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1 INTRODUCTION

Electronic spectroscopy aims at studying the structure and
dynamics of atoms and molecules by observing transitions
between different electronic states induced by electromag-
netic radiation.

The notion of an electronic state of a molecule follows
from the Born–Oppenheimer approximation, which enables
one to separate the Schrödinger equation into an equation
describing the motion of the electrons at fixed configura-
tions of the much heavier nuclei, and an equation describing
the motion of the nuclei on the 3N − 6- (3N − 5-) dimen-
sional adiabatic electronic potential energy surface of a
nonlinear (linear) molecule consisting of N atoms. This
separation and the very different timescales of the differ-
ent types of motion in a molecule lead to the approximate
description of stationary states as products of electronic
ϕe(qi ), vibrational ϕ

(e)
v (Qα), rotational ϕ

(ev)
r (θ, φ, χ), and

nuclear-spin φ(evr)
ns (mα) wave functions

Ψ = ϕe(qi)ϕ
(e)
v (Q)ϕ(ev)

r (θ, φ, χ)φ(evr)
ns (mα) (1)

and sums of electronic Ee, vibrational Ev, rotational Er,
and hyperfine Ens energies

E = Ee + Ev + Er + Ens (2)

(seeMerkt and Quack 2011:Molecular Quantum Mechan-
ics and Molecular Spectra, Molecular Symmetry, and
Interaction of Matter with Radiation, this handbook) In
equation (1), qi represents the coordinates of the electrons
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including spin, Q stands for the 3N − 6(5) normal coordi-
nates used to describe the vibrations of the nuclear frame-
work, (θ, φ, χ) are the Euler angles specifying the relative
orientation of the space-fixed and molecule-fixed axis sys-
tems, and mα describes the spin state of the nuclei. The
spectrum of an electronic transition α′ ← α′′ between a
lower electronic state α′′ and an upper electronic state α′
of a molecule never consists of a single line, but usually
of a very large number of lines corresponding to all pos-
sible vibrational (v′

i), rotational (J ′, K ′
a, K ′

c), and hyper-
fine levels of the upper electronic state accessible from all
populated vibrational (v′′

i ), rotational (J ′′, K ′′
a , K ′′

c ), and
hyperfine levels of the lower electronic state. An electronic
spectrum, thus, consists of a system of vibrational bands,
each of which possesses a rotational fine structure. Neglect-
ing the hyperfine structure, the transition wave numbers can
be expressed as differences of rovibronic term values:

ν̃ = T ′
e + G′(v′

1, v′
2, . . .) + F ′(J ′, K ′

a, K ′
c) − T ′′

e

− G′′(v′′
1 , v′′

2 , . . .) − F ′′(J ′′, K ′′
a , K ′′

c ) (3)

where T ′′
e and T ′

e represent the electronic term values (i.e.,
the positions of the minima of the Born–Oppenheimer
potential surfaces of the corresponding electronic states),
G′′ and G′ represent the vibrational term values discussed
in detail in Albert et al. 2011: Fundamentals of Rota-
tion–Vibration Spectra, this handbook, and F ′′ and F ′
represent the rotational term values discussed in detail in
Bauder 2011: Fundamentals of Rotational Spectroscopy,
this handbook. An electronic spectrum offers the possi-
bility of obtaining information not only on the electronic
structure of a molecule but also on the vibrational, rota-
tional, and hyperfine structures of the relevant electronic
states. The purely electronic origin of the transition is at
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ν̃e = T ′
e − T ′′

e , and each band of the system has its origin
at ν̃e + G′ − G′′, so that the origin of the band system is at
ν̃00 = ν̃e + G′(0, 0, . . . , 0) − G′′(0, 0, . . . , 0).

The hierarchy of motion upon which equations (1)
and (2) rely implies that the energetic separation between
electronic states is much larger than that between vibra-
tional and rotational levels of a given electronic state.
Consequently, the populations in the electronically excited
states are negligible at room temperature, and electronic
transitions, particularly those from the ground electronic
state, are usually observed at shorter wavelengths than
vibrational and pure rotational transitions, i.e., in the visible
or the ultraviolet regions of the electromagnetic spectrum.
The rovibrational levels of electronically excited states are
usually located at energies where the density of rovibronic
states is very large, or even above one or more dissociation
and ionization limits, in which case they form resonances
in the dissociation and/or ionization continua.

Interactions with neighboring electronic states and radia-
tionless decay processes such as autoionization, predissoci-
ation, internal conversion (IC), and intersystem crossings
(ISC) are unavoidable and represent a breakdown of
equations (1) and (2). These interactions can cause pertur-
bations of the spectral structures and can limit the lifetimes
of the upper levels of the transitions, leading to a broaden-
ing of the spectral lines and to diffuse spectra. The complex
structure of electronic spectra and the frequent breakdown
of the Born–Oppenheimer approximation in electronically
excited states render electronic spectra more difficult to
interpret than vibrational and pure rotational spectra. Their
information content, however, may be larger, particularly
when the spectral structures are sharp.

Despite the frequent breakdown of the Born–Oppenhe-
imer approximation, the way electronically excited states
and electronic transitions are labeled relies on the approxi-
mate description provided by equations (1) and (2), partic-
ularly for small molecules: vibrational and rotational levels
are labeled as explained in Albert et al. 2011: Funda-
mentals of Rotation–Vibration SpectraandBauder 2011:
Fundamentals of Rotational Spectroscopy, respectively,
in this handbook; the electronic states are labeled with a
letter, representing the “name” of the state, followed by a
symmetry label or a term symbol that can be derived either
from the spectra themselves or from the symmetry of the
occupied molecular orbitals, if these are known.

The eigenstates of a molecule with an associated Hamil-
tonian Ĥ remain invariant under the symmetry operations
Si of the point group. The operators Ŝi corresponding to
the symmetry operations Si , therefore, commute with Ĥ

([Ĥ , Ŝi] = 0). Consequently, the eigenfunctions Ψ n of Ĥ

can be chosen such that they are also eigenfunctions of Ŝi

and can be designated with the eigenvalues of the opera-
tors Ŝi . These eigenvalues correspond to the characters of

one of the irreducible representations of the point group.
The eigenfunctions Ψ n of Ĥ , thus, transform as one of the
irreducible representations of the corresponding symmetry
group, and the irreducible representations are used to label
the electronic states.

The ground electronic state is labeled by the letter X for
diatomic molecules and X̃ for polyatomic molecules. Elec-
tronically excited states are designated in order of increas-
ing energy by the letters A, B, C, . . . (Ã, B̃, C̃, . . . for
polyatomic molecules) if they have the same total electron-
spin quantum number S as the ground electronic state, or by
the letters a, b, c, . . . (ã, b̃, c̃, . . . for polyatomic molecules)
if they have a different spin multiplicity. The “ ˜ ” in the
designation of electronic states of polyatomic molecules is
introduced to avoid confusion with the letters A and B that
are used as group-theoretical labels. This labeling scheme
occasionally poses problems, for instance, when an elec-
tronic state thought to be the first excited state when it
was first observed turns out later to be the second or the
third, or when several local minima of the same potential
energy surface exist and lead to distinct band systems in an
electronic spectrum, or because of initial misassignments.
Whereas misassignments of symmetry labels are usually
corrected, incorrect A, B, . . . labels sometimes survive,
especially when they have been accepted as names.

As the molecules become larger and/or less symmetric,
this nomenclature tends to be replaced by a simpler one that
uses a letter (S for singlet (S = 0), D for doublet (S = 1/2),
T for triplet (S = 1), . . .) to indicate the electron-spin
multiplicity, and a subscript i = 0, 1, 2, . . . to indicate
the energetic ordering, 0 being reserved for the ground
electronic state. For example, the lowest three electronic
states of benzene are sometimes designated as X̃ 1A1g,
ã 3B1u, and Ã 1B2u using D6h-point-group symmetry labels,
or as S0, T1, and S1 using the second, simpler labeling
scheme. The different electronic states of a molecule
can have Born–Oppenheimer potential energy surfaces of
very different shapes and which reflect different binding
mechanisms. Figure 1, which displays only a small subset
of the adiabatic potential energy functions of molecular
hydrogen, illustrates this diversity and the complexity of
the electronic structure of this seemingly simple molecule.
In selected regions of internuclear distances, the states can
be classified as:

• Valence states, i.e., states in which the valence electrons
occupy molecular orbitals with significant amplitudes
at the positions of more than one atom. Valence states
can be entirely repulsive if the valence electrons occupy
predominantly antibonding molecular orbitals or attrac-
tive if they occupy predominantly bonding orbitals, in
which case rigid molecular structures usually result.
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Figure 1 Potential energy functions of selected electronic states of H2, H2
+, and H2

−. [Adapted from Sharp (1971).]

• Rydberg states, i.e., states in which one of the valence
electrons has been excited to a diffuse orbital around
a positively charged molecular ion core, resembling an
excited orbital of the hydrogen atom. In such a state, the
excited electron, called the Rydberg electron, is bound
to the molecular ion core by the attractive Coulomb
potential and can be labeled by a principal quantum
number n. At sufficiently high values of n, the Rydberg
electron is located, on average, at large distances
from the ion core and only interacts weakly with
it. The Born–Oppenheimer potential energy functions
(or hypersurface in the case of polyatomic molecules)
of Rydberg states, thus, closely resemble that of the
electronic state of the molecular ion core to which
the Rydberg electron is attached. Rydberg states form

infinite series of states with almost identical potential
energy functions (or hypersurfaces), and can also be
labeled by the orbital angular momentum quantum
number � of the Rydberg electron. Rydberg states of
H2 can easily be identified in Figure 1 as the states
with potential energy functions parallel to that of the
X 2	+

g ground state of H2
+.

• Ion-pair states, i.e., states in which the molecule can
be described as composed of two atoms A+ and
B− (or two groups of atoms) of opposite charge
that are held together by a Coulomb potential. The
attractive part of the potential energy of these states
is proportional to −1/R (R is the distance between
the atoms of opposite charge) and dissociate at large
distances into a cation (A+) and an anion (B−). At short
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internuclear distances, the potential energy function
falls rapidly and starts overlapping with valence states
with which they interact strongly, giving rise to charge
transfer processes and electronic states with multiple
potential wells. Ion-pair states are not only encountered
in molecules such as NaCl but also in homonuclear
diatomic molecules, an example being the potential
function shown in Figure 1 which coincides with the
outer wall of the potential functions of the E,F 1	+

g

and B 1	+
u states.

• States in which the atoms (or group of atoms) are held
together by weak van der Waals interactions, which
give rise to shallow potential wells at large internuclear
distances. The ground electronic states of the rare-gas
dimers are prototypes of such states.

As all classifications, the classification of electronic states
and binding mechanisms as valence, ion-pair, Rydberg, and
van der Waals represents a simplification based on idealized
limiting situations. Because of configuration interactions,
an electronic state that can be described as a valence state
at short internuclear distances, may evolve into a Rydberg
state or an ion-pair state at larger distances, or even display
shallow van der Waals potential wells.

The complexity of the electronic structure of even
the simplest molecular systems illustrated in Figure 1 is
reflected by the complexity of electronic spectra. Not only
does each molecule represent a special case with its par-
ticular symmetry properties, number and arrangement of
atoms, and magnetic and electric properties, but also the
large number and the diversity of electronic states of any
given molecule, the interactions between these states, and
the possibility of interactions with dissociation and ioniza-
tion continua contribute to make an exhaustive treatment
of electronic spectroscopy impossible. In this article, we
seek to present, at an introductory level, the general prin-
ciples that form the basis of electronic spectroscopy and
emphasize common aspects of the electronic structure and
spectra of atoms and molecules, particularly concerning the
use of group theory and the classification of interactions.
These aspects are best introduced using atoms, diatomic
molecules, and small polyatomic molecules.

More advanced material is presented in other arti-
cles of this handbook: The determination of potential
energy surfaces and rovibronic energy levels of poly-
atomic molecules by ab initio quantum chemical meth-
ods is the object of Yamaguchi and Schaefer 2011: Ana-
lytic Derivative Methods in Molecular Electronic Struc-
ture Theory: A New Dimension to Quantum Chem-
istry and its Applications to Spectroscopy, Tew et al.
2011: Ab Initio Theory for Accurate Spectroscopic Con-
stants and Molecular Properties, Breidung and Thiel
2011: Prediction of Vibrational Spectra from Ab Initio

Theory, Mastalerz and Reiher 2011: Relativistic Elec-
tronic Structure Theory for Molecular Spectroscopy,
Marquardt and Quack 2011: Global Analytical Potential
Energy Surfaces for High-resolution Molecular Spec-
troscopy and Reaction Dynamics, Carrington 2011: Using
Iterative Methods to Compute Vibrational Spectra and
Tennyson 2011: High Accuracy Rotation–Vibration Cal-
culations on Small Molecules, this handbook. The calcu-
lation of the spectral and dynamical properties of Rydberg
states by ab initio quantum theory is reviewed in Jun-
gen 2011b: Ab Initio Calculations for Rydberg States
and by multichannel quantum defect theory in Jungen
2011a: Elements of Quantum Defect Theory, both in
this handbook. Experimental and theoretical investigations
of the photodissociation of electronically excited states
are presented in Ashfold et al. 2011: High-resolution
Photofragment Translational Spectroscopy using Ryd-
berg Tagging Methods and Schinke 2011: Photodissocia-
tion Dynamics of Polyatomic Molecules: Diffuse Struc-
tures and Nonadiabatic Coupling, respectively, in this
handbook. The valence and inner-shell photoionization
dynamics of molecules, including studies of autoionization
processes in electronically excited states, are reviewed in
Pratt 2011b: High-resolution Valence-shell Photoioniza-
tion and Miron and Morin 2011: High-resolution Inner-
shell Photoionization, Photoelectron and Coincidence
Spectroscopy, respectively, in this handbook. The use
of electronic spectroscopy to study specific classes of
molecular systems and electronic states is illustrated in
Guennoun and Maier 2011: Electronic Spectroscopy of
Transient Molecules, Schmitt and Meerts 2011: Rota-
tionally Resolved Electronic Spectroscopy and Auto-
matic Assignment Techniques using Evolutionary Algo-
rithms, Pratt 2011a: Electronic Spectroscopy in the
Gas Phase, Callegari and Ernst 2011: Helium Droplets
as Nanocryostats for Molecular Spectroscopy—from
the Vacuum Ultraviolet to the Microwave Regime
and Eikema and Ubachs 2011: Precision Laser Spec-
troscopy in the Extreme Ultraviolet, this handbook. The
Jahn–Teller (JT) effect and nonadiabatic effects in man-
ifolds of near-degenerate electronic states are treated in
Köppel et al. 2011: Theory of the Jahn–Teller Effect,
this handbook, the treatment of fine structure in elec-
tronically excited states using effective Hamiltonians is
the subject of Field et al. 2011: Effective Hamiltonians
for Electronic Fine Structure and Polyatomic Vibra-
tions, this handbook, and studies of ultrafast electronic
processes taking place on the (sub)femtosecond timescale
are reviewed in Wörner and Corkum 2011: Attosecond
Spectroscopy, this handbook. The use of photoelectron
spectroscopy to study the electronic states of molecular
cations is described by Merkt et al. 2011: High-resolution
Photoelectron Spectroscopy, this handbook. These articles
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also provide information on the wide range of experimental
techniques and spectroscopic instruments that are employed
to measure electronic spectra.

Until the second half of the twentieth century, elec-
tronic spectra were almost exclusively obtained by mon-
itoring the radiation transmitted by a given probe gas, or
the radiation emitted by a sample after the production of
electronically excited atoms or molecules using electric or
microwave discharges, flash lamps, or in flames, as a func-
tion of the wavelength. In the second half of the twentieth
century, the use of intense and/or highly monochromatic
laser sources has greatly extended the range of applications
of electronic spectroscopy, enabling studies at very high
spectral resolution and unprecedented sensitivity. Multipho-
ton processes started to be exploited systematically to (i)
study electronically excited states not accessible from the
ground state by single-photon excitation, (ii) reduce spec-
tral congestion in electronic spectra by carrying out the
multiphoton excitation via selected rovibrational levels of
suitable intermediate electronic states, and (iii) efficiently
detect the resonant multiphoton transitions by monitoring
the resonance-enhanced multiphoton ionization (REMPI)
signal.

In combination with laser radiation, highly sensitive
spectroscopic techniques, many of them enabling the
background-free detection of the electronic transitions, such
as laser-induced fluorescence (LIF) spectroscopy, REMPI
spectroscopy, photofragment excitation spectroscopy, dege-
nerate four-wave mixing spectroscopy, cavity-ring-down
spectroscopy, and a wide range of modulation techniques
have revolutionized the field of high-resolution electronic
spectroscopy, revealing for the first time the finest details
of the energy level structure of atoms and molecules, and
allowing systematic studies of the electronic spectra and
structure of unstable and/or highly reactive species such
as weakly bound molecular complexes, free radicals, and
molecular ions.

The different techniques currently in use in high-
resolution electronic spectroscopy are presented in the
articles of this handbook mentioned above and are not
described in this introductory article. Instead, we provide
the elementary knowledge and introduce the most important
concepts that are necessary to optimally use the scien-
tific literature related to electronic spectra of atoms and
molecules. The article consists of two main parts: one
devoted to the electronic structure of atoms and molecules
and the other to their electronic spectra. Because the
spectra of atoms are not complicated by the vibrational and
rotational fine structures, they reveal most aspects of the
electronic structure and dynamics more purely and clearly
than molecular spectra and are ideally suited to introduce
many important concepts. We have, therefore, chosen to
begin the sections on electronic structure and electronic

spectra by a treatment of the electronic structure and spectra
of atoms. This choice enables the subsequent presentation
of the electronic structure and spectra of molecules in a
more compact manner.

2 ELECTRONIC STRUCTURE

The electronic structure of atoms and molecules is charac-
terized by the electronic wave function that corresponds to
the solution of the electronic Schrödinger equation. When
the effects of electron correlation are not dominant, the
electronic wave function can be approximated by a single
electronic configuration, i.e., a product of single-electron
wave functions or orbitals, reflecting the occupancy of these
orbitals.

A given electronic configuration gives rise to several
states, or terms, corresponding to the different relative
orientations of the electronic orbital and spin angular
momentum vectors. To distinguish the different terms of
a given configuration, term symbols are used that indicate
the electronic symmetry and the relative orientation of the
orbital and spin angular momentum vectors. The symmetry
properties of the orbitals and of the electronic wave
functions are conveniently described in the point group of
the molecule of interest.

When electron correlation is important, the electronic
wave function must be described by the sum of contribu-
tions corresponding to electronic configurations differing in
the occupation of one, two, or more orbitals. The configura-
tions contributing to a given electronic state have the same
electronic symmetry, which is therefore an essential ele-
ment of the electronic structure. The symmetry properties
of the electronic states also determine whether a transition
between two electronic states can be induced by electro-
magnetic radiation.

The general principles that enable one to classify the
electronic structure in terms of symmetry properties and
to exploit these properties in the analysis of electronic
spectra are the same for atoms and molecules. However,
whereas nonlinear polyatomic molecules belong to point
groups with a finite number of symmetry elements and,
thus, a finite number of irreducible representations, atoms
and linear molecules belong to point groups with an infinite
number of symmetry elements and irreducible representa-
tions. This difference justifies the treatment of the electronic
structure of atoms, linear, and nonlinear molecules in sep-
arate sections.

2.1 Atoms

Atoms belong to the point group Kh, the character and
direct-product tables of which are presented in Tables 1
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Table 1 Character table of the point group Kh appropriate to label the electronic states of atoms.

Kh E ∞Cϕ
∞ ∞S

ϕ
∞ i

Sg 1 1 1 1 x2 + y2 + z2

Pg 3 1 + 2 cos ϕ 1 − 2 cos ϕ 3 Rx, Ry, Rz

Dg 5 1 + 2 cos ϕ + 2 cos 2ϕ 1 − 2 cos ϕ + 2 cos 2ϕ 5 x2 + y2 − 2z2,

x2 − y2,

xy, xz, yz

Fg 7 1 + 2 cos ϕ + 2 cos 2ϕ + 2 cos 3ϕ 1 − 2 cos ϕ + 2 cos 2ϕ − 2 cos 3ϕ 7
. . . . . . . . . . . . . . .

Su 1 1 −1 −1
Pu 3 1 + 2 cos ϕ −1 + 2 cos ϕ −3 x, y, z

Du 5 1 + 2 cos ϕ + 2 cos 2ϕ −1 + 2 cos ϕ − 2 cos 2ϕ −5
Fu 7 1 + 2 cos ϕ + 2 cos 2ϕ + 2 cos 3ϕ −1 + 2 cos ϕ − 2 cos 2ϕ + 2 cos 3ϕ −7
. . . . . . . . . . . . . . .

Table 2 Direct-product table of the point group Kh.

⊗ S P D F . . .

S S P D F . . .

P P S, P, D P, D, F D, F, G . . .

D D P, D, F S, P, D, F, G P, D, F, G, H . . .

F F D, F, G P, D, F, G, H S, P, D, F, G, H, I . . .

. . . . . . . . . . . . . . . . . .

In addition, the rules g ⊗ g = u ⊗ u = g and g ⊗ u = u ⊗ g = u are
obeyed.

and 2. The symmetry operations of the point group Kh

consist of the identity (E), the inversion (i), all rota-
tion (∞Cϕ

∞), and rotation–reflection (∞S
ϕ
∞) symmetry

operations of a sphere and of the operations that can be
obtained by combining them. The quantum states of an
atom can, therefore, be designated by the symmetry labels
S, P, D, F, . . ., which reflect the symmetry of the wave
functions with respect to rotation and rotation–reflection
operations, and a label g/u (from the German words “ger-
ade”(=even)/“ungerade”(=odd)), which gives the symmetry
with respect to inversion through the symmetry center (i).
This widely used group-theoretical nomenclature actually
originates from observations of the spectral characteristics
of the electronic spectra of the alkali-metal atoms: s, sharp
series; p, principal series; d, diffuse series; and f, funda-
mental series. The states of u symmetry are often labeled
with a superscript “o” for “odd”.

Neglecting the motion of the heavy nucleus, the Hamil-
tonian operator of a N -electron atom can be written as

Ĥ =
N∑

i=1

(
p̂2

i

2me

− Ze2

4πε0ri

)
︸ ︷︷ ︸

ĥi

+
N∑

i=1

N∑
j>i

e2

4πε0rij︸ ︷︷ ︸
Ĥ ′

+Ĥ ′′ (4)

where
∑

i ĥi represents a sum of one-electron operators,
each containing a kinetic energy term and a potential energy

term representing the interaction with the nucleus. Ĥ ′

represents the repulsion between the electrons, and Ĥ ′′ all
the very small contributions to Ĥ that can be neglected in
first approximation (e.g., hyperfine interactions, see below).

2.1.1 The Hydrogen Atom and One-electron Atoms

In one-electron atoms such as H, He+, Li2+, . . ., Ĥ ′ = 0 in
equation (4). If Ĥ ′′ is neglected, the Schrödinger equation
can be solved analytically, as demonstrated in most quan-
tum mechanics textbooks. The eigenvalues En�m�

and
eigenfunctions Ψ n�m�

are then described by equations (5)
and (6), respectively:

En�m�
= −hcZ2RM/n2 (5)

Ψ n�m�
(r, θ, φ) = Rn�(r)Y�m�

(θ, φ) (6)

In equation (5), Z is the nuclear charge and RM is the
mass-corrected Rydberg constant for a nucleus of mass M:

RM = µ

me
R∞ (7)

where R∞ =mee
4/(8h3ε2

0c)=109 737.31568527(73) cm−1

(Mohr et al. 2008) represents the Rydberg constant for a
hypothetical infinitely heavy nucleus and µ = meM/(me +
M) is the reduced mass of the electron–nucleus system.
The principal quantum number n can take integer values
from 1 to ∞, the orbital angular momentum quantum
number � integer values from 0 to n − 1, and the mag-
netic quantum number m� integer values from −� to �.
In equation (6), r , θ , and φ are the polar coordinates.
Rn�(r) and Y�m�

(θ, φ) are radial wave functions and spher-
ical harmonics, respectively. Table 3 lists the possible sets
of quantum numbers for the first values of n, the corre-
sponding expressions for Rn�(r) and Y�m�

(θ, φ), and the
symmetry designation n�m� of the orbitals.
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Table 3 Quantum numbers, wave functions, and symmetry designation of the lowest eigenstates of the hydrogen atom.

n � m� Rn�(r) Y�m�
(θ, φ) Orbital designation

1 0 0 2
(

Z
a

)3/2
e−ρ/2

√
1

4π
1s

2 0 0 2−3/2
(

Z
a

)3/2
e−ρ/2(2 − ρ)

√
1

4π
2s

2 1 0 1
2
√

6

(
Z
a

)3/2
ρe−ρ/2

√
3

4π
cos θ 2p0 (or 2pz)

2 1 ±1 1
2
√

6

(
Z
a

)3/2
ρe−ρ/2 −

√
3

8π
sin θe±iφ 2p±1 (or 2px,y)

3 0 0 3−5/2
(

Z
a

)3/2
e−ρ/2(6 − 6ρ + ρ2)

√
1

4π
3s

3 1 0 1
9
√

6

(
Z
a

)3/2
ρe−ρ/2(4 − ρ)

√
3

4π
cos θ 3p0 (or 3pz)

3 1 ±1 1
9
√

6

(
Z
a

)3/2
ρe−ρ/2(4 − ρ) −

√
3

8π
sin θe±iφ 3p±1 (or 3px,y)

3 2 0 1
9
√

30

(
Z
a

)3/2
ρ2e−ρ/2

√
5

16π
(3 cos2 θ − 1) 3d0 (or 3dz2)

3 2 ±1 1
9
√

30

(
Z
a

)3/2
ρ2e−ρ/2 −

√
15
8π

sin θ cos θe±iφ 3d±1 (or 3dxz,yz)

3 2 ±2 1
9
√

30

(
Z
a

)3/2
ρ2e−ρ/2

√
15

32π
sin2 θe±i2φ 3d±2 (or 3dxy,x2−y2)

Linear combinations of the complex-valued Rn�(r)Y�m�
(θ, φ) can be formed that are real and correspond to the orbitals used by chemists with designations

given in parentheses in the last column. a = a0
me
µ

and ρ = 2Z
na

r .

The energy eigenvalues given by equation (6) do not
depend on the quantum numbers � and m� and have
therefore a degeneracy factor of n2. They form an infinite
series which converges at n = ∞ to a value of 0. Positive
energies, thus, correspond to situations where the electron
is no longer bound to the nucleus, i.e., to an ionization
continuum. Expressing the energy relative to the lowest
(n = 1) level,

En�m�
= hcZ2RM

(
1 − 1

n2

)
= hcTn (8)

one recognizes that the ionization energy of the 1s level is
hcZ2RM , or expressed as a term value in the wave-number
unit of cm−1, Tn=∞ = RM .

The functions Ψ n�m�
(r, θ, φ) represent orbitals and

describe the bound states of one-electron atoms; their norm
Ψ ∗

n�m�
Ψ n�m�

represents the probability density of finding
the electron at the position (r, θ, φ) and imply the following
general behavior, which is also important to understand the
properties of polyelectronic atoms and of molecular Ryd-
berg states:

• The average distance between the electron and the
nucleus is proportional to n2, in accordance with Bohr’s
model (Bohr 1914) of the hydrogen atom, which pre-
dicts that the classical radius of the electron orbit
should grow with n as a0n

2, a0 = 0.52917720859(36)

Å being Bohr’s radius. This implies that, in polyelec-
tronic atoms and in molecules, very similar electron-
ically excited states also exist as soon as n is large
enough for the excited electron to be located mainly
outside the positively charged atomic or molecular ion

core consisting of the nuclei and the other electrons.
These states are called Rydberg states. They have
already been mentioned in the introduction and are dis-
cussed further in Section 2.1.6.

• The probability of finding the electron in the immediate
vicinity of the nucleus, i.e., within a sphere of radius on
the order of a0, decreases with n−3. This implies that all
physical properties that depend on this probability, such
as the excitation probability from the ground state, the
radiative decay rate to the ground state, or relativistic
effects such as the spin–orbit coupling or hyperfine
interactions involving the excited electron, should also
scale with n−3.

• The same probability decreases exponentially and
rapidly becomes negligible with increasing value of
� because the centrifugal barrier in the electron–ion
interaction potential increases with �2, effectively sup-
pressing the tunneling probability of the excited elec-
tron into the region close to the nucleus or close to the
atomic/molecular core in the case of Rydberg states
of polyelectronic atoms and molecules. Low-� states
are thus called penetrating Rydberg states and high-
� states nonpenetrating. In polyelectronic atoms and
molecules, the latter behave almost exactly as in the
hydrogen atom.

The orbital angular momentum quantum number �, which
comes naturally in the solution of the Schrödinger equation
of the hydrogen atom, is also a symmetry label of the
corresponding quantum states. Indeed, the 2� + 1 functions
Ψ n�m�

(r, θ, φ) with m� = −�,−� + 1, . . . , � transform as
the 2� + 1 components of the irreducible representations
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of the Kh point group listed in Table 1. These irreducible
representations are designated by letters as s (� = 0), p
(� = 1), d (� = 2), f (� = 3), g (� = 4), with subsequent
labels in alphabetical order, i.e., h, i, k, l, etc., for � = 5,
6, 7, 8, etc. The reason for using small letters to label
orbitals, instead of using the capital letters designating the
irreducible representations of the Kh point group, is that
capital letters are reserved to label electronic states. The
distinction between electronic orbitals and electronic states
is useful in polyelectronic atoms.

The nodal structure of the s, p, d, f, . . . spherical
harmonics also implies that s, d, g, . . . orbitals with even
values of � have g symmetry, and that p, f, h, . . . orbitals
with odd values of � have u symmetry. Orbitals with
� = 2k + 1 (k being an integer number) of g symmetry
and orbitals with � = 2k of u symmetry do not occur.

The operators �̂
2

and �̂z describing the squared norm
of the orbital angular momentum vector and its projection
along the z axis commute with Ĥ and with each other. The
spherical harmonics Y�m�

(θ, φ) are thus also eigenfunctions

of �̂
2

and �̂z with eigenvalues given by the eigenvalue
equations:

�̂
2
Y�m�

(θ, φ) = �
2�(� + 1)Y�m�

(θ, φ) (9)

and

�̂zY�m�
(θ, φ) = �m�Y�m�

(θ, φ) (10)

2.1.2 Polyelectronic Atoms

The Schrödinger equation for atoms with more than one
electron cannot be solved analytically. If Ĥ ′ in equation (4)
is neglected, Ĥ becomes separable in N one-electron opera-
tors ĥi(p̂i , q̂i ) [ĥi(p̂i , q̂i )φi(qi) = εiφi(qi)] (to simplify the
notation, we use here and in the following the notation qi

instead of qi to designate all spatial xi, yi, zi and spin msi
coordinates of the polyelectron wave function):

Ĥ0 =
N∑

i=1

ĥi (p̂i , q̂i ) (11)

with eigenfunctions

Ψ k(q1, . . . , qN) = φ
(k)
1 (q1)φ

(k)
2 (q2) . . . φ

(k)
N (qN) (12)

and eigenvalues

Ek = ε1 + ε2 + · · · + εN (13)

where φ
(k)
i (qi) = Rn�(ri)Y�m�

(θ i, φi)φms
represents a spin

orbital with φms
being the spin part of the orbital, either α

for ms = 1/2 or β for ms = −1/2.

The electron wave function (equation 12) gives the
occupation of the atomic orbitals and represents a given
electron configuration (e.g., Li: Ψ 1(q1, q2, q3) = 1sα(q1),
1sβ(q2), 2sα(q3)). Neglecting the electron-repulsion term
in equation (4) is a very crude approximation, and Ĥ ′

needs to be considered to get a realistic estimation of the
eigenfunctions and eigenvalues of Ĥ . A way to consider
Ĥ ′ without affecting the product form of equation (12) is to
introduce, for each electron, a potential energy term describ-
ing the interaction with the mean field of all other elec-
trons. Iteratively solving one-electron problems and mod-
ifying the mean-field potential term leads to the so-called
Hartree–Fock self-consistent field (HF-SCF) wave func-
tions, which still have the form (equation 12) of a single
electronic configuration but now incorporate most effects of
the electron–electron repulsion except their instantaneous
correlation. Because polyelectronic atoms also belong to
the Kh point group, the angular part of the improved
orbitals can also be described by spherical harmonics
Y�m�

(θ i, φi). However, the radial functions Rn�(r) and
the orbital energies (εi in equation 14) differ from the
hydrogenic case because of the electron–electron repulsion
term Ĥ ′.

An empirical sequence of orbital energies can be deter-
mined that can be used to predict the ground-state config-
uration of most atoms in the periodic system using Pauli’s
Aufbau principle:

ε1s ≤ ε2s ≤ ε2p ≤ ε3s ≤ ε3p ≤ ε4s ≤
ε3d ≤ ε4p ≤ ε5s ≤ ε4d ≤ ε5p ≤ ε6s ≤
ε4f ≤ ε5d ≤ ε6p ≤ ε7s ≤ ε5f ≤ ε6d

(14)
This sequence of orbital energies can be qualitatively
explained by considering the shielding of the nuclear charge
by electrons in inner shells and the decrease, with increasing
value of �, of the penetrating character of the orbitals.

When instantaneous correlation effects in the electronic
motion are also considered, the wave functions depart
from a simple product form of the type of equation (12)
and must be represented by a sum of configurations.
One, therefore, says that electron correlation leads to
configuration mixing.

For most purposes and in many atoms, single-configur-
ation wave functions represent an adequate description,
or at least a useful starting point in the discussion of
electronic structure and spectra. Equation (12) is, how-
ever, not compatible with the generalized Pauli principle.
Indeed, electrons have a half-integer spin quantum num-
ber (s = 1/2) and polyelectronic wave functions must be
antisymmetric with respect to the exchange (permutation)
of the coordinates of any pair of electrons. Equation (12)
must, therefore, be antisymmetrized with respect to such
an exchange of coordinates. This is achieved by writing
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the wave functions as determinants of the type:

Ψ (q1, . . . , qN)

= 1√
N !

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(q1) φ1(q2) . . . φ1(qN)

φ2(q1) φ2(q2) . . .

.

.

.

φN(q1) . . . . . . φN(qN)

∣∣∣∣∣∣∣∣∣∣∣∣
(15)

in which all φi are different spin orbitals. Such determinants
are called Slater determinants and represent suitable N -
electron wave functions that automatically fulfill the Pauli
principle for fermions. Indeed, exchanging two columns in
a determinant, i.e., permuting the coordinates of two elec-
trons, automatically changes the sign of the determinant.
The determinant of a matrix with two identical rows is
zero so that equation (15) is also in accord with Pauli’s
exclusion principle, namely, that any configuration with
two electrons in the same spin orbital is forbidden. This
is not surprising given that Pauli’s exclusion principle can
be regarded as a consequence of the generalized Pauli prin-
ciple for fermions. The ground-state configuration of an
atom can thus be obtained by filling the orbitals in order
of increasing energy (equation 14) with two electrons, one
with ms = 1/2 and the other with ms = −1/2, a procedure
known as Pauli’s Aufbau principle.

2.1.3 States of Different Spin Multiplicities with the
Example of Singlet and Triplet States

The generalized Pauli principle for fermions also restricts
the number of possible wave functions associated with a
given configuration, as illustrated with the ground electronic
configuration of the carbon atom in the following example.

