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Coherent manipulation of quantum d-kicked dynamics: Faster-than-classical anomalous diffusion
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Large transporting regular islands are found in the classical phase space of a modified kicked rotor system
in which the kicking potential is reversed after every two kicks. The corresponding quantum system, for a
variety of system parameters and over long time scales, is shown to display energy absorption that is signifi-
cantly faster than that associated with the underlying classical anomalous diffusion. The results are of interest
to areas of both quantum chaos and quantum control.
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The kicked-rotor system~KR! has long served as a par
digm for classical and quantum chaos@1#. Its atom optics
realization@2# makes it possible to directly compare fund
mental theoretical work with corresponding experimen
studies. The KR is also of interest to a variety of other fie
such as molecular physics@3,4#, condensed matter physic
@5#, and quantum information@6,7#.

It is well known that quantum coherence suppresses c
sical chaotic~normal! diffusion. The suppression mechanis
is well understood in terms of ‘‘dynamical localization’’@1#
in KR. By contrast, much less is known about quantum
terference effects in the case of classical anomalous d
sion, a phenomenon induced by the fractal boundary betw
regular and chaotic regions in phase space. Of particula
terest is the quantum dynamics ofd-kicked systems where
the underlying classical chaos coexists with transport
regular islands, e.g., the accelerator modes in KR@8–12#. In
this case it is found that anomalous diffusion induced
transporting islands causes the early breakdown of quan
classical correspondence~QCC! @8# and enhances fluctua
tions of dynamical localization length@9–11#, and that quan-
tum eigenstates in the semiclassical limit may igno
classical phase space structures@12#.

Motivated by our recent studies on coherent manipulat
of classically chaotic dynamics@13,14#, we consider here a
modified kicked-rotor~MKR! model in which the kicking
potential is reversed after every two kicks@15#. As shown
below, this apparently slight modification of the KR syste
has a profound effect on the dynamics. First, it results in
appearance of transporting regular islands that are m
larger and of a different nature than those previously
served. Second, and more importantly, we find a new p
nomenon: The corresponding quantum system, for a var
of system parameters and over considerably long time sc
displays energy absorption that is significantlyfaster than
that associated with the underlying classical anomalous
fusion. This result constitutes an important and intrigui
aspect of quantum interference effects in classically cha
systems. Furthermore, the drastic difference in quantum
namics between KR and MKR is a demonstration of sp
tacular quantum control@16# over d-kicked systems,
achieved here by periodically reversing or delaying the ki
ing field. These results are of broad theoretical and exp
mental interest.
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The Hamiltonians for the KR and MKR systems are giv
by

HKR~ L̂,u,t !5L̂2/2I 1l cos~u!(
n

dS t

T
2nD ~1!

and

HMKR~ L̂,u,t !5L̂2/2I 1l cos~u!(
n

f ~n!dS t

T
2nD . ~2!

Here u f (n)u51 and it changes sign after every two kick
@i.e., f (n)51 if n54 j 11, or 4j 12, and f (n)521 if n

54 j 13 or 4j 14, wherej is an integer#, L̂ is the angular
momentum operator,u is the conjugate angle,I is the mo-
ment of inertia,l is the strength of the kicking field, andT is
the time interval between kicks. The basis states of th
Hilbert spaces are given byum&, with L̂um&5m\um&. The
quantum propagator in the KR case for times (N201)T to
(N11201)T is given by

F̂KR~t,k!5expS i
t

2

]2

]u2D exp@2 ik cos~u!#, ~3!

with dimensionless parametersk5lT/\ and the effective
Planck constantt5\T/I . The classical limit of the KR
quantum map, i.e., the standard map, depends only on
parameterk[kt and takes the following form:

L̃N5L̃N211k sin~uN21!,

uN5uN211L̃N , ~4!

where L̃[Lt/\ is the scaledc-number angular momentum
and (L̃N ,uN) represents the phase space location of a cla
cal trajectory at (N11201)T. With similar notation, the
quantum map associated with MKR, for times ranging fro
(4 j 11201)T to @4( j 11)11201#T, can be written as

F̂MKR~t,k!5@ F̂KR~t,2k!#2@ F̂KR~t,k!#2. ~5!

