frame is the only relevant frame,

because it can always be chosen to coincide with an internal, ”atom-fixed” reference frame.

Indeed, the point-like nature of the nucleus implies that there are no rotations of the nuclear

framework. For this reason, atomic spectra are simpler to treat than molecular spectra.

Selection rules for atomic transitions can be easily derived if the electron spin and orbital

motions can be separated. The laboratory-fixed reference frame is the only relevant frame

when determining selection rules for atoms. The X, Y and Z components of the electric-

dipole-moment operator 	̂M transform as the components X, Y , Z of the position operator 	r

so that the single-photon transition moment is 〈Ψ ′| 	̂Mk|Ψ ′′〉 with k = X,Y, Z.

This property leads to the following selection rules:

The angular momentum selection rules

Within the dipole approximation, the photon can only exchange up to one unit of angular

momentum with an atom or molecule (in the electric quadrupole approximation, up to two

units can be exchanged): 	Jf = 	Ji +	1. Thus Jf = Ji, Ji ± 1 or

ΔJ = 0,±1 with 0 � 0. (2.62)

Because the transition moment operator does not act on the electron spin variable, one finds

within the LS coupling scheme (only approximate scheme neglecting spin-orbit coupling

between 	lk and 	sk, see Section 2.1.4)

ΔS = 0 and (2.63)

ΔL = 0,±1, 0 � 0. (2.64)

Whenever electron-correlation effects are negligible and the electronic wave function can be

represented as a single determinant (see Equation (2.19)), absorption of a single photon

leads to a final electronic state differing from the initial one by a single spin-orbital, say

φn�m�
(r, θ, ϕ) = Rn�(r)Y�m�

(θ, ϕ). The transition moment can then be factorized using the
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relation z = r cos(θ) for radiation linearly polarized along 	z:

I(νfi) ∝
∣∣∣〈φn′�′m′

�
| 	̂M |φn′′�′′m′′

�
〉
∣∣∣2 = ∣∣∣〈Rn′�′ |r|Rn′′�′′〉〈Y�′m′

�
| cos θ|Y�′′m′′

�
〉
∣∣∣2 (2.65)

The radial part of the integral is evaluated numerically whereas the angular part has analytical

solutions since Y�m�
are spherical harmonics (see exercise 2). The angular part is responsible

for the selection rules

Δ� = �′ − �′′ = ±1 (2.66)

and

Δm = m′ −m′′ = 0 (2.67)

in the case of linearly polarized light.

The parity (Laporte) selection rule

The parity operator Ê∗ inverts the coordinates of all particles:

Ê∗Ψ(x1, . . . , zN ) = Ψ(−x1, . . . ,−zN ). (2.68)

Because the kinetic and potential energy operators in the Hamiltonian only depend on the

coordinates squared, the Hamiltonian commutes with the parity operator:

[
Ê∗, Ĥ

]
= 0 (2.69)

and therefore the eigenstates of the Hamiltonian are also eigenstates of the parity operator:

Ê∗Ψ(x1, . . . , zN ) = ±Ψ(x1, . . . , zN ). (2.70)

States with eigenvalue +1 have positive parity, states with eigenvalue −1 have negative

parity. The transition moment has negative parity:

Ê∗	μ(x, y, z) = 	μ(−x,−y,−z) = −	μ(x, y, z). (2.71)

Because the integral over a function of negative parity vanishes, dipole transitions are only

allowed between states of opposite parity:

+ ↔ −,+ � +,− � −. (2.72)

The same argumentation can easily be extended to the derivation of magnetic-dipole or

electric-quadrupole selection rules as well as selection rules for multiphoton processes.

PCV - Spectroscopy of atoms and molecules



2.2. ATOMIC SPECTRA 53

2.2.2 Spectra of hydrogen and other one-electron atoms

The spectra of hydrogen and hydrogen-like atoms have been of importance for the devel-

opment of quantum mechanics and for detecting and recognizing the significance of fine,

hyperfine and quantum-electrodynamics effects. They are also the source of precious infor-

mation on fundamental constants such as Rydberg’s constant and the fine-structure constant.