Example C(1s)2(2s)2(2p)2

Because the full (1s)2 shell and the full (2s)2 subshell
are totally symmetric, only the (2p)2 open subshell need
be considered. There are six spin orbitals and therefore
36(= 62) possible configurations (2pmlms)(2pm′

lm
′
s) with

ml,m
′
l = 0, ±1 and ms, m

′
s = ±1/2:

Electron 1
φ2p1α

φ2p1β
φ2p0α

φ2p0β
φ2p−1α

φ2p−1β

φ2p1α
x *

φ2p1β
x

Electron 2 φ2p0α
* x

φ2p0β
x

φ2p−1α
x

φ2p−1β
x

corresponding to the 36 entries of the table. Diagonal
elements of the table (designated by a cross) are forbidden
by the Pauli principle because both electrons are in the
same spin orbital. According to equation (15), each pair of
symmetric entries with respect to the diagonal can be used
to make one antisymmetric wave function. For example,
the entries of the table marked by an asterisk lead to the
wave function

Ψ (q1, q2) = (φ2p0α(q1)φ2p1α(q2)

− φ2p1α(q1)φ2p0α(q2))/
√

2 (16)

which is antisymmetric with respect to permutation of q1

and q2 and thus fulfills the generalized Pauli principle for
fermions, and to one symmetric wave function

Ψ (q1, q2) = (φ2p0α(q1)φ2p1α(q2)

+ φ2p1α(q1)φ2p0α(q2))/
√

2 (17)

which is forbidden by the Pauli principle. In total, there are
15 wave functions for the (2p)2 configuration that fulfill
the Pauli principle. Not all of these 15 wave functions
correspond to states of the same energy.

For an excited configuration with two unpaired electrons
such as He (1s)1(2s)1, the Pauli principle does not impose
any restriction, because the two electrons are in different
orbitals. However, the electrostatic repulsion between the
two electrons leads to an energetic splitting of the possible
states. In this configuration, four spin orbitals (1sα, 1sβ,
2sα, and 2sβ) need to be considered, because each electron
can be either in the 1s or in the 2s orbital with either ms =
1/2 or ms = −1/2. Four antisymmetrized functions fulfill-
ing the Pauli principle result, which can be represented as
products of a symmetric/antisymmetric spatial part depend-
ing on the xi, yi , and zi coordinates of the two electrons
(i = 1, 2) and an antisymmetric/symmetric spin part:(

1√
2

)
[1s(1)2s(2) − 1s(2)2s(1)] α(1)α(2) = Ψ T,MS=1

(18)
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(
1√
2

)
[1s(1)2s(2) − 1s(2)2s(1)] β(1)β(2) = Ψ T,MS=−1

(19)(
1√
2

)
[1s(1)2s(2) − 1s(2)2s(1)]

(
1√
2

)
[α(1)β(2)

+ α(2)β(1)] = Ψ T,MS=0 (20)(
1√
2

)
[1s(1)2s(2) + 1s(2)2s(1)]

(
1√
2

)
[α(1)β(2)

− α(2)β(1)] = Ψ S,MS=0 (21)

where the notation 1s(i)α(i) has been used to designate
electron i being in the 1s orbital with spin projection
quantum number ms = 1/2.

The first three functions (equations 18, 19, and 20), with
MS = ms1 + ms2 = ±1, 0, have an antisymmetric spatial
part and a symmetric electron-spin part with respect to
the permutation of the two electrons. These three functions
represent the three components of a triplet (S = 1) state.
The fourth function has a symmetric spatial and an anti-
symmetric electron-spin part with MS = 0 and represents
a singlet (S = 0) state. These results are summarized in
Tables 4 and 5, where the spin parts of the wave functions
are designated with a superscript “S” and the spatial parts
with a superscript “R”. The subscripts “a” and “s” indicate
whether the functions are symmetric or antisymmetric with
respect to the permutation of the coordinates of the two
electrons.

The contribution to the energy of the electron-repulsion
term Ĥ ′ = e2/(4πε0r12) in equation (4) can be evaluated
in the first order of perturbation theory as

e2

(8πε0)

〈
1s(1)2s(2) − 1s(2)2s(1)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(1)2s(2)

− 1s(2)2s(1)

〉

= e2

(8πε0)

[〈
1s(1)2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(1)2s(2)

〉

+
〈
1s(2)2s(1)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(2)2s(1)

〉

−
〈
1s(1)2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(2)2s(1)

〉

−
〈
1s(2)2s(1)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(1)2s(2)

〉]

= [J12 + J21 − K12 − K21]/2

= J12 − K12 (22)

Table 4 Permutationally symmetric and antisymmetric two-
electron spin functions.

α(1)α(2) MS = 1
Ψ S

(s)(m1, m2)
1√
2
(α(1)β(2) + α(2)β(1)) MS = 0 S = 1

β(1)β(2) MS = −1 (triplet)

Ψ S
(a)(m1,m2)

1√
2
(α(1)β(2) − α(2)β(1)) MS = 0 S = 0

(singlet)

Table 5 Permutationally symmetric and antisymmetric two-
electron spatial functions.

Ψ R
(s)(q1, q2)

1√
2
(φ1(1)φ2(2) + φ1(2)φ2(1)) (Singlet)

Ψ R
(a)(q1, q2)

1√
2
(φ1(1)φ2(2) − φ1(2)φ2(1)) (Triplet)

for the triplet state and as

e2

(8πε0)

〈
1s(1)2s(2) + 1s(2)2s(1)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(1)2s(2)

+ 1s(2)2s(1)

〉
= J12 + K12 (23)

for the singlet state. In equations (22) and (23), the integrals
J12 = J21 and K12 = K21 represent the so-called Coulomb
and exchange integrals, respectively. The Coulomb integral
can be interpreted as the energy arising from the repulsion
between the electron clouds of the 1s and 2s electrons.
The exchange integral is more difficult to interpret and
results from the repulsion between the two electrons having
“exchanged” their orbitals.

Because J12 and K12 are both positive in this case,
the triplet state lies lower in energy than the singlet
state by twice the exchange integral. The energy splitting
between the singlet and triplet states can, therefore, be for-
mally viewed as resulting from an electrostatic (including
exchange) coupling of the motion of the two electrons with
spin vectors s1 and s2, resulting in states of total spin angu-
lar momentum S = s1 + s2 with S = 1 for the triplet state
and S = 0 for the singlet state.

These considerations can easily be generalized to situa-
tions with more than two unpaired electrons. In atoms with
configurations with three unpaired electrons, such as N,
(1s)2(2s)2(2p)3, quartet (S = 3/2) and doublet (S = 1/2)
states result.

2.1.4 Terms and Term Symbols in Atoms: LS and jj
Coupling

For all atoms extensive lists of term values are tabulated
(see, e.g., Moore 1949, 1952, 1958). To understand how the
different terms arise and derive the term symbols used to
label them, it is necessary to understand how the different
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orbital and spin angular momenta in an atom are coupled
by electromagnetic interactions and in which sequence the
angular momentum vectors are added to form the total
angular momentum vector J. This can be achieved by
ordering the different interactions according to their relative
strengths and by adding the angular momentum vectors that
are most strongly coupled first.

Each angular momentum vector can be described quan-
tum mechanically by eigenvalue equations of the type of
equations (9) and (10), e.g.,

Ŝ
2|SMS〉 = �

2S(S + 1)|SMS〉 (24)

Ŝz|SMS〉 = �MS |SMS〉 (25)

L̂
2|LML〉 = �

2L(L + 1)|LML〉 (26)

L̂z|LML〉 = �ML|LML〉 (27)

Ĵ
2|JMJ 〉 = �

2J (J + 1)|JMJ 〉 (28)

Ĵz|JMJ 〉 = �MJ |JMJ 〉 (29)

In the absence of coupling between the different angular
momenta, all quantum numbers arising from eigenvalue
equations of this type are good quantum numbers. In
the presence of couplings between the different angular
momenta, however, only a subset of these quantum numbers
remain good quantum numbers, and the actual subset
of good quantum numbers depends on the hierarchy of
coupling strengths (Zare 1988).

Two limiting cases of angular momentum coupling
hierarchy are used to label the terms of atoms: the LS

coupling hierarchy, which adequately describes the ground
state of almost all atoms except the heaviest ones and is
also widely used to label the electronically excited states
of the lighter atoms, and the jj coupling hierarchy, which
is less frequently encountered but becomes important in
the description of the heaviest atoms and of electronically
excited states.

The LS Coupling Hierarchy

L = ∑N
i=1 �i strong coupling of orbital angular

momenta resulting from electrostatic
interactions

S = ∑N
i=1 si strong coupling of spins resulting from

exchange terms in the electrostatic inter-
action (equations 22 and 23)

J = L + S weaker coupling between S and L result-
ing from the spin–orbit interaction, a
relativistic effect.

In LS coupling, one obtains the possible terms by first
adding vectorially the orbital angular momenta �i of the
electrons to form a resultant total orbital angular momentum

L. Then, the total electron spin S is determined by vectorial
addition of the spins si of all electrons. Finally, the total
angular momentum J is determined by adding vectorially S
and L (Figure 5a). For a two-electron system, one obtains

L = �1 + �2, L = �1 + �2, �1 + �2 − 1,

. . . , |�1 − �2| (30)

ML = m�1 + m�2 = −L, −L + 1, . . . , L (31)

S = s1 + s2, S = 1, 0 (32)

MS = ms1 + ms2 = −S, −S + 1, . . . , S (33)

J = L + S, J = L + S, L + S − 1,

. . . , |L − S| (34)

MJ = MS + ML = −J, −J + 1, . . . , J (35)

The angular momentum quantum numbers L, S, and J

that arise in equations (30), (32), and (34) from the addi-
tion of the pairs of coupled vectors (�1, �2), (s1, s2), and
(L, S), respectively, can be derived from angular momen-
tum algebra as explained in most quantum mechanics
textbooks. For the addition of the angular momentum
vectors, the values of L resulting from the addition of
�1 and �2 can be obtained from the direct products of
the corresponding representations of the Kh point group
(Table 2). For instance, if �1 = 1 (irreducible represen-
tation P) and �2 = 3 (irreducible representation F), the
direct product P ⊗ F = D ⊕ F ⊕ G yields L = 2, 3, and 4,
a result that can be generalized to equations (30), (32), and
(34).

The different terms (L, S, J ) that are obtained for the
possible values of L, S, and J in equations (30), (32),
and (34) are written in compact form as term symbols:

(L, S, J ) = 2S+1LJ (36)

However, not all terms that are predicted by equations (30),
(32), and (34) are allowed by the Pauli principle. This
is best explained by deriving the possible terms of the C
(1s)2(2s)2(2p)2 configuration in the following example.

Example C(1s)2(2s)2(2p)2

Only the partially filled 2p subshell needs to be consid-
ered. In this case l1 = 1, l2 = 1 and s1 = s2 = 1/2. From
equations (30), (32), and (34) one obtains, neglecting the
Pauli principle,

L = 0(S), 1(P), 2(D)

S = 0(singlet), 1(triplet)

J = 3, 2, 1, 0
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which leads to the following terms:

Term 1S0
3S1

1P1
3P0

3P1
3P2

1D2
3D1

3D2
3D3

Degeneracy factor (gJ = 2J + 1) 1 3 3 1 3 5 5 3 5 7

Taking the (2J + 1) degeneracy factor of each term (which
corresponds to all possible values of MJ ), a total of
36 states results. As discussed above, only 15 states
are allowed by the Pauli principle for the configuration
(1s)2(2s)2(2p)2. The terms allowed by the Pauli principle
can be determined by first finding the ML, MS , and MJ

values resulting from all 15 possible occupations of the
six 2p spin orbitals with the two electrons in different spin
orbitals, as explained in the following table:

El. 1 El. 2 ML MS MJ

φ2p1α φ2p1β 2 0 2
φ2p0α 1 1 2
φ2p0β 1 0 1
φ2p−1α 0 1 1
φ2p−1β 0 0 0

φ2p1β φ2p0α 1 0 1
φ2p0β 1 −1 0
φ2p−1α 0 0 0
φ2p−1β 0 −1 −1

φ2p0α φ2p0β 0 0 0
φ2p−1α −1 1 0
φ2p−1β −1 0 −1

φ2p0β φ2p−1α −1 0 −1
φ2p−1β −1 −1 −2

φ2p−1α φ2p−1β −2 0 −2

The maximum value of ML is 2 and occurs only in
combination with MS = 0. This implies a 1D term with five
MJ components corresponding to (ML MS) = (2 0), (1 0),
(0 0), (−1 0), and (−2 0). Eliminating these entries from
the table, the remaining entry with the highest ML value
has ML = 1 and comes in combination with a maximal
MS value of 1. We can conclude that the corresponding
term is 3P (consisting of 3P0, 3P1, and 3P2). There are
nine components corresponding to (ML MS) = (1 1), (1
0), (1 −1), (0 1), (0 0), (0 −1), (−1 1), (−1 0), and
(−1 −1). Eliminating these entries from the table, only
one component remains, (0 0), which corresponds to a 1S0

state. The terms corresponding to the (2p)2 configuration
allowed by the Pauli principle are therefore 1D2, 3P2,
3P1, 3P0, and 1S0. As in the case of the He (1s)1(2s)1

configuration discussed above, the electrostatic exchange
interaction favors the triplet states over the singlet states.

The lowest energy term of the ground electronic config-
uration of almost all atoms can be predicted using three

empirical rules, known as Hund’s rules in honor of the
physicist Friedrich Hund. These rules state that

1. The lowest term is that with the highest value of the
total spin angular momentum quantum number S.

2. If several terms have the same value of S, the term
with the highest value of the total angular momentum
quantum number L is lowest in energy.

3. If the lowest term is such that both L and S are
nonzero, the ground state is the term component with
J = |L − S| if the partially filled subshell is less than
half full, and the term component with J = L + S if
the partially filled subshell is more than half full.

According to Hund’s rules, the ground state of C is the
term component 3P0, and the ground state of F is the term
component 2P3/2, in agreement with experimental results.
Hund’s rules do not reliably predict the energetic ordering
of electronically excited states.

The energy level splittings of the components of a term
2S+1L can be described by considering the effect of the
effective spin–orbit operator:

ĤSO = hcA

�2
L̂ · Ŝ (37)

on the basis functions |LSJ 〉 ( Ĵ = L̂ + Ŝ). In equation (37),
the spin–orbit coupling constant A is expressed in cm−1.

From Ĵ
2 = L̂

2 + Ŝ
2 + 2L̂ · Ŝ, one finds

L̂ · Ŝ = 1

2

[
Ĵ

2 − L̂
2 − Ŝ

2]
(38)

The diagonal matrix elements of ĤSO, which represent
the first-order corrections to the energies in a perturbation
theory treatment, are

〈LSJ |ĤSO|LSJ 〉

= 1

2
hcA[J (J + 1) − L(L + 1) − S(S + 1)] (39)

from which one sees that two components of a term with
J and J + 1 are separated in energy by hcA(J + 1). How-
ever, one should bear in mind that first-order perturbation
theory breaks down when the energetic spacing between
different terms is of the same order of magnitude as the
spin–orbit splittings calculated with equation (39). Hund’s
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Figure 2 Schematic energy level structure of the (2p)2 configu-
ration in LS coupling.

third rule implies that the spin–orbit coupling constant A

is positive in ground terms arising from less than half-full
subshells and negative in ground terms arising from more
than half-full subshells.

To illustrate the main conclusions of this section,
Figure 2 shows schematically by which interactions the 15
states of the ground-state configuration of C can be split.
The strong electrostatic interactions (including exchange)
lead to a splitting into three terms 3P, 1D, and 1S. The
weaker spin–orbit interaction splits the ground 3P term
into three components 3P0, 3P1, and 3P2. Each term
component can be further split into (2J + 1) MJ lev-
els by an external magnetic field, an effect known as
the Zeeman effect, which is discussed in more detail in
Section 2.1.7.

The jj Coupling Hierarchy

li + si = ji Strong spin–orbit coupling∑
ji = J Weaker electrostatic coupling.

In heavy atoms, relativistic effects become so large that the
spin–orbit interaction can become comparable in strength,
or even larger, than the electrostatic (including exchange)
interactions that are dominant in the lighter atoms. In
jj coupling, the dominant interaction is the spin–orbit
coupling between li and si . The possible terms are obtained
by first adding vectorially the orbital angular momentum
vector li and the electron-spin vector si of each electron
(index i) to form a resultant electronic angular momentum
ji . The total electronic angular momentum J results from
the vectorial addition of all ji .

For a two-electron system, one obtains, using the same
angular momentum addition rules that led to equations (30),

(32), and (34),

j1 = l1 + s1, j1 = l1 + 1

2
,

∣∣∣∣l1 − 1

2

∣∣∣∣ (40)

mj1 = ml1 + ms1 = −j1,−j1 + 1, . . . , j1 (41)

j2 = l2 + s2, j2 = l2 + 1

2
,

∣∣∣∣l2 − 1

2

∣∣∣∣ (42)

mj2 = ml2 + ms2 = −j2,−j2 + 1, . . . , j2 (43)

J = j1 + j2, J = j1 + j2, j1 + j2 − 1,

. . . , |j1 − j2| (44)

MJ = mj1 + mj2 = −J, −J + 1, . . . , J (45)

The total orbital and spin angular momentum quantum
numbers L and S are no longer defined in jj coupling.
Instead, the terms are now specified by a different set of
angular momentum quantum numbers: the total angular
momentum ji of all electrons (index i) in partially filled
subshells and the total angular momentum quantum number
J of the atom. A convenient way to label the terms
is (j1, j2, . . . , jN )J . Alternatively, the jj -coupling basis
states may be written as

(j1, j2, . . . , jN)J = N
i=1|ji, mji

〉 (46)

Example

The (np)1((n + 1)s)1 excited configuration:
LS coupling: S = 0, 1; L = 1. Term symbols: 1P1, 3P0,1,2,
which give rise to 12 states.
jj coupling: l1 = 1, s1 = 1

2 , j1 = 1
2 , 3

2 and l2 = 0, s2 =
1
2 , j2 = 1

2 . Term symbols: [(j1, j2)J ] : ( 1
2 , 1

2 )0; ( 1
2 , 1

2 )1;
( 3

2 , 1
2 )1; ( 3

2 , 1
2 )2, which also gives rise to 12 states.

The evolution from LS coupling to jj coupling can
be observed by looking at the evolution of the energy
level structure associated with a given configuration as
one moves down a column in the periodic table. Figure 3
illustrates schematically how the energy levels arising
from the (np)1((n + 1)s)1 excited configuration are grouped
according to LS coupling for n = 2 and 3 (C and Si) and
according to jj coupling for n = 6 (Pb). The main splitting
between the (1/2, 1/2)0,1 and the (3/2, 1/2)1,2 states of Pb
is actually much larger than the splitting between the 3P and
1P terms of C and Si. Figure 3 is the so-called correlation
diagram, which represents how the energy level structure
of a given system (here the states of the (np)1((n + 1)s)1

configuration) evolves as a function of one or more system
parameters (here the magnitude of the spin–orbit and
electrostatic interactions). States with the same values of
all good quantum numbers (here J ) are usually connected
by lines and do not cross in a correlation diagram.
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Figure 3 Correlation diagram depicting schematically, and not
to scale, how the term values for the (np)((n + 1)s) configuration
evolve from C, for which the LS coupling limit represents a good
description, to Pb, the level structure of which is more adequately
described by the jj coupling limit.

The actual evolution of the energy level structure in the
series C, Si, Ge, Sn, and Pb, drawn to scale in Figure 4
using reference data on atomic term values (Moore 1958),
enables one to see quantitatively the effects of the gradual
increase of the spin–orbit coupling. For the comparison,
the zero point of the energy scale was placed at the center
of gravity of the energy level structure. In C, the spin–orbit
interaction is weaker than the electrostatic interactions,
and the spin–orbit splittings of the 3P state are hardly
recognizable on the scale of the figure. In Pb, it is stronger
than the electrostatic interactions and determines the main
splitting of the energy level structure.

2.1.5 Hyperfine Coupling

Magnetic moments arise in systems of charged particles
with nonzero angular momenta to which they are propor-
tional. In the case of the orbital angular momentum of
an electron, the origin of the magnetic moment can be
understood by considering the similarity between the orbital
motion of an electron in an atom and a “classical” cur-
rent generated by an electron moving with velocity v in a
circular loop or radius r . The magnetic moment is equal to

µ = − e

2me
r × meυ = − e

2me
� = γ � (47)

For the orbital motion of an electron in an atom,
equation (47) can be written using the correspondence prin-
ciple as

µ̂ = γ �̂ = −µB

�
�̂ (48)

where γ = −e/(2me) represents the magnetogyric ratio of
the orbital motion and µB = e�/(2me) = 9.27400915(23)

E / (hc cm−1)
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Figure 4 Evolution from LS coupling to jj coupling with the
example of the term values of the (np)1((n + 1)s)1 configuration
of C, Si, Ge, Sn, and Pb. The term symbols are indicated without
the value of J on the left-hand side for the LS coupling limit and
on the right-hand side for the jj coupling limit. The values of
J are indicated next to the horizontal bars corresponding to the
positions of the energy levels.

× 10−24 J T−1 is the Bohr magneton. By analogy, similar
equations can be derived for all other momenta. The
electron spin s and the nuclear spin I, for instance, give
rise to the magnetic moments:

µ̂s = −geγ ŝ = ge
µB

�
ŝ (49)

and

µ̂I = γ I Î = gI

µN

�
Î (50)

respectively, where ge is the so-called g value of the elec-
tron (ge = −2.0023193043622(15)), γ I is the magneto-
gyric ratio of the nucleus, µN = e�/(2mp) = 5.05078324
(13) × 10−27 J T−1 is the nuclear magneton (mp is the mass
of the proton), and gI is the nuclear g factor (gp = 5.585
for the proton). Because µN/µB = me/mp, the magnetic
moments resulting from the electronic orbital and spin
motions are typically 2–3 orders of magnitude larger than
the magnetic-dipole moments (and higher moments) of
nuclear spins.

The hyperfine structure results from the interaction
between the magnetic moments of nuclear spins, electron
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Figure 5 (a) Schematic illustration of the vector model for the addition of two interacting angular momentum vectors with the example
of the LS coupling. The interacting vectors L and S precess around the axis defined by the resultant vector J, which has a well-defined
projection �MJ along the space-fixed z axis. (b) In the presence of a nuclear spin, the hyperfine interaction, which is typically much
weaker than the spin–orbit interaction, can be described as an interaction between J and I.

spins, and orbital angular momenta. The interaction between
two angular momentum vectors (such as L̂ or Ŝ to form a
resulting angular momentum vector Ĵ (Section 2.1.4)) can
be interpreted in the realm of a vector model (Zare 1988),
based on a classical treatment and illustrated schematically
in Figure 5(a) and (b). This vector model is used here to
discuss the hyperfine coupling.

The interaction between the two angular momentum
vectors leads to a precession of both vectors around
the axis defined by the resulting vector (J in the case
of the interaction of S and L), which is a constant
of motion (see left-hand side of Figure 5a). Quantum
mechanically, this implies constant norms |L|2 = �

2L(L +
1), |S|2 = �

2S(S + 1), and |J|2 = �
2J (J + 1) for L, S,

and J, respectively, and a constant component Jz = �MJ

along a quantization axis usually chosen as the z axis.
The projections of L and S along the z axis are no longer
defined, nor is the direction of J, except that the tip of the
vector must lie on the dashed circle as shown on the right-
hand side of Figure 5(a), which corresponds to a specific
value of MJ . The possible values of the quantum numbers
J and MJ that result from the addition of L and S are given
by equations (34) and (35). The larger the interaction, the
faster the precession of L and S around J.

The spin–orbit interaction is in general much stronger
than the interactions involving nuclear spins. On the
timescale of the slow precession of nuclear-spin vectors,
the fast precession of L and S thus appears averaged out.
The hyperfine interaction can therefore be described as an
interaction between I, with magnetic moment (gIµN/�)Î,
and J, with magnetic moment

µ̂J = gJ γĴ (51)

rather than as two separate interactions of I with L and S
(Figure 5b). In equation (51), gJ is the g factor of the LS-
coupled state, also called Landé g factor, and is given in

good approximation by

gJ = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(52)

The hyperfine interaction results in a total angular momen-
tum vector F of norm |F|2 = �

2(F (F + 1)) and z-axis
projection �MF . The possible values of the quantum num-
bers F and MF can be determined using the usual angular
momentum addition rules:

F = |J − I |, |J − I | + 1, . . . , J + I (53)

and

MF = −F, −F + 1, . . . , F (54)

The hyperfine contribution to Ĥ arising from the interaction
of µ̂J and µ̂I is one of the terms included in Ĥ ′′ in
equation (4) and is proportional to µ̂I · µ̂J , and thus to
Î ·Ĵ. Following the same argument as that used to derive
equation (39), one obtains

Î ·Ĵ = 1

2

[
F̂

2 − Î
2 −Ĵ

2
]

(55)

with F̂ = Î +Ĵ and F̂
2 = Î

2 +Ĵ
2 + 2Î ·Ĵ. The hyperfine

energy shift of state |IJF 〉 is therefore〈
IJF

∣∣∣∣ha

�2
Î ·Ĵ
∣∣∣∣ IJF

〉

= ha

2
[F(F + 1) − I (I + 1) − J (J + 1)] (56)

as can be derived from equation (55) and the eigenvalues of

F̂
2
, Î

2
, and Ĵ

2
. In equation (56), a is the hyperfine coupling

constant in hertz. Note that choosing to express A in cm−1

and a in Hz is the reason for the additional factor of
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Figure 6 (a) Hyperfine structure of (a) the 1 2S1/2 ground state of H. (b) The two spin–orbit components of the 2PJ ground term of
Kr with J = 1/2, 3/2. [Adapted from Paul et al. 2009 and Schäfer and Merkt 2006.]

c in equation (37). As examples, we now briefly discuss
the hyperfine structures of H (I = 1/2) and 83Kr+(I =
9/2).

For the H atom in the (1s)1 2S1/2 ground state, � = 0
and µ̂J = µ̂S. The hyperfine interaction goes through direct
contact of the electron and the nucleus, and is proportional
to the electron probability density at the position of the
nucleus (r = 0), |Ψ (0)|2 = 1

π a3
0
. This interaction is known

as Fermi-contact interaction and the value of the hyper-
fine coupling constant is a = 1420.4057517667(16) MHz
(Essen et al. 1971). The hyperfine structure of the ground
state of H is depicted in Figure 6(a). The absolute ground
state is, therefore, the F = 0, MF = 0 component of the
hyperfine doublet and is separated by only 1420 MHz
(= 0.0475 cm−1) from the upper F = 1, MF = 0, ±1, lev-
els, which are degenerate in the absence of external fields.
This threefold degeneracy of the upper hyperfine com-
ponent is lifted in the presence of a magnetic field, as
explained in the following section. Because the electron
density in the immediate vicinity of the nucleus scales
as n−3, the hyperfine splitting of excited members of the
s Rydberg series can be obtained directly from that of
the ground state by dividing by n3 and rapidly becomes
negligible. The hyperfine coupling constant in the ground
state of atomic hydrogen is almost the same as in the
ground state of ortho H2

+, because the 1σg orbital has
the form (

1sa+1sb√
2

) and the electron density at each nucleus
is to a good approximation half that of the H atom
(Section 2.2.1).

The . . . (4p)5 ground-state configuration of 83Kr+ leads
to two spin–orbit components 2P3/2 and 2P1/2 separated by
5370.27 cm−1 (Paul et al. 2009). The hyperfine structure is
well represented by equation (57):

ν̃(J, F ) = ν̃J + AJ C

2

+ BJ

3
4C(C + 1) − I (I + 1)J (J + 1)

2I (2I − 1)J (2J − 1)
(57)

in which ν̃J is the position of the barycenter of the
hyperfine structure of the spin–orbit component with total
angular momentum quantum number J , and C = F(F +
1) − I (I + 1) − J (J + 1). The second term on the right-
hand side of the equation represents the splitting arising
from the magnetic-dipole interaction and is proportional to
the magnetic-dipole hyperfine coupling constant AJ . The
third term is the next hyperfine coupling term in Ĥ ′′ in
equation (4) and describes the electric-quadrupole hyperfine
interaction (Kopfermann 1958), which is proportional to the
electric-quadrupole hyperfine coupling constant BJ . BJ is
zero for the upper spin–orbit component with J = 1/2.
Indeed dipole, quadrupole, octupole, etc. moments are
nonzero only in systems with angular momentum quantum
numbers J ≥ 1/2, 1, 3/2, . . . , respectively (Zare 1988).
The octupole coupling in the 2P3/2 state is negligible. The
values of the hyperfine coupling constants of the 2P3/2

and 2P1/2 components of the ground state of Kr+ are
A1/2 = −0.0385(5) cm−1, A3/2 = −0.00661(3) cm−1, and
B1/2 = −0.0154(7) cm−1 (Schäfer and Merkt 2006, Paul
et al. 2009).

2.1.6 Rydberg States

Rydberg states are electronic states in which one of the
electrons (called Rydberg electron) has been excited to a
hydrogenlike orbital having a principal quantum number
n larger than the quantum number of the valence shell.
The properties of these states can, therefore, be understood
from the properties of the electronic states of the hydrogen
atom described in Section 2.1.1. The expectation value
of the distance between the electron and the proton in
the hydrogen atom increases as n2, and the amplitude
of the Rydberg electron wave function in the immediate
vicinity of the proton decreases as n−3/2 so that, in a
polyelectronic atom, the electron density in the region of
the positively charged core, where the Rydberg electron
interacts with the other electrons, decreases as n−3. The
electron density in the core region also decreases rapidly
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Figure 7 Energy level structure of the Rydberg states of (a) the hydrogen atom, (b) polyelectronic atoms, and (c) molecules.

with the orbital angular momentum quantum number �

because of the centrifugal barrier in the electron–ion-core
interaction potential, which is proportional to �(� + 1).

Electronic states with a given value of � but different
values of n (n > �) form infinite series of electronic
states known as Rydberg series. The energetic positions of
the different members of a given Rydberg series can be
described in good approximation by the Rydberg formula:

En�m�
= EI(α

+) − hcRM

(n − δ�)2
(58)

where EI (α
+) represents the energy of a given quantum

state α+ of the ionized atom (or molecule) and δ� is the so-
called quantum defect, which is to a good approximation
constant in a given series. δ� only appreciably differs from
zero in s, p, and d Rydberg states and rapidly decreases
with increasing � value.

Figure 7 depicts the energy level structure characteris-
tic of Rydberg states of the hydrogen atom (a), polyelec-
tronic atoms (b), and molecules (c) at high n values. In
polyelectronic atoms, the energy level structure resembles
closely that of the hydrogen atom with the only excep-
tion that the low-� states are displaced to lower energies
because the Rydberg electron is exposed to an increasing
nuclear charge when it penetrates through the inner elec-
tron shells (their quantum defect is positive). In molecules,
the situation is additionally complicated by the fact that
core-penetrating and core-nonpenetrating Rydberg series

converge on every rotational (denoted by N+ in Figure 7),
vibrational (denoted by v+), and electronic states of the
molecular cation. Because the potential that binds the Ryd-
berg electron to the positively charged ion core can be well
approximated by a Coulomb potential, the Rydberg elec-
tron wave functions in polyelectronic atoms and molecules
are hydrogenlike and can be labeled by the same quantum
numbers.

Most properties of Rydberg states scale as integer powers
of the principal quantum number, as summarized in Table 6,
so that Rydberg states of high principal quantum number
behave very differently from other electronic states. The
scaling laws in Table 6 can be derived from the well-
known properties of the eigenstates of the hydrogen atom
(Gallagher 1994, Bethe and Salpeter 1957).

Properties of particular relevance for electronic spec-
troscopy are (i) the very long lifetimes of high Rydberg
states (the lifetimes scale as n3), which result in very nar-
row spectral lines; (ii) the absorption cross sections from
the ground or a low-lying electronic state, which decrease
very rapidly with n (as n−3) and make high Rydberg states
difficult to observe in single-photon absorption spectra from
the ground state; (iii) the fine-structure (e.g., from the
spin–orbit interaction) and hyperfine-structure (e.g., from
the Fermi-contact interaction) splittings involving the Ryd-
berg electron, which are proportional to the Rydberg elec-
tron density in the core region, i.e., to n−3, and become
negligible at high n values; (iv) the spacings between neigh-
boring Rydberg states of a given series, which also decrease
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Table 6 Properties of Rydberg atoms(a).

Property n dependence Na(10d)(b) H(100d)

Binding energy n−2 1100 cm−1 11 cm−1

Energy between adjacent n states n−3 190 cm−1 0.22 cm−1

Threshold ionization field n−4 33 kV cm−1 3.3 V cm−1

Orbital radius n2 147 a0 1.50 × 104 a0

Geometric cross section n4 6.8 × 104 a2
0 7.1 × 108 a2

0
Dipole moment 〈n�|er|n(� + 1)〉 n2 143 ea0 1.50 × 104 ea0

Polarizability n7 0.21 MHz cm2 V−2 2 × 106 MHz cm2 V−2

Radiative lifetime n3(c)
1.0 µs 0.53 ms(d)

(a)Atomic units: Bohr radius a0 = 0.5292 × 10−10 m; dipole moment ea0 = 8.478 × 10−30 C m = 2.542 D.
(b)From Gallagher (1988).
(c)In the presence of electric fields the lifetimes scale as n4 and if the electric fields are inhomogeneous even as n5 (Merkt 1997).
(d)Extrapolated from the values given by Lindgård and Nielsen (1977).

as n−3 and make it difficult to spectrally resolve adjacent
members of a Rydberg series at high n values; (v) the very
high sensitivity to electric and magnetic fields (the polariz-
ability scales as n7); and (vi) the binding energies, which
decrease as n−2 and vanish at n = ∞ and make it possi-
ble to derive precise ionization energies and ionic energy
levels by extrapolation of the Rydberg series. The articles
Jungen 2011a: Elements of Quantum Defect Theory and
Jungen 2011b: Ab Initio Calculations for Rydberg States
of this handbook are specifically devoted to Rydberg states,
and the article Merkt et al. 2011: High-resolution Photo-
electron Spectroscopy, this handbook illustrates the use of
high Rydberg state in high-resolution photoelectron spec-
troscopy.

2.1.7 Atoms in Magnetic Fields

In the presence of a magnetic field, an additional term,

−µ̂m · B (59)

arises in the Hamiltonian of a system having a magnetic
moment µm. In the case of a homogeneous magnetic field
B = (0, 0, B) applied along the z axis of the laboratory
frame, this term simplifies to −µ̂zB and induces energy
shifts and/or lifts the degeneracy of the magnetic sublevels.
The effect of a magnetic field on the spectrum of an atom
or a molecule is called the Zeeman effect, the physicist P.
Zeeman being the first to observe it as a broadening in
the spectra of atoms. This section summarizes the main
aspects of the Zeeman effect on the energy levels of
atoms.

The Normal Zeeman Effect The simplest situation is
that of an atom with S = 0, for which the effect of the
magnetic field is referred to as the normal Zeeman effect
for historical reasons. In this case, J = L and MJ = ML,

and the magnetic moment originates from the orbital motion
of the electrons (equation 48):

µ̂m,z = −µB

�
L̂z (60)

In first-order perturbation theory, the energy shift caused by
the magnetic field is, according to equations (59) and (60),
given by

∆E = −µm,zB = µBBML (61)

A given term with L = J thus splits into 2L + 1 magnetic
sublevels corresponding to the possible ML values. The
energy separation of two sublevels differing in ML by
1 is simply µBB, grows linearly with B and depends
neither on the atom nor on the state of the atom under
consideration. The normal Zeeman effect on the energy
level structure of 1S, 1P, and 1D terms is illustrated in
Figure 8. Particularly simple spectra result, as discussed
in Section 3.2.3. The normal Zeeman effect is primarily
used to unambiguously distinguish S = 0 from S �= 0 terms
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Figure 8 The normal Zeeman effect on the energy level struc-
ture of (a) 1S, (b) 1P, (c) 1D, and (d) 1F terms.
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Figure 9 Vector model illustrations of (a) the Paschen–Back effect and (b) the nuclear Paschen–Back effect.

and can also be used to measure magnetic field strengths,
the value of the Bohr magneton being known with high
precision (see above).