The classical limit of the MKR quantum map@Eq. ~5!# is
given by
©2003 The American Physical Society09-1
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L̃4 j 115L̃4 j1k sin~u4 j !, u4 j 115u4 j1L̃4 j 11 ,

L̃4 j 125L̃4 j 111k sin~u4 j 11!, u4 j 125u4 j 111L̃4 j 12 ,

L̃4 j 135L̃4 j 122k sin~u4 j 12!, u4 j 135u4 j 121L̃4 j 13 ,

L̃4 j 145L̃4 j 132k sin~u4 j 13!, u4 j 145u4 j 131L̃4 j 14 .
~6!

The well-known accelerator modes in KR are closely
lated to the existence of the marginally stable points:L̃
52p l 1 ,u56p/2) for k52p l 2, where l 1 and l 2 are inte-
gers. These points are shifted by a constant value (62p l 2)
in L̃ after each iteration. For values ofk close to 2p l 2, there
still exist interesting transporting regular islands on wh
classical trajectories simply jump to other similar islands
cated in adjacent phase space cells, resulting in a ball
increase of rotational energy. For trajectories initially outs
the accelerator modes, the ‘‘stickiness’’ of the boundary
tween the accelerator modes and the chaotic sea ind
anomalous diffusion over the energy space, i.e., energy
creases in a nonlinear fashion, but not quadratically.

Examining the classical MKR map@Eq. ~6!#, we find a
different type of marginally stable points. That is, fork

5(2l 211)p, trajectories emanating fromL̃5(2l 111)p,u
56p/2 are shifted by a constant value@6(2l 211)p# in L̃
after each kick. As confirmed by our numerical experimen
this suggests that by reversing the kicking potential a
every two kicks, one may create new transporting regu
islands. For example, in Fig. 1 we show classical phase sp
structures of both KR and MKR fork53.5. The main regu-
lar islands seen in Fig. 1~a! in the KR case are not transpor
ing, consistent with the fact thatk53.5 is far from 2p l 2. By
contrast, a simple computation reveals that those isla
clearly seen in Fig. 1~b! in the MKR case are transportin
~note thatk53.5 is not far fromp).

A number of additional remarks are in order:
~1! The transporting islands shown in Fig. 1~b! are much

larger than the well-studied accelerator modes in KR.
rough estimate gives their area at least ten times larger

FIG. 1. Classical phase space structures for~a! the standard map
and~b! the map of Eq.~6!, in the case ofk53.5. All variables are
in dimensionless units. Note that the regular islands seen in~b! are
transporting while those in~a! are not.
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the accelerator modes in KR withk56.908 745, and four
times larger withk56.476 939@11#.

~2! The transporting islands are stable with changes ink,
e.g., thek53.4 ork53.6 case gives transporting islands
similar size.

~3! Unlike the accelerator modes in KR, the transporti
islands of MKR are far away fromL̃50. This latter feature
favors the observation of anomalous diffusion, insofar as
initial state with sufficiently low energy will not overlap with
the transporting islands of MKR.

~4! After each kick, trajectories initiated from those i
lands shown in Fig. 1~b! will increase theirL̃ by 6p ap-
proximately, although the phase space structures have a
riod of 2p.

~5! There exist interesting extensions of MKR. For i
stance, consider the cases in which the kicking potentia
reversed after everyN.2 kicks whereN56,10,14, . . . .
Then, for k5(2l 211)p, trajectories emanating from@ L̃
5(2l 111)p,u56p/2# are also transporting, with thei
shift of angular momentum after each kick alternating b
tween different constant values. However, we have fou
that the transporting islands associated with these gen
ized cases are extremely small and very sensitive to the v
of k.

Consider now quantum versus classical energy absorp
behavior in each of KR and MKR. We choosek53.5 as an
example; the results described below can be observed f
wide range of parametersk ~e.g., for 3.3,k,5.0). We de-
fine the dimensionless scaled rotational energy averaged
the quantum or classical ensemble asẼq[^L̂2&t2/2\2 or
Ẽc[^L̃2&/2. The effective Planck constantt is first chosen to
be 0.1, a value far from the semiclassical limit but relative
small compared to the area of the transporting islands sh
in Fig. 1~b!. Further, this value oft ensures that the nonge
neric behavior associated with quantum resonances~i.e., t
52p l 1 / l 2) is avoided. The initial quantum state here is ch
sen to beu0&, which evidently does not overlap with th
transporting islands. The corresponding classical initial s
is given by L̃50 with u uniformly distributed in@0,2p#.
Figure 2~a! displays a quantum-classical comparison in t
KR case. Clearly, quantum effects in KR strongly suppr
classical energy absorption and the QCC break timetb