If fine, hyperfine, and quantum-electrodynamics effects are neglected, the energy level struc-

ture of the hydrogen atom is given by Equation (2.2) and is characterized by a high-degree

of degeneracy. The allowed electronic transitions can be predicted using Equation (2.66) and

their wavenumbers determined using Equation (2.73)

ν̃ =
RM

n′′2
− RM

n′2
(2.73)

which, for n′′ = 2, reduces to Balmer’s formula. The transitions obeying the selection

rule (2.66) are depicted schematically in Figure 2.4a, in which, for simplicity, only transi-

tions from and to the n = 1 and n = 2 levels are indicated by double-headed arrows.

a)

s

E/hc

n = 1

n = 2

n = 3
n = 4

p d f g

0400800120016002000
wave length / nm

� (Lyman)� (Balmer)� (Paschen)� (Brackett)Pa

400044004800520056006000

� ( = 7)ni� ( = 8)ni BPfHHH

200024002800320036004000

� (Pfund)� (Humphrey) BPfPf

600064006800720076008000

� ( = 9)ni

b)

Figure 2.4: a) Energy level diagram of the H atom neglecting fine, hyperfine, and quantum

electrodynamics effects. Possible single-photon transitions to and from the n = 1 and 2

levels are indicated by double-headed arrows. b) Schematic spectrum of H showing that

the electronic spectrum extends from the microwave to the vacuum ultraviolet ranges of the

electromagnetic spectrum.
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Because of their importance, many transitions have been given individual names. Lines in-

volving n = 1, 2, 3, 4, 5, and 6 as lower levels are called Lyman, Balmer, Paschen, Brackett,

Pfund, and Humphrey lines, respectively. Above n = 6, one uses the n value of the lower level

to label the transitions. Lines with Δn = n′ − n′′ = 1, 2, 3, 4, 5, . . . are labeled α, β, γ, δ, . . .,

respectively. Balmer β, for instance, designates the transition from n = 2 to n = 4. The spec-

tral positions of the allowed transitions are indicated in the schematic spectrum presented in

Figure 2.4b.

The fine and hyperfine structure of the n = 1 and n = 2 manifolds of the hydrogen atom

are shown in Figure 2.5. The splitting of ≈ 0.0475 cm−1 of the 1s 2S1/2 ground state results

from the hyperfine interaction. This splitting scales with n−3 and rapidly decreases with

increasing n value, and also with increasing � value. The spin-orbit splittings, which are zero

for s levels, are largest for p levels and also scale as n−3. The two components of the 2P level

with J = 1/2 and 3/2 are separated by ≈ 0.365 cm−1.
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Figure 2.5: Fine and hyperfine structure of the n = 1 and n = 2 levels of the hydrogen atom.
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High-resolution spectroscopy of hydrogen-like atoms such as H, He+, Li2+, Be3+ . . . and

their isotopes continues to stimulate methodological and instrumental progress in electronic

spectroscopy. Measurements on ”artificial” hydrogen-like atoms such as positronium (atom

consisting of an electron and a positron), protonium (atom consisting of a proton and an an-

tiproton), antihydrogen (atom consisting of an antiproton and a positron), muonium (atom

consisting of a positive muon μ+ and an electron), antimuonium (atom consisting of a negative

muon μ− and a positron), etc., have the potential of providing new insights into fundamental

physical laws and symmetries and their violations.