The Anomalous Zeeman Effect When S �= 0, the com-
ponent of the magnetic moment along the field axis (taken
here as the z axis) is given by

µ̂m,z = −gJ

µB

�
Ĵz (62)

and the energy levels are shifted by

∆E = gJ µBBMJ (63)

The shifts and splittings of the energy levels now depend
on the state under investigation through the dependence of
gJ on S, L, and J (equation 52). The anomalous Zeeman
effect thus leads to more complex spectra than the normal
Zeeman effect (Section 3.2.3), and the observed splittings
permit the unambiguous determination of the term symbols.
In the early part of the twentieth century, the interpretation
of the anomalous Zeeman effect represented a real puzzle
and played an important role in the discovery of the electron
spin (Enz 2002). Today, the distinction between normal
and anomalous Zeeman effect seems artificial because
the normal Zeeman effect is merely a special case of
equation (63) for S = 0 and gJ = 1.

The Paschen–Back Effect In the limit of very high
magnetic field strength, the interaction of the magnetic
moments µ̂S and µ̂L of a state subject to LS coupling
at zero magnetic field strength with the magnetic field
becomes stronger than the spin–orbit interaction. This
situation is know as the Paschen–Back effect. In terms of
the vector model discussed in the context of Figure 5, this
limit implies that the precession of L and S around the
axis determined by the magnetic field vector (i.e., the z

axis of the laboratory frame) is faster than that of L and S
around the axis determined by the direction of J in the

absence of magnetic field. Consequently, the spin–orbit
interaction can be described as taking place between the
“averaged” spin and orbital angular momentum vectors,
i.e., their z components, as is illustrated by Figure 9(a). The
corresponding operator (equation 37) can be approximated
by (2πc/�)AL̂zŜz. In this high-field limit, the Zeeman level
shifts ∆E can be described by

∆E = µBB(ML − geMS) + hcAMLMS (64)

The Paschen–Back effect is only observable in atoms
subject to a particularly weak spin–orbit interaction or
at extremely large magnetic field strengths. Below 1 T,
the anomalous Zeeman effect discussed above is typi-
cally observed. The anomalous Zeeman and Paschen–Back
effects can thus be recognized as low- and high-field limits
of the interaction between LS coupled states and mag-
netic fields. The treatment of intermediate cases leads
to more complicated energy level patterns than pre-
dicted by equations (63) and (64). An effect similar to the
Paschen–Back effect can also be observed in electric fields
and, indeed, the electronic angular momentum coupling
scheme for diatomic molecules discussed as case (a) in
Section 2.2.5 can be regarded as a Paschen–Back effect
induced by the electric field along the internuclear axis of
a diatomic molecule.

The Nuclear Paschen–Back Effect The hyperfine inter-
action being much weaker than the spin–orbit interaction,
even moderate magnetic fields lead to precessions of J and
I around the axis determined by the field vector that are
faster than that of J and I around F (Figure 9b). In this
case, referred to as the nuclear Paschen–Back effect, the
effect of the magnetic field on the hyperfine structure can
be described as

∆E = B(µBgJ MJ − µNgIMI ) + haMJ MI (65)

The nuclear Paschen–Back effect is usually encountered
at field strengths large enough to resolve the nuclear
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Figure 10 The hyperfine structure of the H atom in its 2S1/2
ground state and its dependence on the magnetic field.

Zeeman effect in electronic spectra. As a simple illustration,
Figure 10 shows the evolution of the hyperfine structure
of the H atom with the magnetic field. At field strengths
beyond ≈1 T, the energy level pattern reveals a main
splitting arising from the first term of equation (65) with
MJ = MS = ms and gJ = −ge ≈2. Each of the two groups
of ms levels is further split by the other two terms. After
Figure 3, which illustrated the evolution from LS to jj

coupling, Figure (10) is a second example of a correlation
diagram and shows how the energy level structure of the
(1s)1 2S1/2 ground state of H evolves from the situation
described by equation (56) and depicted in Figure 6(a) at
B = 0 to that described by equation (65) at B = 1 T. In the
presence of a homogeneous magnetic field, the anisotropy
of free space is broken, and even F ceases to be a good
quantum number. The only good quantum number that can
be used as a label for the states through the entire diagram
is MF .

2.1.8 Atoms in Electric Fields

Atomic energy levels are also affected by electric fields
and the resulting energy shifts and splittings are referred
to as the Stark effect. The effect of the electric fields is
particularly pronounced in Rydberg states, which are highly
polarizable (the polarizability scales as n7, see Table 6).
The primary effect of an electric field is to couple energy
levels from configurations differing by one spin orbital
only, with the additional restriction that the coupled spin
orbitals should only differ by one unit of the orbital
angular momentum quantum number �. The hydrogen
atom represents a very special case because all orbitals of
the same principal quantum number n are degenerate. If

the field is applied along the z axis (E = (0, 0, E)), the
term eEz = eEr cos θ has to be added to the Hamiltonian
operator which becomes

Ĥ = − �
2

2me
∇2

e − e2

4πε0r
+ eEr cos θ = Ĥo + Ĥ ′ (66)

At low field strength, the effect of the electric field can
be treated adequately with first-order perturbation theory
for degenerate states. The matrix elements of Ĥ ′ in the
|n�m〉 basis (we use m instead of m� to simplify the
notation) can be written as 〈n′�′m′|Er cos θ |n�m〉. These
elements can be expressed as products of radial and angular
matrix elements E〈n′�′|r|n�〉〈�′m′| cos θ |�m〉 and imply the
perturbation selection rules:

∆m = m′ − m = 0, ∆� = �′ − � = ±1,

∆n = 0, ±1, ±2, . . . (67)

The ∆� selection rule can be derived using Tables 1 and 2
if one uses the fact that z = r cos θ transforms as the
irreducible represention Pu of the Kh point group. The
selection rule of the magnetic quantum number can be
rationalized by the fact that m remains a good quantum
number in cylindrical symmetry. Because of the degenerate
nature of all |n�m〉 states having the same n value in
the hydrogen atom at zero field, the perturbation leads
to a linear splitting of the degenerate energy levels (the
linear Stark effect) represented in Figure 11(a) for n = 5.
The electric field breaks the central symmetry, so that the
orbital angular momentum quantum number � ceases to be
a good quantum number. Instead, states of different angular
momentum quantum number � but the same values of m

are mixed by the electric field. The atoms are polarized by
the electric field, as illustrated in Figure 11(b), in which
the electron density in a plane containing the z axis is
displayed for the five m = 0 levels. The energy levels
are more easily expressed as a function of the so-called
parabolic quantum numbers n1 and n2 that arise from
the solution of Schrödinger equation of the H atom in
parabolic coordinates (Gallagher 1994) than as a function of
�, because the |nn1n2m〉 basis functions are adapted to the
cylindrical symmetry of the problem. The quantum numbers
n1 and n2 can each take the values between 0 and n − 1.
In atomic units, the energy levels are given to first order of
perturbation theory by

Enn1n2m = − 1

2n2
+ 3

2
(n1 − n2)nE (68)

and depend linearly on the field strength. One thus speaks
of the linear Stark effect. To label the states, it is useful
to use the difference k between n1 and n2. For given



Fundamentals of Electronic Spectroscopy 195

E
ne

rg
y

n = 5

Electric field strength

k

4

3

2

1

0

−1

−2

−3

−4

m

0

±1

±1

0, ±2

0, ±2

±1, ±3

±1, ±3

0, ±2, ±4

0

x /a0

z /a0

−50

−50

−25

−25

0

0

25

25

50

50

x /a0

z /a0

−50

−50

−25

−25

0

0

25

25

50

50

x /a0

z /a0

−50

−50

−25

−25

0

0

25

25

50

50

x /a0

z /a0

−50

−50

−25

−25

0

0

25

25

50

50

x /a0

z /a0

−50

−50

−25

−25

0

0

25

25

50

50

(a) (b)

Figure 11 The linear Stark effect in the n = 5 state of atomic hydrogen. (a) Energy level diagram and (b) electron density in the xz

plane of the m = 0 states. The position of the nucleus is at the origin of the coordinate system. k represents the difference n1 − n2.

values of n and |m|, k takes values ranging from −(n −
|m| − 1) to (n − |m| − 1) in steps of 2 (Figure 11a). The
plots of the electron density represented in Figure 11(b)
enable one to see that all states except the k = 0 states
have electric-dipole moments and to understand why the
states with a positive value of k are shifted to higher
energies by the field, whereas those with a negative value
of k are shifted to lower energies. Equation (68) can be
converted to SI units using the fact that the ratio between
the atomic unit of energy and the atomic unit of electric
field is ea0 with e = 1.602176487(40) × 10−19 C and a0 =
5.2917720859(36) × 10−11 m:

Enn1n2m = −hcRH

n2
+ 3

2
ea0(n1 − n2)nE (69)

Expressing the positions in the spectroscopic unit of cm−1,
one obtains

ν̃nn1n2m/cm−1 = −RH/cm−1

n2
+ 6.40215 × 10−5

× (n1 − n2)n(E/(V cm−1)) (70)

Table 7 Character table of the C∞v point group.

C∞v E 2Cϕ
∞ . . . ∞σv

	+(= A1) 1 1 . . . 1 z x2 + y2, z2

	−(= A2) 1 1 . . . −1 Rz

(= E1) 2 2 cos ϕ . . . 0 x, y;Rx,Ry xz, yz

∆(= E2) 2 2 cos 2ϕ . . . 0 x2 − y2, xy

�(= E3) 2 2 cos 3ϕ . . . 0
. . . . . . . . . . . . . . .

In polyelectronic atoms, the levels that can be coupled by
the electric field are nondegenerate and the Stark effect
is quadratic, i.e., the energies depend quadratically on
E, as is expected from second-order perturbation the-
ory. However, nonpenetrating Rydberg states, which are
degenerate at zero field (Figure 7), represent an exception
to this behavior, and behave very similarly in an elec-
tric field to the states of the hydrogen atom. Stark spec-
tra of Ar Rydberg states are discussed in Section 3.2.3
(Figure 41).
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Table 8 Character table of the D∞h point group.

D∞h E 2Cϕ
∞ . . . ∞σv i 2Sϕ

∞ . . . ∞ C2

	+
g 1 1 . . . 1 1 1 . . . 1 x2 + y2, z2

	−
g 1 1 . . . −1 1 1 . . . −1 Rz

g 2 2 cos ϕ . . . 0 2 −2 cos ϕ . . . 0 Rx, Ry xz, yz

∆g 2 2 cos 2ϕ . . . 0 2 2 cos 2ϕ . . . 0 x2 − y2, xy

. . . . . . . . . . . . . . . . . . . . . . . . . . .

	+
u 1 1 . . . 1 −1 −1 . . . −1 z

	−
u 1 1 . . . −1 −1 −1 . . . 1

u 2 2 cos ϕ . . . 0 −2 2 cos ϕ . . . 0 x, y

∆u 2 2 cos 2ϕ . . . 0 −2 −2 cos 2ϕ . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 9 Direct-product table of the point groups C∞v and D∞h.

× 	+ 	−  ∆ � . . .

	+ 	+ 	−  ∆ � . . .

	− 	+  ∆ � . . .

 	+, 	−,∆ , � ∆, � . . .

∆ 	+, 	−, � , H . . .

� 	+, 	−, I . . .

. . . . . . . . . . . . . . . . . . . . .

For D∞h: g × g = u × u = g and g × u = u × g = u.

2.2 Diatomic Molecules

Homonuclear diatomic molecules (H2, N2, . . .) and het-
eronuclear diatomic molecules (NO, HCl, . . .) belong to
the D∞h and C∞v point groups, respectively. The charac-
ter tables of these point groups are given in Tables 7 and 8,
and the corresponding product table is presented in Table 9.

The orbitals and electronic states of molecules are labeled
σ+,π, δ, . . . and 	+, 	−,,∆, . . ., respectively, accord-
ing to the irreducible representations of the corresponding
point groups. Nondegenerate orbitals (or states) belong
to one-dimensional irreducible representations (σ (	)),
whereas doubly degenerate orbitals (or states) belong to
two-dimensional irreducible representations (π (), δ (∆),
φ (�), . . .).

The symmetry labels of molecular orbitals and electronic
states of diatomic molecules are determined using the same
procedure as for atoms: molecular orbitals are designated
by lower-case Greek letters (σ+,π, δ, . . . for heteronuclear
diatomic molecules and σ+

g , σu, πg, πu, . . . for homonu-
clear diatomic molecules). Electronic states are designated
by capital Greek letters (	+, 	−, ,∆, . . . for heteronu-
clear diatomic molecules and 	+

g ,	−
g , 	+

u ,	−
u , g, u,

. . . for homonuclear diatomic molecules). As in atoms,
the symmetry labels also contain information on the elec-
tronic angular momentum. In the absence of spin–orbit
coupling, the orbital angular momentum is a conserved

quantity in a spherically symmetric potential. L and � are
therefore good quantum numbers in atoms (Section 2.1).
In diatomic molecules, the symmetry of the potential is
reduced to cylindrical symmetry, so that only the projection
of the total orbital angular momentum onto the internu-
clear axis is conserved as long as spin–orbit coupling can
be neglected. The irreducible representations σ,π, δ, . . .

correspond to orbitals with values of 0, 1, 2, . . . of the
orbital angular momentum projection quantum number λ

on the internuclear axis. Similarly, 	, ,∆, . . . are used
to label electronic states with total orbital angular momen-
tum projection quantum number Λ = 0, 1, 2, . . . on the
internuclear axis, respectively. Orbitals of σ− symmetry do
not exist because no σ molecular orbital can be formed that
has a nodal plane containing the internuclear axis, but elec-
tronic states of 	− symmetry result from configurations in
which at least two orbitals of symmetry π, or δ, or φ, . . .

are singly occupied (see Tables 7, 8, 9, and 10).
How the quantum number λ arises in a linear molecule

can also be understood by writing the Schrödinger equation
for a single electron in an axially symmetric potential in
cylindrical coordinates:

∂2Ψ

∂z2
+ ∂2Ψ

∂ρ2
+ 1

ρ

∂Ψ

∂ρ
+ 1

ρ2

∂2Ψ

∂ϕ2
+ 8π2m

h
(E − V )Ψ = 0

(71)
where z is the coordinate of the electron along the symmetry
axis, ρ its distance from the axis, and ϕ the azimuthal angle.

Inserting the ansatz

Ψ (z, ρ, ϕ) = χ(z, ρ)f (ϕ) (72)

in equation (71) and multiplying the equation with ρ2/Ψ

gives

ρ2

χ

∂2χ

∂z2
+ ρ2

χ

∂2χ

∂ρ2
+ ρ

χ

∂χ

∂ρ
+ 8π2mρ2

h
(E − V (z, ρ))

= − 1

f

∂2f

∂ϕ2
(73)
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Table 10 Terms belonging to the most frequent electronic configurations of diatomic molecules.

Config. Terms Config. Terms

σ2 1	+ π2σδ 1	+, 1	−, 1∆(2), 1�, 3	+, 3	−, 3∆(3),
3�, 5∆

π2 1	+, 3	−, 1∆ π2ππ 1	+(3), 1	−(3), 1∆(4), 1�, 3	+(4),
3	−(4), 3∆(5), 3�, 5	+, 5	−, 5∆

π3 2i π2π2 1	+(3), 1	−, 1∆(2), 1�, 3	+(2)
3	−(2), 3∆(2), 5	+

π4 1	+ π3σ 1, 3i

δ2 1	+, 3	−, 1� π3π 1	+, 1	−, 1∆, 3	+, 3	−, 3∆

δ3 2∆i π3δ(π3δ3) 1, 1�, 3, 3�

δ4 1	+ π3σσ 2(2), 4

π2σ 2	+, 2	−, 2∆, 4	− π3π2 2i,
2(2), 2�i,

4i

π2π 2, 2i(2), 2�, 4 π3π3 1	+, 1	−, 1∆, 3	+, 3	−, 3∆i

π2δ 2	+, 2	−, 2∆, 2∆i ,
2�, 4∆ π3π2σ 1(3), 1�, 3i(2), 3(2), 3�i,

5i

π2σσ 1	+, 1	−, 1∆, 3	+, 3	−(2), 3∆, 5	− π3π3σ 2	+(2), 2	−(2), 2∆, 2∆i ,
4	+, 4	−, 4∆i

π2σπ 1(3), 1�, 3(2), 3i(2), 3�, 5

The index i designates inverted term multiplets. The g and u labels relevant for homonuclear diatomic molecules can be determined from the number
N of electrons in MO orbitals of u symmetry. When N is gerade, the terms are g; otherwise, they are u.

Equating both sides to a constant λ2, one obtains the
differential equation in ϕ

∂2f (ϕ)

∂ϕ2
+ λ2f (ϕ) = 0 (74)

which has the solutions

f±(ϕ) = e±iλϕ (75)

Because f (ϕ) = f (ϕ + 2π), λ must be an integer number.
The general solution of equation (71) is therefore

Ψ ±(z, ρ, ϕ) = χ(z, ρ)e±iλϕ (76)

Since the Ψ ± are energetically degenerate (the ±λ solutions
have identical eigenvalues), an arbitrary linear combination
is also a solution. The Ψ ± have a well-defined value of λ,
but their linear combination does not. The labels σ, π, δ,
. . . give the absolute value of λ.

2.2.1 Molecular Orbitals

In the qualitative representation of molecular orbitals, it
is helpful to discuss two extreme situations: the united-
atom limit and the separated-atom limit. In the united-atom
limit, the atoms that form the molecule are considered to
have coalesced into a single atom. The united-atom lim-
its of 16O2 and H2 are 32S and 2He, respectively. The
molecular structure is determined by progressively sepa-
rating the atomic components of the molecule toward the
equilibrium internuclear separation. In the limit of the sepa-
rated atoms, the atoms forming the molecule are considered

1s

1s 1s

sg1s

su1s

2p
+ −

+

+ −

+

+ +

Figure 12 Correlation diagram from the two 1s atomic orbitals
of two identical separated atoms to the 1s and 2pz orbitals of
the corresponding united atom through the σ+

g and σ+
u molecular

orbitals.

at an infinite internuclear separation. Molecular states are
formed by progressively approaching the atoms toward the
equilibrium internuclear separation. The expected form and
energetic order of the molecular orbitals can be predicted
by linking the two limiting cases in a correlation diagram
by making sure that curves of the same symmetry do not
cross. Figure 12 shows how the two 1s atomic orbitals of
the two separated H atoms correlate through the σ+

g and
σ+

u molecular orbitals with the 1s and 2pz orbitals of the
united atoms. By convention, the z axis is chosen to be
the internuclear axis. Figures 13 and 14 display the corre-
lation diagrams connecting the energy levels of the sepa-
rated atoms with those of the united atoms in the case of
homonuclear and heteronuclear diatomic molecules, respec-
tively. Different molecules with their specific internuclear
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Figure 13 Correlation diagram illustrating the evolution of molecular orbitals between the separated-atoms limit (right) and the
united-atoms limit (left) for homonuclear diatomic molecules. [Adapted from Herzberg (1989).]

separation occupy different positions along the horizontal
axis of these figures.

The determination of molecular orbitals often relies on
the LCAO (linear combinations of atomic orbitals) method.
Molecular orbitals φj are formed from symmetry-adapted
linear combinations of atomic orbitals ϕi following

φj =
∑

i

cj iϕi (77)

Several conditions must be fulfilled to form molecular
orbitals that are distinct from the original atomic orbitals:

• The energies of the atomic orbitals that are combined
must be similar.

• The atomic orbitals must overlap at the equilibrium
internuclear separation.

• The atomic orbitals must be symmetry compatible.

Figure 15(a) shows the structure of molecular orbitals
of homonuclear diatomic molecules consisting of atoms
of the second row of the periodic system. For Li2+, Li2,
Li2−, B2

+, B2, B2
−, C2

+, C2, C2
−, and N2

+, the energetic

ordering of the orbitals is

1σg(1s) < 1σ∗
u(1s) < 2σg(2s) < 2σ∗

u(2s) < 1πu(2p)

< 3σg(2p) < 1π∗
g(2p) < 3σ∗

u(2p) (78)

In the case of O2
+, O2, O2

−, F2
+, F2, F2

−, and Ne2
+, it is

1σg(1s) < 1σ∗
u(1s) < 2σg(2s) < 2σ∗

u(2s) < 3σg(2p)

< 1πu(2p) < 1π∗
g(2p) < 3σ∗

u(2p) (79)

These two cases are depicted schematically in Figure 15(b)
and (c), respectively.

2.2.2 Electronic Configurations

Electronic configurations are obtained by filling the spatial
orbitals according to the Pauli principle with no more than
two electrons. The ground-state configuration of N2, e.g.,
is

(1σg)
2(1σ∗

u)
2(2σg)

2(2σ∗
u)

2(1πu)
4(3σg)

2 (80)

and the first two excited configurations are

(1σg)
2(1σ∗

u)
2(2σg)

2(2σ∗
u)

2(1πu)
4(3σg)

1(1π∗
g)

1 (81)
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Figure 14 Correlation diagram between separated atoms (right) and united atoms (left) for heteronuclear diatomic molecules. [Adapted
from Herzberg (1989).]

and

(1σg)
2(1σ∗

u)
2(2σg)

2(2σ∗
u)

2(1πu)
3(3σg)

2(1π∗
g)

1 (82)

The ground-state configuration of O2 is

(1σg)
2(1σ∗

u)
2(2σg)

2(2σ∗
u)

2(3σg)
2(1πu)

4(1π∗
g)

2 (83)

If two electrons are located in the same spatial orbital,
they must have opposite spins. As in the case of atoms,
an electronic configuration leads in general to several
electronic terms and several electronic states.

2.2.3 Electronic Wave Functions and Electronic
Terms

As explained in Section 2.1.2, N -electron wave functions
Ψ (q1, q2, . . . , qN) of molecules must obey the generalized
Pauli principle. Consequently, they must be antisymmet-
ric under the pairwise permutation of electrons, which is
automatically fulfilled by Slater determinants of the gen-
eral form given by equation (15). The spatial part of the
one-electron functions φi corresponds to a molecular orbital
of the form (76) and (77). To determine the possible elec-
tronic terms, only shells and subshells with partially filled

orbitals need to be considered, because full shells and sub-
shells are totally symmetric (1	+

g and 1	+ for homonuclear
and heteronuclear diatomic molecules, respectively). The
character � of the spatial part of the electronic term is
determined from the direct product (see Table 9) of the
irreducible representations

� = �(f (qi)) ⊗ �(f (qj )) ⊗ . . . (84)

of the molecular orbitals, where the product extends over
all electrons in partially filled molecular orbitals.

Applying equation (84) to the configurations (80)–(83),
one can draw the following conclusions:

1. Since all orbitals of the configuration (80) are fully
occupied, the totally symmetric representation 	+

g
results. Moreover, because all electrons are paired, a
unique singlet term of symmetry 1	+

g is obtained.
Consequently, the ground electronic state of N2 is
designated as X 1	+

g .
2. The (3σg)

1(1π∗
g)

1 part of configuration (81) leads to
a g term. The corresponding spin multiplicities are
derived in Section 2.2.4.

3. Because (1πu)
3 can be considered as a (1πu)

1 electron
hole, the (1πu)

3(1π∗
g)

1 part of the configuration (82)
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Figure 15 (a) Schematic representation of molecular orbitals in homonuclear diatomic molecules made from 1s, 2s, and 2p atomic
orbitals. Molecular-orbital energy diagram for homonuclear diatomic molecules formed from the lighter (b) and the heavier (c) atoms
from the second row of the periodic system of elements.

can be treated as the configuration 1(πu)
1(1π∗

g)
1, which

leads to the terms 	+
u , 	−

u and ∆u. Their energetic
order and multiplicities are derived in the next section.

2.2.4 Spin Multiplicity

As explained in Section 2.1.3, polyelectron wave functions
can be written as a product of a spatial part (Ψ R(qi)) and
a spin part (Ψ S(mi)):

Ψ (q1, m1, q2, m2, . . .)

= Ψ R(q1, q2, . . .) × Ψ S(m1, m2, . . .) (85)

For simplicity, we consider here only two-electron wave
functions and can therefore use the results presented
in Tables 4 and 5. The extension to more complicated
situations is straightforward. Because a two-electron wave
function must be antisymmetric under permutation of the
coordinates of the electrons, it must have either a symmetric
spatial part (Ψ R

(s)(qi)) and an antisymmetric spin part
(Ψ S

(a)(mi)) or vice versa (Ψ R
(a)(qi) and Ψ S

(s)(mi)).
In the determination of the multiplicity of an electronic

term in accordance to Tables 4 and 5, three cases have to
be distinguished:

• Case 1
The two electrons are located in different molecular-
orbital shells, as in the configuration (81) ((3σg)

1

(1π∗
g)

1). Both the symmetric and the antisymmetric
spatial parts are nonzero. Consequently, both singlet
and triplet states are allowed, and configuration (81)
leads to the two terms 1g and 3g.

• Case 2
The two electrons are located in the same molecular-
orbital shell and in the same spatial orbital (φ1 =
φ2), so that Ψ R

(a)(q1, q2) = 0. The triplet state thus
does not exist. This situation arises in the (1πg)

2

configuration of O2, when both electrons are located
in either the λ = 1 or the λ = −1 orbital. In this
case, Λ is equal to ±2 and the corresponding term
is 1∆g.

• Case 3
The two electrons are located in the same molecular-
orbital shell but in different orbitals. This situa-
tion also arises in the (1πg)

2 configuration of O2,
when each of the two λ = ±1 orbitals is occu-
pied by one electron (Λ = 0). The spatial part may
be either symmetric (Ψ R

(s)(q1, q2) = (π+(1)π−(2) +
π+(2)π−(1))/

√
2), which results in a 1	g term,

or antisymmetric (Ψ R
(a)(q1, q2)=(π+(1)π−(2)−π+(2)

π−(1))/
√

2), which corresponds to a 3	g term. To
determine whether these 1	g and 3	g terms are
	−

g or 	+
g , one has to determine their symme-

try with respect to the operation σv (see Table 8),
which represents the reflection through an arbitrary
plane containing the internuclear axis. Using the
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form (76) for the π+ and π− functions, we
obtain

Ψ R
(a)(q1, q2) = 1√

2

[
χ(z1, ρ1)e

iϕ1χ(z2, ρ2)e
−iϕ2

− χ(z2, ρ2)e
iϕ2χ(z1, ρ1)e

−iϕ1
]

= 1√
2
χ(z1, ρ1)χ(z2, ρ2)

× (ei(ϕ1−ϕ2) − e−i(ϕ1−ϕ2)
)

=
√

2iχ(z1, ρ1)χ(z2, ρ2) sin(ϕ1 − ϕ2)

(86)

for the 3	 term, and

Ψ R
(s)(q1, q2) =

√
2χ(z1, ρ1)χ(z2, ρ2) cos(ϕ1 − ϕ2)

(87)

for the 1	 term.
A σv reflection inverts the sign of (ϕ1 − ϕ2). Because
of the relations sin(−x) = − sin(x) and cos(−x) =
cos(x), Ψ R

(s)(q1, q2) corresponds to the 1	+
g term and

Ψ R
(a)(q1, q2) to the 3	−

g term.
Consequently, the (1πg)

2 configuration of O2 pos-
sesses the three terms 3	−

g , 1	+
g , and 1∆g. The ener-

getically favorable exchange interaction in the triplet
term causes the X 3	−

g state to be the ground state
of O2.

This procedure can be applied to arbitrary configu-
rations. Table 10 summarizes the terms resulting from
the most common electronic configurations of diatomic
molecules.

The classification of terms presented in this section relies
on the assumption that electrostatic (including exchange)
interactions are dominant and the effects of spin–orbit
coupling can be disregarded. This assumption is justified
as long as the 2S+1Λ terms are separated in energy by
an amount larger than the spin–orbit interaction. This
tends to be the case in molecules made of light atoms,
for which spin–orbit interactions are genuinely weak,
and at short internuclear distances, where the atomic
orbitals significantly overlap, the electronic motion is
strongly coupled to the internuclear axis, and the exchange
interaction is substantial. Consideration of the spin–orbit
interaction makes it necessary to extend the classification
of electronic terms.

2.2.5 Spin–Orbit Coupling

To assess the effects of the spin–orbit coupling on the
electronic structure of diatomic molecules, one needs to

establish the relative strength of the interactions that cou-
ple the different electronic angular momenta. The treatment
is similar to that discussed for atoms in Section 2.1.4,
with the important difference that only the projections �λi

(�Λ;Λ = ∑
i λi) of the (total) orbital angular momentum

vectors �i (L) along the internuclear axis, rather than the
vectors �i and L themselves, are constants of motion in the
absence of spin–orbit coupling.

The strength of the spin–orbit coupling depends on
the molecule, the electronic configuration, and the inter-
nuclear separation. It is convenient to classify and label
the electronic states according to idealized limiting cases,
presented as cases (a)–(d) below, which form the start-
ing point of the widely used classification of angular
momentum coupling in rotating molecules originally intro-
duced by Hund (Hund 1926a,b, 1927a,b,c,d, 1928, 1930,
1933) and extended by Mulliken (Mulliken 1930a,b,c,
1931, Mulliken and Christy 1931). If the rotational
motion is neglected, the relevant interactions are as
follows:

1. The interactions of the orbital motion of the electrons
with the cylindrically symmetric electrostatic field of
the nuclei. This interaction causes a precession of the
orbital angular momentum vectors around the internu-
clear axis. Whereas neither �i nor L are constants of
motion in cylindrical symmetry (compare Table 1 with
Tables 7 and 8), λi and Λ are good quantum numbers
in the absence of spin–orbit coupling. When the elec-
trostatic interactions between electrons and nuclei are
strong, the terms resulting from the different config-
urations are widely spaced in energy, and even the
different terms of a given configuration are energeti-
cally well separated.

2. The electrostatic exchange interaction: This interaction
gives rise to an energetic splitting between states of
different total electron-spin quantum number S, as
discussed in the previous section.

3. The spin–orbit interaction: The spin–orbit interaction
can be regarded as an interaction between the magnetic
moments resulting from the spin and orbital angular
momentum vectors. This interaction can be described
as inducing a precession of S (or si) and L (or �i)
around the resultant vectors J (or ji) (see Section 2.1.4).
When the spin–orbit interaction becomes larger than
the exchange interaction, S ceases to be a good
quantum number.

Angular Momentum Coupling Cases of the “LS-coupling”
type When interactions 1 and 2 above are larger than
interaction 3, situations analogous to LS coupling in atoms
result that can be described by two limiting cases, called
cases (a) and (b) that are discussed below. In both cases, S

and Λ are good quantum numbers.
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Figure 16 Electronic angular momentum coupling in the limit of
(a) weak spin–orbit interaction (case (a)) and (b) strong spin–orbit
interaction (case (c)). “L” is used instead of L to stress that L is
usually not a good quantum number in molecules.

Case (a)
In this first case, the electrostatic coupling of the orbital

motion to the internuclear axis induces a fast precession
of L around the internuclear axis. On the longer timescale
of the weaker spin–orbit interaction, the precession of the
orbital angular momentum vector is effectively averaged
out. L is perceived as a vector of length �Λ pointing along
the internuclear axis, with magnetic moment −γ eΛ�. The
orbital motion leads to a magnetic field pointing along the
internuclear axis that then becomes the quantization axis
for the electron-spin vector S. S precesses with projection
quantum number Σ around the internuclear axis as a result
of the spin–orbit interaction (Figure 16a). Next to S, the
projection quantum numbers Λ and Σ and their sum Ω

are good quantum numbers. Because of the spin–orbit
coupling, the total energy depends on the relative sign of Σ

and Λ, so that usually only the absolute values of Λ and Ω

are used to designate the terms. The nomenclature 2S+1ΛΩ

is used, and the 2S + 1 components of the spin multiplet
are split according to their spin–orbit interaction energies,
which can be approximated by

ESO = hcAΛΣ (88)

where A (in cm−1) represents an effective spin–orbit cou-
pling constant (compare with equation 37). The spin–orbit
splittings usually depend on the internuclear distance and
thus on the vibrational level so that the spin–orbit coupling
constant of a given vibrational level is further labeled with
the subscript “v” as Av . A and Av can be negative, in which
case one speaks of inverted multiplets. Equation (88) can
be regarded as a Paschen–Back effect induced by the elec-
trostatic field of the nuclei (see last term on the right-hand
side of equation 64).

Example

The [. . .][σ(2p)]2[π(2p)]4[π∗(2p)]1 X 2 ground elec-
tronic state of NO is separated from the first electronically

excited state by ≈44 000 cm−1. The two spin–orbit compo-
nents with Ω = 1/2, 3/2 are only separated by ≈120 cm−1,
and the ground state is X 21/2. A weak coupling between
the vibrational and the electronic motion causes a depen-
dence of the spin–orbit constant (A in equation 88) on
the vibrational state (Av/(cm−1) = 123.26 − 0.1906(v +
1/2) − 0.018(v + 1/2)2) (Huber and Herzberg 1979).

Case (b)
In this second case, the spin–orbit interaction is neg-

ligible and S is not quantized along the internuclear axis.
Consequently, Σ is not defined and the 2S + 1 components
of the spin multiplet remain degenerate in the nonrotating
molecule. This case is characteristic of Λ = 0 states. The
good electronic angular momentum quantum numbers in
this case are Λ and S.

Example

The [. . .][πu(2p)]4[σg(2p)]1 X 2	+
g ground electronic state

of N2
+ is separated from the first electronically excited state

by about 9000 cm−1 (Huber and Herzberg 1979). Except for
the twofold spin degeneracy, the situation is similar to that
in a 1	+

g state.

Angular Momentum Coupling Cases of the “jj -coupling”
Type When the spin–orbit interaction is stronger than
the electrostatic interactions, S is not a constant of motion,
nor are the projections �Λ and �Σ of the orbital and
spin angular momentum vectors. This situation can arise
either when the spin–orbit interaction is particularly large,
for instance, in molecules containing heavy atoms (see
case (c) below) or when the electrostatic coupling of the
electronic angular momenta to the internuclear axis is
particularly weak, for instance, in weakly bound molecules
or in Rydberg states (see case (d) below).

Case (c)
In this case, the strong spin–orbit interaction couples the

spin (si or S) and orbital (�i or L) angular momentum vec-
tors, which can be viewed as precessing around the resultant
vectors ( ji or Ja). The weaker electrostatic coupling of the
orbital motion to the internuclear axis leads to a slower
precession of the resultant vectors around the internuclear
axis with projection �Ω . The only good quantum number
of the nonrotating molecule is Ω (see Figure 16b).

Example

The low-lying electronic states of Xe2
+ (see Mulliken

(1970), and Zehnder and Merkt (2008)). Neglecting the
spin–orbit interaction, the electronic configurations A =
[. . .][σg(5p)]2 [πu(5p)]4[π∗

g(5p)]4[σ∗
u(5p)]1, B = [. . .]