KR in
Fig. 2~a! is ;20T. By contrast, Fig. 2~b! shows that both the
quantum and classical MKR systems display characteris
of anomalous diffusion: an excellent log-log linear fit of th
results in Fig. 2~b! after the MKR QCC break timetb

MKR

@that is, we numerically fit the results with ln(Ẽq)5a ln(N)
1b and ln(Ẽc)5a8 ln(N)1b8, wherea, b, a8, andb8 are pa-
rameters# gives that Ẽq}N1.85 ~solid line! and Ẽc}N1.36

~dashed line!, whereN is the number of kicks. Hence, sig
nificantly, the quantum energy absorption is seen to be
greater than that associated with the underlying class
anomalous diffusion. This rapid quantum growth is ev
more visible in Fig. 2~c!, which shows that the faster-than
classical excitation process shown in Fig. 2~b! persists for
much longer time scales, as well as for an effective Pla
constant that is ten times smaller@see the discrete points i
9-2
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Fig. 2~c!#. Note also that in the MKR case shown in Fi
2~b!, quantum dynamics agrees fairly well with the classi
result for up totb

MKR;200T, much longer thantb
KR;20T in

Fig. 2~a!. In addition, tb
MKR is also an order of magnitud

larger than the characteristic QCC time scale found in
KR model in the presence of accelerator modes with
same effective Planck constant@8#. This is understandable
because the main transporting regular islands of MKR
larger than the accelerator modes of KR, and therefore c
sical phase space structures can be ‘‘seen’’ more clearly
the quantized MKR.

Also evident in Fig. 2~c! is that a smaller effective Planc
constant gives better QCC. Thus, in contrast to what w
suggested in Ref.@8#, the quantum anomalous diffusion he

FIG. 2. The time dependence of the average dimension

scaled rotational energy, denoted asẼq and Ẽc for quantum and
classical ensembles, respectively, for~a! KR, ~b! MKR, and ~c!
MKR over even longer time scales, withk53.5. Solid lines denote
quantum results fort50.1, and dashed lines denote classical
sults. The discrete points in~c! represent quantum results fort
50.01. Note that in~b! and~c! quantum results are well above th
classical results.
02620
l

e
e

e
s-
y

s

approaches the underlying classical anomalous diffus
from above rather than from below as the effective Plan
constant goes to zero. This leads to the conclusion that u
nonresonant conditions quantization does not necessarily
duce suppression of energy absorption. Note that one pr
ous work @17# also reported computations~in the kicked-
Harper model! on faster-than-classical diffusion unde
nonresonant conditions. However, in Ref.@17# the growth in
the second moment of angular momentum is always q
dratic, and the issue of faster-than-classical energy abs
tion cannot be addressed since the kinetic energy therein
cosine function of angular momentum. It should also
pointed out that, unlike gravity-induced quantum accelera
modes in KR@18#, quantum anomalous diffusion in MKR i
shown to have a well-defined classical limit and does
require the value oft to be near quantum resonance con
tions.

It is interesting to view MKR from a quantum control@16#
perspective. The time-evolving wave function can
expanded as a superposition of differentum& states,
i.e., (mCm^uum&, whereCm are the expansion coefficients
Since cos(u1p)52cos(u) and (Cm^u1pum&5(m
(21)mCm^uum&, the effect of reversing the kicking potentia
is equivalent to adding ap phase difference between a
neighboring basis states. As such, the potential reversa
MKR can be regarded as periodically introducing quant
phases into KR and therefore as a significant extension
our previous coherent control work@13#. In addition, noting
that

F̂MKR~t,k!5FexpS ip
]2

]u2D F̂KR~t,k!F̂KR~t,k!G 2

, ~7!

we have that MKR can be effectively realized by using K
and introducing a time delaytd52pT/t of the kicking field
after every two kicks.

