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Control of dynamical localization
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Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control
over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field.
These include the enhancement of the dynamical localization length, the introduction of classical anomalous
diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of
strongly nonexponential line shapes for dynamical localization. The results provide excellent examples of
controlled quantum dynamics in a system that is classically chaotic and offer opportunities to explore quantum
fluctuations and correlations in quantum chaos.
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I. INTRODUCTION

The quantum kicked rotor~KR! and its classical analog
the standard map, have long served as a paradigm for q
tum and classical chaos@1#. Due to its atom optics realizatio
@2#, the KR has recently attracted renewed interest. The
is also of considerable interest in a variety of other fie
such as condensed matter physics@3,4#, molecular physics
@5,6#, and quantum information science@7,8#.

One well-known quantum effect in a KR is ‘‘dynamica
localization’’ ~DL! @1#. That is, although a classical kicke
rotor displays unrestricted diffusive energy increase due
classical chaos, only a finite number of rotational states
excited in the quantum dynamics, with the quantum exc
tion probability versus the rotational quantum number ty
cally assuming a characteristic exponential line shape. D
a pure quantum coherence effect and is therefore very se
tive to decoherence. For example, previous studies h
demonstrated that noise@9–11#, nonperiodicity in the kicking
sequences@12,13#, and quantum measurements@7# can de-
stroy DL.

As a coherence effect, DL is also indicative of the pos
bility of controlling the KR dynamics via quantum effec
@14–16#. Indeed, we recently showed that the quant
phases describing the initial rotor quantum state can be
nipulated to effectively control quantum fluctuations in qua
tum chaos and thus enhance or suppress quantum ch
diffusion @17,18# in a KR. However, manipulating quantum
phases in initial states cannot change the unitary evolu
operator of the system. Hence, neither the average dynam
localization length nor the characteristic line shape of
namical localization can be altered in this way.

Motivated by interest in controlled classically chao
quantum dynamics@17–19#, and to gain more insights into
the nature of DL, we consider controlling DL and the ass
ciated energy absorption via a modified kicked-rotor~MKR!
system, in which the phase of the kicking field, or the timi
of the kicking sequences~hence the evolution operator!, is
actively manipulated. In particular, we consider a MKR sy

*Present address: Department of Chemistry and The Ja
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tem in which the sign of the kicking potential is periodical
changed, or alternatively time delayed, after a certain num
of kicks. As shown below, such a slight modification of th
KR has profound effects on the dynamics: whereas perio
cally changing the sign of the kicking potential does n
destroy DL, it dramatically changes the quantum diffusi
dynamics of the KR as well as the nature of DL, offerin
opportunities for controlling the dynamics, as well as und
standing quantum fluctuations and correlations in quan
chaos in periodically kicked systems. For example, we de
onstrate that, with the sign of the kicking potential of the K
periodically changed,~i! the dynamical localization length i
significantly increased so that the energy absorption
strongly enhanced;~ii ! classical anomalous diffusion~which
can be slower than quantum anomalous diffusion under
tain conditions@20#! can enhance control even when the e
fective Planck constant is about an order of magnitude lar
than the relevant classical phase space structures; and~iii !
DL may display strong deviations from purely exponent
line shapes.

This paper is organized as follows. In Sec. II we introdu
the modified kicked-rotor model. We then present results
Sec. III on the enhancement of dynamical localizati
length, with qualitative explanations based upon a kno
result from the band random matrix theory@21–23#. In Sec.
IV we show control of DL in a different regime, where th
dynamics can be tied to a different mechanism, i.e., the
ation of additional structures in classical phase space. S
tion V contains the results on coherent manipulations of
line shapes for DL. We conclude the paper with a brief d
cussion in Sec. VI.