[σg(5p)]2[πu(5p)]4[π∗
g(5p)]3[σ∗

u(5p)]2, C = [. . .][σg(5p)]2
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II (1/2g)

I (1/2g)

Xe+(2P1/2) + Xe(1S0)

Xe+(2P3/2) + Xe(1S0)

Hund’s cases
(a) + (b)

Hund’s case (c)

A 2Σ1/2u
+ (sg)2 (pu)4 (pg)4 (su)1

D 2Σ1/2g (sg)1 (pu)4 (pg)4 (su)2

C 2ΠWu (sg)2 (pu)3 (pg)4 (su)2

B 2ΠWg (sg)2 (pu)4 (pg)3 (su)2

5p AO 5p AO

su

sg

pu

pg

(a) (b)
+

Figure 17 (a) Lowest four electronic configurations of Xe2
+ in the notation introduced by Mulliken (1970). The bold arrows indicate

the electrons that are missing in the respective configurations. (b) Potential energy functions of the six corresponding low-lying electronic
states which can be described by cases (a) and (b) at short internuclear distances and by case (c) at large internuclear distances.

[πu(5p)]3[π∗
g(5p)]4[σ∗

u(5p)]2, and D = [. . .][σg(5p)]1

[πu(5p)]4[π∗
g(5p)]4[σ∗

u(5p)]2 give rise to four electronic
states A 2	+

u , B 2g, C 2u, and D 2	+
g (Figure 17a).

At short internuclear distances, the electrostatic interac-
tions lead to splittings that are larger than those resulting
from the spin–orbit interaction. Consequently, the two 2	+

and the two 2 states can be approximately described by
cases (b) and (a) presented above, respectively, and six
states result: A 2	+

u , B 23/2g, B 21/2g, C 23/2u, C
21/2u, and D 2	+

g (see left-hand side of Figure 17b). As
the internuclear distance increases, the electrostatic cou-
pling to the internuclear axis weakens, and the spin–orbit
interaction starts dominating. As the internuclear distance
goes toward infinity, two dissociation limits result, the
lower one being Xe 1S0+ Xe+ 2P3/2 and the upper one
Xe 1S0+ Xe+ 2P1/2. The energetic splitting between these
two limits corresponds to the spin–orbit splitting of the
Xe+ ion (see right-hand side of Figure 17b). The lower
limit has Ja = 3/2, and thus four states, two Ω = 3/2
and two Ω = 1/2 states, designated by “I”, dissociate to
this limit, whereas only two Ω = 1/2 states, designated
by “II”, dissociate to the upper limit which has Ja = 1/2.
The Ω = 1/2 states of g (u) symmetry become equal mix-
tures of the B 21/2g and D 2	+

g states (A 2	+
u and C

21/2u states) at large internuclear distances, and the Λ

label becomes inadequate. The evolution from the coupling
cases (a) and (b) at short distances to case (c) at large
distances can be described semiquantitatively by consider-
ing the spin–orbit coupling matrix in Table 11 (Cohen and
Schneider 1974). The matrix, in the derivation of which
the spin–orbit coupling constant is assumed to be indepen-
dent of the internuclear separation, clearly shows that the
spin–orbit interaction does not only split the 2 state into
two components with Ω = 3/2 and 1/2 but also mixes the
two Ω = 1/2 states.

Table 11 Spin–orbit interaction matrix describing the coupling
between the states of 2	+ and 2 symmetry in the homonuclear
rare-gas dimer ions.

2	+
1/2

21/2
23/2

2	+
1/2 V	(R) − a√

2
0

21/2 − a√
2

V(R) + a
2 0

23/2 0 0 V(R) − a
2

Case (d)
This case arises when the electrostatic coupling of the

electron orbital motion to the internuclear axis becomes
negligible. This case is encountered in Rydberg states
at large values of the principal quantum number of the
Rydberg electron. In these states, the Rydberg electron
density in the region of the diatomic molecular ion core
and, thus, the coupling of the electron to the internuclear
axis are very small, so that λ and Λ are not defined.
Usually, the Rydberg electron spin is not coupled to the
internuclear axis either, and the spin–orbit interaction of
the Rydberg electron is negligible. A J+, j -type coupling
scheme [(2S++1)Λ+

Ω+]|n�(sj)〉 similar to that described for
atoms by equation (46), and which represents the state as
a product of the electronic functions of the ion core and of
the Rydberg electron, is adequate.

Example

N2: |[N2
+] . . . (1πu)

4(1σg)
1 2	+

g 〉|20p〉.

2.2.6 Vibronic Structure

Diatomic molecules only possess one vibrational degree of
freedom, and thus one vibrational mode that corresponds
to a totally symmetric representation (1	+

g in D∞h and
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1	+ in C∞v). The vibronic symmetry is thus the same
as the electronic symmetry. The energetic position of the
vibrational energy levels relative to the minimum T α

e of the
potential curve of the αth electronic state is given by

Eα
v = T α

e + ωα
e

(
v + 1

2

)
− ωex

α
e

(
v + 1

2

)2

+ ωey
α
e

(
v + 1

2

)3

− · · · (89)

where the second and subsequent terms are a consequence
of the anharmonicity of the potential curve.

2.2.7 Rovibronic Structure

The treatment of the rotational structure of diatomic
molecules is sometimes reduced to the well-known formula:

EROT = BvJ (J + 1) − Dv(J (J + 1))2 (90)

which includes centrifugal distortion effects and also the
variation of the rotational and centrifugal distortion con-
stants that results from the anharmonicity of the vibrational
motion. Equation (90) is adequate to describe the rotational
structure of states of 1	+ symmetry, but it does not account
for the details of the rotational energy structure of states of
other electronic symmetry, for which the coupling of rota-
tional, orbital, and spin angular momenta must be consid-
ered. To present a complete treatment would extend beyond
the scope of this introductory article. We limit ourselves
here to qualitative considerations and a presentation of the
rotational structures of the simplest situations. The inter-
ested readers are referred to the original articles of Hund
and Mulliken (Hund 1926a, 1927c,d, 1928, 1930, 1933,
Mulliken 1930b,c, Mulliken and Christy 1931) and to the
excellent overviews by Herzberg (1989), Hougen (1970),
Zare (1988), Watson (1999b), Lefebvre-Brion and Field
(2004), and Brown and Carrington (2003) for more detailed
treatments.

Since diatomic molecules have a vanishing moment of
inertia along the internuclear axis, the angular momen-
tum vector R describing the rotation of the nuclei lies

perpendicular to the internuclear axis. The total angular
momentum (without nuclear spins) J of a rotating molecule
is equal to

J = S + L + R = S + N (91)

where N represents the total angular momentum without
electron spins. The quantum number R associated with
R is only a good quantum number in molecules without
electronic angular momentum, i.e., in 1	 states (J = N =
R), and this is why equation (90) can only be used for
such states. In all other cases, the coupling between the
spin, orbital, and rotational motions must be considered
explicitly. The spin–orbit and rotational motions can be
described by the effective Hamiltonian

Ĥ = Ĥel + TN(Q) + ĤROT + ĤSO (92)

where the kinetic energy of the nuclei has been divided into
rotational motion ĤROT and vibrational motion TN(Q) as
explained in Merkt and Quack 2011: Molecular Quantum
Mechanics and Molecular Spectra, Molecular Symme-
try, and Interaction of Matter with Radiation, this hand-
book. The spin–orbit coupling is described by

ĤSO = AL̂ · Ŝ = A(L̂xŜx + L̂y Ŝy + L̂zŜz) (93)

which is adequate as long as the spin–orbit interaction
can be treated in an “LS”-like coupling manner, and the
rotational motion by

ĤROT = 1

2µR2
R̂

2 = B(r)[Ĵ − L̂ − Ŝ]2 (94)

The classification in cases (a)–(d) made in Section 2.2.5
can be generalized to rotating molecules, as was first done
by Hund (1927c, 1930, 1933). The angular momentum
coupling schemes can be described by the vector models
depicted in Figure 18(a)–(d) (Zare 1988). The basis for
the classification is a hierarchical ordering of the interac-
tions similar to that introduced above for the nonrotating
molecules, but which now includes the interaction between
the rotational and the electronic motion. The rotation of

(a) (b) (c) (d)

R R R
R

S

S
S

S

J

J

Ja

J

J

L L

L

L

N

N

hΛ hΛ
hΣ

hΩ

hΩ

Figure 18 Hund’s angular momentum coupling cases (a)–(d).
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the molecule, with its inhomogeneous charge distribution,
leads to a magnetic moment along R, which couples the
rotational motion to the electronic orbital and spin motions.

Hund’s Angular Momentum Coupling Case (a) This
case arises when the energy splittings resulting from the
spin–orbit interaction (equation 88) are significantly larger
than the separation ≈2BJ of two neighboring rotational
states. In this case, the hierarchy of interactions of the
angular momenta is as follows

electrostatic coupling of L to internuclear axis

� spin–orbit coupling

� coupling between rotational and electronic motion

(95)
The total angular momentum J results from the vecto-
rial addition of R and the components �Ω = �(Λ + 	)

of the electronic angular momentum along the internu-
clear axis (Figure 18a). J, Ω, Λ, S and 	 are good
quantum numbers in this case. The rotational motion
can be described as a rotation (nutation) of R and �Ω

around J.
The coupling between the rotational motion and the

electronic motion increases with the degree of rotational
excitation. As J increases to large values, the coupling
of the electron spin (and ultimately also of the orbital)
motion with the rotational motion becomes larger than the
spin–orbit coupling (and ultimately also larger than the
electrostatic coupling of the orbital angular momentum to
the internuclear axis), so that this coupling case evolves
first toward Hund’s case (b) and then toward Hund’s case
(d) as R increases and S and L get decoupled from the
internuclear axis. These phenomena are referred to as S

and L uncoupling, respectively, and are described in more
detail below.

Hund’s Angular Momentum Coupling Case (b) In Hund’s
case (b), the spin–orbit coupling is negligible and S is not
coupled to the orbital motion of the electrons. The hierarchy
of angular momentum coupling is

coupling of L to internuclear axis

� interaction between rotational and electronic motion

� spin–orbit coupling (96)

The total angular momentum J results from (i) the vectorial
addition of R with the component �Λ to form a total angular
momentum without spin N and (ii) the addition of N and S
(Figure 18b). The good quantum numbers in Hund’s case
(b) are Λ, N, S, and J .

Hund’s Angular Momentum Coupling Case (c) In Hund’s
case (c), the hierarchy of angular momentum coupling is

spin–orbit interaction

� coupling of L to internuclear axis

� coupling of rotational and electronic motion (97)

S and L couple to form an electronic angular momentum
Ja, with component �Ω along the internuclear axis. J
represents the vectorial sum of R and �Ω (Figure 18c).
The good quantum numbers in this case are Ω and J .

Hund’s Angular Momentum Coupling Case (d) In Hund’s
case (d), all angular momentum couplings are weak. Nei-
ther L nor S is coupled to the internuclear axis. J is formed
from (i) the vector addition of R and L to N and (ii) the
vector addition of N and S to J. The good quantum numbers
are R, S, L, and J .

Example

NO (1σ)2 (1σ∗)2 (2σ)2 (2σ∗)2 (3σ)2 (1π)4 (n p)1 Rydberg
states. The electronic states can be represented by a closed-
shell ground-state X 1	+ NO+ cationic core surrounded
by a weakly bound electron in a diffuse Rydberg orbital of
principal quantum number n and orbital angular momentum
quantum number � = 1. Consequently, L = 1 and S = 1/2.
The rotational quantum number R is equal to that of the
ionic core. The weak interaction between L and R splits
each rotational level into three levels with N = R, R ± 1,
which are each further split into doublets with J = N ± 1/2
by the still weaker interaction with the Rydberg electron
spin.

Angular Momentum Coupling Case (e) The treatment
of Rydberg states with Λ > 0, S+ > 0 open-shell ion cores
and of the rotational motion of weakly bound open-shell
molecules such as KrHe+ makes it necessary to introduce
an additional angular momentum coupling case, case (e),
which exists in several variants as discussed in more detail
by Carrington et al. (1996), Watson (1999b), Brown and
Carrington (2003), and Lefebvre-Brion and Field (2004).

The situations described above as Hund’s cases (a)–(e)
represent idealized limiting cases. The sets of good quantum
numbers in these limiting cases are helpful in defining the
basis functions with which the Hamiltonian matrix describ-
ing the rotational motion is most conveniently expressed.
Convenience can mean that one would like to have a Hamil-
tonian matrix that is as close as possible to a diagonal
matrix, in which case one chooses the basis provided by
the coupling case that describes the molecular system under
study most closely. This approach has the advantage that
the eigenvalues of the rotational matrix can be determined
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more easily, an advantage that was important in earlier
days, when computers were not available. Alternatively,
convenience can mean that one would like to set up the
Hamiltonian matrix using the basis providing the largest
number of quantum numbers, i.e., the basis correspond-
ing to Hund’s case (a), regardless of which coupling case
best describes the system under study. This procedure,
advocated by Hougen (1970), has the advantage that the
treatment of the rotational structure can be made in a univer-
sal and straightforward manner. Although the Hamiltonian
matrix may have more off-diagonal elements in this case,
the determination of the eigenvalues does not pose signifi-
cant problems to present-day computers.

The reasons why Hund’s angular momentum coupling
cases still need to be introduced today are twofold: First,
the hierarchy of interactions upon which the classification
is based is reflected by distinct spectral patterns. Second,
the electronic states are labeled by their good quantum
numbers, and the nomenclature thus depends on the Hund’s
coupling case that best describes them; for instance, the
ground electronic state of NO is labeled as X 23/2,
as appropriate for a system that can be approximately
described by Hund’s case (a). The ground state of Xe2

+, on
the other hand, is labeled X 1/2u, or I(1/2u), as appropriate
for a system that can be approximately described by Hund’s
case (c).

In the treatment of the rotational structure of diatomic
molecules, ĤROT + ĤSO is set up in a matrix form using
standard relations of angular momentum algebra:

Ĵ± = Ĵx ± iĴy (98)

Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z = Ĵ+Ĵ− + Ĵ−Ĵ+

2
+ Ĵ 2

z (99)

Ĵ1 ·Ĵ2 = Ĵ1xĴ2x + Ĵ1yĴ2y + Ĵ1zĴ2z

= Ĵ1+Ĵ2− + Ĵ1−Ĵ2+
2

+ Ĵ1zĴ2z (100)

where Ĵ, Ĵ1, and Ĵ2 represent arbitrary angular momentum
vectors and could also stand for Ŝ or L̂. Using these
expressions, equation (94) can be rewritten as

ĤROT + ĤSO = ALzSz + B(Ĵ 2 + Ŝ2 − L2
z − 2JzSz)

− B(J+S− + J−S+) − B(J+L− + J−L+)

+
(

A

2
+ B

)
(L+S− + L−S+)

+
(

B

2

)
(L+L− + L−L+) (101)

The matrix elements arising from the different terms can
be determined from standard results of angular momentum
algebra, e.g., using the Hund’s case (a) basis |JΩ, Λ, SΣ〉

〈JΩ, Λ, SΣ |Ĵ 2|JΩ, Λ, SΣ〉 = �
2J (J + 1) (102)

〈JΩ, Λ, SΣ |Ĵz|JΩ, Λ, SΣ〉 = �Ω (103)

〈JΩ ∓ 1|Ĵ±|JΩ〉 = �

√
J (J + 1) − Ω(Ω ∓ 1) (104)

〈JΩ, Λ, SΣ |Ŝ2|JΩ,Λ, SΣ〉 = �
2S(S + 1) (105)

〈JΩ, Λ, SΣ |Ŝz|JΩ, Λ, SΣ〉 = �Σ (106)

〈SΣ ± 1|Ŝ±|SΣ〉 = �

√
S(S + 1) − Σ(Σ ± 1) (107)

〈JΩ, Λ, SΣ |L̂z|JΩ, Λ, SΣ〉 = �Λ (108)

Instead of setting up the Hamiltonian matrix (101) using
Hund’s case (a) basis functions |JΩ, Λ, SΣ〉, which do
not have a well-defined parity, it is more convenient to use
as basis functions the linear combinations:

|JΩ, Λ, SΣ±〉 = |JΩ,Λ, SΣ〉 ± (−1)J−S+s

|J − Ω, −Λ, S − Σ〉 (109)

which have a well-defined parity (±). s in equation (109)
is 1 for Σ− states and 0 otherwise.

If the rotational and spin–orbit Hamiltonian matrix
is expressed in Hund’s coupling case (a) basis set, the
first line of equation (101) only gives rise to diagonal
elements, with value AΛΣ + B(J (J + 1) + S(S + 1) −
Λ2 − 2ΩΣ). The second line leads to off-diagonal ele-
ments of the rotational matrix. Its effect is to mix states
with values of Σ and Ω differing by ±1, i.e., it mixes
different components of a spin–orbit multiplet. The mix-
ing becomes significant when the value of the off-diagonal
element (≈BJ ) becomes comparable to, or larger than, the
energy separation (≈A) between neighboring spin–orbit
components. This term thus decouples S from the inter-
nuclear axis (corresponding to the S uncoupling toward
Hund’s case (b) mentioned above) and causes a splitting of
the otherwise doubly degenerate rotational levels, with basis
functions |JΩ, Λ, SΣ±〉, of each spin–orbit component.

The term in the third line of equation (101) couples
electronic states with Λ and Ω values differing by ±1, e.g.,
	 states with  states. When such states are energetically
well separated, this term does not play a significant role,
but it can lead to noticeable perturbations of the rotational
structure if the separations between 	 and  states
are accidentally small at certain J values. At very high
values of J , this term starts to efficiently mix states of
different Λ values and to decouple L from the internuclear
axis (corresponding to the L uncoupling toward case (d)
mentioned above).

The term in the fourth line of equation (101) couples
states of the same Ω value but differing in their Λ and
Σ values by ±1 and ∓1, respectively. In cases where
the spin–orbit constant A becomes comparable or larger
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than the spacing between, for instance, a 2	1/2 state and a
21/2 state, efficient mixing of these states results, but the
other spin–orbit component of the  state (23/2) remains
unaffected. This situation has already been encountered in
the example of Xe2

+ discussed in the previous section
(Table 11) and leads to Hund’s case (c).

The term in the fifth line of equation (101) does not
directly affect the rotational and spin–orbit structures but
can shift the origin of a given electronic state. Western
(2011: Introduction to Modeling High-resolution Spec-
tra, this handbook) discusses the rotational energy level
structure of several molecules. Here, we limit ourselves
to the treatment of the simplest cases of 1	+, 1, 2	+,
and 2 states. These examples can be generalized to more
complex cases. However, when studying a specific case,
it is advisable to first consult the extensive literature on
diatomic molecules, in particular the textbooks by Herzberg
(1989), Lefebvre-Brion and Field (2004), and Brown and
Carrington (2003). The rotational energy level structures
(with symmetry labels) of the most commonly encoun-
tered electronic states of diatomic molecules are depicted
schematically in Figure 19.

Example

1	+ states

The rotational energy level structure of a diatomic
molecule in a 1	+ state can be described to a good approx-
imation by equation (90). The parity of the rotational func-
tions is determined in this case by the even/odd nature of
the angular momentum quantum number J (J = R in a
1	+ state).

23/2, J, p 21/2, J, p
23/2, J, p B(J (J + 1) − 7/4) + A/2 −B

√
J (J + 1) − 3/4

21/2, J, p −B
√

J (J + 1) − 3/4 B(J (J + 1) + 1/4) − A/2
(113)

1 states

Only the first, third, and fifth lines of equation (101)
need be considered in this case, because S = 0. The term
in the fifth line does not lead to any J dependence, and its
effects are incorporated into the purely electronic term
value. The term in the third line can couple the 1 state with
neighboring 1	+ and 1	− states. In the absence of such
perturbations, the rotational levels of a 1 state are given by

E(1,J, ±)

(hc)
= B[J (J + 1) − 1] (110)

and each rotational level is doubly degenerate and has
one component of positive and one of negative parity (see

Eq. (110)). Because |Λ| = |Ω| = 1, the lowest rotational
level has J = 1. Perturbations caused by the term in the
third line of equation (101) may cause a J -dependent split-
ting of the two components of each rotational level, an
effect known as Λ doubling.

2	+ states:

The rotational energy level structure of a 2	+ state is
very similar to that of a 1	+ state, with the difference that
each rotational level is now split into a doublet because
of the magnetic interaction between the rotational and
electron-spin motions. The energy level structure can be
described phenomenologically by the following expressions
(the ± signs in the parentheses label the parity):

E(2	+, N,+)

(hc)
= BN(N + 1) + γN

2
(111)

E(2	+, N,−)

(hc)
= BN(N + 1) − γ (N + 1)

2
(112)

where γ represents the spin-rotation coupling constant and
N the quantum number associated with the total angular
momentum excluding spin. This situation is characteristic
of Hund’s case (b).

2 states:

The rotational energy level structure of a molecule in a
2 state can be obtained from the matrix ĤROT + ĤSO as
described above. Because both the total angular momentum
quantum number J and the parity (p = ±) are good
quantum numbers, the matrix has a block-diagonal form.
Each block can be characterized by its parity and J value
and be represented by a (2 × 2) matrix:

The diagonal elements (AΛΣ + B(J (J + 1)) + S(S +
1) − Λ2 − 2ΩΣ) correspond to the first line of equation
(101) and the off-diagonal elements to its second line. The
matrix (113) has the eigenvalues

E(2,J, p)/(hc)

= B

[(
J − 1

2

)(
J + 3

2

)

±
√(

J − 1

2

)(
J + 3

2

)
+
(

A

2B
− 1

)2

 (114)
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Figure 19 Rotational energy level structures of 1	+, 1	−, 2	+, 2	−, 3	+, 3	−, 1, 1∆, 2, and 2∆ states. The ± labels next to
the rotational levels indicate the parity of the rotational levels. The a/s label is only appropriate for homonuclear diatomic molecules
and designates the symmetry of the rovibronic wave functions with respect to permutation of the coordinates of the identical nuclei (see
Section 3.3.4 for more details). The g/u labels are also only relevant in homonuclear diatomic molecules and describe the symmetry of
the electronic function with respect to inversion through the center of symmetry.
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The eigenfunctions have mixed 23/2 and 21/2 character,
the mixing being caused by the off-diagonal elements which
are approximately equal to BJ . When BJ is much less
than the energy difference (≈A) between the diagonal
elements, the mixing becomes negligible and the rotational
levels retain their 23/2 or 21/2 character. This situation
corresponds to a pure Hund’s case (a). When BJ is much
larger than A, the splitting between the two levels is
primarily given by the value of the off-diagonal elements,
and the Ω = 1/2 and 3/2 characters are fully mixed. This
situation corresponds to Hund’s case (b). This example
serves to show how the “S-uncoupling” term in the second
line of equation (101) decouples S from the internuclear
axis and recouples it to the rotational motion. It also
shows that it is the relative magnitude of BJ and A

which determines whether the angular momentum coupling
scheme is better described by Hund’s case (a) or (b). Each
energy level described by equation (114) corresponds to
two rotational states of opposite parity.

Coupled 2	+ and 2 states: When there is a strong
mixing between neighboring 2	+ and 2 states, induced by
the term in the fourth line of equation (101), as in the case
of Xe2

+ discussed in the previous section (see Table 11), a
Hund’s case (c) situation arises. In this case, the rotational
energy levels can also be derived in a Hund’s case (c)
formalism (Veseth 1973, Carrington et al. 1999):

E

(
Ω = 1

2
, J

)
= T3/2 + B1/2

[
J (J + 1) − 1

2

]

+ (−1)(J− 1
2 +q)P

(
J + 1

2

)
(115)

E

(
Ω = 3

2
, J

)
= T3/2 + B3/2

[
J (J + 1) − 9

2

]
(116)

In equations (115) and (116), TΩ , BΩ , and P represent the
vibronic term energies, the rotational constants, and the Ω-
doubling constant, respectively. The phase factor (−1)q in
equation (115) (with q = 0 and 1 for electronic states of u
and g symmetry, respectively), which is not present in the
equation for heteronuclear diatomic molecules or molecules
with nuclei I �= 0, was introduced in order to treat both
sets of states in 40Ar2

+ with the same formula (Rupper and
Merkt 2002).

2.2.8 Hyperfine Structure

As in the case of atoms, the hyperfine structure in molecules
results from the interaction of the magnetic-dipole and/or
electric-quadrupole moments of the nuclei having a nonzero
nuclear spin I (|I|2 = �

2I (I + 1)) with the electric and
magnetic field distributions arising from other motions. In

addition to the electron orbital and spin motions, the rota-
tional motion of the molecular framework must be consid-
ered in the treatment of the hyperfine structure of molecules.
A systematic classification of the possible angular momen-
tum coupling cases can be made following the same general
principles as used in the discussion of Hund’s angular
momentum coupling cases in the previous section. How-
ever, the necessity to include the hyperfine interactions in
the hierarchical ordering of angular momentum couplings
leads to an explosion of the number of limiting cases, par-
ticularly if Rydberg states are considered.

The following nomenclature, introduced by Frosch and
Foley (1952) (see also Dunn 1972), is used to label the
limiting cases of the angular momentum coupling: The
letters (a)–(e) are used to describe the angular momentum
coupling scheme without nuclear spins. A right subscript
(α or β) is added to indicate whether the nuclear-spin
motion is coupled to the internuclear axis or not. In the
former case (subscript α), the projection �Iz of the nuclear-
spin vector on the internuclear axis is well defined. In
the latter case (subscript β), the nuclear-spin vector is
coupled to another angular momentum vector, i.e., R, N,
S, or J, which is added in the subscript next to β. For
example, “aα” implies a Hund’s case (a) coupling situation
(Figure 20a) in which the nuclear-spin I is coupled to the
internuclear axis. “bβS” refers to a Hund’s case (b) coupling
situation (Figure 20b) in which the nuclear spin is coupled
to the electron-spin vector S, in which case the total spin
vector G = S + I results. “cβJ ” describes a Hund’s case (c)
situation (Figure 20f) in which the nuclear spin is coupled
to J.

In general, the hyperfine interactions are much weaker
than the electrostatic (including exchange) and spin–orbit
interactions. Moreover, the Fermi-contact hyperfine inter-
action, which is only of appreciable strength in electronic
states with a significant electron-spin density at the nuclei,
is weak in Λ �= 0 states because the nuclei are located in the
nodal plane of the partially filled molecular orbitals. Con-
sequently, “α-type” coupling cases, which can only arise
as aα and cα cases, are rather unusual and more probable
in Hund’s case (c) situations because the electronic wave
functions often contain significant 	 contributions, even
when Ω �= 0.

Figure 20 illustrates schematically the vector models
corresponding to several of the angular momentum coupling
schemes mentioned above. The hyperfine structure of the
ground state (X 2	+

g (v+ = 0, N+ = 1)) of ortho H2
+

and of para D2
+ depicted in figure 27 of Merkt et al.

2011: High-resolution Photoelectron Spectroscopy, this
handbook, represents an example of case bβS .

An exhaustive discussion of the hyperfine structure of
diatomic molecules, which would go beyond the scope of
this introductory article, would need to include cases where
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Figure 20 Selected illustrative angular momentum coupling schemes in diatomic molecules, including nuclear spins: (a) case aα; (b)
case aβ(J ); (c) case bβS ; (d) case bβJ ; (e) case cα ; and (f) case cβ(J ). The nomenclature used to label these schemes is explained in the
text. More complex situations arise when two nuclear spins (I1 and I2) are considered or in the treatment of the hyperfine structure of
Rydberg states.

both nuclei have a (different) nuclear spin and would need
to describe the many coupling cases arising in Rydberg
states with their specific coupling cases (d) and (e). We
refer here to the “Further reading list” at the end of this
article for more extensive treatments.

2.3 Polyatomic Molecules

The electronic structure of polyatomic molecules can be
described using the same principles as those introduced
for diatomic molecules in the previous section. However,
the same polyatomic molecule can have different geome-
tries and belong to different point groups depending on its
electronic state. The variety of possible electronic states
and molecular structures is so large that it is impossible
to give a complete overview in this article. We, there-
fore, restrict the discussion to only a few representative
molecular systems: molecules of the form HAH as proto-
typical small molecules, the cyclopentadienyl cation and
benzene as typical highly symmetrical molecules, and ade-
nine as an example of a nonsymmetrical large molecule.
The principles that we describe are easily generalized to
arbitrary molecules.

2.3.1 Molecular Orbitals, Electronic Configurations,
and Electronic States

Small Polyatomic Molecules with the Example of HAH
Molecules Molecules possessing the chemical formula
HAH (A designates an atom, e.g., Be, B, C, N, O, etc.)
are either linear and belong to the D∞h point group or bent
and belong to the C2v point group, the character table of
which is given in Table 12. Molecular orbitals are therefore
classified either in the D∞h (see Table 8) or the C2v point
group. For simplicity, we consider here only valence states
of HAH molecules with A being an atom from the second
or third row of the periodic table, so that � ≥ 2 atomic
orbitals can be ignored in the discussion of the electronic
structure.

Table 12 Character table of the C2v point group.

C2v I C2 σv(xz) σ′
v(yz)

A1 1 1 1 1 Tz αxx, αyy, αzz

A2 1 1 −1 −1 Rz αxy

B1 1 −1 1 −1 Tx, Ry αxz

B2 1 −1 −1 1 Ty, Rx αyz
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a1 b2
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Figure 21 Symmetry-adapted linear combinations of 1s orbitals
that participate in the construction of molecular orbitals of (a)
linear and (b) bent HAH molecules.

The determination of the molecular orbitals may proceed
along the following scheme:

1. Identification of all atomic orbitals participating in the
formation of molecular orbitals. Symmetry restricts
the number of these orbitals. In the case of HAH
molecules, the required orbitals are the two 1s orbitals
of the hydrogen atoms and the ns and np valence
orbitals of the central atom A, where n ≥ 2 represents
the row of the periodic system of elements to which A
belongs. Orbitals belonging to inner shells of the central
atom usually lie so deep in energy and are so strongly
localized on the nucleus that they hardly contribute to
molecular bonds.

2. The formation of i symmetry-adapted molecular orb-
itals from the set of i atomic orbitals determined under
(a) (i = 6 in the case of HAH molecules). Symmetry-
adapted molecular orbitals transform as irreducible
representations of the corresponding point group. In
molecules such as HAH in which two or more atoms
are equivalent, it is convenient to first build symmetry-
adapted linear combinations of the orbitals of these
equivalent atoms, i.e., of the H 1s orbitals in the case
of HAH molecules (see Figure 21). These orbitals are
then used to form molecular orbitals with the orbitals
of the central atom A (or of other atoms in the case of
other molecules) having the corresponding symmetry,
as shown in Figure 22 for the point group D∞h.

The ns (σg) and npz (σu) orbitals of the central atom can
be combined with the symmetry-adapted orbitals of the H
atoms in two ways each, resulting in four molecular orbitals
of σ symmetry. The energetic ordering of these molecular
orbitals can be derived from the number of nodal planes of
the wave functions. The 2σg (zero nodal plane) and 1σu (one

2sg 2su3sg1su

2s 1s1s 2pz 1s1s 2s 1s1s 2pz 1s1s

+ + + +

+
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−
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Figure 22 Linear combinations of atomic orbitals in linear HAH
molecules.
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Figure 23 Walsh diagram for HAH molecules. The symmetry
labels on the left-hand side correspond to C2v point-group
symmetry and those on the right-hand side to D∞h symmetry.

nodal plane) orbitals in Figure 22 are bonding, whereas
the 3σg (two nodal planes) and 2σu (three nodal planes)
orbitals are antibonding. For symmetry reasons, the 2px

and 2py orbitals of the central atom (both of πu symmetry)
cannot combine with the 1s orbitals of the H atoms and are
therefore nonbonding orbitals.

The energetic ordering of these molecular orbitals is
given on the right-hand side of Figure 23, which also
shows how the energies of the molecular orbitals change
as the molecule is progressively bent from the linear D∞h

structure (∠(HAH) = 180◦) toward the C2v structure with
∠(HAH) = 90◦. The orbitals of the bent molecules dis-
played on the left-hand side of Figure 23 are given symme-
try labels of the C2v point group according to their trans-
formation properties (see Table 12). The two lowest-lying
orbitals are invariant under rotations around the C2(z) axis,
and also under reflection in both the σxz and σyz planes, and
are therefore totally symmetric (a1). The next higher-lying
orbital is antisymmetric under C2 rotation and under σxz

reflection, but symmetric under σyz reflection, and is thus
of b2 symmetry. As in the linear geometry, the energetic
ordering essentially follows the number of nodal planes.

The degeneracy of the two nonbonding πu orbitals
is lifted as the molecule bends. The molecular orbital
corresponding to the p orbital in the molecular plane
becomes bonding and correlates with the 3a1 molecular
orbital of the bent molecule. The other molecular orbital,
which is perpendicular to the molecular plane, remains a
nonbonding orbital and correlates with the 1b1 orbital of
the bent molecule. The angle dependence of the 1πu − 3a1

orbital energy is of particular importance, because this
orbital is the only one that becomes significantly more
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stable in the nonlinear geometry. All other molecular
orbitals are destabilized when the HAH angle is decreased.
The occupation of this orbital with one or two electrons
can result in a bent equilibrium structure of the molecule.
Correlation diagrams as the one shown in Figure 23 are
known as Walsh diagrams.

As in the case of atoms and diatomic molecules, the elec-
tronic configurations of polyatomic molecules are obtained
by filling the molecular orbitals with a maximum of two
electrons. Whether a molecule of the form HAH is linear
or bent depends on the occupation of the orbitals, espe-
cially of the 3a1 orbital, as discussed above. The symmetries
of the electronic states that result from a given config-
uration are obtained from the direct product of the irre-
ducible representations of the occupied molecular orbitals
(see equation 84). Finally, the multiplicities (2S + 1) are
derived following exactly the same procedure as discussed
for atoms and diatomic molecules in the previous sections
(see also Section 2.3.2 below).

Examples

BeH2: . . . (2σg)
2(1σu)

2

The dependence of the energies of the occupied orbitals
favors a linear structure (see Figure 23) and the ground
electronic state is therefore the X̃ 1	+

g state.

BeH2: . . . (2a1)
2(1b2)

1(3a1)
1

The first excited configuration leads to a bent structure
because the 3a1 − 1πu orbital is occupied. The electronic
configuration is thus given using C2v symmetry labels. The
two electronic states resulting from this configuration are
of 3B2 and 1B2 symmetry.

H2O: . . . (2a1)
2(1b2)

2(3a1)
2(1b1)

2

Because the 3a1 orbital in H2O is doubly occupied, the
electronic ground state is also bent. The ground electronic
state is thus the X̃ 1A1 state.

H2O+: . . . (2a1)
2(1b2)

2(3a1)
2(1b1)

1 X̃
+ 2B1.

H2O+ also possesses a bent electronic ground state.
Walsh diagrams such as that displayed in Figure 23 are

also useful in the discussion of vibronic interactions because
they enable one to see how the degeneracy of π orbitals and
of the ,∆,�, . . . electronic states are lifted, and how the
electronic character changes, when the molecules bend out
of their linear structures. The coupling of electronic motion
and bending vibrations can significantly perturb the energy

c: E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv

χ(c): 6 0 0 0 −2 0 0 0 0 −6 0 2

level structure and gives rise to the Renner–Teller effect,
which is discussed further in Section 2.3.6.

Larger Symmetric Molecules To determine the molecu-
lar orbitals of larger polyatomic molecules that have a high
symmetry, it is useful to introduce a systematic approach.
The symmetrized linear combinations of atomic orbitals
(LCAO) are determined using projection operators p̂γ that
are applied onto one of the atomic orbitals of the set of iden-
tical atoms. The projectors are defined as (see Merkt and
Quack 2011: Molecular Quantum Mechanics and Molec-
ular Spectra, Molecular Symmetry, and Interaction of
Matter with Radiation, this handbook)

p̂γ = 1

h

∑
R

χγ (R)∗ · R̂ Projection formula (117)

where R̂ are the geometrical operations of the point group,
χγ (R) is the character of the irreducible representation γ

under the operation R̂, and h is the order of the point group.
To illustrate the application of the projection formula

(equation 117), we use it to derive the system of π

molecular orbitals of benzene in the D6h point group by
building symmetry-adapted linear combinations

ϕ(s)
γ =

6∑
i=1

cγ ,iϕi (118)

of the carbon 2pz orbitals ϕi (i = 1 − 6). From the six 2pz

atomic orbitals involved in the π orbital system, which form
a six-dimensional reducible representation of the D6h point
group, a total of six orthogonal molecular orbitals can be
formed. The reducible representation � of the carbon 2pz

orbitals can be constructed using the character table of the
D6h point group presented in Table 13.