2.2.3 Spectra of alkali-metal atoms

A schematic energy level diagram showing the single-photon transitions that can be observed

in the spectra of the alkali-metal atoms is presented in Figure 2.6. The ground-state config-

uration corresponds to a closed-shell rare-gas-atom configuration with a single valence n0s

electron with n0 = 2, 3, 4, 5 and 6 for Li, Na, K, Rb and Cs, respectively. The energetic

positions of these levels can be determined accurately from Equation (2.2). The Laporte

selection rule (Equation (2.72)) restricts the observable single-photon transitions to those

drawn as double-headed arrows in Figure 2.6. Neglecting the fine and hyperfine structures,

their wave numbers can be determined using:

ν̃ =
RM

(n′′ − δ�′′)2
− RM

(n′ − δ�′)2
. (2.74)

s

E/hc

n0s

( +1)sn0

( +2)sn0

p d f

n0p

( +1)pn0

( +1)dn0

( +2)fn0

principal series

sharp series

diffuse series

fundamental series

Figure 2.6: Schematic diagram showing the transitions that can be observed in the single-

photon spectrum of the alkali-metal atoms.
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The deviation from hydrogenic behavior is accounted for by the �-dependent quantum de-

fects. Transitions from (or to) the lowest energy levels can be grouped in Rydberg series,

which have been called principal, sharp, diffuse and fundamental. Comparing Figure 2.6 with

Figure 2.4, one can see that the principal series of the alkali metal atoms (called principal

because it is observed in absorption and emission) corresponds to the Lyman lines of H, the

diffuse and sharp series to the Balmer lines, and the fundamental series to the Paschen lines.

The quantum defects are only very weakly dependent on the energy. Neglecting this depen-

dence, the quantum defects of the sodium atom are δs ≈ 1.35, δp ≈ 0.86, δd ≈ 0.014, and

δf ≈ 0, so that the lowest-frequency line of the principal series (called the sodium D line

because it is a doublet, see below) lies in the yellow range of the electromagnetic spectrum,

and not in the VUV as Lyman α. The fact that the n0p ← n0s lines of the alkali metal atoms

lie in the visible range of the electromagnetic spectrum makes them readily accessible with

commercial laser sources, and therefore extensively studied and exploited in atomic-physics

experiments.
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Figure 2.7: Schematic diagram showing the fine and hyperfine structure of the 3s and 3p

levels involved in the lowest-frequency line of the principal series of 23Na.

Most transitions of the alkali-metal atoms reveal fine and hyperfine structures. As in the

case of H, the hyperfine-structure splittings are largest in the ground state (3s 2S1/2 in the
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case of Na) and the fine-structure splittings are largest in the lowest-lying p level (3p 2PJ

with J = 1/2, 3/2 in the case of Na). The details of the structure of these two levels of Na

are presented in Figure 2.7. At low resolution, the 3p←3s line appears as a doublet with two

components at 16960.9 cm−1 and 16978.1 cm−1, separated by an interval of 17.2 cm−1 corre-

sponding to the spin-orbit splitting of the 3p state. The second largest splitting (≈ 0.06 cm−1)

in the spectrum arises from the hyperfine splitting of 1772MHz of the 3s state. Finally, split-

tings of less than 200MHz result from the hyperfine structure of the 3p levels.

2.2.4 Spectra of the rare gas atoms

The 1S0 ground state of the rare-gas atoms (Rg=Ne, Ar, Kr and Xe) results from the full-

shell configurations ([. . .](n0p)
6 with n0 = 2, 3, 4 and 5 for Ne, Ar, Kr, and Xe, respectively).

Single-photon absorption by electrons in the (n0p)
6 orbitals leads to the excitation of J = 1

states of the configurations [. . .](n0p)
5(ns)1 and [. . .](n0p)

5(nd)1.

Compared to H and the alkali-metal atoms discussed in the previous examples, the lowest

excited electronic configurations contain two, instead of only one, unpaired electrons, which

leads to both S = 0 and S = 1 states. Moreover, these states form Rydberg series that con-

verge on two closely spaced ionization limits corresponding to the two spin-orbit components

(J+ = 1/2, 3/2) of the 2PJ+ ground state of Rg+, rather than on a single ionization limit, as

is the case for H and the alkali-metal atoms.