II. A MODIFIED KICKED-ROTOR MODEL

The KR Hamiltonian is given by

HKR~ L̂,u,t !5L̂2/2I 1l cos~u!(
n

d~ t/T2n!, ~1!

whereL̂ is the angular momentum operator,u is the conju-
gate angle,I is the moment of inertia,l is the strength of the
kicking field, andT is the time interval between kicks. Th
basis states of their Hilbert spaces are given byum&, with
es
©2003 The American Physical Society02-1
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L̂um&5m\um&. The quantum KR map operator for propaga
ing from time (N201)T to time (N11201)T is given by

F̂KR5expF i
t

2

]2

]u2Gexp@2 ik cos~u!#, ~2!

with dimensionless parametersk5lT/\ and the effective
Planck constantt5\T/I . For later use we also define th
dimensionless scaled rotational energy asẼ[^L̂2&t2/2\2,
where^•& represents the average over the quantum ensem
In the um& representation,F̂KR takes the following form@23#:

^m1uF̂KRum2&5expS i
t

2
m1

2D i m12m2Jm12m2
~k!, ~3!

whereJm12m2
(k) is the Bessel function of the first kind o

order (m12m2).
The classical limit of the KR quantum map, i.e., the sta

dard map, depends on only one parameterk[kt and is
given by

L̃N5L̃N211k sin~uN21!,

uN5uN211L̃N , ~4!

where L̃[Lt/\ is the scaledc-number angular momentum
and (L̃N ,uN) represents the phase space location of a cla
cal trajectory at (N11201)T. For later discussion we not
that for particular values ofk the classical map Eq.~4! can
generate accelerating trajectories whose momentum
creases~or decreases! linearly with time ~at least on the av-
erage!. These trajectories are calledtransportingtrajectories
@24#. To see this, consider the initial conditions (L̃52p l 1 ,
u56p/2! for k52p l 2, wherel 1 andl 2 are integers. Clearly
these phase space points are shifted by a constant v
(62p l 2) in L̃ after each iteration, resulting in a quadra
increase of rotational energy. These transporting trajecto
are rather stable insofar as they may persist for valuesk
close to 2p l 2 ~with their average momentum shift after ea
iteration oscillating around the constant value62p l 2), thus
giving rise to transporting regular islands@24#, i.e., the ac-
celerator modes in the KR case. If classical trajectories
launched from the accelerator modes, they simply jump
other similar islands located in adjacent phase space c
For trajectories initially outside the accelerator modes,
‘‘stickiness’’ of the boundary between the accelerator mo
and the chaotic sea induces anomalous diffusion over
energy space, i.e., energy increases in a nonlinear fash
but not quadratically. This is intrinsically different from th
case of normal chaotic diffusion in which energy increa
linearly with the number of kicks.

We introduce here a slightly modified kicked-rotor syste
whose Hamiltonian is given by

HMKR~ L̂,u,t !5L̂2/2I 1l cos~u!(
n

f M~n!d~ t/T2n!,

~5!
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where f M(n) is real, u f M(n)u51, and f M(n) changes
sign after everyM kicks. That is, the only difference betwee
the KR and the MKR is that in the MKR the sign of th
kicking potential is changed after everyM kicks. The ef-
fect of changing the sign of the kicking potential can
further understood in terms of the time-evolving wa
function, which can be expanded as a superposition
um& states: (mCm^uum&, with the expansion coefficient
Cm . Since cos(u1p)52cos(u), and (Cm^u1pum&
5(m(21)mCm^uum&, changing the sign of the kicking po
tential is seen to be equivalent to adding ap phase difference
between all neighboring basis states. Compare this now
the effect of a time delaytd52pT/t between two neighbor-
ing kicks. Due to the free evolution of the rotor any tw
angular momentum eigenstatesum& and um11& will acquire
in time td an additional relative quantum phase given
exp$ittd@(m11)22m2#/(2T)%5exp@i(2m11)p#5exp(ip). As
such, the MKR can also be realized by introducing the ti
delay td after everyM kicks.

For times (N201)T to (N1M201)T, the MKR quan-
tum propagator can be written as

F̂MKR5expS ip
]2

]u2D F̂KR
M [D̂F̂KR

M , ~6!

where this equation definesD̂ as the free evolution operato
over time td . Here F̂KR

M denotesM applications ofF̂KR .
From Eq.~6!, one sees that the only difference in time prop
gation between the KR and the MKR for everyM kicks is
the D̂ operator, whose matrix elements^m1uD̂um2& are given
by

^m1uD̂um2&5~21!m1dm1m2
. ~7!