Under the group operations of D6h, the 2pz orbitals ϕi

have the same symmetry properties as the components zi

of the nuclear displacement vectors of the carbon atoms.
The 2pz orbitals are mapped onto each other by the
symmetry operations of the group. From the properties of
the representation matrices, it can be easily established that

• each orbital that is left unchanged by a symmetry
operation R̂ adds 1 to the character χ(R);

• each orbital that is inverted adds −1 to the character;
and

• each orbital that is mapped onto another orbital gives
no contribution to the character.

Thus, the characters of the reducible representation � of
the six 2pz orbitals under the different classes of symmetry
operations R̂ are
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Table 13 Character table of the D6h point group.

D6h E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 Rx , Ry

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 x, y

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

This representation must now be transformed into a sum
of irreducible representations using the reduction formula:

aγ = 1

h

∑
R

n(R)χ�(R)χγ (R) (119)

where aγ is the number of times the irreducible repre-
sentation γ is contained in the reducible representation �,
h (= 24) is the order of the group, n(R) is the number of
operations of a particular class of operations, χ�(R) is the
character of the reducible representation corresponding to
the class of the operation R̂, and χγ (R) is the corresponding
character of the irreducible representation γ .

Reducing � using equation (119) yields the symmetries
of the six π molecular orbitals:

� = b2g ⊕ a2u ⊕ e1g ⊕ e2u (120)

each of the two e irreducible representations being two
dimensional. The orthonormal set of symmetry-adapted
basis functions {ϕ(s)

i } is constructed by projecting the ϕi

on their irreducible components using equation (117) and
Table 13:

1. a2u :

ϕ(s)
a2u

= 1

N
p̂a2uϕ1 = 1√

6

(
ϕ1 + ϕ2 + ϕ3+ϕ4 + ϕ5 + ϕ6

)
(121)

where N is a normalization constant. The normalization
factor 1√

6
results from the assumption that the ϕi

orbitals do not overlap. The same result is obtained
by applying the projector to any other ϕi, i �= 1.

2. b2g :

ϕ
(s)
b2g

= 1

N
p̂b2gϕ1 = 1√

6

(
ϕ1 − ϕ2 + ϕ3−ϕ4 + ϕ5 − ϕ6

)
(122)

3. e1g : For multidimensional subspaces, the projection
technique usually yields nonorthogonal linear combi-
nations of the original basis vectors. To construct the
symmetry-adapted basis, it is sufficient to determine di

linearly independent vectors and then choose suitable
orthogonal linear combinations of them:

ϕ
(s)
e1g,1 = 1

N
p̂e1gϕ1 = 1√

12

(
2ϕ1 + ϕ2

− ϕ3 − 2ϕ4 − ϕ5 + ϕ6

)
(123)

ϕ
(s)
e1g,2 = 1

N
p̂e1g

ϕ2 = 1√
12

(
ϕ1 + 2ϕ2

+ ϕ3 − ϕ4 − 2ϕ5 − ϕ6

)
(124)

The set of vectors {ϕ(s)
e1g,1, ϕ

(s)
e1g,2} is linearly indepen-

dent, but not orthogonal. A set of orthogonal basis
vectors can be obtained by using the Schmidt orthog-
onalization algorithm: if φ1 and φ2 are nonorthog-
onal, normalized basis vectors, then a basis vector
φ⊥

2 that is orthogonal to φ1 can be constructed using
equation (125):

φ⊥
2 = φ2 − 〈

φ2

∣∣φ1

〉
φ1 (125)

where 〈.|.〉 denotes the scalar product. Thus,

ϕ
(s),⊥
e1g,2 = ϕ

(s)
e1g,2 − 〈

ϕ
(s)
e1g,2

∣∣ϕ(s)
e1g,1

〉
ϕ

(s)
e1g,1

= ϕ
(s)
e1g,2 − 1

2
ϕ

(s)
e1g,1 (126)

After normalization, one obtains

ϕ
(s),⊥
e1g,2 = 1

2

(
ϕ2 + ϕ3 − ϕ5 − ϕ6

)
(127)



214 Fundamentals of Electronic Spectroscopy

The set of symmetry-adapted basis vectors {ϕ(s)
e1g,a,

ϕ
(s)
e1g,b} = {ϕ(s)

e1g,1, ϕ
(s),⊥
e1g,2} for the e1g subspace is thus

ϕ(s)
e1g,a = 1√

12

(
2ϕ1 + ϕ2 − ϕ3 − 2ϕ4 − ϕ5 + ϕ6

)
(128)

ϕ
(s)
e1g,b = 1

2

(
ϕ2 + ϕ3 − ϕ5 − ϕ6

)
(129)

4. e2u : Similarly, one obtains an orthonormal set of
symmetry-adapted basis vectors for the e2u sub-
space:

ϕ(s)
e2u,a = 1√

12

(
2ϕ1 − ϕ2 − ϕ3 + 2ϕ4 − ϕ5 − ϕ6

)
(130)

ϕ
(s)
e2u,b = 1

2

(
ϕ2 − ϕ3 + ϕ5 − ϕ6

)
(131)

These molecular orbitals are depicted in Figure 24. Their
energetic ordering can be determined from the number
of nodal planes. The a2u orbital must be the most stable
because it possesses a single nodal plane (the plane
containing the carbon atoms). The e1g orbital possesses two

E

b2g a – 2b

a + 2b

a – b

a + b

e2u

e1g

a2u

Figure 24 Energy level diagram and schematic representation
of the π molecular orbitals of benzene. The size of the circles
represents the weight of the atomic orbital in the molecular-orbital
wave function. The two gray tones of the shading indicate the
relative sign of the 2pz orbitals that form the molecular orbital.
The energies of the molecular orbitals increase with the number
of nodal planes and are expressed, on the right-hand side of the
figure, as a function of the Hückel parameters α and β. The arrows
represent schematically the occupation of the molecular orbitals
in the ground-state configuration of benzene.

nodal planes and has therefore the second lowest energy.
The e2u and b2g orbitals possess three and four nodal planes
and are thus the orbitals of second highest and highest
energy, respectively.

A more quantitative estimate of the relative energies of
the molecular orbitals can be achieved using the Hückel
molecular-orbital (HMO) model. The HMO model repre-
sents a simple semiempirical method to calculate the elec-
tronic energy level structure of molecules that exhibit con-
jugated π molecular orbitals such as polyenes and aromatic
molecules. The model is useful to gain a semiquantitative
description of the π molecular orbitals and their relative
energies and is widely used in physical–organic chemistry.
Within the framework of the HMO model, the π molecular
orbitals are constructed by linear combinations of orthogo-
nal 2pz atomic orbitals centered on the carbon atoms. The
energies Ek of the π molecular orbitals are obtained by
solving the secular determinant

det
∣∣Hij − EkSij

∣∣ = 0 (132)

where Hij are the matrix elements of a formal Hamiltonian
operator H describing the π electron system (the “Hückel
operator”) and Sij denotes the overlap integral between the
pz orbitals of atoms i and j . The expansion coefficients
c
(k)
i of the molecular orbital �k in the basis of the atomic

2pz orbitals {ϕi} are obtained by solving the set of secular
equations: ∑

i

c
(k)
i

(
Hij − EkSij

) = 0 (133)

The following approximations are introduced:

• All overlap integrals vanish (Sij = 0) unless i = j , in
which case Sii = 1.

• All diagonal elements of H are the same: Hii = α.
• All off-diagonal elements of H are set to zero, except

those between neighboring atoms, which are Hij = β.
β is usually negative (β < 0).

α and β are treated as effective parameters that can in
principle be estimated from calorimetric data.

The matrix representation of the Hückel operator H
describing the π molecular-orbital system can be derived
in the basis of the carbon 2pz atomic orbitals {ϕi}, and is

[
Hij

] =




α β 0 0 0 β

β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β

β 0 0 0 β α


 (134)
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The eigenvectors and eigenvalues of the matrix (134) repre-
sent the molecular orbitals and their energies, respectively.
Alternatively, the Hückel operator can be expressed in the
basis of symmetry-adapted basis functions {ϕ(s)

i } by evalu-
ating the matrix elements according to

H
(s)
ij = 〈

ϕ
(s)
i

∣∣H∣∣ϕ(s)
j

〉
(135)

using the basis functions given in equations (121, 122, 128,
129–131). For the ϕ

(s)
a2u

orbital (equation 121), one finds, for
instance,

〈
ϕ(s)

a2u

∣∣H∣∣ϕ(s)
a2u

〉 = 1

6

〈
ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6

∣∣H∣∣ϕ1

+ ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6

〉
= α + 2β (136)

Matrix elements between functions of different symmetry
and matrix elements between orthogonal basis functions
within the e1g and e2u subspaces are zero because H is
totally symmetric, so that one obtains the following Hückel
matrix:

[
H

(s)
ij

]

=




α + 2β 0 0 0 0 0
0 α − 2β 0 0 0 0
0 0 α + β 0 0 0
0 0 0 α + β 0 0
0 0 0 0 α − β 0
0 0 0 0 0 α − β




(137)
which is already in diagonal form. The symmetry-adapted
orthonormal basis functions {ϕ(s)

i } are thus the eigenvec-
tors of the Hückel operator and represent the π molec-
ular orbitals {�i} of benzene depicted in Figure 24. One
should note that a group-theoretical treatment normally only
divides the Hamiltonian matrix in as many diagonal blocks
as there are irreducible representations, i.e., in the present

case, in two 1 × 1 diagonal blocks corresponding to A2u

and B2g and two 2 × 2 diagonal blocks corresponding to
E1g and E2u. The fact that the Hamiltonian matrix is fully
diagonal in equation (137) is a consequence of the par-
ticular choice made during the Schmidt orthogonalization
procedure.

The lowest energy configuration of π electrons in ben-
zene can thus be written (a2u)2(e1g)4, giving rise to a single
electronic state of symmetry 1A1g. The first excited elec-
tronic configuration of benzene is (a2u)2(e1g)3(e2u)1. This
configuration gives rise to several electronic states, as dis-
cussed in Section 2.3.2. The direct product of the partially
occupied orbitals is e1g⊗e2u = b1u ⊕ b2u ⊕ e1u. Since two
different spatial orbitals are partially occupied, there is no
restriction on the total electron spin imposed by the general-
ized Pauli principle (Section 2.2.4), and all electronic states
contained in the direct product can exist as either singlet or
triplet states. The configuration (a2u)2(e1g)3(e2u)1 thus gives
rise to the electronic states 3B1u, 1B1u, 3B2u, 1B2u, 3E1u,
and 1E1u.

To illustrate the case where each orbital of a degenerate
pair of orbitals is singly occupied, we now present the
group-theoretical and HMO treatments of the electronic
structure of the cyclopentadienyl cation C5H5

+ using the
D5h point group, the character table of which is presented
in Table 14.

The matrix representation of the Hückel operator can be
determined in analogy to benzene and takes the following
form:

[
Hij

] =




α β 0 0 β

β α β 0 0
0 β α β 0
0 0 β α β

β 0 0 β α


 (138)

Diagonalization of this matrix gives rise to the five eigen-
values α + 2β, α + ω2β (twice), and α + ω1β (twice),
where ω1 and ω2 are defined in Table 14. The applica-
tion of the reduction formula (equation 119) to the five-
dimensional reducible representation of the five pz orbitals

Table 14 Character table of the D5h point group.

D5h E 2C5 2C2
5 5C2 σh 2S5 2S2

5 5σd

A′
1 1 1 1 1 1 1 1 1

A′
2 1 1 1 −1 1 1 1 −1 Rz

E′
1 2 ω2 ω1 0 2 ω2 ω1 0 x, y

E′
2 2 ω1 ω2 0 2 ω1 ω2 0

A′′
1 1 1 1 1 −1 −1 −1 −1

A′′
2 1 1 1 −1 −1 −1 −1 1 z

E′′
1 2 ω2 ω1 0 −2 −ω2 −ω1 0 Rx, Ry

E′′
2 2 ω1 ω2 0 −2 −ω1 −ω2 0

ω1 = 2 cos(4π/5) and ω2 = 2 cos(2π/5).
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E

e2″

1A1
′

2K23

2K23

1E2
′

3A2
′

C5H5
+

a2″

e1″

(a) (b)

Figure 25 (a) Frost–Musulin diagram of the π molecular
orbitals of the cyclopentadienyl cation. The arrows indicate the
occupation corresponding to the lowest lying electronic configura-
tion. (b) Energetic ordering of the corresponding electronic states
in D5h symmetry (right-hand side). K23 represents the exchange
integral. [See text; adapted from Wörner and Merkt (2007).]

and of the projection operators gives rise to five eigenvec-
tors of symmetries a′′

2, e′′
1, and e′′

2. The energetic ordering of
the corresponding orbitals is depicted in Figure 25(a) in the
form of a Frost–Musulin diagram. A Frost–Musulin dia-
gram is derived by drawing a regular polygon representing
the cyclic polyene into a circle, placing one vertex on the
lowest point of the circle. The vertices of the polygon then
provide the energies of the π orbitals of the polyene. Such
diagrams provide an elegant graphical method to deter-
mine the sequence and degeneracy of the HMO of cyclic
polyenes. Looking at Figure 24, it becomes apparent that
a Frost–Musulin diagram indeed adequately describes the
HMOs of benzene.

The most stable electronic configuration of C5H5
+ is

((a′′
2)

2(e′′
1)

2), as depicted in Figure 25(a). The direct product
of the irreducible representations of the partially occupied
orbitals is e′′

1 ⊗ e′′
1 = a′

2 ⊕ e′
2 ⊕ a′

1. In this case, the two
components of a degenerate orbital may both be singly
occupied. The total electronic wave function must be anti-
symmetric under the exchange of the two electrons in the
e′′

1 orbitals, which restricts the number of possible states,
as is discussed in general terms in Section 2.3.2. The elec-
tronic symmetry of the singlet states, which have an anti-
symmetric (with respect to permutation of the electrons)
electron-spin function, must be determined from the sym-
metric (rather than the direct) product of the irreducible
representations

[
e′′

1 ⊗ e′′
1

] = e′
2 ⊕ a′

1, resulting in a 1E′
2 and

a 1A′
1 state. Correspondingly, the electronic symmetry of

the triplet state is obtained from the antisymmetric prod-
uct {e′′

1 ⊗ e′′
1} = a′

2, resulting in a single 3A′
2 state (compare

with the analogous discussion of the electronic structure
of O2 in Section 2.2.4). The energetic ordering of the
three states 3A′

2, 1E′
2 and 1A′

1 is given in Figure 25(b).
The Hartree–Fock energies of these three states are 2h +

J23 − K23, 2h + J23 + K23, and 2h + J22 + K23, respec-
tively, where h, Jij , and Kij represent the one-electron
orbital energy, the Coulomb integral, and the exchange
integral, respectively, and the indices designate the π

molecular orbitals in order of increasing energy (Borden
1982; by symmetry, J22 − J23 = 2K23). Using the HMO
approach, one can determine the one-electron energy to be
h = α + ω2β.

Large Polyatomic Molecules Unlike small polyatomic
molecules, most large molecules have a low symmetry, and
the classification of electronic states by their irreducible
representations loses its relevance. When the molecule
possesses no symmetry elements, all electronic transitions
involving nominally a single electron are allowed by
symmetry. Consequently, a different nomenclature is used
to label both the electronic states and the electronic
transitions of large molecules, as already mentioned in the
introduction.

The electronic states are designated by a capital letter
representing their spin multiplicity: S for singlets, D for
doublets, T for triplets, etc. A numerical subscript is used
to indicate the ground state (e.g. S0) and the higher lying
excited states of the same multiplicity (S1, S2, etc.). States
of another multiplicity of the same molecule are also
labeled in order of increasing energies but starting with
the subscript “1” rather than “0” (e.g., T1, T2, etc.).

Electronic transitions in polyatomic molecules are often
labeled according to the type of molecular orbitals involved.
One distinguishes between bonding orbitals of σ or π type,
the corresponding antibonding orbitals (σ∗ or π∗) and non-
bonding orbitals (n). This nomenclature has the advantage
that it highlights the nature of the electronic transition,
from which qualitative predictions of their intensities can
be made: transitions involving the excitation of an electron
from a bonding to the corresponding antibonding orbital
(σ → σ∗ or π → π∗) are usually associated with a large
oscillator strength, whereas transitions from nonbonding to
antibonding orbitals (n → σ∗ or n → π∗) are weak.

The nomenclature outlined above is often used in the
discussion of the photochemistry and photophysics of
larger molecules, such as the DNA bases. Although the
isolated DNA bases absorb strongly in the ultraviolet
(200–300 nm), they hardly show any fragmentation, unlike
many other molecules. This property may be of importance
in preserving the genetic information (Sobolewski and
Domcke 2002) and arises from the ability of the molecules
to convert the energy of the photon to vibrational energy,
as is discussed in Section 3.5.3.

Adenine also represents a good example, illustrating the
difficulty associated with all nomenclature systems for large
molecules. The sequence of singlet states consists of the S0
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Figure 26 Resonance-enhanced two-photon ionization spectrum of adenine in the gas phase. The bands A and D are assigned to the
origins of the n → π∗ and π → π∗ excitations, respectively. The bands B, C, and E are vibronic levels of mixed electronic character.
The right-hand side of the figure shows an energy level diagram of the three lowest electronic singlet states of adenine. [Reproduced
from Kim et al. (2000).  American Institute of Physics, 2000.]

ground state with the configuration . . . (π)2(n)2(π∗)0, fol-
lowed by two electronic states of dominant configurations,
. . . (π)2(n)1(π∗)1 and . . . (π)1(n)2(π∗)1, respectively.
One can only indicate the dominant configurations for these
two electronic states because they lie energetically very
close, and configuration interaction between them is impor-
tant. Since the energetic ordering of these states has been
debated in the literature (see Sobolewski and Domcke 2002
and references therein), it is difficult to apply the usual
labels S1 and S2 to these electronic states. To avoid this dif-
ficulty, the recent literature uses the designation 1nπ∗ and
1ππ∗ for these two states, the 1 superscript designating the
spin multiplicity. Figure 26 shows a resonant two-photon
ionization spectrum of adenine in a supersonic expansion
and a diagram of the electronic energy levels as derived
from this spectrum (Kim et al. 2000). The band labeled
“A” was assigned to the origin of the 1nπ∗ state, whereas
band “D” was assigned to the origin of the 1ππ∗ state.
The wave-number scale on top of Figure 26 is given with
respect to band “A”. The energy-integrated absorption of
the 1ππ∗ state is strong, and the band turns into a broad
absorption band above 36 230 cm−1.

2.3.2 Spin Multiplicity

As in the treatment of diatomic molecules in section 2.2.4,
we will only consider two-electron wave functions. Because
of the Pauli principle, the two-electron wave function must
either have a symmetric spatial part (Ψ R

(s)(qi)) and an
antisymmetric spin part (Ψ S

(a)(mi)) or vice versa (Ψ R
(a)(qi))

and (Ψ S
(a)(mi)); see Tables 4 and 5.

The situation is slightly different from the case of
diatomic molecules, because the components of degenerate
orbitals can no longer be classified according to a good

quantum number (λ in the case of diatomic molecules).
However, group theory provides a simple approach to
determining the existing multiplicities. Two cases can be
distinguished:

1. The two electrons are located in different molecular-
orbital shells. Both the symmetric and the antisymmet-
ric spatial parts of the wave functions are nonzero in
this case. No restrictions result from the Pauli princi-
ple: the electronic states are given by the direct product
of the representations of the partially occupied orbitals,
and all terms contained in the direct product exist as
both singlet and triplet states. This situation arises in
the first excited states of BeH2 arising from the configu-
ration . . . (2a1)

2(1b2)
1(3a1)

1 discussed in the first part
of Section 2.3.1. Since b2 ⊗ a1 = b2, the two electronic
states 3B2 and 1B2 are obtained. The same applies
to the (a2u)2(e1g)3(e2u)1 configuration of benzene dis-
cussed in the section Larger Symmetric Molecules in
the Section 2.3.1, giving rise to the electronic states
3B1u, 1B1u, 3B2u, 1B2u, 3E1u, and 1E1u.

2. The two electrons are located in the same molecular-
orbital shell. If the molecular-orbital shell is nonde-
generate, the spatial part of the wave function is nec-
essarily symmetric. The spin part must therefore be
antisymmetric, resulting in a totally symmetric (A′

1 for
benzene) singlet state. If the molecular-orbital shell is
degenerate, the spatial part has both symmetric and
antisymmetric components. The symmetry properties
of these components are determined by the symmet-
ric and antisymmetric parts, respectively, of the direct
product of the orbital symmetry with itself. This situa-
tion arises in the (a′′

2)2(e′′
1)2 configuration of C5H5

+ as
discussed in the section Larger Symmetric Molecules
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Table 15 Character table of the spin double group C2
2v.

C2v I C2 σv(xz) σ′
v(yz) R

A1 1 1 1 1 1 Tz

A2 1 1 −1 −1 1 Rz

B1 1 −1 1 −1 1 Tx, Ry

B2 1 −1 −1 1 1 Ty, Rx

E1/2 2 0 0 0 −2

The first five rows and columns correspond to the C2v point group
(Table 12).

Table 16 Character table of the spin double group C2
3v.

C3v I 2C3 σv R 2C2
3

A1 1 1 1 1 1 Tz

A2 1 1 −1 1 1 Rz

E 2 −1 0 2 −1 Tx,y, Rx,y

E1/2 2 1 0 −2 −1

E3/2 2 −2 0 −2 2

The first four rows and columns correspond to the C3v point group.

in the Section 2.3.1. The symmetric spatial part of
the wave function is given by

[
e′′

1 ⊗ e′′
1

] = e′
2 ⊕ a′

1,
resulting in a 1E′

2 and a 1A′
1 state. Correspondingly, the

triplet state is obtained from the antisymmetric product
{e′′

1 ⊗ e′′
1} = a′

2, resulting in a single 3A′
2 state.

2.3.3 Spin–Orbit Coupling

Spin–orbit coupling in polyatomic molecules can lead to
very complex spectral patterns and dynamical behaviors
(e.g., intersystem crossings; see Section 3.5.3). To keep
the discussion simple, we only treat here the limiting
cases where the spin–orbit coupling is small compared
to the energy intervals between neighboring rotational
energy levels, and the opposite case where the spin–orbit
coupling is very large, even larger than the splitting between
electronic states of different multiplicities caused by the
exchange interaction. The first case is related to Hund’s
case (b) and the second case to Hund’s case (c) describing
the angular momentum coupling in diatomic molecules
(Section 2.2.5).

The description of spin–orbit coupling in polyatomic
molecules requires the use of the spin double groups. Such
groups are obtained from the corresponding point groups
by including 2π rotations with negative character to take
into account the fact that a half-integer spin function has
a periodicity of 4π. The character table of the spin double
group for C2v and C3v molecules are presented in Tables 15
and 16, respectively, and Table 17 shows how the spin
functions with S = 0, 1/2, 1, 3/2, . . . transform in these
spin double groups.

We first consider the case where spin–orbit coupling is
small compared to the rotational intervals of the molecule.
Spin–orbit interaction splits a rotational state of total angu-
lar momentum (without spin) N into (2S+1) nearly degen-
erate states. As an example, we consider a C2v molecule in
its 2B1 electronic ground state. The ground rovibronic state
has the symmetry �rve = B1. The spin-rovibronic symme-
tries of this level are thus �srve = �rve ⊗ �S=1/2 = B1 ⊗
E1/2 = E1/2, showing that the spin-rovibronic ground state
is doubly degenerate. The same holds true for all other rovi-
bronic levels of this electronic state. However, the degener-
acy may be lifted in the rovibronic levels of a C2v molecule
in a 3B1 electronic state. In this case, the rovibronic
ground state gives rise to spin-rovibronic levels of symme-
tries �srve = �rve ⊗ �S=1 = B1 ⊗ (A2 + B1 + B2) = B2 ⊕
A1 ⊕ A2.

A more interesting case occurs in molecules of the C3v

point group, such as, e.g., the methyl halides CH3X (X =
halogen atom) and their cations. The cations CH3X+ have
. . .(e)3 2E ground electronic states. Neglecting vibronic
interactions (see Section 2.3.6), spin–orbit coupling splits
their ground electronic state into two components of
symmetry E ⊗ E1/2 = E1/2 ⊕ E3/2. In CH3I+, these two
components are separated by ≈0.5 eV, corresponding to
a case where spin–orbit coupling gives rise to much larger
splittings than the vibronic interactions. We note that, in this
case, the effects of vibronic interactions (the JT effect) are
strongly suppressed (see also Köppel et al. 2011: Theory
of the Jahn–Teller Effect, this handbook for details).

We now illustrate the transition between the limit-
ing cases of weak and strong spin–orbit coupling with
the example of the (X̃ 2E)(ns) Rydberg states of CH3X
(X = halogen), which have the electronic configura-
tion . . . (e)3(a1)

1. In low Rydberg states, the exchange
interaction between the Rydberg electron and the ionic
core is larger than the spin–orbit coupling, resulting in

Table 17 Transformation properties of the spin functions in the spin double groups C2v and C3v.

S 0 1/2 1 3/2 2 5/2

� (C2v) A1 E1/2 A2 + B1 + B2 2E1/2 2A1 + A2 + B1 + B2 3E1/2

� (C3v) A1 E1/2 A2 + E E1/2 + E3/2 A1 + 2E 2E1/2 + E3/2
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Figure 27 Energy levels of an electronic state of configuration
. . . (e)3(a1)

1 of a C3v molecule for small and large spin–orbit
coupling constants. On the right-hand side the lower two E
states correlate with the E3/2 electronic state resulting from the
. . . (e)3 configuration of the ion, whereas the upper group of
states correlates with the E1/2 ionic electronic state of the same
configuration. [Adapted from Herzberg (1991).]

a 3E state and a 1E state, as illustrated in Figure 27.
Spin–orbit coupling splits the 3E state into E⊗ (E ⊕ A2) =
A1⊕A2⊕E⊕E states. The 1E state remains unaffected in the
weak-coupling limit. In high Rydberg states, the spin–orbit
interaction in the CH3X+ ion is much larger than the
exchange interaction between the Rydberg electron and the
core electrons, and the level structure displayed on the right-
hand side of Figure 27 is obtained. In that limit, the spin
of the ion core is coupled to its orbital angular momen-
tum, giving rise to the E3/2 and E1/2 levels discussed in the
previous paragraph. The Rydberg electron is only coupled
weakly to the ion core by the exchange interaction, which
scales as n−3. The symmetries of the electronic states can
thus be obtained by taking the direct product of the symme-
try of the ionic state and the Rydberg electron. Each Ryd-
berg level of the ns series converging to the 2E3/2 ground
state gives rise to two E levels (E3/2 ⊗ E1/2 = E ⊕ E),
whereas levels converging to the 2E1/2 state split into
three levels (E1/2 ⊗ E1/2 = A1 ⊕ A2 ⊕ E). Figure 27 bears
a close resemblance to Figure 3, representing the transition
from LS to jj coupling in atoms.

2.3.4 Vibronic Structure and Symmetry

The vibrational structure of polyatomic molecules is dis-
cussed in detail in Albert et al. 2011: Fundamentals of
Rotation–Vibration Spectra, this handbook, and so only
a very brief description of the vibronic structure of poly-
atomic molecules is presented here.

Linear and nonlinear polyatomic molecules have 3N − 5
and 3N − 6 vibrational degrees of freedom, respectively.
The transformation properties of the vibrational modes
can be determined in a normal coordinate analysis, as

explained in Merkt and Quack (2011): Molecular Quan-
tum Mechanics and Molecular Spectra, Molecular Sym-
metry, and Interaction of Matter with Radiation, this
handbook. The vibronic symmetry of a vibrationally excited
molecule can be determined from the direct product:

�ev = �e ⊗ �n1
v1

⊗ �n2
v2

⊗ . . . (139)

where the product extends over all normal vibrations, and
ni is the number of vibrational quanta in the individual
vibrational modes.

Example

H2O has three vibrational modes, two of A1 symmetry (the
symmetric stretching mode (ν1) and the bending mode (ν2))
and one of B2 symmetry (the asymmetric stretching mode
(ν3)). The vibronic symmetry of the (0, 0, 1) vibrational
state of the electronic ground state of H2O is therefore
A1 ⊗ B2 = B2.

Degenerate vibrational modes create a vibrational angular
momentum that can couple with the electronic angular
momentum.

Example

CO2
+ in its ground electronic state (X 2ig) is a lin-

ear molecule with four vibrational modes: the symmetric
stretching mode, the twofold-degenerate bending mode, and
the asymmetric stretching mode. Single excitation of the
bending mode (�v = u) results in a vibrational angu-
lar momentum �l with l = 1 along the C∞ axis. The
interaction of this vibrational angular momentum with the
electronic angular momentum (the Renner–Teller effect,
see also Köppel et al. 2011: Theory of the Jahn–Teller
Effect, this handbook and Section 2.3.6) leads, according
to equation (139) and Table 9, to four vibronic states of
symmetries 2	+

u , 2	−
u , 2∆3/2u, and 2∆5/2u.

2.3.5 Rovibronic Structure and Symmetry

The rotational structure of polyatomic molecules is dis-
cussed in detail in Bauder 2011: Fundamentals of Rota-
tional Spectroscopy, this handbook.

Since the interactions between rotational, spin, and
orbital motions can often be neglected in polyatomic
molecules, their rotational structure can be treated in simple
terms as eigenstates of a purely rotational Hamiltonian (see
Bauder 2011: Fundamentals of Rotational Spectroscopy,
this handbook). If the electron spins play a role, the
rovibronic states split into multiplets that can be classified
in the appropriate spin double group, as explained in
Sections 2.3.2 and 2.3.3.
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2.3.6 Vibronic Coupling: The Renner–Teller and
Jahn–Teller Effects

The Born–Oppenheimer approximation (see Section 1
and also Merkt and Quack 2011: Molecular Quantum
Mechanics and Molecular Spectra, Molecular Symme-
try, and Interaction of Matter with Radiation and Bauder
2011: Fundamentals of Rotational Spectroscopy, this
handbook) allows the separation of nuclear and electronic
degrees of freedom, provided that the separation between
the electronic states is significantly larger than the vibra-
tional intervals. In many polyatomic molecules, partic-
ularly in excited electronic states, this condition is not
fulfilled, which results in a coupling of electronic and
nuclear motions called vibronic coupling. Vibronic coupling
is ubiquitous in electronically excited states, especially in
the vicinity of intersecting potential energy surfaces (con-
ical intersections) where it is essential in understanding
photochemical and photophysical processes. Special cases
characterized by a high molecular symmetry, such as the
“Renner–Teller” and “Jahn–Teller (JT) effects” are par-
ticularly interesting because they enable one to study the
vibronic interactions in detail, thanks to symmetry selection
rules. Comprehensive theories of vibronic coupling have
been formulated (see Köppel et al. 2011: Theory of the
Jahn–Teller Effect, this handbook; Bersuker 2006). Here,
we provide a brief overview of the Renner–Teller and JT
effects and refer to Theory of the Jahn–Teller Effect, this
handbook for details.

The Renner–Teller effect occurs in degenerate elec-
tronic states (,∆,�, . . .) of linear molecules. These
states are characterized by an electronic angular momentum
±Λ� along the internuclear axis as shown in Figure 28.
Vibrationally excited bending levels possess a vibrational

→

→

L L = +1

= −1

E

ubend = 1

Gev =

Σ+

Σ−

∆

Figure 28 Electronic and vibrational angular momenta in the
Renner–Teller effect of a linear triatomic molecule in a 1

electronic state, with its bending mode being excited with a single
quantum. The left-hand side of the figure illustrates the case of
electronic (vibrational) angular momentum projection quantum
number Λ = +1 (� = −1). The right-hand side shows the splitting
of the vbend = 1 level into three sublevels of vibronic symmetries
	− and 	+ (Λ + � = 0), and ∆ (|Λ − �| = 2) arising from the
Renner–Teller effect.

angular momentum �� about the axis as shown in
Figure 28. The two angular momenta couple to form a total
vibronic angular momentum ±�K with K = | ± Λ ± �|.

As an example, we consider C3, with point group D∞h

in the linear configuration, in its Ã 1u first excited singlet
electronic state. If only the bending vibrational mode is
excited with a single quantum (vbend = 1), |Λ| = |�| = 1,
which leads to four vibronic levels with K = 2, 2, 0, 0. The
symmetry of the resulting vibronic levels is easily predicted
from group theory: �ev = u(e) ⊗ u(v) = 	+

g + 	−
g +

∆g. The two 	 states have K = 0 and the ∆ state possesses
two components with K = 2. The energetic ordering of
these vibronic states is as shown in Figure 28.

In general, a vibrational level with vbend quanta of exci-
tation has a vibrational angular momentum quantum num-
ber � = −vbend, −vbend + 2, . . . , +vbend − 2, +vbend. The
vibronic levels of a  state thus have the vibronic quan-
tum numbers K = −vbend − 1,−vbend + 1, . . . ,+vbend −
1, +vbend + 1 with the following vibronic symmetries: K =
0 : 	; |K| = 1 : ; |K| = 2 : ∆; . . ..

The Renner–Teller effect has a strong influence on the
potential energy surfaces. The degeneracy of the two com-
ponents of a  electronic state in the linear configuration is
lifted when the molecule bends, resulting in two potential
energy surfaces V + and V −. For symmetry reasons, the
functional form of the potential energy surface of a  elec-
tronic state in the absence of a Renner–Teller effect can
only contain even powers of the bending coordinate Q:

V 0 = aQ2 + bQ4 + · · · (140)

For the same symmetry reasons, the splitting between the
V + and V − surfaces can also only contain even powers
of Q

V + − V − = αQ2 + βQ4 + · · · (141)

In general, three qualitatively different types of potential
energy functions along the bending coordinate can be
obtained, as illustrated in Figure 29. In the first case (a),
the RT effect is so weak that it preserves the linearity
of the molecule and only affects the curvature of the
potential energy surface along the bending mode. In the
second case (b), the lower-lying surface has a minimum at
a bent geometry, whereas the higher-lying surface retains
its minimum at the linear geometry. Finally, in the last
case (c), both surfaces have their minimum shifted to a
bent geometry. In cases (b) and (c), the molecules are
permanently distorted only if the depth of the potential
well significantly exceeds the zero-point energy of the
bending vibration. If the potential energy minimum occurs
at a nonlinear geometry but the well depth is comparable
to or smaller than the zero-point energy of the bending
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Figure 29 Adiabatic potential energy surfaces resulting from a
Renner–Teller effect in a degenerate electronic state of a linear
molecule induced by the bending mode.

vibration, the molecule essentially behaves like a linear
molecule. This is a special case of the so-called quasilinear
molecules; however, quasilinearity can also be encountered
in the absence of the Renner–Teller effect.