Figure 3 displays a comparison between KR and MKR
terms of the occupation probabilityP(m) of um& after 3000
kicks, withk53.5, t50.1, and the initial stateu0&. It is seen
that for many states~e.g., for 90 000.umu.8000), P(m) of
MKR is greater than that of KR by a factor larger than 1020.

ss

-

FIG. 3. A comparison between KR~dashed line! and MKR
~solid line! in terms of the probabilityP(m) of finding the system in
the stateum& at t53000T. k53.5, t50.1, and the initial state is
u0&. Fluctuations ofP(m) below the 10230 level are due to numeri-
cal cutoff errors.
9-3
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Further, we find thatẼq of MKR at t53000T is three orders
of magnitude larger than that of KR, whereas classical
namics only gives an energy-absorption difference of;2.5
times. We stress~1! that this vast quantum control over e
ergy absorption is achieved by simply reversing the kick
potential, or, alternatively, by introducing a certain time d
lay after every two kicks, and~2! that the control mechanism
here is uniquely based upon quantum anomalous diffusio
MKR, and is thus far more effective than that in amplitud
modulated@19,20# or phase-modulated kicked-rotor system
@21# in the absence of transporting islands. We also note
if we regard MKR as controlled KR, then we see that we s
have control for an effective Planck constant as large at
51.0 @21#.

It remains to examine the possibility of observing fast
than-classical quantum anomalous diffusion in atom op
experiments. In atom optics experiments on KR, the ang
variableu is replaced by the position variable of atoms@2#
so that there is no periodic boundary condition as
uc(u50)&5uc(u52p)& in KR. Further, in the experiments
translational Gaussian states~which are different from the
initial state that we have examined thus far! are typically
used as initial states. Thus, of particular concern here is
the faster-than-classical quantum anomalous diffusion
found to be insensitive to the periodic boundary condit
and to the initial conditions. That is, in sharp contrast
quantum resonances in KR, the faster-than-classical ano
lous diffusion shown in Figs. 2~b! and 2~c! is found to be
stable with respect to small variations of all system para
eters and initial conditions. For example, Fig. 4 shows si
lar faster-than-classical anomalous diffusion with the ar

FIG. 4. As in Fig. 2~b!, except the initial condition, the periodi
boundary condition, the values oft andk are all changed~see the
text for details!. The classical initial distribution function is chose
to be identical with the Wigner function of the initial quantum sta
r
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trary choice oft52p/(601s), where s5(A521)/2, k
533, the initial state being given by a Gaussianuc(u)&
5exp(2u2/18)/A3p1/4, and the periodic boundary conditio
changed from uc(u50)&5uc(u52p)& to uc(u50)&
5uc(u5512p)&. This kind of result suggests that faste
than-classical quantum anomalous diffusion should be
servable in atom optics experiments, provided that the r
tively small effective Planck constantt;0.1 is achieved.

We qualitatively explain faster-than-classical anomalo
diffusion in terms of a quantum tunneling mechanism@11#.
At early times, both the quantum and classical systems
are not initially on the transporting regular islands tend to
trapped by the fractal structures lying between the m
transporting regular islands and the chaotic sea, resultin
excellent QCC in anomalous diffusion. Later, fort;tb

MKR, a
non-negligible part of the time-evolving quantum state h
tunneled from the chaotic sea to the large transporting
lands, whereas each classical trajectory can only sojour
the neighborhood of the transporting islands for a cert
time. Thus, if the mean sojourn time of classical trajector
is relatively short compared to the characteristic time sc
over which the transporting-island component of the tim
evolving quantum state builds up and then tunnels back
the chaotic sea, the quantum tunneling effects can stron
enhance the transport in phase space, and therefore qua
anomalous diffusion can be significantly faster than class
anomalous diffusion. This also makes it clear that quant
anomalous diffusion in MKR will slow down and dynamica
localization can take place when significant tunneling in
reverse direction~i.e., from the transporting islands to th
chaotic sea! occurs. Indeed, additional numerical results~not
shown! for longer time scales~e.g., 12 000 kicks in the cas
of t50.1) and for larger effective Planck constants indica
that quantum anomalous diffusion in MKR will eventual
be suppressed by dynamical localization, with a largert giv-
ing earlier suppression.

In conclusion, we have found large transporting regu
islands in the classical phase space of a modified kick
rotor system, and have shown that the associated quan
anomalous diffusion can be significantly faster than class
anomalous diffusion over long time scales. The results ar
interest to both areas of quantum chaos and quantum con
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