( +2)s[3/2]n 1 nd[3/2]1nd[1/2]1 ( +2)s'[1/2]n 1 nd'[3/2]1

2
P1/2

2
P3/2

Figure 2.8: Schematic diagram showing Rydberg series converging to the two spin-orbit

components 2PJ (J = 1/2, 3/2) of the rare gas atomic ions Rg+. The series are designated

in Racah’s notation as n�′[k]J , the prime designating series converging on the upper (2P1/2)

ionization threshold. Interaction between series are represented by horizontal arrows.
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Figure 2.8 depicts schematically the J = 1 Rydberg series of the rare-gas atoms located

below the 2PJ+ (J+ = 1/2, 3/2) ionization thresholds that are optically accessible from the

1S0 ground state. Two angular momentum coupling schemes are used to label these Rydberg

states. The first one corresponds to the familiar LS-coupling scheme discussed in Section 2.1.4

and tends to be realized, if at all, only for the lowest Rydberg states and the lightest atoms.

Five series arise from the optically allowed p→s and p→d transitions, two s series ((n0p)
5(ns)1

3P1 and 1P1) and three d series ((n0p)
5(nd)1 3D1,

3P1 and 1P1). The second one is a variant

of the jj coupling scheme, and becomes an increasingly exact representation at high n values,

when the spin-orbit coupling in the 2PJ+ ion core becomes stronger than the electrostatic

(including exchange) interaction between the Rydberg and the core electrons. As a result,

the core and Rydberg electrons are decoupled, and J+ becomes a good quantum number

instead of S. In this labeling scheme, the states are designated (2PJ+)n�[k]J , k being the

quantum number resulting from the addition of 	J+ and 	�. The five optically accessible J = 1

series are labeled ns[3/2]1, ns
′[1/2]1, nd[1/2]1, nd[3/2]1, nd′[3/2]1, the ”prime” being used to

designate the two series converging to the 2P1/2 ionization limit (see Figure 2.8).

Several sections of the single-photon VUV spectrum of Ar are presented in Figure 2.9. Fig-

ure 2.9a corresponds to the region where Rydberg states of principal quantum number n ≥ 33

below the 2P3/2 ionization limit can be excited from the ground state. In the region below

127060 cm−1, only the nd[3/2]1 and ns[3/2]1 carry intensity. These two series are almost

degenerate. The splittings can hardly be seen on the wave-number scale used to draw the

spectrum, but are clearly visible on the expanded scale of the spectrum labeled B, which cor-

responds to the region of principal quantum number around n = 55. The high-n region of the

spectrum is also displayed on an enlarged scale in the spectrum labeled C. The nd[1/2]1 series

is extremely weak at n values below 50, but becomes the dominant series beyond n = 80. In

an unperturbed Rydberg series, the intensity should decrease as n−3, as explained previously.

The anomalous intensity distribution of the nd[1/2]1 series has its origin in the interactions

with the series converging to the 2P1/2 ion core, which are such that, in some spectral re-

gions, it has almost pure S = 1 character and cannot be excited from the S = 0 ground state.

Figure 2.9b displays a section of the VUV spectrum of Ar in the region between the 2P3/2

and 2P1/2 ionization limits. The ns′[1/2]1 and nd′[3/2]1 series appear as sharp, symmetric,

and broad, asymmetric autoionization resonances in this region, respectively.
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Figure 2.9: High-resolution VUV laser spectra of Ar recorded with a narrow-band laser. a)

Region below the 2P3/2 ionization threshold showing the perturbed ns/d[k]J=1 series. The

spectra shown labeled B and C represent sections of the spectrum labeled A presented on an

enlarged scale. b) Region above the 2P3/2 revealing the broad asymmetric nd′[3/2]1, and the

narrow, symmetric ns′[1/2]1 resonances (adapted from U. Hollenstein, Diss. ETH Nr. 15237

(2003)).
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