A classical example of the Renner–Teller effect repre-
sented in Figure 29(c) is the Ã 2A1 ← X̃ 2B1 transition of
NH2. The potential energy minima in the X̃ and Ã states
occur at very different bending angles (103.4◦ and 144◦,
respectively), resulting in a long progression of the bend-
ing vibration in the electronic spectrum (Johns et al. 1976).
Examples for cases (a) and (b) are the Ã 1u state of C3

and the X̃ 2A1 and Ã 2u states of BH2, respectively.
The JT effect describes the geometrical distortion of

nonlinear molecules in degenerate electronic states (Jahn
and Teller 1937) of symmetries E, F, G, and H. Historically,
threefold degenerate states were designated with the letter
T instead of the letter F. Both nomenclatures are in use in
the literature. As stated by Jahn and Teller, “any nonlinear
molecular system in a degenerate electronic state will be
unstable and will undergo distortion to form a system of
lower symmetry and lower energy thereby removing the
degeneracy”. The theorem of Jahn and Teller does not
state how large the distortion should be or which of the
distortions allowed by symmetry will be the dominant one.
As in the case of the Renner–Teller effect, the driving
force for the molecular distortion is the stabilization of
the electronic structure that is achieved in the distorted
configuration.

The JT effect profoundly modifies the potential energy
surfaces. They are usually described in Taylor expansions
around a reference geometry Q0, most conveniently chosen
as the geometry of highest symmetry. At this geometry,
the electronic state has its maximal degeneracy (Bersuker
2006, Domcke et al. 2004, Köppel et al. 1984, Barckholtz
and Miller 1998, Wörner and Merkt 2009)

V̂ (Q) =
∞∑

k=1

1

k!

3N−6∑
i=1

(
∂kV̂

∂Qk
i

)
0

Qk
i + V (Q0) (142)

where Qi represents the vibrational coordinates. In many
cases, the expansion can be truncated at k = 1 or 2, corre-
sponding to linear and quadratic JT activity, respectively.

Group theory can be used to predict which modes are JT
“active”. The general selection rule for vibronic coupling
between two electronic states of irreducible representations
�A and �B mediated by a vibrational mode of symmetry
�ν is

�A ⊗ �B ⊇ [�ν]k (143)

where [�ν]k is the symmetric k-th power of the irreducible
representation of the vibrational mode ν. When equation
(143) is fulfilled, the vibrational mode is said to be an active
mode of order k. According to equation (143), vibronic
coupling of order k between the different components of
a degenerate electronic state of irreducible representation
�el, deg., which is the simplest case of the JT effect, is
allowed along mode ν if

[
�el, deg.

]2 ⊇ [�ν]k (144)

Vibronic coupling between a degenerate state (�el, deg.) and
a nondegenerate state (�el, nondeg.), the so-called pseudo-JT
effect, can only occur along mode ν if

�el, deg. ⊗ �el, nondeg. ⊇ [�ν]k (145)

To illustrate the JT and pseudo-JT effects, we now
consider the examples of the cyclopentadienyl radical
(C5H5) and cation (C5H5

+), which are subject to a JT
effect and a pseudo-JT effect in their ground doublet and
lowest singlet states, respectively (see also Section 2.3.1 for
a treatment of the molecular orbital structure of C5H5

+).
In their most symmetric configuration, C5H5 and C5H5

+

have D5h symmetry (see character table in Table 14). Rel-
evant for a discussion of the low-lying electronic states
of C5H5 is the π-system of molecular orbitals already
presented in the section Larger Symmetric Molecules in
Section 2.3.1. C5H5 has the ground electronic configu-
ration ((a′′

2)2(e′′
1)3), which gives rise to a single elec-

tronic ground state of 2E′′
1 symmetry. In the D5h point

group,
[
E′′

1

]2 = A′
1 ⊕ E′

2 (see Table 18), so that the vibra-
tional modes of e′

2 symmetry mediate a linear JT cou-

pling. Since
[
e′

1

]2
and

[
e′′

1

]2
both contain e′

2, vibrational
modes of symmetry e′

1 and e′′
1 are quadratically JT active

(see equation 144). In D5h(M), linear and quadratic JT
activities are therefore mutually exclusive, which leads to
cylindrically symmetric potential energy surfaces in the
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Table 18 Irreducible representations � of D5h and their sym-
metrized squares [�]2.

� a′
1 a′

2 e′
1 e′

2 a′′
1 a′′

2 e′′
1 e′′

2
[�]2 a′

1 a′
1 a′

1 + e′
2 a′

1 + e′
1 a′

1 a′
1 a′

1 + e′
2 a′

1 + e′
1

y

x

E

VE(0)

VE(0) – Estab

r

q

Figure 30 Adiabatic potential energy surfaces resulting from a
linear Jahn–Teller effect in a doubly degenerate electronic state
induced by a single doubly degenerate vibrational mode with
coordinates x and y.

respective two-dimensional subspaces of degenerate vibra-
tional coordinates. The ground-state potential energy sur-
face of C5H5 is schematically represented in Figure 30.

A vibrational mode of symmetry E can be represented
using two Cartesian coordinates (x, y) or two cylindrical
coordinates (ρ, θ ) related by

x = ρ cos(θ) and y = ρ sin(θ) (146)

In the case of a single linearly JT-active mode of symmetry
E, the potential energy surface of a doubly degenerate
electronic state takes the following form:

VE±(ρ, θ) = VE±(ρ) = VE(0) + ωJT

2
ρ2 ± gρ (147)

where VE(0) is the electronic potential energy at the
reference geometry, ωJT is the frequency of the vibrational
mode, and g is the JT coupling constant. The corresponding
shape of the potential energy surfaces is illustrated in
Figure 30. The linear JT effect thus decreases the potential
energy of the lower component of the E electronic state by
the stabilization energy:

Estab = g2

2ωJT
(148)

The pseudo-JT effect occurs when a vibrational mode
couples a degenerate and a nondegenerate electronic state,

according to equation (145), and is discussed here using
the cyclopentadienyl cation as an example. The three low-
est electronic states of the cyclopentadienyl cation result
from the configuration ((a′′

2)2(e′′
1)2) and have the electronic

symmetries 3A′
2, 1E′

2, and 1A′
1 (in order of increasing

energy; see Section 2.3.1). These electronic states have
been investigated by photoelectron spectroscopy (Wörner
et al. 2006, Wörner and Merkt 2007, 2009). The triplet
ground state is not involved in vibronic coupling and there-
fore has a D5h equilibrium geometry. The doubly degener-
ate 1E′

2 state undergoes both JT and pseudo-JT effects. From
equation (144) and Table 18, one can conclude that the e′

1
vibrational modes are linearly JT active, and that the e′

2
and e′′

2 vibrational modes are quadratically active in the 1E′
2

state. However, the JT effect in an electronic state having
two electrons in two degenerate orbitals (configuration e2)
vanishes in the absence of configuration interaction (Wat-
son 1999a) and will therefore be neglected. The pseudo-JT
coupling between the 1E′

2 and 1A′
1 states (e′

2 ⊗ a′
1 = e′

2) is
mediated by vibrational modes of e′

2 symmetry in first order
and modes of e′

1 or e′′
1 symmetry in second order. The poten-

tial energy surfaces of the second and third lowest electronic
states of C5H5

+ are represented schematically in Figure 31.
For a single doubly degenerate PJT-active mode with Carte-
sian coordinates (x, y) or cylindrical coordinates (r, φ), two
of the surfaces repel each other whereas the third remains
unchanged. Assuming identical vibrational frequencies in

V

y

rx

j

Figure 31 Adiabatic potential energy surfaces resulting from a
linear Pseudo-JT effect between a lower-lying doubly degenerate
electronic state (E) and a higher-lying nondegenerate state (A)
induced by a single doubly degenerate vibrational mode.
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the A and E states, the following potential surfaces are
obtained:

VA(r, φ) = VA(r) = VE(0) + VA(0)

2
+ ωPJT

2
r2

+
√[

VA(0) − VE(0)

2

]2

+ 2λ2r2

VEy (r, φ) = VEy (r) = VE(0) + ωPJT

2
r2

VEx (r, φ) = VEx (r) = VE(0) + VA(0)

2
+ ωPJT

2
r2

−
√[

VA(0) − VE(0)

2

]2

+ 2λ2r2

(149)
where VE(0) and VA(0) are the electronic potential energies
at the reference geometry, ωPJT is the frequency of the
vibrational mode, and λ is the pseudo-JT coupling constant.
The corresponding shape of the potential energy surfaces is
illustrated in Figure 31.

The spectroscopic characterization of the JT and pseudo-
JT effects in C5H5 and C5H5

+ is discussed in Section 3.4.3.

3 ELECTRONIC SPECTRA

3.1 Transition Moments and Selection Rules

The intensity I (νfi) of a transition between an initial state
of an atom or a molecule with wave function Ψ i and energy
Ei and a final state with wave function Ψ f and energy
Ef is proportional to the square of the matrix element V̂fi,
where the matrix V̂ represents the operator describing the
interaction between the radiation field and the atom or the
molecule:

I (ν) ∝ |〈Ψ f|V̂ |Ψ i〉|2 = 〈f|V̂ |i〉2 = V̂ 2
if (150)

The transition is observed at the frequency νfi = |Ef −
Ei|/h.

A selection rule enables one to predict whether a
transition can be observed or not on the basis of symmetry
arguments. If 〈Ψ f|V̂ |Ψ i〉 = 0, the transition f ← i is said
to be “forbidden” , i.e., not observable; if 〈Ψ f|V̂ |Ψ i〉 �= 0,
the transition f ← i is said to be “allowed”.

The interaction between molecules and electromagnetic
radiation of a wavelength much larger than the molec-
ular size is dominated by the interaction between the
electric-dipole moment and the electric field of the radiation

V̂ = −M̂ · E (151)

and, in the following, we restrict the discussion to this
interaction.

For the case of linearly polarized radiation with electric-
field vector, E = (0, 0, E) and, therefore, V̂ = −M̂ZE.
When studying the spectra of atoms, the laboratory-fixed
(or space-fixed) reference frame is the only relevant frame,
because it can always be chosen to coincide with an
internal, “atom-fixed” reference frame. Indeed, the pointlike
nature of the nucleus implies that there are no rotations of
the nuclear framework. For this reason, atomic spectra are
simpler to treat than molecular spectra.

In molecules, the components µ̂ξ of the electric-dipole
moment have a simple expression, and can be computed
or interpreted easily in the molecule-fixed reference frame
(x, y, z) in which they are given by (Fig. 41 of Merkt and
Quack 2011: Molecular Quantum Mechanics and Molec-
ular Spectra, Molecular Symmetry, and Interaction of
Matter with Radiation, this handbook)

µ̂ξ =
∑

j

qj ξ j with ξ = x, y, or z (152)

where qj and ξj are the charge and the ξ coordinate of the
j -th particle, respectively, and the sum extends over all par-
ticles (electrons and nuclei) in the molecule. The important
quantities for the interaction defined in equation (151) are
the space-fixed components M̂X, M̂Y and M̂Z of M̂. To
evaluate equation (150) using equations (151) and (152),
one must express the space-fixed components of M̂ as a
function of the molecule-fixed components µ̂ξ using three
angles, the Euler angles (θ, φ and χ). The Z component,
for instance, is given by

M̂Z = λxZµ̂x + λyZµ̂y + λzZµ̂z =
∑
α

λαZµ̂α (153)

(see Eq. (318) of Merkt and Quack 2011: Molecular
Quantum Mechanics and Molecular Spectra, Molecular
Symmetry, and Interaction of Matter with Radiation,
this handbook and their Figure 42) where the values of the
direction cosines λiJ are given, e.g. in Zare (1988).

The selection rules can be derived from the integral

〈Ψ f|M̂z|Ψ i〉 (154)

We begin the discussion of electronic transitions and selec-
tion rules by considering wave functions of the form
given by equation (1). The product form of such func-
tions is based on the assumption that the electronic, spin,
vibrational, and rotational motions are separable, which
represents an approximation. The interactions between
the various types of motion, e.g., spin–orbit interaction
(Section 2.1.4) or the interaction between rotational and
electronic motions (Section 2.2.7), or interactions between
vibrational and electronic motion (Section 2.3.6) are often
significant, in which case the selection rules derived on the
basis of equation (1) may be violated.
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In the following we proceed along the same lines as in
the more general discussion of selection rules in Merkt
and Quack 2011: Molecular Quantum Mechanics and
Molecular Spectra, Molecular Symmetry, and Inter-
action of Matter with Radiation, this handbook. Using
equations (1) and (153), equation (154) can be written as〈

�′
elec�

′
espin�

′
vib�

′
rot�

′
nspin

∣∣∣∣∣∑
α

λαZµ̂α

∣∣∣∣∣
�′′

elec�
′′
espin�

′′
vib�

′′
rot�

′′
nspin

〉
(155)

The electric-dipole-moment operator (equation 152) is
independent of the spin variables. The integration over elec-
tron and nuclear-spin coordinates in equation (155) may
thus be performed separately from the integration over spa-
tial (rovibronic) coordinates〈

�′
espin|�′′

espin

〉 〈
�′

nspin|�′′
nspin

〉
〈
�′

elec�
′
vib�

′
rot

∣∣∣∣∣∑
α

λαZµ̂α

∣∣∣∣∣�′′
elec�

′′
vib�

′′
rot

〉
(156)

The wave functions corresponding to different electron-
spin and nuclear-spin states are orthogonal, so that the first
two integrals in equation (156) are zero, unless |�′

espin〉 =
|�′′

espin〉 and |�′
nspin〉 = |�′′

nspin〉. The resulting selection
rules imply the conservation of the total electron spin

∆S = 0 (157)

and the total nuclear spin

∆I = 0 (158)

and also the conservation of nuclear-spin symmetry.
In the absence of interactions between the vibronic and

rotational degrees of freedom, the vibronic wave functions
�elec�vib are independent of the Euler angles and so are
the molecule-fixed components µ̂α of the electric-dipole-
moment operator. Morover, the direction cosine matrix
elements λαZ and the rotational functions �rot do not
depend on the vibronic coordinates. Consequently, the
integration over the vibronic coordinates and the Euler
angles in the last factor of equation (156) can be performed
separately to a good approximation:〈

�′
elec�

′
vib�

′
rot

∣∣∣∣∣∑
α

λαZµ̂α

∣∣∣∣∣�′′
elec�

′′
vib�

′′
rot

〉

=
∑

α

〈
�′

rot |λαZ|�′′
rot

〉 〈
�′

elec�
′
vib

∣∣µ̂α

∣∣�′′
elec�

′′
vib

〉
(159)

The first, angle-dependent factor on the right-hand side
of equation (159) implies the conservation of angular

momentum. The electric-dipole-moment operator M̂ is a
vector and can therefore be represented as a spherical tensor
of rank J = 1 (Zare 1988, Bauder 2011: Fundamentals of
Rotational Spectroscopy, this handbook). Consequently,
the transition moment 〈Ψ ′|M̂ |Ψ ′′〉 vanishes unless

∆J = J ′ − J ′′ = 0, ±1 (0 ↔ 0 forbidden) (160)

Considering the polarization of the radiation leads to the
following selection rules for the magnetic quantum number:

∆MJ = M ′
J − M ′′

J = 0

(linear polarization parallel to Z axis) (161)

∆MJ = M ′
J − M ′′

J = ±1

(linear polarization perpendicular to Z axis) (162)

∆MJ = M ′
J − M ′′

J = 1

(circular polarization with positive helicity) (163)

∆MJ = M ′
J − M ′′

J = −1

(circular polarization with negative helicity) (164)

The electric-dipole-moment operator is also antisymmetric
with respect to the parity operation, which reverses the sign
of all coordinates in the laboratory-fixed frame. Given that
the parity is a conserved quantity as long as parity violation
by the weak force is neglected (see Quack 2011: Fun-
damental Symmetries and Symmetry Violations from
High-resolution Spectroscopy, this handbook), transitions
can only occur between rovibronic states of opposite par-
ity, i.e.,

+ ↔ − (+ ↔ + and − ↔ − are forbidden) (165)

It is important to note that the ± signs in equation (165)
refer to the total (rovibronic) parity of the energy levels
(equation 109) and must be distinguished from the ± signs
in the electronic term symbol. The parity selection rule is
discussed in more detail in Section 3.3.4 in the treatment
of the rotational structure of electronic transitions.

Equations (160)–(165) are general to all electric-dipole
transitions in all systems, not only atoms. When the transi-
tions connect hyperfine levels, J ′′ (and J ′) must be replaced
by F ′′ (and F ′), respectively. Equations (157) and (158)
are also general to all electric-dipole transitions but hold
less strictly because they result from the approximation of
separable wave functions.

These considerations make it obvious that two-photon
transitions (e.g., Raman transitions) or magnetic-dipole
transitions do not obey the same set of selection rules. The
treatment of such transitions can be made in an analogous
manner, but by using the appropriate form of the interaction
operators.
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Further selection rules, specific of the symmetry proper-
ties of the atomic or molecular systems under investigation,
result from the second, angle-independent term on the right-
hand side of equation (159). These selection rules can be
derived from group-theoretical arguments on the basis of
the following considerations:

1. electronic �elec and vibrational �vib wave functions
transform as irreducible representations of the appro-
priate point group;

2. the molecule-fixed components µ̂ξ of the electric-
dipole-moment operator transform as the translations
Tx, Ty , and Tz;

3. a product of two or more functions transforms as the
product of the corresponding representations; and

4. the integral over a product of functions differs from
zero only if the product of the corresponding represen-
tations contains the totally symmetric representation,
usually A1 (or 	+ in diatomic molecules and S in
atoms; we use A1 in this section to designate this
representation).

An allowed transition between the states i and f with the
irreducible representations �i and �f must, therefore, fulfill
the condition in the electric-dipole approximation:

�i ⊗ �(Tα) ⊗ �f ⊇ A1 with α = x, y, z (166)

Considering the last, vibronic, factor in equation (159),

〈�′
elec�

′
vib|µ̂α|�′′

elec�
′′
vib〉 = 〈�′

ev|µ̂α|�′′
ev〉 (167)

one concludes that a transition is vibronically allowed if

�′′
ev ⊗ �(Tα) ⊗ �′

ev ⊇ A1 (168)

where �′′
ev and �′

ev represent the vibronic symmetries of the
initial and final state, respectively.

Example

In the C2v point group, Tx, Ty , and Tz transform as
B1, B2 and A1, respectively (Table 12). Vibronic wave
functions of symmetry �′

ev = B1, B2, or A1 can thus be
excited from an initial vibronic state of symmetry �′′

ev = A1

(e.g., the ground state of H2O), and the corresponding
transition moment lies along the x, y, and z axes of the
molecule-fixed reference frame, respectively. Transitions
to levels of vibronic symmetry �′

ev = A2 are vibronically
forbidden.

Within the Born–Oppenheimer approximation, the elec-
tronic motion can be separated from the vibrational motion

of the nuclear framework, and the integration over the elec-
tronic coordinates in equation (167) can be performed for
any given value of the nuclear coordinates Q

〈�′
vib[〈�′

elec|µ̂α|�′′
elec〉e]�′′

vib〉 = 〈�′
vib|µe

α(Q)|�′′
vib〉 (169)

In equation (169),

µe
α(Q) = 〈�′

elec|µ̂α|�′′
elec〉e (170)

depends on the nuclear coordinates Q and thus on the 3N −
6 (or 3N − 5 for linear molecules) symmetrized normal
coordinates Qi . When this dependence is weak, µe

α(Q) can
be expanded in a Taylor series around a reference geometry,
e.g., the equilibrium geometry Qeq of the initial electronic
state of the transition,

µe
α(Q) = µe

α(Qeq) +
∑

j

∂µe
α

∂Qj

|eqQj + . . . (171)

where the summation extends over all normal coordinates
Qj . Retaining only the constant and linear terms of the
Taylor series of µe

α(Q), equation (169) can be expressed as
a sum of two terms:

µe
α|eq〈�′

vib|�′′
vib〉 +

∑
j

∂µe
α

∂Qj

|eq〈�′
vib|Qj |�′′

vib〉 (172)

Equation (172) forms the basis of the classification of
electronic transitions as electronically allowed transitions,
on the one hand, and as electronically forbidden, but
vibronically allowed transitions, on the other hand. These
two types of electronic transitions are now described in
more detail.

Electronically Allowed Transitions In the case of an
electronically allowed transition, the contribution arising
from the first term of equation (172) is nonzero, which
implies that

�′
elec ⊗ �(Tα) ⊗ �′′

elec ⊇ A1 with α = x, y, z (173)

Neglecting the second term in equation (172) leads to
the following two conclusions. First, the intensity of an
electronically allowed transition is proportional to the
square of the electronic transition moment evaluated at
the equilibrium geometry of the initial state, i.e., to
|〈�′

elec|µ̂α(Qeq)|�′′
elec〉|2. Second, the intensity of a transi-

tion from the vibrational level �′′
vib of the initial state to the

vibrational level �′
vib of the final state is proportional to the

square of the overlap of the vibrational wave functions, i.e.,
to

|〈�′
vib|�′′

vib〉|2 (174)
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a quantity known as a Franck–Condon factor. Group-
theoretical arguments further lead to the conclusion that
the Franck–Condon factors are nonzero only if

�′
vib ⊗ �′′

vib ⊇ A1 (or 	+) (175)

For example, transitions from the ground vibrational level
of a molecule, which must have �′′

vib = A1, are observable
only to totally symmetric vibrational levels of the final elec-
tronic state, i.e., to vibrational levels with �′

vib = A1. This
condition is fulfilled by all vibrational levels having only
even numbers of vibrational quanta in nontotally symmetric
vibrational modes. More generally, equation (175) can be
expressed as

∆vi = v′
i − v′′

i = 0, ±2,±4, . . . (176)

for all nontotally symmetric vibrational modes i, and as

∆vj = v′
j − v′′

j = 0, ±1, ±2, . . . (177)

for all totally symmetric vibrational modes j . When the
Born–Oppenheimer potential energy hypersurface of the
two electronic states connected by an electronic transition
are identical, the observed transitions are characterized by
∆vi = 0 for all modes i, because of the orthogonality of the
vibrational wave functions (see Figure 42 in section 3.3.4).
The observation of long vibrational progressions in elec-
tronic spectra indicates that the initial and final electronic
states have different equilibrium geometries and the length
of a progression in a given mode can be correlated to the
change of geometry along this mode.

Electronically Forbidden but Vibronically Allowed Transi-
tions The second term of equation (172) becomes the
dominant term when the transition is electronically forbid-
den. This term is nonzero if

�′
vib ⊗ �Qi

⊗ �′′
vib ⊇ A1 (or 	+) (178)

in which case one speaks of electronically forbidden but
vibronically allowed transitions. Such transitions gain inten-
sity by the vibronic coupling of the final electronic state to
another electronic state, which is connected to the initial
electronic state by an electronically allowed transition. The
vibronic coupling is mediated by the nontotally symmetric
normal mode with coordinate Qi . Consequently, observable
vibronic transitions are characterized by

∆vi = v′
i − v′′

i = 1, ±3,±5, . . . (179)

and would be forbidden in an electronically allowed tran-
sition. The vibronic coupling leading to the observa-
tion of electronically forbidden transitions is known as

Herzberg–Teller coupling, or Herzberg–Teller intensity
borrowing mechanism, and results from a breakdown of
the Born–Oppenheimer approximation. The observation of
vibrational progressions following the selection rule (179)
provides important information on vibronic coupling in that
it enables one to identify the modes responsible for the
coupling.

Example

A1 ↔ A1, B2 ↔ A1, and B1 ↔ A1 transitions of C2v

molecules are electronically allowed, but A2 ↔ A1 tran-
sitions are electronically forbidden in the electric-dipole
approximation. Such transitions may become observable by
vibronic coupling to electronic states of A1, B2, and B1

electronic symmetry induced by vibrational modes of A2,
B1, and B2 symmetry, respectively.

Specific selection rules, which depend on the point-group
symmetry of the molecular system under consideration,
can be derived from the general results presented above.
Such selection rules are now discussed in more detail, and
separately, for atoms, diatomic (and linear) molecules and
polyatomic molecules in the next sections.

When discussing selection rules of the kind presented
above, it is important to always keep in mind that all
equations derived in this section are the result of approxi-
mations, approximations in the treatment of the interaction
between the atomic or molecular systems with the radi-
ation field, approximations concerning the separability of
the different types of motion, and approximations resulting
from the truncation of expansions. These approximations
are helpful in the interpretation of electronic spectra, but,
often, a fully satisfactory treatment of intensity distributions
makes it necessary to go beyond them, for instance, (i) by
considering the interaction between the rotational, vibra-
tional and electronic motions and the spin–orbit interaction,
(ii) by accounting for the fact that the normal modes of
the initial electronic state do not always coincide with the
normal modes of the final electronic state, or even, in some
cases, (iii) by recognizing that the initial and final electronic
states belong to different point groups.

Point groups are convenient and adequate to discuss
vibronic selection rules in many molecular systems. Rovi-
bronic selection rules and selection rules in electronic
transitions connecting electronic states subject to large-
amplitude motions or belonging to different point-group
symmetry are more conveniently treated in symmetry
groups representing the true symmetry properties of the
Hamiltonian describing the molecular system, such as
the complete-nuclear-inversion-permutation groups or the
molecular symmetry groups (Bunker and Jensen 1998). Fur-
ther information on such groups and their applications in
high-resolution spectroscopy are discussed in the articles by
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Schnell 2011: Group Theory for High-resolution Spec-
troscopy of Nonrigid Molecules, Oka 2011: Orders of
Magnitude and Symmetry in Molecular Spectroscopy
and Quack 2011: Fundamental Symmetries and Symme-
try Violations from High-resolution Spectroscopy, in this
handbook.

3.2 Electronic Spectra of Atoms

An immense body of data exists on the electronic spectra of
atoms. Extensive tables of atomic energy levels and tran-
sition frequencies have been published (see, for instance,
Moore 1949, 1952, 1958). Data exist on almost all atoms,
in almost all charge states. Rather than trying to recom-
pile these data, this article introduces elementary aspects
of the electronic spectra of atoms that are necessary to
make good use of the published material. After a brief
summary of electric-dipole selection rules in Section 3.2.1,
the elementary aspects of electronic atomic spectroscopy
are illustrated in Section 3.2.2 with the examples of hydro-
gen and hydrogenlike atoms, alkali-metal atoms, and rare-
gas atoms. The first example was chosen because of the
immense importance of the spectrum of the H atom in the
development of quantum mechanics and electronic spec-
troscopy. It also gives an idea of the extreme precision of
spectroscopic measurements and how high-resolution elec-
tronic spectroscopy can be used to reveal the finest details
of the energy level structure of atoms. The second example
presents the electronic spectra of the alkali-metal atoms,
which were at the origin of the s, p, d, f,. . . nomencla-
ture used to label atomic states. Alkali-metal atoms play
a dominant role in current research in atomic physics. For
instance, the knowledge of the fine and hyperfine struc-
tures of selected transitions is required to understand laser
cooling. With the electronic spectra of the rare-gas atoms,
we discuss atomic systems with more than one unpaired
electron, which have electronic states of different spin
multiplicity.

3.2.1 Selection Rules

Selection rules complementing the general ones already
presented in equations (160)–(165) can be derived using
the point group Kh (Table 1) if the electron spin and
orbital motions can be separated, in which case ∆S = 0
(equation 157). As mentioned in the previous section, the
laboratory-fixed reference frame is the only relevant frame
when determining selection rules for atoms. The X, Y ,
and Z components of the electric-dipole-moment operator
M̂ transform as the Pu irreducible representation of Kh,
so that the single-photon selection rules corresponding to

the transition moment 〈Ψ ′|M̂i |Ψ ′′〉 with i = X, Y, Z can be
expressed as

�′ ⊗ �′′ ⊇ Pu (180)

Using the direct-product table (Table 2), this equation leads
to the selection rule known as Laporte rule:

∆L = L′ − L′′ = 0, ±1 (0 ↔ 0 forbidden) (181)

and to

g ↔ u (g ↔ g and u ↔ u forbidden) (182)

Whenever electron-correlation effects are negligible and the
electronic wave function can be represented as a single
determinant (equation 15), absorption of a single photon
leads to a final electronic state differing from the initial
one by a single spin orbital, say φ�, so that the selection
rules (181) and (182) reduce to 〈φ�′ |M̂|φ�′′ 〉

∆� = �′ − �′′ = ±1 (183)

The same argumentation can easily be extended to the
derivation of magnetic-dipole or electric-quadrupole selec-
tion rules as well as selection rules for multiphoton pro-
cesses.

3.2.2 Selected Examples

Hydrogen and Other One-electron Atoms The spectra of
hydrogen and hydrogenlike atoms have been of immense
importance for the development of quantum mechanics
and for detecting and recognizing the significance of fine,
hyperfine, and quantum-electrodynamics effects. They are
also the source of precious information on fundamental
constants such as Rydberg’s constant and the fine-structure
constant. The desire to observe the spectrum of the H
atom at ever higher spectral resolution and to determine
the transition frequencies at ever higher accuracy has
been one of the major driving forces in methodological
and instrumental developments in high-resolution electronic
spectroscopy.

If fine, hyperfine, and quantum-electrodynamics effects
are neglected, the energy level structure of the hydrogen
atom is given by equation (5) and is characterized by a
high degree of degeneracy. The allowed electronic tran-
sitions can be predicted using equation (183) and their
wavenumbers determined using equation (184)

ν̃ = RM/n′′2 − RM/n′2 (184)

which, for n′′ = 2, reduces to Balmer’s formula. The
transitions obeying the selection rule (183) are depicted
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schematically in Figure 32(a), in which, for simplicity,
only transitions from and to the n = 1 and n = 2 lev-
els are indicated by double-headed arrows. Because of
their importance, many transitions have been given indi-
vidual names. Lines involving n = 1, 2, 3, 4, 5, and
6 as lower levels are called Lyman, Balmer, Paschen,
Brackett, Pfund, and Humphrey lines, respectively. Above
n = 6, one uses the n value of the lower level to label
the transitions. Lines with ∆n = n′ − n′′ = 1, 2, 3, 4, 5, . . .

are labeled α, β, γ , δ, φ, . . ., respectively. Balmer β,
for instance, designates the transition from n = 2 to
n = 4. The spectral positions of the allowed transitions
are indicated in the schematic spectrum presented in
Figure 32(b).

The degeneracies implied by equation (5) make the spec-
trum of the hydrogen atom and single-electron atoms sim-
pler than the spectrum of other atoms at low resolution, but
more complex at high resolution. Precision measurements
have revealed the fine and hyperfine structure of many
lines of hydrogen and hydrogenlike atoms and even energy
shifts resulting from the interaction of the atoms with the
zero-point radiation field, the so-called Lamb shifts (Lamb
and Retherford 1947). Today, the energy level structure of
the hydrogen atom is known with exquisite precision (see
Figure 33, in which the level positions calculated with-
out hyperfine structure from Mohr (2008) are given and
the fine and hyperfine structures are taken from Brod-
sky and Parsons (1967), Essen et al. (1971), Fischer et al.

(a)

(b)
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n = 1

n = 2

n = 3
n = 4

p d f g
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∞ (Lyman)∞ (Balmer)∞ (Paschen)∞ (Brackett)Pa

400044004800520056006000
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200024002800320036004000
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Figure 32 (a) Energy level diagram of the H atom neglecting fine, hyperfine, and quantum-electrodynamics effects. Possible single-
photon transitions to and from the n = 1 and 2 levels are indicated by double-headed arrows. (b) Schematic spectrum of H showing
that the electronic spectrum extends from the microwave to the vacuum-ultraviolet ranges of the electromagnetic spectrum.



Fundamentals of Electronic Spectroscopy 229

2S1/2

2S1/2

2P1/2

F = 1

F = 1

F = 1

F = 1

F = 0

F = 0

F = 0

F = 22P3/2 23′651.6(6) kHz

177′ 556.8343(67) kHz

59′169.6(6) kHz

1′ 420′ 405.7517667(16) kHz

9′ 911′ 197.6(24) kHz

1′ 057′ 844.0(24) kHz

2′ 466′ 061′ 413′ 187.080(25) kHz

n = 2

n = 1

(a)

(b)

Figure 33 Fine and hyperfine structure of the (a) n = 1 and (b) n = 2 levels of the hydrogen atom. Numerical values were taken
from Mohr (2008) for the positions without hyperfine structure and from Brodsky and Parsons (1967), Essen et al. (1971), Fischer et al.
(2004), Lundeen and Pipkin (1986), Kolachevsky et al. (2009), Mohr et al. (2008) for other intervals.

(2004), Lundeen and Pipkin (1986), Kolachevsky et al.
(2009), Mohr et al. (2008). The splitting of ≈0.0475 cm−1

of the 1s 2S1/2 ground-state results from the hyperfine
interaction. This splitting scales with n−3 and rapidly
decreases with increasing n value, and also with increas-
ing � value. The spin–orbit splittings, which are zero
for s levels, are largest for p levels and also scale as
n−3. The two components of the 2P level with J = 1/2
and 3/2 are separated by ≈0.365 cm−1. Dirac’s relativis-
tic treatment predicts two components for n = 2, a lower,
doubly degenerate spin–orbit level with J = 1/2 and an
upper, nondegenerate level with J = 3/2. The interaction
with the zero-point radiation field removes the degener-
acy of the lower component and induces a splitting of
≈0.0354 cm−1.

High-resolution spectroscopy of hydrogenlike atoms,
such as H, He+, Li2+, Be3+, . . . and their isotopes contin-
ues to stimulate methodological and instrumental progress
in electronic spectroscopy. Measurements on “artificial”
hydrogenlike atoms such as positronium (consisting of an
electron and a positron), protonium (consisting of a proton
and an antiproton), antihydrogen (consisting of an antipro-
ton and a positron), muonium (consisting of a positive muon

µ+ and an electron), antimuonium (consisting of a negative
muon µ− and a positron), etc., have the potential of pro-
viding new insights into fundamental physical laws and
symmetries and their violations, such as those discussed
in Quack 2011: Fundamental Symmetries and Symme-
try Violations from High-resolution Spectroscopy, this
handbook.

Alkali-metal Atoms A schematic energy level diagram
showing the single-photon transitions that can be observed
in the spectra of the alkali-metal atoms is presented in
Figure 34. The ground-state configuration corresponds to
a closed-shell rare-gas-atom configuration with a single
valence n0s electron with n0 = 2, 3, 4, 5, and 6 for Li,
Na, K, Rb, and Cs, respectively. The energetic positions
of these levels can be determined accurately from Ryd-
berg’s formula (equation 58). The Laporte selection rule
(equation 181) restricts the observable single-photon transi-
tions to those drawn as double-headed arrows in Figure 34.
Neglecting the fine and hyperfine structures, their wave
numbers can be determined using equation (185):

ν̃ = RM/(n′′ − δ�′′)2 − RM/(n′ − δ�′)2 (185)
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Figure 34 Schematic diagram showing the transitions that can
be observed in the single-photon spectrum of the alkali-metal
atoms.

The deviation from hydrogenic behavior is accounted for
by the �-dependent quantum defects. Transitions from (or
to) the lowest energy levels can be grouped in Rydberg
series, which have been called principal, sharp, diffuse, and
fundamental. Comparing Figure 34 with Figure 32, one can
see that the principal series of the alkali-metal atoms (called
principal because it is observed in absorption and emission)
corresponds to the Lyman lines of H, the diffuse and sharp
series to the Balmer lines, and the fundamental series to the
Paschen lines.

The quantum defects are only very weakly dependent
on the energy. Neglecting this dependence, the quantum

defects of the sodium atom are δs ≈1.35, δp ≈0.86, δd ≈
0.014, and δf ≈0, so that the lowest frequency line of
the principal series (called the sodium D line because
it is a doublet, see below) lies in the yellow range of
the electromagnetic spectrum, and not in the VUV as
does Lyman α. The fact that the n0p ← n0s lines of
the alkali-metal atoms lie in the visible range of the
electromagnetic spectrum makes them readily accessible
with commercial laser sources, and therefore extensively
studied and exploited in atomic-physics experiments.