Thus we have

^m1uF̂MKRum2&5~21!m1^m1uF̂KR
M um2&. ~8!

Note also that the classical limit of the MKR quantum m
@Eq. ~6!# is given by

L̃N115L̃N1k f M~N!sin~uN!,

uN5uN1L̃N11 . ~9!

With respect to model systems in the literature, the MK
here can be regarded as a specific realization of the so-c
generalized kicked-rotor model, which was first introduc
in Ref. @25#, in the context of quantum antiresonance. Ho
ever, it is very different from the amplitude-modulate
kicked rotor systems@12,26# previously studied because~i!
the kicking field strength here remains constant, and the
fore any interesting results arise from pure phase mod
tions; and~ii ! as shown below, the dynamical localization
significantly altered, but not destroyed.
2-2
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III. ENHANCED DYNAMICAL LOCALIZATION LENGTH

As an example, consider the case ofk54.0, t52.0, and
M550, whose classical limit for both the KR and the MK
is fully chaotic and displays normal chaotic diffusion. W
demonstrate below that the dynamical localization and
related energy absorption associated withF̂MKR are dramati-
cally enhanced over that associated withF̂KR

M .
Figure 1~a! displays the angular momentum distributio

P(m) after 43105 kicks, starting with the initial stateu0&, for
both the KR and the MKR withM550. The exponential line
shape ofP(m) shown in Fig. 1~a! indicates that DL occurs in
both cases. By fittingP(m) with exponentials P(m)
;exp@2umu/lKR# and P(m);exp@2umu/lMKR# for the KR and
MKR, respectively, one obtains that the dynamical locali
tion length l MKR;140.0 is significantly larger thanl KR
;7.0. This clear difference in dynamical localization leng
is also reflected in the energy absorption shown in Fig. 1~b!.
In particular, while the energy absorption of KR satura
after a few kicks, the MKR system continues to absorb
ergy in a more or less linear manner for as long as 104 kicks.
Enhancement of dynamical localization length and ene
absorption is also observed for other values ofM, and for a

FIG. 1. Phase control of dynamical localization achieved
changing the sign of the kicking potential after every 50 kic
k54.0,t52.0, and the initial state isu0&. ~a! A comparison between
the KR ~the narrow line shape, solid line! and the MKR~the broad
line shape, dashed line! in terms of the probabilityP(m) of finding
the system in the stateum& after 43105 kicks. ~b! The time depen-

dence of the dimensionless scaled rotational energyẼ in each case
of the KR ~solid line! and the MKR~dashed line!. Note that the

solid line lies very close to theẼ50 axis.
05620
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wide range of parametersk andt.
As is well known, the DL of the KR can be traced back

the localization properties of the eigenstates of the quan
map operator@Eq. ~2!#. Note first that, due to the rapid deca
of Jm12m2

(k) with increasingum12m2u and the pseudoran

dom nature of the function exp(itm1
2/2) in m1, the quantum

map operatorF̂KR in general assumes a band structure a
behaves in a pseudorandom manner in theum& representa-
tion. Hence, below we qualitatively consider the MKR r
sults in terms of a well-known feature from band rando
matrix theory@21–23#, namely, that the larger the bandwid
of the quantum map operator the larger the dynamical lo
ization length.

Note first that the matrix̂muF̂KRum8& is pseudorandom
However, we do not expect^muF̂KR

M um8& to be a pseudoran

dom matrix of the same type since multiplyingF̂KR by itself
M times is expected to establish correlations between
matrix elementŝ m1uF̂KR

M um2&. Nevertheless, we do assum

that the matrix̂ muF̂MKRum8& is banded and pseudorando
since the eigenstates ofF̂MKR have no simple connection
with those of F̂KR . Consider now an arbitrary matrix ele
ment^m1uF̂KR

M um2&. Due to the quantum diffusive dynamic

within the M kicks, the ^m1uF̂KR
M um2& with um12m2u@1

should be much greater than̂m1uF̂KRum2& ~nevertheless,
both of them can be very small!. According to Eq.~8!, this
implies that the matrix element^m1uF̂MKRum2& is also much
greater than̂m1uF̂KRum2&. In this sense, we expect that th