Most transitions of the alkali-metal atoms reveal fine and
hyperfine structures. As in the case of H, the hyperfine-
structure splittings are largest in the ground state (3s 2S1/2

in the case of Na) and the fine-structure splittings are largest
in the lowest lying p level (3p 2PJ with J = 1/2, 3/2 in
the case of Na). The details of the structure of these two
levels of Na are presented in Figure 35. At low resolution,
the 3p←3s line appears as a doublet with two components
at 16 960.9 and 16 978.1 cm−1, separated by an interval of
17.2 cm−1 corresponding to the spin–orbit splitting of the
3p state. The second largest splitting (≈0.06 cm−1) in the
spectrum arises from the hyperfine splitting of 1772 MHz of
the 3s state. Finally, splittings of less than 200 MHz result
from the hyperfine structure of the 3p levels.

The level structures depicted in Figure 35 are character-
istic of the n0p← n0s transitions of all alkali-metal atoms,
which are nowadays widely used in the production of cold
and ultracold atoms by laser cooling. Laser-cooling exper-
iments exploit closed transitions and achieve a reduction
of velocity of the sample in the direction opposite to the

36 MHz
16 MHz

60 MHz

188 MHz

1772 MHz

17.19 cm−1 = 515.4 GHz
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F = 2

3p 2P3/2

3p 2P1/2

3s 2S1/2

Figure 35 Schematic diagram showing the fine and hyperfine structures of the 3s and 3p levels involved in the lowest frequency line
of the principal series of 23Na.
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laser propagation direction as a result of a large number of
subsequent absorption–emission cycles. If a narrow-band
laser is tuned to the low-frequency side of a spectral line,
only atoms with a positive Doppler shift, i.e., atoms mov-
ing toward the laser light source can absorb radiation. By
doing so, they also acquire a momentum �k (k = 2π/λ) in
the direction opposite to their motion, which reduces their
velocity. Spontaneous re-emission of the absorbed photons
occurs with an isotropic probability distribution so that,
on average, the momentum of the atoms is reduced by �k

per absorption–emission cycle. Several thousand cycles are
required to stop a sodium atom initially leaving an oven in
an effusive beam.

The efficiency of the cooling process is reduced if the
optical cycle is not closed, i.e., if spontaneous emission
can populate other hyperfine levels of the ground state.
Inspection of Figure 35 leads to the conclusion that only
two of the 10 possible hyperfine components of the 3p
2PJ ← 3s 2S1/2 transition correspond to closed transitions,
the F ′ = 3 ← F ′′ = 2 and the F ′ = 0 ← F ′′ = 1 compo-
nents. Near-resonant excitation of the F ′ = 1 and 2 hyper-
fine components, however, occasionally leads to emission
to the F ′′ = 1 and F ′′ = 2 levels, which lie too far from
the F ′ = 3 ← F ′′ = 2 and the F ′ = 0 ← F ′′ = 1 transi-
tions, respectively, for further efficient absorption, so that
the optical cycling is terminated. This problem is usually
overcome by repumping the F ′′ = 1 or the F ′′ = 2 level
with other lasers. The efficiency of the laser-cooling pro-
cess can also be increased by using circularly polarized
radiation, exploiting the selection rules (163) and (164).

These considerations illustrate the importance of high-
resolution spectroscopic measurements of electronic transi-
tions in atoms and the understanding of their structures,
without which important applications would never have
been developed. Indeed, to fully exploit the potential of
laser cooling, a very detailed knowledge of the fine and
hyperfine structures of electronic transitions is mandatory.
If one desires to load the cold atoms in traps, it is also nec-
essary to study the effects of electric and magnetic fields
on the hyperfine-structure levels. For further details on laser
cooling, the reader is referred to the article by Metcalf and
van der Straten (2003).

Rare-gas Atoms The 1S0 ground state of the rare-gas
atoms (Rg = Ne, Ar, Kr, and Xe) results from the full-
shell configurations [. . .](n0p)6 with n0 = 2, 3, 4, and 5 for
Ne, Ar, Kr, and Xe, respectively. Single-photon absorption
by electrons in the (n0p)6 orbitals leads to the excitation
of J = 1 states of the configurations [. . .](n0p)5(ns)1 and
[. . .](n0p)5(nd)1.

Compared to H and the alkali-metal atoms discussed
in the previous examples, the lowest excited electronic
configurations contain two, instead of only one, unpaired

(n + 2)s[3/2]1 (n + 2)s'[1/2]1nd[1/2]1 nd[3/2]1 nd'[3/2]1

2P1/2

2P3/2

Figure 36 Schematic diagram showing Rydberg series converg-
ing to the two spin–orbit components 2PJ (J = 1/2, 3/2) of the
rare-gas atomic ions Rg+. The series are designated in Racah
notation as n�(′)[k]J , the ′-sign designating series converging on
the upper (2P1/2) ionization threshold. Interaction between series
is represented by horizontal arrows.

electrons, which leads to both S = 0 and S = 1 states.
Moreover, these states form Rydberg series that converge
on two closely spaced ionization limits corresponding
to the two spin–orbit components (J+ = 1/2, 3/2) of
the 2PJ+ ground state of Rg+, rather than on a single
ionization limit, as is the case for H and the alkali-metal
atoms. This situation, which is encountered in most atoms,
results in spectrally more dense spectra with pronounced
perturbations. Figure 36 depicts schematically the J = 1
Rydberg series of the rare-gas atoms located below the 2PJ+
(J+ = 1/2, 3/2) ionization thresholds that are optically
accessible from the 1S0 ground state.

Two angular momentum coupling schemes are used to
label these Rydberg states. The first one corresponds to
the familiar LS-coupling scheme discussed in Section 2.1.4
and tends to be realized, if at all, only for the lowest
Rydberg states and the lightest atoms. Five series are
optically accessible, two s series ((n0p)5(ns)1 3P1 and
1P1) and three d series ((n0p)5(nd)1 3D1, 3P1, and 1P1).
The second one is a variant of the jj coupling scheme
and becomes an increasingly exact representation at high
n values, when the spin–orbit coupling in the 2PJ+ ion
core becomes stronger than the electrostatic (including
exchange) interaction between the Rydberg and the core
electrons. As a result, the core and Rydberg electrons
are decoupled, and J+ becomes a good quantum number
instead of S. In this labeling scheme, the states are
designated (2PJ+)n�[k]J , k being the quantum number
resulting from the addition of J+ and �. The five optically
accessible J = 1 series are labeled ns[3/2]1, ns′[1/2]1,
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Figure 37 High-resolution VUV laser spectra of Ar recorded with a narrow-band laser. (a) Region below the 2P3/2 ionization threshold
showing the perturbed ns/d[k]J=1 series. The spectra labeled B and C represent sections of the spectrum labeled A presented on an
enlarged scale. (b) Region above the 2P3/2 threshold revealing the broad asymmetric nd′[3/2]1, and the narrow, symmetric ns′[1/2]1
resonances. [Adapted from Hollenstein (2003) Erzeugung und spektroskopische Anwendungen von schmalbandiger, kohärenter, vakuum-
ultravioletter Strahlung, PhD thesis, Eidgenössische Technische Hochschule Zürich, ETH Zürich, CH-8093 Zürich, Switzerland, Diss.
ETH Nr. 15237.]
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nd[1/2]1, nd[3/2]1, nd′[3/2]1, the “prime” being used to
designate the two series converging to the 2P1/2 ionization
limit (Figure 36).

The interactions between the series converging to the
different ionization limits lead to pronounced perturbations
below the 2P3/2 ionization limit and to the autoionization
of the ns′ and nd′ series in the energetic region between
the 2P3/2 and 2P1/2 ionization limits. Because of the
series interactions, the spectral positions are not accurately
described by Rydberg’s formula, but are best described by
multichannel quantum defect theory (Lee and Lu 1973; see
also Jungen 2011a: Elements of Quantum Defect Theory,
this handbook).

Several sections of the single-photon VUV spectrum of
Ar are presented in Figure 37. Figure 37(a) corresponds to
the region where Rydberg states of principal quantum num-
ber n ≥ 33 below the 2P3/2 ionization limit can be excited
from the ground state. In the region below 127 060 cm−1,
only the nd[3/2]1 and ns[3/2]1 carry intensity. These two
series are almost degenerate. The splittings can hardly be
seen on the wave-number scale used to draw the spectrum,
but are clearly visible on the expanded scale of the spec-
trum labeled B, which corresponds to the region of principal
quantum number around n = 55. The high-n region of the
spectrum is also displayed on an enlarged scale in the spec-
trum labeled C. The nd[1/2]1 series is extremely weak at n

values below 50, but becomes the dominant series beyond
n = 80. In an unperturbed Rydberg series, the intensity
should decrease as n−3, as explained in Section 2.1.6. The
anomalous intensity distribution of the nd[1/2]1 series has
its origin in the interactions with the series converging to the
2P1/2 ion core, which are such that, in some spectral regions,
it has almost pure S = 1 character and cannot be excited
from the S = 0 ground state. Figure 37(b) displays a section
of the VUV spectrum of Ar in the region between the 2P3/2

and 2P1/2 ionization limits. The ns′[1/2]1 and nd′[3/2]1

series appear as sharp, symmetric, and broad, asymmetric
autoionization resonances in this region, respectively.

The VUV absorption spectra of Ne, Kr, and Xe are
qualitatively similar to that of Ar. Ne, Kr, and Xe all have
several isotopes, some of which have a nonzero nuclear spin
and a hyperfine structure. The hyperfine structures in the
VUV absorption spectrum of 83Kr, 129Xe, and 131Xe appear
complex at first sight but can be quantitatively described
by MQDT using the same series-interaction parameters as
the I = 0 isotopes (Wörner et al. 2003, 2005, Schäfer and
Merkt 2006, Paul et al. 2009, Schäfer et al. 2010; see also
discussion of spin–orbit and hyperfine autoionization in
Section 3.5.1).

The fact that several low-lying levels of the rare-gas
atoms have almost pure S = 1 character results in the
metastability of these levels. The radiative decay of the
lowest electronically excited S = 1 state with J = 0 and 2

to the S = 0 ground state is strongly forbidden by single-
photon electric-dipole selection rules. Consequently, these
states are very long-lived, so that, for many purposes, they
can be used in experiments as if they were stable ground-
state atoms: their long lifetimes enable precision measure-
ments, they give access to spectroscopic investigation of
other S = 1 states, they can be laser cooled using closed
transitions in the triplet manifold of states, they can be used
in reactive scattering experiments, etc.

3.2.3 Stark and Zeeman Effects in Atomic Spectra

When considering the effects of static electric and magnetic
fields on electronic transitions, it is convenient to discuss
the effects of these fields on the selection rules and on the
spectral positions separately. The effects of magnetic and
electric fields on the energy level structure of atoms have
been described in Sections 2.1.7 and 2.1.8, respectively.
We therefore focus here on the selection rules and their
manifestations in electronic spectra of atoms.

In the presence of a homogeneous electric (or magnetic)
field, the symmetry of space is reduced from spherical
(isotropic) to cylindrical. Consequently, the total angular
momentum quantum number J (or F ) ceases to be a good
quantum number, the only good quantum number being
the magnetic quantum number MJ (or MF ) associated with
the projection of J (F) along the direction of the field
vector. The Z axis of the laboratory-fixed reference frame
is commonly chosen to lie parallel to the static field vector,
i.e., E = (0, 0, E) and B = (0, 0, B).

The electric-dipole selection rules depend on the relative
orientation of the polarization vector of the radiation field
and the static field vector. If the radiation is linearly
polarized with polarization vector perpendicular to the static
field vector, then

∆MJ = ±1 (or ∆MF = ±1) (186)

in which case one speaks of a σ configuration, from the
German word “senkrecht” (= perpendicular), replacing the
first letter by its Greek equivalent, s → σ. If the radiation
is linearly polarized with polarization vector parallel to the
static field vector, then

∆MJ = ±0 (or ∆MF = ±0) (187)

and the configuration is referred to as π (from the German
word “parallel”, p → π). The use of circularly polarized
radiation leads to the most restrictive selection rule on MJ

(MF ) if the radiation propagates in a direction parallel to
the static field vector, in which case one has either

∆MJ = 1 (∆MF = 1) (188)
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or

∆MJ = −1 (∆MF = −1) (189)

depending on the helicity.

Magnetic Fields and Zeeman Effect Because the elec-
tron Zeeman effect is much larger than the nuclear Zee-
man effect, we consider here only the influence of the
former on electronic transitions of atoms. If the states
connected by the transitions are singlet states (S = 0),
the Zeeman effect arises solely from the orbital motion
and particularly simple spectral structures result (Figure 8
and equations 60 and 61 describing the normal Zeeman
effect). Equation (61) implies that, in this case, the fre-
quency intervals between neighboring Zeeman levels are
the same (µBB/h) in the lower and upper electronic states.
The transitions allowed by the selection rules (186)–(189)
are indicated in Figure 38(a) and (b) for 1S0 ↔ 1P1 and
1P1 ↔ 1D2 transitions, respectively, from which one sees
that only three lines can be observed, two in σ and one
in π polarization configuration, separated by a frequency
interval of µBB/h. The schematic spectra displayed in
Figure 38(c) illustrate the fact that the appearance of the
spectra is entirely determined by the polarization configu-
ration and does not depend on the L value of the states
involved in the transition.

The situation is more complicated in S ≥ 1/2 states
because, in this case, the Zeeman effect is anomalous and
the Zeeman level shifts are given by equation (63) and
depend on the values of L, S, and J via the dependence of
gJ on these quantum numbers (equation 52). For example,
Figure 39 illustrates the case of a 2S1/2 ↔ 2PJ (J =
1/2, 3/2) transition, for which, according to the selection

rules (186)–(189), 10 lines can be observed with the
different polarization arrangements. Because the Zeeman
splittings now depend on the values of L, S, and J , the
spectral patterns are characteristic of the terms involved
in the electronic transitions, which can be used to assign
them.

Electric Fields and Stark Effect To illustrate the effect
of electric fields on atomic spectra, we first discuss the
Stark effect in the Lyman α transition of H. The Stark
effect leads to a coupling of the closely spaced n = 2 s and
p states, which are split at zero field by the Lamb shift and
the spin–orbit interaction (Figure 33). Figure 40(a) and (b)
depict the calculated electric-field dependence of the n = 2
energy levels, and VUV spectra of the Lyman α line of H
recorded in a field of 5465 V cm−1, respectively, as reported
by Rottke and Welge (1986).

Because of the near degeneracy of these levels, the Stark
effect rapidly becomes linear with increasing electric field,
but a fine structure remains noticeable. In the absence
of fine-structure splittings, the Stark level structure would
consist of three levels (Figure 11): two outer components
with m� = 0 corresponding to the |n1, n2, |m�|〉 = |1, 0, 0〉
and |0, 1, 0〉 Stark states, i.e., to values of k of ±1,
and one central component corresponding to the |0, 0, 1〉
Stark state. With the selection rules for σ (∆m� = ±1)
and π (∆m� = ±0) polarization configurations, one would
expect to see either the central |0, 0, 1〉 component (σ
configuration) or the |1, 0, 0〉 and |0, 1, 0〉 components
(π configuration). This expectation corresponds to the
experimental observations, which, however, also reveal
fine-structure effects and weak lines corresponding to
the “forbidden” Stark components. These components are
observed because mj , rather than m�, is the good quantum
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Figure 38 The normal Zeeman effect in the electronic spectrum of atoms. (a) 1S0 ↔ 1P1 transition, (b) 1P1 ↔ 1D2 transition, and (c)
schematic representation of the spectra.
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number when spin–orbit coupling is considered, and also
because the polarization of the VUV laser radiation was not
perfectly linear, as discussed by Rottke and Welge (1986).

In Rydberg states of atoms and molecules, the Stark effect
leads to very characteristic spectral structures. Figure 41
presents π-polarized VUV laser spectra of transitions from
the 1S0 ground state of Ar to Stark states belonging to
the n = 22 (MJ = 0) manifold of states located below the
2P3/2 ground state of Ar+ (Vliegen et al. 2004). The spectra
recorded at different fields have been shifted along the verti-
cal axis, so that the origins of their intensity scale coincide
with the values of the electric field (in volt per centime-
ter) used to record them. At low fields (bottom spectra),
the optically allowed J = 1 series converging to the 2P3/2

ground state of Ar+ (23d[1/2]1, 24s[3/2]1, and 23d[3/2]1)
are observed. As the field increases, transitions to the 24 and
25 p[1/2]0 levels gain intensity by Stark mixing with the d
levels following the Stark-mixing selection rule ∆� = ±1
(see equation 67). Stark mixing also takes place with the f
levels, which are almost degenerate with the � ≥ 4 levels
and form with them a manifold of states subject to a linear
Stark effect. This high-� manifold of Stark states becomes
the dominant spectral pattern at high fields.

Series of spectra such as those presented in Figure 41
are referred to as Stark maps and have been recorded
for many atoms (e.g., alkali-metal atoms (Zimmerman

et al. 1979), rare-gas atoms (Ernst et al. 1988, Brevet
et al. 1990, Grütter et al. 2008)), and even molecules (e.g.,
H2, (Fielding and Softley 1991, Hogan et al. 2009)). The
strong field dependence of the outer members of the linear
Stark manifolds is indicative of very large electric-dipole
moments, which have been recently exploited to decelerate
beams of Rydberg atoms and molecules (Procter et al.
2003, Vliegen et al. 2004) and to load cold Rydberg atom
and molecule samples in electric traps (Vliegen et al. 2007,
Hogan et al. 2009). High-resolution electronic spectroscopy
of Rydberg Stark states in cold, high-density samples has
also been used to study dipole–dipole interactions between
neighboring Rydberg atoms (Mourachko et al. 1998).

3.3 Electronic Spectra of Diatomic Molecules

This section describes elementary aspects of the electronic
spectra of diatomic molecules, with emphasis on selection
rules and the overall structure of electronic transitions.

3.3.1 Selection Rules

Theset of selectionrules presented in equations (160)–(165)
can be extended by considering those that can be derived
using the point groups D∞h for homonuclear diatomic
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Figure 40 (a) Stark effect in the n = 2 levels of H. At low electric fields, the levels are labeled with the usual term symbols. At
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the parabolic quantum numbers |n1, n2, |m�|〉 and by the dominant contribution to the wave function of the n = 2 level. The hyperfine
structure is not resolved in the experiment. [Adapted from Rottke and Welge (1986).]

molecules, and C∞v for heteronuclear diatomic molecules.
In diatomic molecules, the vibronic symmetry �ev =
�elec ⊗ �vib is always equal to the electronic symmetry �elec

because the only vibrational mode is totally symmetric

�vib = 	+
g for D∞h (190)

and

�vib = 	+ for C∞v (191)

Electronically forbidden transitions are, therefore, necessar-
ily also vibronically forbidden (see equations 173 and 178).

Electronically allowed transitions fulfill either

�′
elec ⊗ �(Tz) ⊗ �′′

elec ⊇ 	+
(g) (192)

or

�′
elec ⊗ �(Tx,y) ⊗ �′′

elec ⊇ 	+
(g) (193)

where the (g) subscripts only apply to homonuclear
diatomic molecules. Because Tx and Ty transform as the
u irreducible representation of the D∞h point group (or

as the  representation of the C∞v group), and Tz trans-
forms as 	+

g (or 	+), equations (192) and (193) can be
written as

�′
elec ⊗ �′′

elec ⊇ 	+
(u) (194)

in which case the transition moment lies parallel to the
internuclear (z) axis and one speaks of a parallel transition,
and

�′
elec ⊗ �′′

elec ⊇ (u) (195)

respectively, in which case the transition moment lies
perpendicular to the internuclear (i.e., along the x or y) axis
and one speaks of a perpendicular transition. Evaluating
equations (194) and (195) using the direct-product table
(Table 9) leads to the selection rules

∆Λ = 0 (u ↔ g) (196)

for parallel transitions and

∆Λ = ±1 (u ↔ g) (197)

for perpendicular transitions.
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Figure 41 Stark effect in the n = 22, MJ = 0 levels of Ar located below the 2P3/2 ground state of Ar+. The spectra recorded at
different fields have been shifted along the vertical axis so that the origins of their intensity scale coincide with the values of the
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Examples

In D∞h molecules, 	+
g ↔ 	+

u , g ↔ u,. . . transitions
are allowed parallel transitions, and 	+

g ↔ u, 	+
u ↔

g, g ↔ ∆u, u ↔ ∆g, . . . are allowed perpendicular
transitions.

Additional selection rules are given by equations (157)
and (158). As stated above, the ∆MJ selection rule depends
on the polarization of the radiation field. When the elec-
tronic states involved in the transition are not well described
by Hund’s angular momentum coupling cases (a) or (b),
but rather by Hund’s case (c), the ∆S = 0 selection rule
no longer applies, and Λ must be replaced by Ω in
equations (196) and (197), i.e.,

∆Ω = 0 (u ↔ g) (198)

for parallel transitions and

∆Ω = ±1 (u ↔ g) (199)

for perpendicular transitions (see also below).

3.3.2 Forbidden Electronic Transitions

Electronically (and vibronically) forbidden single-photon
transitions in diatomic molecules may nevertheless be
observable experimentally. Such transitions can be classi-
fied into two categories.

1. Magnetic-dipole and Electric-quadrupole Transi-
tions
Absorption results from the interaction of the electro-
magnetic radiation field with the magnetic-dipole or the
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Table 19 Character table of the extended C(2)
∞v point group.

C(2)
∞v E 2Cϕ

∞ 2C2ϕ
∞ 2C3ϕ

∞ . . . ∞σv R 2Cϕ
∞R . . .

	+(= A1) 1 1 1 1 . . . 1 1 1 . . . z

	−(= A2) 1 1 1 1 . . . −1 1 1 . . . Rz

(= E1) 2 2 cos ϕ 2 cos(2ϕ) 2 cos(3ϕ) . . . 0 2 2 cos ϕ . . . x, y;Rx,Ry

∆(= E2) 2 2 cos(2ϕ) 2 cos(4ϕ) 2 cos(6ϕ) . . . 0 2 2 cos(2ϕ) . . .

�(= E3) 2 2 cos(3ϕ) 2 cos(6ϕ) 2 cos(9ϕ) . . . 0 2 2 cos(3ϕ) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E1/2 2 2 cos(ϕ/2) 2 cos ϕ 2 cos(3ϕ/2) . . . 0 −2 −2 cos(ϕ/2) . . .

E3/2 2 2 cos(3ϕ/2) 2 cos(3ϕ) 2 cos(9ϕ/2) . . . 0 −2 −2 cos(3ϕ/2) . . .

E5/2 2 2 cos(5ϕ/2) 2 cos(5ϕ) 2 cos(15ϕ/2) . . . 0 −2 −2 cos(5ϕ/2) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The character table of the extended D(2)
∞h point group can be obtained from the D∞h point group by making the corresponding changes.

electric-quadrupole moment of the molecule. Since the
(x, y, z) components of the magnetic-dipole moment
transform as the rotations Rx , Ry , and Rz and the com-
ponents of the quadrupole moment transform as �(αij )

(see Tables 7 and 8), the corresponding selection rules
can be derived as in the case of an electric-dipole transi-
tion. The selection rule for magnetic-dipole transitions
is thus

�i ⊗ �(Rα) ⊗ �f ⊇ 	+
(g) with α = x, y, z (200)

and that for electric-quadrupole transitions is

�i ⊗ �(α(ij)) ⊗ �f ⊇ 	+
(g) (201)

Example
1	+

g ↔ 1	−
g transitions are electric-dipole-forbidden,

but magnetic-dipole-allowed transitions, because Rz

transforms as 	−
g in D∞h molecules (Table 8).

2. Intercombination Transitions
Intercombination transitions violate the ∆S = 0 selec-
tion rule (equation 157). Such transitions mainly occur
in molecules possessing a significant spin–orbit inter-
action. In this case, Hund’s angular momentum cou-
pling cases (a) and (b), upon which the selection
rules (196) and (197) rely, are no longer a perfect
description, and neither Σ nor Λ are good quantum
numbers.
When the spin–orbit interaction is dominant, a Hund’s
case (c) nomenclature is more appropriate and the
selection rules (198) and (199) must be used instead
of the selection rules (196) and (197). When the
spin–orbit interaction is weak, so that Hund’s case
(a) or (b) representations remain good approximations,
group-theoretical arguments can still be used to pre-
dict which intercombination transitions are observable,
but spin double groups are required for this task (see
Section 2.3.3). The character table of the C(2)

∞v spin

Table 20 Transformation properties of the electron-spin func-
tions in the extended point group D(2)

∞h.

S 0 1/2 1 3/2 . . .

�S 	+
g E1/2,g 	−

g + g E1/2,g + E3/2,g . . .

The transformation properties in the extended point group C(2)
∞v can be

obtained by disregarding the subscript g.

double group is represented in Table 19, and Table 20
shows how the electron-spin functions transform in the
D(2)

∞h and the C(2)
∞v point groups. The symmetry �es of

the electronic wave functions (now including electron
spin) can be determined from the product

�es = �elec ⊗ �espin (202)

which can be evaluated using the transformation
properties of the electron-spin functions summarized
in Table 20. An intercombination transition is only
observable if equation (203) is fulfilled instead of
equations (192) and (193):

�′
es ⊗ �(Tα) ⊗ �′′

es ⊇ 	+
(g) with α = x, y, z (203)

Example

We consider the electronically forbidden 1	+
g →

3u transition with ∆S = 1 (singlet-triplet transi-
tion). With the help of Tables 19, 20, and 9, one
obtains �′′

es = 	+
g and �′

es = �′
elec ⊗ �′

espin = u ⊗
(	−

g + g) = u + 	+
u + 	−

u + ∆u. The transforma-
tion properties of Tx,y,z in D∞h imply that only the u

and 	+
u components of the 3u state can be accessed

from an initial state of symmetry 1	+
g . Alternatively,

one may choose to express the selection rules in Hund’s
coupling case (c) as ∆Ω = 0, ±1, which does not
necessitate the specification of the total electron-spin
quantum number S.
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Figure 42 Illustration of the Franck–Condon principle for (a) an electronic transition between two electronic states having almost
identical Born–Oppenheimer potential energy functions and (b) an electronic transition between two electronic states with R′′

e << R′
e.

The shaded areas represent the regions where the vibrational wave function of the initial state has a significant amplitude. The spectra
displayed below the potential energy diagrams represent schematically the expected appearance of electronic spectra recorded from the
v = 0 level of the lower electronic state.

3.3.3 Vibronic Structure and the Franck–Condon
Principle

Equation (172) implies that the intensity Iα′,v′,α′′,v′′ of a
transition between two vibronic states should be approx-
imately proportional to the square of the overlap integral
〈�′

vib|�′′
vib〉 of the vibrational wave functions:

Iα′,v′,α′′,v′′ ∝ |〈�′
vib|�′′

vib〉|2 = |〈v′|v′′〉|2 (204)

The square of the integral 〈�′
vib|�′′

vib〉, which is called
the Franck–Condon factor (see Section 3.1), thus indicates
how the intensity of an electronically allowed transition
between the electronic states α′′ and α′ is partitioned among
the various vibrational bands.

Figure 42 shows two schematic illustrations of the
Franck–Condon principle applied to the absorption spec-
trum of diatomic molecules in their ground state. In

Figure 42(a), the Born–Oppenheimer potential energy func-
tions of the two electronic states are almost identical. In this
case, vibrational wave functions of the same vibrational
quantum number (v′ = v′′) are also almost identical in the
two electronic states. The orthogonality of the vibrational
wave functions implies the selection rule ∆v = 0 and the
electronic spectrum consists of a single dominant vibra-
tional band corresponding to the v′ = 0 ← v′′ = 0 band
(labeled 0-0 in the spectrum drawn at the bottom of the
figure).

In Figure 42(b), the potential energy functions of the two
states differ from each other. The equilibrium internuclear
separation R′

e of the upper potential function is larger
than that of the lower state. Consequently, transitions
originating from the v′′ = 0 level of the lower electronic
state can access several vibrational levels of the upper
state. The Franck–Condon factors are, therefore, nonzero
in the energetic region where the repulsive part of the
upper potential energy function lies vertically above the
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region where the ground-state vibrational function has
a nonzero amplitude. The expected vibrational structure
of the corresponding band is represented schematically
below the potential energy diagram and extends beyond
the dissociation limit of the upper electronic state where
the spectrum becomes continuous. The shaded areas in
Figure 42 represent the regions where the vibrational wave
function of the initial state has a significant amplitude. They
help to see which vibrational levels of the final state are
accessible from the ground state.

Franck–Condon factors represent an approximation of
the relative intensities, which relies on the assumption
that the electronic transition moment does not vary with
internuclear separation, at least not over the range where
the relevant vibrational functions have significant ampli-
tudes. Given that diatomic molecules have zero dipole
moments both in the separated-atoms and the united-atoms
limits, the dipole-moment function must go through at
least one maximum at intermediate distances. Neglect-
ing its variation with R thus represents an approx-
imation, and indeed it is often necessary to include
higher terms than the first in equation (171) to prop-
erly account for the vibrational intensity distribution of
an electronic spectrum. The dependence of the electric-
dipole moment on the nuclear geometry has the largest
consequences in the spectra of polyatomic molecules,
because it can lead to the observation of electronically
forbidden transitions, as explained in Section 3.1 and
illustrated in Section 3.4.2 by the electronic spectrum of
benzene.

3.3.4 Rovibronic Structure

The description of the rotational structure of electronic tran-
sitions requires the parity selection rule (equation 165) and
also, in homonuclear diatomic molecules, the consideration
of the conservation of nuclear-spin symmetry, in addition
to the selection rules discussed in the previous sections.
The parity of a rovibronic state indicates whether its rovi-
bronic wave function remains invariant under inversion of
all space-fixed coordinates or whether it changes sign. In
the former case, one speaks of positive parity (labeled as
“+”) and, in the latter, of negative parity (labeled as “−”).
Since

1. the dipole-moment operator has negative parity,
2. wave functions in isotropic space have a well-defined

parity,
3. the parity of a product of functions corresponds to the

product of their parities, and
4. the integral of a function of negative parity is zero,

the intensity of an electric-dipole transition of the form
(154) differs from zero only if Ψf and Ψi possess opposite

parities. The parities of rovibrational levels of diatomic
molecules can be determined using equation (109) and
are indicated in the energy level diagrams presented in
Figure 19.

Combined with the generalized Pauli principle, the con-
servation of nuclear-spin symmetry implied by the second
factor of equation (156) leads to a further selection rule for
homonuclear diatomic molecules:

s ↔ s, a ↔ a (s ↔ a forbidden) (205)

where the “s” and “a” labels indicate whether the rovi-
bronic wave function is symmetric or antisymmetric with
respect to permutation of the coordinates of the identical
nuclei, respectively. If the nuclei are bosons (fermions),
rovibronic wave functions of “a” symmetry combine with
nuclear-spin functions of “a” symmetry (“s” symmetry),
whereas rovibronic wave functions of “s” symmetry com-
bine with nuclear-spin wave functions of “s” symmetry (“a”
symmetry). For a given value of the nuclear-spin quantum
number I of the identical nuclei, the numbers Ns and Na of
symmetric and antisymmetric nuclear-spin wave functions,
respectively, are given by

Ns = (2I + 1)2 + (2I + 1)

2
and

Na = (2I + 1)2 − (2I + 1)

2
(206)

and are refered to as nuclear-spin statistical factors. The
parity (±) and permutation (a/s) symmetry of the rovi-
brational levels of the most common electronic states
are indicated in the energy level diagrams presented in
Figure 19. 16O, for instance, is a boson with I = 0, so
that in 16O2, Ns = 1 and Na = 0. The fact that, in the X
3	−

g ground state of O2, the rotational levels of even N

values have “a” symmetry (Figure 19) implies that such
states cannot be populated according to the generalized
Pauli principle. Consequently, all lines originating from
even N levels of the ground state of O2 are missing in
an electronic spectrum, and all observable transitions con-
nect rovibronic levels of “s” rovibronic symmetry. In the X
1	+

g ground state of H2, rotational levels of even J = N

values have s symmetry. H is a fermion, with I = 1/2, so
that Ns = 3 and Na = 1. Because the total wave function
must be of “a” symmetry with respect to permutation
of the coordinates of fermions, states of rovibronic “s”
(“a”) symmetry only exist if their nuclear-spin symmetry
is “a” (“s”). Consequently, transitions from odd-J rota-
tional levels of the ground state of H2, which have “a”
symmetry, are three times more intense than those from
even-J rotational levels, which have “s” symmetry. The
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conservation of nuclear-spin symmetry implied by the sec-
ond factor of equation (156) means that rovibronic states
of “a” and “s” symmetry are not connected by transi-
tions induced by electromagnetic radiation and can there-
fore be considered as belonging to two distinct forms of
homonuclear diatomic molecules, called para and ortho
forms. One should, however, note that the product form
of equation (156) is an approximation, and that hyperfine
interactions can couple the nuclear-spin motion to other
motions.

The rotational states (with parity and nuclear permutation
symmetry) that are involved a 1	+

u ← 1	+
g (parallel)

and 1u ← 1	+
g (perpendicular) transitions are drawn

schematically in the upper parts of Figure 43(a) and (b),
respectively. The allowed transitions are marked by arrows
and grouped in P, Q, and R branches. Figure 43(c) and (d)
present schematic spectra corresponding to the two types
of transitions. The alternation of intensities of the lines
results from the fact that the spectra have been calculated
for a homonuclear diatomic molecule made of atoms with
a nuclear spin I = 1.

Only ∆J = ±1 transitions are allowed in a parallel tran-
sition, and the rotational structure of the vibronic transition
consists of two branches, one with ∆J = 1 (so-called R
branch) and one with ∆J = −1 (the so-called P branch;
see Figure 43(a) and (c)). In a perpendicular transition,
∆J = 0 transitions are also observable, which leads to a
third branch (the so-called Q branch; see Figures 43(b) and
(d)).

In the case of transitions between singlet states, the
rotational structure of the bands can be approximately
described using equation (3) as:

ν̃ = ν̃v′v′′ + B ′J ′(J ′ + 1) − D′(J ′(J ′ + 1))2

− [B ′′J ′′(J ′′ + 1) − D′′(J ′′(J ′′ + 1))2] (207)

where J ′ = J ′′ for the Q branch, J ′ = J ′′ + 1 for the R
branch, and J ′ = J ′′ − 1 for the P branch.

In the case of transitions between doublet or triplet
states, the rotational structure is more complicated. The
spectral positions ν̃ of the rovibronic transitions are given
by (equation 3)

ν̃ = ν̃v′v′′ + F ′(J ′, . . .) − F ′′(J ′′, . . .) (208)

where F ′ and F ′′ represent the rotational term values and
the “. . .” symbolize the quantum numbers necessary to des-
ignate the rotational levels, which depend on Hund’s angu-
lar momentum coupling case used to describe the rotational
structure. F ′ and F ′′ must be evaluated, for each state, using
the rotational (including spin–orbit interaction) Hamilto-
nian presented in equation (101). The allowed transitions

can then be determined from the selection rules in the same
way as used in the simple cases illustrated in Figure 43.
The rotational energy level diagrams presented in Figure 19
are helpful in predicting the overall rotational branch struc-
ture of electronic transitions of diatomic molecules, because
they provide the parity and nuclear permutation symme-
try of the rotational levels of the most common types of
electronic states.