^muF̂MKRum8& matrix should display a wider band than do

^muF̂KRum8&.
The bandwidth of the matrix̂muF̂KRum8& can be defined

by choosing a cutoff value for its matrix elements. One t
ditional choice isum12m2u;k. In this case,̂m1uF̂KRum2& at
the boundary of the band is on the order ofJk(k), a number
which is sufficiently small. However, this cutoff value,
applied to the matrix̂muF̂MKRum8&, would yield almost the
same bandwidth asF̂KR . Hence, quantitatively characteriz
ing the band structure of the matrix^muF̂MKRum8& is subtle,
since the very small matrix elements^m1uF̂MKRum2& must
play an important role in enhancing the dynamical localiz
tion length of the MKR.

To gain more insight we computationally examined theM
dependence of the dynamical localization length of
MKR. Specifically, we numerically diagonalizedF̂MKR ,
where each matrix is generated using 214 basis states and i
then truncated at dimensiond chosen below. We characteriz
the average dynamical localization length by the Shan
entropySMKR @27# ~note that the Shannon entropy is simp
proportional to the dynamical localization length@27#! aver-
aged over all approximate eigenstatesuf j& of F̂MKR , i.e.,

SMKR5
2

ad (
j 51

d

expF2 (
m52d/2

d/2

z^muf j& z2lnz^muf j& z2G ,

~10!

y
.
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where the constanta equals 0.96, andd is chosen to be 2700
The results for theM dependence ofSMKR for M52 to M
5400 are shown in a log-log plot in Fig. 2~a!. SMKR is seen
to behave initially as a smoothly increasing function ofM,
and then to saturate atM;50. To explain the results from
the perspective of band random matrix theory, we choos
cutoff value for matrix elementŝm1uF̂MKRum2& so as to de-
fine the bandwidthbMKR . Interestingly, we find that this cut
off value must be extremely small~roughly speaking, at leas
as small as 10210) in order that theM dependence ofbMKR
resembles that ofSMKR . For example, Fig. 2~b! displays
bMKR as a function ofM for a cutoff value of 10220. The
evident similarities between Fig. 2~a! and Fig. 2~b! suggest
~i! that we can indeed qualitatively explain the enhanced
namical localization length in terms of the band random m
trix theory, and~ii ! that even extremely small quantum flu
tuations in the values of the matrix elements of the MK
quantum map operator affect its dynamical localizat
length.

In particular, comparing Fig. 2~a! with Fig. 2~b!, one sees
that the saturation behavior ofSMKR for largeM is consistent
with the saturation behavior ofbMKR . The latter reflects the
saturation of the matrix elements^m1uF̂MKRum2& and there-

FIG. 2. ~a! The M dependence of the dynamical localizatio
length of the MKR, characterized by the Shannon entropySMKR

averaged over all approximate eigenfunctions of the MKR pro

gator F̂MKR . ~b! The M dependence of the bandwidthbMKR asso-

ciated with the MKR propagatorF̂MKR , defined by a cutoff value

~as small as 10220) for its matrix elementŝm1uF̂MKRum2&.
05620
a
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fore the matrix elementŝm1uF̂KR
M um2&. As such, we infer

that the saturation behavior ofSMKR is simply a result of DL
in the KR.

Detailed studies on numerous other cases with varyink
and t show that the above result, i.e.,SMKR first increases
with M and then saturates, is quite general, as long as
system has a completely chaotic classical limit and quan
correlations are insignificant. On the other hand, ifSMKR
behaves differently, then there are two possible origins:
ther the system is in the deep quantum regime or there
non-negligible regular islands in the classical phase sp
For example, in the next section we show cases in which
energy absorption in the MKR withM52 is appreciably
larger than that in the MKR withM53. In these cases on
can obtain even more significant changes in DL.

IV. CLASSICAL ANOMALOUS DIFFUSION ASSISTED
CONTROL

In the previous section we studied cases where both
KR and the MKR essentially have a fully chaotic classic
limit. However, as shown below, the MKR can also displ
nonchaotic classical phase space structures that are abs
the KR. In particular, regular islands with very interestin
transporting properties can be induced in the MKR. In su
cases one can achieve even more dramatic alteration o
DL than that shown above.

Consider first the classical MKR map Eq.~9! for M52.
Interestingly, in this case there exist transporting trajecto
that are different from those in the KR. In particular, we ha
previously observed@20# that for k5(2l 211)p trajectories
emanating fromL̃5(2l 111)p, u56p/2 will be shifted by
a constant value@6(2l 211)p# in L̃ after each kick. This
observation suggests that transporting regular islands
differ from the accelerator modes in the KR can be crea
by changing the sign of the kicking potential after every tw
kicks. This is confirmed in our extensive numerical studi
both here and in Ref.@20#.

Note that in our previous work@20# we were most inter-
ested in the quantum-classical comparison in anomalous
fusion and considered relatively small effective Planck co
stants. In that case we found that quantum anomal
diffusion induced by the transporting regular islands can
much faster than the underlying classical anomalous di
sion. Here, to make a closer connection to atom optics
periments, we consider largert;1.0. In these cases the e
fective Planck constant is about an order of magnitude lar
than the area of the phase space structures associated
classical anomalous diffusion. Intuitively, one would antic
pate that such transporting regular islands are too small t
relevant to the quantum dynamics. Surprisingly, this intuiti
is incorrect, as shown below.

To be more specific, consider first the case ofk55.0.
Figure 3 displays the classical phase space structures of
the KR and the MKR withM52. While the regular islands
seen in Fig. 3~a! ~the KR case! are not transporting~that is,
the momentum of the trajectories launched from these
lands is bounded and oscillates periodically!, a simple com-

-
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putation reveals that the small islands seen in Fig. 3~b! in the
MKR case are transporting. That is, classical trajecto
launched from the right~left! transporting regular island
shown in Fig. 3~b! have their momentum shifted byp ~2p!
on the average after each kick, indicating that these isla
originate from the marginally stable pointL̃5(2l 111)p,
u56p/2 with k5p. Hence, in this case phase manipulati
in going from the KR to the MKR has both destroyed t
nontransporting regular islands of KR and induced transp
ing regular islands. Consider a second case withk510.0.
The corresponding classical phase space structures
shown in Fig. 4~a! ~KR! and Fig. 4~b! ~MKR! ~Note that, to
clearly display the transporting regular islands, only a p
of one phase space cell is shown here.! While there are
hardly any regular islands seen in Fig. 4~a!, two small trans-
porting regular islands are seen in Fig. 4~b!. The average
momentum shift for each kick associated with these two
lands is found to be63p, consistent with the fact tha
k510.0 is close to 3p.

FIG. 3. Classical phase space structures of~a! the standard map
and ~b! the map of Eq.~9! with M52, in the case ofk55.0. All
variables are in dimensionless units. Note that the small reg
islands seen in panel~b! are transporting while those in panel~a!
are not.
05620
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Consider now the quantum dynamics of these syste
There have been only a few studies on the quantum dyn
ics of d-function-kicked systems where classical chaos co
ists with transporting regular islands. Of particular relevan
is the previous result that the accelerator modes of the
enhance deviations from the normal DL behavior in the K
@28,29#, even for systems far from the semiclassical lim
Since the MKR displays additional transporting islands,
therefore anticipate that DL may be strongly affected
modifying the Hamiltonian from the KR to the MKR system
This is indeed seen below. The results are, however, coun
intuitive, since the classical transporting regular islands c
ated by phase manipulation of the kicking field are found
have an area that is much smaller than the effective Pla
constant.

For example, for each of the KR and MKR, Figs. 5 and
display energy absorption for the cases oft51.0,k55.0 and
t51.0, k510.0 ~corresponding tok55 andk510!, respec-
tively. Also shown is the MKR case withM53, discussed
below. It is seen that the energy absorption associated
the MKR with M52 ~upper dashed line! is much larger than
that of the KR ~solid line!. Consider, for example,Ẽ at a

ar

FIG. 4. As in Fig. 3 exceptk510.0. Note that the small regula
islands seen in panel~b! are transporting.
2-5
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GONG, WÖRNER, AND BRUMER PHYSICAL REVIEW E68, 056202 ~2003!
specific timet51500T when the energy absorption of bo
the KR and the MKR has clearly shown signs of saturat
~e.g., the average rotational energy may decrease with
due to statistical fluctuations!. In the first case~Fig. 5!, Ẽ

567.7 for the KR andẼ51269.7 for the MKR. In the sec
ond case~Fig. 6!, Ẽ5798.0 for the KR andẼ510 049.0 for
the MKR. In both cases a control factor larger than an or
of magnitude has been achieved in going from the
Hamiltonian to the MKR case withM52.

This is not the case forM53, t51.0, k55.0 shown in
Fig. 5. Here the energy absorption in the MKR withM53 is
only slightly larger than in the KR and far less than in t
MKR with M52. Similarly, for the case oft51.0, k
510.0 shown in Fig. 6, although energy absorption in
MKR with M53 is much enhanced~compared with the
KR!, it is still not as significant as in the MKR withM
52. This indicates, as confirmed by directly examini
P(m) ~not shown! after saturation, that for both cases t
dynamical localization length of the MKR withM53 is no
larger than that of the MKR withM52, contrary to what is
observed in the previous section. This is because the un
lying classical dynamics of MKR here is not completely ch

FIG. 5. The time dependence of the dimensionless scaled

tional energyẼ for the KR ~solid line!, for the MKR with M52
~uppermost dashed line!, and for the MKR with M53 ~middle
dashed curve!, with t51.0, k55.0, and the initial stateu0&.

FIG. 6. As in Fig. 5 exceptt51.0, k510.0.
05620
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otic, i.e., the classical dynamics displays characteristics
anomalous diffusion due to transporting regular islands
phase space. Thus one can expect statistical deviations
the band random matrix theory, used previously to relateM
to the extent of control.

These results emphasize that the control mechanism
is uniquely based upon the transporting regular islands
ated by our control scenario. This is further supported by
line shape for DL, which can be strongly nonexponential,
discussed below.

V. NONEXPONENTIAL LINE SHAPES FOR DYNAMICAL
LOCALIZATION

It was pointed out more than two decades ago@5# that the
DL of the KR can be mapped onto the problem of Anders
localization in disordered systems. In particular, an exac
soluble case of disorder in tight-binding models, i.e., t
Lloyd model @30#, suggests that dynamical localizatio
should assume an exponential line shape, at least on the
erage. This has been confirmed by numerous computati
studies on the KR. For example, Fig. 1~a! clearly demon-
strates, for both the KR and the MKR, that the distributi
function P(m) can be fitted beautifully with an exponentia
function with a characteristic localization length.

However, the Hamiltonian nature of the KR and MK
implies that there always exist some subtle quantum ph
correlations in the quantum dynamics. Hence, in addition
some universal properties of DL, the DL line shape can d
play rich nonuniversal properties, e.g., the system may
play nonexponential dynamical localization. Nonexponen
dynamical localization has been previously observed in
KR but its origins are still poorly understood@28,31#.

Here, we demonstrate that the MKR withM52 can dis-
play strongly nonexponential line shapes for DL, rarely se
in the KR. We focus on the MKR withM52 since the clas-
sical MKR with M52 has transporting regular islands th
are absent in the KR. Second, transporting regular isla
may induce large fluctuations in DL@28#. However, we ex-
amine below cases with connections to anomalous diffus
as well as those without clear connections to anomalous
fusion. We have also studied other versions of the MKR w
MÞ2, and have found that nonexponential line shapes
DL in the latter case are much less common than in theM
52 case.

Figure 7 compares nonexponential line shapes for DL
the MKR ~upper dashed lines! to the analogous exponentia
line shapes for DL in the KR~solid lines!, for four different
values ofk andt. The line shapes are obtained by propag
ing the quantum dynamics for 8000 kicks from the initi
state u0&, and will remain essentially the same for long
propagation times@32#. The huge difference between the K
and MKR line shapes is striking. As shown in Fig. 7, in th
MKR case, P(m) plotted on a logarithmic scale display
structures that are far from a purely exponential line sha
For example, one sees that the initial exponential decay
of P(m) with umu is considerably smaller than its large-umu
exponential decay rate, suggesting that multiple characte
tic lengths are needed to describe the DL of the MKR. It

ta-
2-6
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FIG. 7. Four examples of nonexponential line shapes for dynamical localization in the MKR withM52, shown in terms of the
probability P(m) of finding the system in the stateum& after 8000 kicks, with the initial stateu0&. In each case the broad line shap
is associated with the MKR, and for the purpose of comparison, the narrow line shape of the analogous KR is also shown.~a! t51.0,
k55.0, ~b! t52.0, k55.0, ~c! t51.0, k55.7, and~d! t52.0, k56.0.
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re-
also seen that the difference inP(m) between KR and MKR
can be as large as ten orders of magnitude or more. Fur
Figs. 7~b! and 7~c! indicate that the decay rate ofP(m) for
large umu in the MKR case is very similar to that in the KR
case, although this is not the case in Figs. 7~a! and 7~d!.

To the best of our knowledge, this is the first demonst
tion that intriguing differences in the line shapes for DL c
be created by simply changing the sign of the kicking pot
tial periodically.

The four cases of nonexponential line shapes shown
Fig. 7 can be divided into two categories, based upon
properties of their underlying classical dynamics. The cla
cal dynamics associated with the cases in Figs. 7~a! and 7~b!,
shown in Figs. 3~b! and 4~b!, displays transporting regula
islands. The presence of these classical structures implie
inhomogeneous classical phase space, and, as demons
in the previous section, may have a significant impact on
quantum dynamics even when their size is much smaller t
the effective Planck constant. In this regard, the nonexpon
tial line shapes shown in Figs. 7~a! and 7~b! may not be
totally surprising. However, for the other two MKR cas
shown in Figs. 7~c! and 7~d!, we did not find any regular
islands in their classical phase space even when examine
a very fine scale, suggesting that their classical dynamic
essentially fully chaotic. Thus, understanding the nonex
nential line shapes shown in Fig. 7~c! and Fig. 7~d! will be
even more challenging.
05620
er,

-

-

in
e
i-

an
ated
e
n

n-

on
is
-

The nonexponential line shapes for DL arise from e
tremely small quantum fluctuations and residual quant
correlations in quantum chaos. To be able to resolve the n
exponential line shape for DL,P(m) has to be known with
high precision. For example, the two shoulders shown in F
7~b! involve occupation probabilitiesP(m) as small as
;10214. It is therefore not surprising that, while it is com
mon to have strongly nonexponential line shapes for DL
the MKR case, each individual line shape is highly sensit
to the exact value of the effective Planck constant. For
ample, for the case shown in Fig. 7~b!, increasing the value
of t from 2.0 to 2.011025 can completely destroy the non
exponential line shape. This drastic change in the line sh
for DL even occurs without causing an obvious difference
energy absorption behavior. Evidently, then, both experim
tal observations and theoretical predictions of nonexpon
tial dynamical localization are far from trivial and are in ne
of further study.

VI. DISCUSSION AND CONCLUSIONS

This paper has dealt with control of dynamical localiz
tion in kicked-rotor systems. In all cases we manipulated
external kicking field to alter the properties of the rotor sy
tem, i.e., the distribution of population among rotor ener
levels after saturation as well as the energy absorption
particular, we have examined the effect of introducing a
versal of the kicking field afterM kicks which, within the
2-7
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GONG, WÖRNER, AND BRUMER PHYSICAL REVIEW E68, 056202 ~2003!
framework of quantum mechanics, corresponds to introd
ing a phase shift among rotor energy levels.

Two parameter regimes have been examined, one w
shows enhanced DL lengths with increasingM, and the other
which need not. This behavioral difference can be und
stood in terms of the character of the underlying class
phase space: the former systems are completely cha
whereas the latter show a mixed phase space that incl
transporting regular islands. Indeed, we have found that e
if the transporting islands are tiny compared to the effect
Planck constant, they still have a profound effect on the c
trol of the DL. Further, a comparison of traditional kicke
rotor system to modified kicked-rotor systems shows that
latter are much more capable of displaying nonexponen
dynamical localization. Thus, by modifying the kicking p
tential we are able to control the dynamical localization
the kicked rotor.

The results of this paper are relevant to two fields
study: quantum control and kicked-rotor dynamics. From
control perspective, modifying the kicking field changes t
dynamics. However, this system does not obviously perm
picture in terms of interfering quantum pathways~the stan-
dard view of weak field coherent control@15,16#! since ~a!
the kicking field is always on, and~b! there are a multitude
of interfering transitions responsible for the observed beh
ior. Indeed, it is even difficult to isolate the interfering pat
ways that are responsible for dynamical localization in
simple kicked rotor, whose dynamics is easier than tha
the MKR.

From the viewpoint of kicked-rotor studies in the field
quantum chaos, this paper provides insights into the quan
dynamics in the case displaying classical anomalous di
sion. As one of the results of this study, we find that class
transporting regular islands can dramatically affect the qu
tum dynamics even when their size is much smaller than
effective Planck constant. Further, the MKR system p
posed in this paper provides a model for the study of qu
tum dynamics where the underlying classical chaos coex
with transporting regular islands. By choosing proper syst
parameters, we can create transporting regular islands w
size varies from being much larger to being much sma
than that of the accelerator modes of KR. Encouraged
this, we plan in the near future to further use the MKR
study quantum tunneling between the transporting reg
island and the chaotic sea@20,29# and between transportin
regular islands, and to study the phase space structur
quantum eigenstates@24#.

In the fully chaotic case, our approach suggests the n
for additional studies of dynamical localization from th
band random matrix theory perspective. For example,

@1# G. Casati and B. Chirikov,Quantum Chaos: Between Orde
and Disorder~Cambridge University Press, New York, 1995!.

@2# F.L. Moore et al., Phys. Rev. Lett.75, 4598 ~1995!; H. Am-
mannet al., ibid. 80, 4111 ~1998!; J. Ringotet al., ibid. 85,
2741 ~2000!; M.B. d’Arcy et al., ibid. 87, 074102~2001!.

@3# S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. L
49, 509 ~1982!.
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have qualitatively explained the results in Sec. III in terms
well-known features of band random matrix theory. Ho
ever, we found that the bandwidth of the quantum map
erator had to be defined using an extremely small cu
value for the matrix elements, suggesting that a quantita
understanding of MKR results such as Fig. 2 may requ
different models of band random matrix ensembles.

The strongly nonexponential line shapes for DL found
the MKR with M52 further demonstrate the need for mo
theoretical work on properties of DL. In particular, our r
sults should motivate greater interest in characterizing
understanding nonexponential dynamical localization, w
efforts directed toward explaining why nonexponential d
namical localization occurs for some system parameters
not for others. This is of importance in understanding t
high sensitivity of nonexponential line shapes for DL to t
exact value of the effective Planck constant.

We have chosen the system parameters to be within
reach of current atom optics experiments on the KR@2#.
Although experimental studies of nonexponential line sha
for DL are difficult, we believe that it is straightforward t
experimentally observe the results of Sec. III and Sec.
Apart from the atom optics realization of KR and MKR, it
also interesting to consider a molecular version of KR a
MKR, i.e., diatomics periodically kicked in strong micro
wave fields@5,18#. Preliminary computational studies@33#
confirm that directly observing quantum control of dynam
cal localization in molecular rotational motion is possib
e.g., in the case of quantum anomalous diffusion. Anot
promising experimental realization of KR and MKR requir
kicked particles in a square-well potential@34#. Along this
direction an interesting model~which is very different from
ours! has recently been proposed for the study of class
and quantum anomalous diffusion@35#.

In summary, consideration of control in classically chao
quantum systems is of general interest and importance
both the fields of quantum chaos and quantum control. In
paper we have demonstrated, via a modified kicked-ro
model, that dynamical localization, perhaps the best kno
phenomenon in quantum chaos, can be modified over a w
range. The results are of both experimental and theore
interest.
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