3.3.5 Selected Examples

The literature on the electronic spectra of diatomic mole-
cules is extremely rich. High-resolution spectra of elec-
tronic (allowed and forbidden) transitions connecting states
of almost all possible term symbols in all Hund’s cases
have been reported. Rather than giving a comprehensive
overview of all possible types of electronic transitions in
diatomic molecules, we limit ourselves here to a few sim-
ple cases, from work in our laboratory, which illustrate
the general principles in an elementary manner. Further
examples of electronic spectra of diatomic molecules can
be found, in this handbook, in the articles by Eikema
and Ubachs 2011: Precision Laser Spectroscopy in the
Extreme Ultraviolet, Jungen 2011a: Elements of Quan-
tum Defect Theory and Western 2011: Introduction to
Modeling High-resolution Spectra. For a more complete
and systematic overview of the broad diversity of elec-
tronic spectra of diatomic molecules, we refer to the books
by Herzberg (1989), Lefebvre-Brion and Field (2004), and
Brown and Carrington (2003).

Figure 44 illustrates, with the example of the C 0u
+ ←

X 0g
+ electronic band system of Xe2, the Franck–Condon

principle and some of the limitations in its use that result
from the experimental methods chosen to record electronic
transitions. The electronic states of Xe2 are conveniently
described in Hund’s case (c), and the figure also gives
an example of the rotational structure of a 0u

+ ← 0g
+

transition, which conforms to the energy level diagram
presented in Figure 43(a).

Whereas the ground electronic state of Xe2 is only
weakly bound by van der Waals forces, the A, B, and
C electronic states are the lowest members of Rydberg
series converging on the low-lying electronic states of Xe2

+

(Figure 17) that are more strongly bound and thus have
equilibrium internuclear distances shorter than the ground
state. This geometry change results in a long progression of
vibrational bands corresponding to excitation of vibrational
levels of the C state with v′ = 14–26 (Figure 44b). The
rotational structure of the bands with the lower v′ values
are strongly degraded to the high wave-number side of the
spectrum (Figure 44c), which also indicates a shortening of
the interatomic distance (B ′

v′ > B ′′
v′′).
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Figure 43 (a) Rotational states (with parity and nuclear permutation symmetry) that are involved in a 1	+
u ← 1	+

g transition. (b)
Rotational states (with parity and nuclear permutation symmetry) that are involved in a 1u ← 1	+

g transition. (c) and (d) Schematic
diagram of the rotational structure of the vibrational bands of a 1	+

u ← 1	+
g and 1u ← 1	+

g transitions, respectively. The intensity
alternation results from the fact that intensities have been calculated for a homonuclear diatomic molecule composed of atoms with a
nuclear spin I = 1. The diagrams are also appropriate to qualitatively predict the rotational structures of 0u

+ ← 0g
+, and 1u ← 0g

+
transitions, respectively.

Because the rotational constant of the v′ = 20 level of the
C state is significantly larger than that of the ground v′′ = 0
level, the P branch of the C 0u

+ (v′ = 20) ← X 0g
+ (v′′ =

0) band displayed in Figure 44(c) possesses a band head at
low J ′′ values (J ′′ = 3). The rotational structure does not

show the intensity alternations between lines originating
from even- and odd-J ′′ ground-state levels that are charac-
teristic of the spectra of homonuclear diatomic molecules
(Figure 43c). The reason is that the spectrum has been
recorded by measuring the ionization signal corresponding
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The Franck–Condon region for excitation from the ground vibrational level of the X state is indicated by the gray area. (b) Spectrum
of the C 0u

+ ← X 0g
+ (v′′ = 0) transition recorded with a narrow-band pulsed VUV laser. The transitions are detected by ionizing

the levels of the C state with a pulsed UV laser and monitoring the current of 131Xe136Xe+ ions as a function of the wave number
of the VUV laser. The Xe2 molecules were formed in a supersonic expansion and the population of the rotational levels corresponds
to a temperature of 4 K. The vibrational bands are labeled by the vibrational quantum number of the C state. (c) Rotational structure
of the C 0u

+ (v′ = 20) ← X 0g
+ (v′′ = 0) band. The numbers along the assignment bars corresponding to the P and R branches

designate the rotational quantum number J ′′ of the ground state. [Adapted from Hollenstein (2003) Erzeugung und spektroskopische
Anwendungen von schmalbandiger, kohärenter, vakuum-ultravioletter Strahlung, PhD thesis, Eidgenössische Technische Hochschule
Zürich, ETH Zürich, CH-8093 Zürich, Switzerland, Diss. ETH Nr. 15237.]
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Figure 45 (a) VUV absorption spectrum of CO in the region between 109 420 and 109 580 cm−1 displaying transitions from the X
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g (v′′ = 0) ground state to the 4sσ 1u Rydberg state belonging to series converging to the v+ = 2 level of
the A+ 2u first excited electronic state of N2

+ and to the v′ = 8 level of the b′ 1	+
u valence state of N2. [Adapted from Sommavilla

(2004) Photoabsorption-, Photoionisations- und Photoelektronenspektroskopie von Atomen und kleinen Molekülen im VUV-Bereich,
PhD thesis, Eidgenössische Technische Hochschule Zürich, ETH Zürich, CH-8093 Zürich, Switzerland, Diss. ETH Nr. 15688.]
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to the 131Xe136Xe isotopomer. One should note that one
retains the g/u labels in this case because isotopic substi-
tution does not affect the electronic structure within the
Born–Oppenheimer approximation.

The intensity distribution of the spectrum only partially
reflects the Franck–Condon factors. Indeed, the intensity
of the ion signal can be significantly reduced by predisso-
ciation of the C level. Moreover, the overall intensity dis-
tribution can be affected if the predissociation rate depends
on the degree of vibrational excitation of the C state.

Next to information on the internuclear distances of the
states involved in the transitions by means of the rotational
constants, the spectrum also contains information on the
potential energy functions and the electronic symmetry
of the electronic states involved in the transition. The
same transition can also be recorded by monitoring the
electronically excited Xe atom fragment that results from
the predissociation of the C state (not shown), so that
the electronic spectrum also contains information on the
dynamics of the excited state.

A more reliable way to measure intensities of electronic
transitions is by recording the absorption signal. Examples
of VUV absorption spectra of CO and N2 are presented
in Figure 45(a) and (b). In these spectra, the normalized
transmission signal I/I0 of the VUV radiation is displayed
as a function of the VUV wave number. The CO and
N2 gas samples are cold (T ≈12 K), skimmed supersonic
expansions of CO and N2, which are crossed at right angles
by the VUV laser beam to avoid Doppler broadening.
Normalization is achieved by dividing the intensity of
the VUV radiation transmitted through the sample by the
intensity of a reference VUV laser beam (Sommavilla et al.
2002).

The rotational structure of the bands represents an
essential element of the assignment procedure. Bands
recorded from a lower level of 1	+ symmetry that have
P, Q, and R branches must have a 1 state as upper
level, whereas those that do not have a Q branch are
likely to have a 1	 state as upper level. Consequently, the
bands centered around 109 562 cm−1 in the spectrum of N2

(Figure 45b) and the band centered around 109 564 cm−1

in the spectrum of CO (Figure 45a) must have a 1 state
as upper level, because they have a Q branch. However,
the absence of a Q branch does not automatically imply
that the upper level is 1	 state, because P and R lines
access the components of the rotational doublets with +
electronic character, and Q lines the components with a
− electronic character. The absence of the Q branch in
a 1 ←1 	 transition may, therefore, occasionally also
result from a perturbation of the − state, for instance
by a neighboring 	− state. Consequently, 	+ states can
only be unambiguously assigned by the observation of a
P(1) transition. Indeed, J = 0 rotational levels do not exist

in 1 states. The two bands centered around 109 449 and
109 481 cm−1 in the spectrum of CO and the band centered
around 109 542 cm−1 in the spectrum of N2 must, therefore,
have a 1	 state as upper level.

The rotational constant of the upper vibronic state pro-
vides a further important indication for the assignment,
particularly when a spectrum consists of overlapping tran-
sitions to Rydberg states belonging to series converging
on different ionic states. Because the rotational constants
of Rydberg states are almost identical to the rotational
constants of the ionic states to which the Rydberg series
converge, the determination of the rotational constant of
the upper level of an electronic transition can often either
enable one to confirm or rule out possible assignments by
comparison with the rotational constants of the vibronic
levels of the ion, if these are known. Such comparison, in
addition to information on the quantum defects, can be used
to assign two bands of the spectrum of CO to transitions
to Rydberg states with a X+ 2	+ (v+ = 3) CO+ ion core
and one to a Rydberg state with a X+ 2	+ (v+ = 4) CO+
ion core. Similarly, the band centered around 109 564 cm−1

in the spectrum of N2 can be assigned to a transition to a
Rydberg state with an A+ 2u (v+ = 2) N+

2 ion core. The
much smaller rotational constant of the upper level of the
transition centered around 109 542 cm−1 in the spectrum of
N2, which results in an R-branch band head at J ′′ = 1, is
incompatible with an assignment of the upper level to a
Rydberg state and must be assigned to the b′ valence state.

The bands observed in the VUV absorption spectra of CO
and N2 have different linewidths and, therefore, the upper
vibronic levels have different predissociation rates. A mea-
surement of the same transitions by resonance-enhanced
two-photon ionization spectroscopy would, therefore, have
led to different relative intensities: the bands with broad
lines would have appeared less intense in these spectra
compared to those with narrow lines than in the case of
the absorption spectra displayed in Figure 45.

Finally, one could note that the transitions from J ′′ = 0
and 2 levels are more intense compared to the J ′′ = 1 and 3
lines in the spectrum of N2 than they are in the spectrum of
CO. This difference is the manifestation of the nuclear-spin
statistical factors of 2(1) of rotational levels of even-(odd-)
J ′′ levels of N2 (equation 206).

3.4 Electronic Spectra of Polyatomic Molecules

The general principles needed to rationalize or predict the
structure of electronic spectra of polyatomic molecules
are presented in Section 3.1, and only differ from those
needed in studies of diatomic molecules as a result of
the larger number of vibrational degrees of freedom and
the different point-group symmetries. The transitions are
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classified as electronically allowed if equation (173) is
fulfilled, in which case the vibrational intensity distribution
can approximately be described by Franck–Condon factors
(equation 175) and the selection rules (176) and (177). If
equation (173) is not fulfilled, electronic transitions may
nevertheless be observed, in which case they fall into three
categories, two of which have already been discussed for
diatomic molecules in Section 3.3.2:

1. Magnetic-dipole transitions and electric-quadrupole
transitions
This case can be treated in analogy to the discus-
sion, in Section 3.3.2, of magnetic-dipole and electric-
quadrupole transitions in diatomic molecules

Example

The Ã 1A2 ← X̃ 1A1 transition in H2CO is electroni-
cally forbidden (Table 12). However, the transition is
observed as a magnetic-dipole transition (�(Rz) = A2

in this C2v molecule).

2. Intercombination transitions
Intercombination transitions in polyatomic molecules
can also be treated following the same procedure as
that introduced in Section 3.3.2 to treat such transitions
in diatomic molecules.

Example

We consider the Ã 3F2 ← X̃ 1A1 transition in a tetra-
hedral molecule. The character table of the spin double
group of a tetrahedral molecule is given in Table 21.
�(Tx,y,z) = F2 in this group. According to Table 22,
the S = 0 and S = 1 electron-spin functions trans-
form as the A1 and F1 irreducible representations,
respectively. We therefore obtain �′′

es = A1 and �′
es =

�′
elec ⊗ �′

espin = F2 ⊗ F1 = A2 + E + F1 + F2. Conse-
quently, only the F2 component corresponds to an
observable intercombination transition.

Table 21 Character table of the spin double group of tetrahedral
molecules T(2)

d .

Td I 8C3 6σd 6S4 3S2
4 R 8C2

3 6S3
4

A1 1 1 1 1 1 1 1 1
A2 1 1 −1 −1 1 1 1 −1
E 2 −1 0 0 2 2 −1 0
F1 3 0 −1 1 −1 3 0 1 Rx, Ry, Rz

F2 3 0 1 −1 −1 3 0 −1 x, y, z

E1/2 2 1 0
√

2 0 −2 −1 −√
2

E5/2 2 1 0 −√
2 0 −2 −1

√
2

G3/2 4 −1 0 0 0 −4 1 0

Table 22 Transformation properties of electron-spin functions in
the T(2)

d spin double group.

S 0 1/2 1 3/2 2 5/2

�S A1 E1/2 F1 G3/2 E + F2 E5/2 + G3/2

3. Electronically forbidden but vibronically allowed
transitions
The mechanism by which such transitions are observed
is the Herzberg–Teller intensity borrowing mechanism
mentioned in Section 3.1 in the context of electroni-
cally forbidden but vibronically allowed transitions. In
this case, the selection rule (178) applies and requires
an odd change in the number of vibrational quanta in
nontotally symmetric modes (equation 179). Electroni-
cally forbidden but vibronically allowed transitions are
not possible in diatomic molecules, because the only
vibrational mode is totally symmetric.

Example

Consider the electronically forbidden transition bet-
ween the X̃ 1A1 vibrationless ground state and the Ã
1A2 electronic state of a C2v molecule. Excitation of a
B1 vibration in the upper electronic state results in an
excited state of vibronic symmetry �ev = A2 ⊗ B1 =
B2. A transition to this state originating in the A1

state is vibronically allowed. However, the transition
only carries significant intensity if the B2 vibronic
state interacts with a close-lying electronic state B̃ of
electronic symmetry B2. The intensity of the transition
is “borrowed” from the B̃ ← X̃ transition by the
Herzberg–Teller effect.

3.4.1 Electronically Allowed Transitions—An
Example

The general symmetry selection rules governing elec-
tronic transitions in polyatomic molecules have been
formulated in equations (157), (158), (160)–(165), (173),
and (175)–(177). In polyatomic molecules, an electronic
transition can be induced by any of the three Carte-
sian components of the transition dipole moment. When
an electronic transition is allowed, the relative intensi-
ties of the transitions to different vibrational levels of the
electronically excited state approximately correspond to
Franck–Condon factors (equation 174), and the vibrational
structure of an electronically allowed transition contains
information on the relative equilibrium geometries of the
two electronic states connected through the transition.

An illustrative example of an electronically allowed
transition is the absorption spectrum of ammonia, which
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Figure 46 Absorption spectrum of the Ã ← X̃ transition of
ammonia (data from Cheng et al. 2006). The origin of the
electronic transition is labeled as 00

0 and the dominant progression
in the out-of-plane bending mode ν2 is labeled 2n

0. The members
of this progression originate in the vibrational ground state of the
X̃ state and end in the v2 = n level of the Ã excited state.

Table 23 Character table of the D3h point group.

D3h I 2C3 3C2 σh 2S3 3σv

A′
1 1 1 1 1 1 1

A′
2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 x, y

A′′
1 1 1 1 −1 −1 −1

A′′
2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 Rx,Ry

is displayed in Figure 46. The electronic ground state of
ammonia has an equilibrium structure of pyramidal C3v

point-group symmetry. However, two pyramidal configu-
rations are separated by a low barrier along the bending
(umbrella) mode, which leads to inversion of the molecule
through tunneling on the picosecond timescale and to a
tunneling splitting of 0.8 cm−1. When this tunneling split-
ting is resolved, the appropriate point group to treat the
energy level structure is D3h, the character table of which
is given in Table 23. The vibrational wave functions are
nevertheless mainly localized at the minima of the potential
energy surfaces corresponding to a C3v geometry. In the C3v

point group, the electronic configuration of ammonia in the
X̃ ground electronic state is (1a1)

2(2a1)
2(1e)4(3a1)

2. The
lowest-lying electronically allowed transition corresponds
to the excitation of an electron from the 3a1 orbital, which
is a nonbonding orbital (lone pair) of the nitrogen atom,
into the diffuse 3s Rydberg orbital with a NH3

+ planar ion

core. In the electronically excited state, the molecule has
a planar structure with D3h point-group symmetry. In this
point group, the excited electronic configuration and the
electronic state are labeled (1a′

1)
2(2a′

1)
2(1e′)4(1a′′

2)
1(3sa′

1)
1

Ã 1A′′
2.

The absorption spectrum of the Ã ← X̃ transition
recorded using a room-temperature sample in which only
the ground vibrational level of the X̃ state is significantly
populated is displayed in Figure 46. The spectrum con-
sists of a single progression in the out-of-plane bending
(umbrella) mode ν2 of the Ã state. The origin band is
labeled as 00

0 and the members of the progression as 2n
0,

indicating that the electronic transition originates in the
vibrational ground state of the X̃ state of ammonia and
ends in the v2 = n vibrationally excited level of the Ã state.
The weak band observed at lower wave numbers than the
origin band is the hot band 20

1. The very long progression,
extending beyond n = 15, is characteristic of a large change
in equilibrium geometry between the two electronic states
involved in the transition.

The simplest way to understand the fact that transitions to
both even and odd vibrational levels are observed without
noticeable intensity alternations between even and odd
levels is to evaluate the selection rules in the C3v point
group (see top left part of Table 16). In this group, the
electronic transition is allowed, and the umbrella mode is
totally symmetric, so that the vibrational selection rule and
intensity distribution can be described by the vibrational
selection rule (177) and the Franck–Condon factors given
by equation (174), respectively.

The vibrational intensity distribution can also be expla-
ined in the D3h point group. However, in this group, the
umbrella mode ν2 is not totally symmetric, but of a′′

2
symmetry. Consequently, one would predict on the basis
of equation (176) that the vibrational bands corresponding
to odd values of the vibrational quantum number v2 of the
umbrella mode should be missing in an absorption spectrum
from the ground vibrational level. The reason transitions to
vibrational levels with odd values of v2 are observed is
that they originate from the upper tunneling component of
the ground state that has A′′

2 vibronic symmetry (and thus
may be regarded as the first excited vibrational level of the
ground state). Transitions to vibrational levels with even
values of v2 originate from the lower tunneling component
of the ground state, which has A′

1 symmetry. The two
tunneling components are almost equally populated under
the experimental conditions used to record the spectrum
displayed in Figure 46, so that no intensity alternations in
the ν2 progression are observed.

This example also served the purpose of illustrating some
of the difficulties one encounters in interpreting electronic
states with equilibrium structures corresponding to different
point groups.
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3.4.2 Electronically Forbidden but Vibronically
Allowed Transitions—An Example

Electronically forbidden transitions may gain intensity from
allowed transitions through vibronic coupling mediated by
a nontotally symmetric mode (the Herzberg–Teller effect),
as discussed above.

A prototypical example of this situation is the electron-
ically forbidden Ã 1B2u ← X̃ 1A1g transition of benzene
(C6H6). This transition is also referred to as the S1 ← S0

transition, according to the nomenclature introduced in
Section 2.3.1. The excited electronic state arises from the
electronic configuration (a2u)

2(e1g)
3(e2u)

1 (showing the π

molecular orbitals only). The direct product of the irre-
ducible representations of the partially occupied orbitals
is e1g ⊗ e2u = b1u ⊕ b2u ⊕ e1u, giving rise to the electronic
states 3B1u, 1B1u, 3B2u, 1B2u, 3E1u, and 1E1u. In both the
Ã 1B2u state and the X̃ 1A1g state, the benzene molecule has
D6h point-group symmetry. The dipole-moment operator
transforms as A2u⊕E1u and thus the only allowed elec-
tronic transitions originating from the ground electronic
state end in states of electronic symmetry A2u or E1u.
The Ã 1B2u ← X̃ 1A1g transition in benzene is thus for-
bidden, while the C̃ 1E1u ← X̃ 1A1g transition is allowed
(see Table 13). However, vibrational modes of symmetry
b2u ⊗ e1u = e2g induce vibronic coupling between the Ã
and C̃ electronic states.
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Figure 47 Low-resolution absorption spectrum of benzene in
the 38 000–42 000 cm−1region (data from Etzkorn et al. 1999).
The transitions labeled 1n

061
0 originate in the vibrational ground

state of the X̃ 1A1g state and end in the (v1 = n, v6 = 1)
vibrational states of the Ã 1B2u electronically excited state. The
origin of the band (marked as 00

0) does not carry intensity. The
vibronically allowed hot band 60

1 is observed below the origin
band.

Figure 47 shows a low-resolution overview spectrum of
benzene in the region of 37 000–42 000 cm−1, which was
first analyzed by Callomon et al. (1966). The spectrum is
dominated by a strong regular progression of absorption
bands connecting the ground vibrational level of the X̃ state
to vibrationally excited levels of the Ã state. The nomen-
clature 1n

061
0 indicates that the lower level of the transition

has the quantum numbers v1 = v6 = 0, i.e., both ν1 and
ν6 are unexcited, whereas the upper level of the transi-
tion has v1 = n and v6 = 1. The origin of the band system,
designated as 00

0, does not carry intensity, as expected for
an electronically forbidden transition. The ν1 and ν6 vibra-
tional modes have A1g and E2g symmetry, respectively,
in both electronic states. The vibronic symmetry of the
upper levels of the observed transition is thus �e ⊗ �v =
b2u ⊗ [

a1g
]n ⊗ e2g = e1u, which can be accessed from the

ground vibronic state through the E1u component of the
electric-dipole-moment operator (Table 13).

All strong transitions in this band system end in v6 = 1
levels, which indicates that, among all vibrational modes
of benzene, ν6 is the mode primarily involved in mediating
the vibronic interaction. Below the origin of the band, the
weak transition labeled as 60

1 originates from the thermally
populated v6 = 1 vibrationally excited level of the ground
electronic state and ends in the vibrational ground state of
the Ã 1B2u state. Such a transition is a hot band and is not
observed when the vibrational temperature of the molecule
is sufficiently low. One should note that the 61

0 band is
vibronically allowed, which explains why it is observed,
whereas transitions from other thermally populated excited
vibrational levels of the ground state are not detected.

3.4.3 Electronic Transitions and the Jahn–Teller
Effect

The distortions of molecular structures that result from
the JT effect have a profound impact on the vibrational
structure and intensity distribution of electronic spectra.
The reduction of molecular symmetry that follows from
JT distortions leads to the observation of dense manifolds
of vibronic transitions, and the observation of vibrational
progressions in certain modes usually indicates that these
modes are JT active. In cases where the JT effect is accom-
panied by large-amplitude motions, such as pseudorotations
along the potential troughs as shown in Figures 30 and 31,
progressions in low-frequency modes with irregular spac-
ings are observed, the interpretation of which often requires
extensive modeling. Rather than providing an exhaustive
treatment of the possible cases, we only present here two
examples, involving C5H5 and C5H5

+, without providing
any detailed and comprehensive treatment, with the primary
goal to draw the attention to the fact that electronic spec-
tra of molecules subject to the JT effect are very complex
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Figure 48 (A) Experimental emission spectrum of the
Ã 2A′′

2, 111 → X̃ 2E′′
1 transition of C5H5. (D) Calculated

spectrum of Jahn–Teller-active modes using the Jahn–Teller
parameters derived from ab initio calculations. The assignment
bars above the spectrum indicate the |j, nj 〉 assignment of each
feature in the spectrum. (E) Simulated spectrum of Jahn–Teller
active modes using the Jahn–Teller parameters as determined
from fitting the experimental spectrum. (F) Simulated emission
spectrum. [Reproduced from Applegate et al. (2001a). 
American Institute of Physics, 2001.]

and thus particularly interesting. We refer to Section 2.3.6,
Köppel et al. 2011: Theory of the Jahn–Teller Effect, this
handbook and also to the bibliography, for more compre-
hensive and exhaustive treatments of the JT effect.

The JT effect in the X̃ 2E′′
1 state of C5H5 is discussed

in Section 2.3.6. The X̃ 2E′′
1 state of C5H5 has been

characterized experimentally through the measurement of
the laser-induced dispersed fluorescence from the first
excited electronic state Ã 2A′′

2 back to the ground state
(Applegate et al. 2001a,b). The emission spectrum from
the Ã 111 state is shown in Figure 48. The vibrational
mode ν11 is of e′

2 symmetry and linearly JT active. The
emission spectrum is dominated by two progressions that
are labeled by the axes on top of the figure. The quantum
number j represents the total vibronic angular momentum
and nj represents the harmonic oscillator quantum number.
In the electronically nondegenerate Ã state, the vibronic
and vibrational angular momentum quantum numbers are
identical (j = �) and, consequently, integer numbers. In the
doubly degenerate X̃ state, � is no longer a good quantum
number and each vibronic level with � ≥ 1 splits into two
levels with j = |�| ± 1/2. Since the mode ν11 is degenerate,

it possesses a vibrational angular momentum |�| = 1, and
thus the Ã 111 state can fluoresce back to both j = 1/2
and j = 3/2 states. The complexity of the spectrum in
Figure 48 is typical of electronic transitions in molecules
subject to the JT effect. The irregular spacings of vibronic
levels in the ground electronic state of C5H5 and the high
density of vibronic levels at low energies are characteristic
of a strong multimode JT effect. The assignment of the
spectra often requires extensive theoretical modeling and
many measurements exploiting the excitation of selected
vibronic levels. The reader is referred to Applegate et al.
(2001a,b) and to the reading list at the end of the article
for further information.

The pseudo-JT effect in the ã+ 1E′
2 state of C5H5

+ is
discussed in Section 2.3.6. The ã+ 1E′

2 state of C5H5
+ has

been characterized by pulsed-field-ionization zero-kinetic
energy (PFI-ZEKE) spectroscopy following resonance-
enhanced two-photon excitation through selected vibra-
tional levels of the Ã state of C5H5 (Wörner and Merkt
2006, Wörner and Merkt 2007, Wörner and Merkt 2009).
The pseudo-JT effect in the ã+ 2E′

1 is very strong, leading to
a stabilization by about 4000 cm−1. Moreover, the absence
of significant quadratic coupling results in a vibronic struc-
ture that is close to the limit of a free pseudorotational
motion. This limit corresponds to an unhindered large-
amplitude motion along the minimum of the trough of
the lowest potential energy surface displayed in Figure 31.
The corresponding vibronic progressions are labeled along
the assignment bars at the top of Figure 49. In contrast
to the JT effect in C5H5, which is characterized by half-
integer vibronic angular momentum quantum numbers j

(Figure 48), the pseudo-JT effect in C5H5
+ is associated

with integer quantum numbers. The lowest progression
(u = 0) shows the simple appearance expected for the case
of free pseudorotation, i.e., vibronic level positions follow-
ing a quadratic dependence on their vibronic quantum num-
ber, i.e., E ∝ j 2. At higher energies, the vibronic structure
becomes very complicated because three vibrational modes
of e′

2 symmetry are involved in the pseudo-JT effect. The
alternation in the intensities of the three lowest vibronic lev-
els observed following excitation through different interme-
diate states is reproduced by a simple vibronic coupling cal-
culation (shown as stick spectra in Figure 49) assuming that
the intensity of the forbidden ã+ ← Ã photoionization tran-
sition is borrowed from the allowed ((a′′

2)1(e′′
1)

3) 1E′
1 ← Ã

state through a Herzberg–Teller effect (see Wörner and
Merkt 2007, Wörner and Merkt 2009, for more details).

3.4.4 Electronic Excitations in Complex Molecules:
The Exciton Model

Large polyatomic molecules typically have a low point-
group symmetry and, therefore, selection rules provide
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Figure 49 PFI-ZEKE photoelectron spectra of C5H5 recorded
following two-photon resonant excitation to the lower component
of the ã+ 1E′

2 state via selected vibrational levels of the Ã 2A′′
2

state. The intermediate level is indicated on the right-hand side
above the spectra. The spectra are compared to calculations
(vertical stick spectra) of the vibronic structure including the
modes ν10, ν11, and ν12 in C5H5

+. The bands marked with an
asterisk coincide with lines of the precursor C5H6. [Adapted from
Wörner and Merkt (2007).]

much less qualitative understanding of their electronic
spectra than is the case for highly symmetric molecules.
In large polyatomic molecules, electronic transitions are
often localized to certain groups of atoms, also called
chromophores. This property is widely used in analyti-
cal chemistry to identify functional groups of molecules
through their ultraviolet absorption spectrum (see, for
instance, Skoog et al. 2000). The corresponding transitions
are labeled according to the type of orbitals involved in
the transitions, as discussed in Section 2.3.1. The alde-
hyde group –CHO is an example of a chromophore
that possesses a weak absorption around 280 nm, corre-
sponding to a π∗ → n promotion. Benzene rings show
weak absorptions close to 260 nm corresponding to π →
π∗ excitations, as discussed in Section 3.4.2. Molecules
containing C=C double bonds show intense absorption
features in the region around 180 nm, just as ethylene
itself.

In larger molecules possessing several chromophores,
electronic excitations rarely occur independently but the
chromophores are often coupled to each other. In the case

C2(a)

(b)

(c)

Figure 50 Geometric structures of diphenylmethane possessing
C2 (a), Cs (b), and C2v (c) point-group symmetries, respectively.
Structure (a) corresponds to the geometry of the global minimum
of the ground electronic state potential energy surface. Structures
(b) and (c) correspond to saddle points of this surface (Stearns
et al. 2008). The principal axis system of structure (c) has the b

axis along the C2 symmetry axis, the c axis pointing out of the
plane of the page, and the a axis parallel to the line connecting
the centers of mass of the two chromophores.

of several identical chromophores, the coupling can lead to
the splitting of otherwise degenerate electronic transitions.
In general, the coupling can also lead to energy transfer
between different chromophores. In all these cases, the
electronic spectrum can be qualitatively understood from
the interaction of several localized excitations, which are
referred to as excitons (Coffman and McClure 1958).
Diphenylmethane, depicted in Figure 50, is a prototypical
molecule with two nearly degenerate interacting aromatic
chromophores (Stearns et al. 2008). The π − π∗ excitations
occur in the phenyl rings and interact with each other.
Diphenylmethane has a C2 equilibrium structure with the
phenyl rings at dihedral angles of approximately 60◦

with respect to the plane bisecting the methylene C–H
bonds. Labeling the two chromophores A and B, one can
define zero-order states |A∗B〉, E0

A∗B and |AB∗〉, E0
AB∗

corresponding to excited states with electronic excitation
localized on a single chromophore. The inclusion of the
coupling V between the two states leads to the exciton
states with spectral positions given by the eigenvalues of
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the 2 × 2 matrix with diagonal elements E0
A∗B and E0

AB∗
and off-diagonal elements V

E± = E0
A∗B + E0

AB∗

2

±
√

(E0
A∗B +E0

AB∗)2 − 4E0
A∗BE0

AB∗ + 4V 2

2
(209)

and wave functions:

Ψ + =c1|A∗B〉+c2|AB∗〉 and Ψ − = c2|A∗B〉−c1|AB∗〉
(210)

In the limiting case of degenerate zero-order states (E0
A∗B =

E0
AB∗ = E0), equations (209) and (210) become

Ψ ± = 1√
2

(|A∗B〉 ± |AB∗〉) , E± = E0 ± V (211)

The magnitude and sign of the interaction between the
two states depend on the distance between the chro-
mophores and the relative orientation of their transition
dipole moments. The dominant interactions are electro-
static. When the separation between the chromophores is
large compared to the extension of the orbitals, only the
long-range dipole–dipole electrostatic interaction usually
needs to be considered. The electronic excitation of one
of the chromophores induces a polarization of the orbitals
of the other that can be described by a local transition
dipole moment on either of the chromophores. The inter-
action of the two dipole moments is then described by the
dipole–dipole interaction:

V (θ a, θb, φ)= µaµb

4πε0R3
(2 cos θ a cos θb+sin θ a sin θb cos φ)

(212)
where θ a,b are the angles between the transition dipoles of
the two chromophore and the axis connecting them, φ is
the dihedral angle between them, and µa,b are the mag-
nitudes of the two transition dipole moments. Figure 50
shows three different geometric configurations of diphenyl-
methane with point-group symmetries C2 (a), Cs (b), and
C2v (c). On the potential energy surface of the ground
electronic state, structure (a) corresponds to the global
minimum that possesses two energetically equivalent enan-
tiomeric forms, whereas (b) and (c) are saddle points. To
anticipate the manifestations of electronic excitation in this
molecule, we apply equation (212) to these structures. In
the C2v-symmetric structure (c), the interaction between
the transition dipole moments is maximized and the elec-
tronic excitation delocalized over the two rings. In the
Cs-symmetric structure, the transition dipole moments are
perpendicular to each other and V = 0, leading to localized
electronic excitations.

The analysis of the electronic spectra of a diphenyl-
methane crystal at low temperatures (Coffman and McClure
1958, McClure 1958) revealed a weak absorption band
145 cm−1 above the origin of the first absorption band,
which was attributed to the upper member of the exci-
ton pair. An excited-state geometry of C2 symmetry was
inferred with a very similar geometry to that of the ground
electronic state. In a delocalized excited system with C2

symmetry, one exciton state has a transition dipole paral-
lel to the C2 axis and therefore has A symmetry, whereas
the other has a transition dipole perpendicular to the C2

axis and B symmetry. McClure 1958 thus concluded from
equation (212) that the sequence of excitons was A below
B in diphenylmethane crystals, where A and B refer to
the symmetry of the transition dipole in the C2 point
group.

The electronic transitions to these two electronic states,
also labeled S1 and S2, were recently investigated by rota-
tionally resolved laser-induced fluorescence spectroscopy
in the unperturbed environment of a molecular jet (Stearns
et al. 2008). The origins of the S1 ← S0 and S2 ← S0

transitions in (doubly deuterated) diphenylmethane-d1,2 are
shown in Figure 51(a) and (b), respectively. The rota-
tional analysis of the S1 ← S0 transition of diphenyl-
methane and diphenylmethane-d1,2 shows that a-type and
c-type Q branch transitions dominate the spectrum, which
establishes the S1 state as the delocalized antisymmet-
ric combination of the two chromophore excitations (the
principal axes a, b, and c are defined in the caption of
the figure). The origin of the S2 ← S0 transition, which
appears shifted toward higher wave numbers by +123 cm−1

in diphenylmethane and +116 cm−1 in diphenylmethane-
d1,2, displays b-type Q branch transitions and lacks the
a-type Q branch features present in the S1 ← S0 tran-
sition. This observation demonstrates that the transition
dipole moment giving rise to the upper excitonic state
is parallel to the C2 axis, which further implies that the
S2 state corresponds to the symmetric combination of the
two excitations. However, a complete rotational analysis
of the S2 ← S0 transition was not possible because the
vibronic coupling between the S2 and S1 states strongly
perturbs the spectra. This example shows that rotation-
ally resolved electronic spectroscopy is possible in large
molecules, and that it can provide insight into electronic
excitations of complex systems. Further examples of rota-
tionally resolved electronic spectra of large molecules
are discussed in Pratt 2011a: Electronic Spectroscopy in
the Gas Phase and Schmitt and Meerts 2011: Rotation-
ally Resolved Electronic Spectroscopy and Automatic
Assignment Techniques using Evolutionary Algorithms,
this handbook.
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Figure 51 Rotationally resolved fluorescence excitation spectra of the S1 ←S0 (a) and S2 ←S0 (b) origin bands of diphenylmethane-
d1,2. The top panel in (a) shows the observed spectrum and the residuals (Res) from a fit of the rotational structure. The lower panel
in (a) shows the central part of the spectrum and the residuals from a fit to a- and c-type transitions on an increased scale. [Adapted
from Stearns et al. (2008).]

3.5 Nonradiative Transitions

Electronically excited states of molecules can decay by
fluorescence to lower lying states. This process is gov-
erned by the same selection rules as photoexcitation. The
excited states can also undergo nonradiative transitions,
which can have profound effects on the intensity distri-
bution of electronic spectra. Nonradiative decay of an elec-
tronic state of an atom can only be observed above the
lowest ionization threshold and leads to the emission of an
electron. This process is termed autoionization (or preion-
ization (Herzberg 1991)) and is illustrated schematically
in Figure 52. Molecules can also decay through predis-
sociation, if the electronic state lies above at least one
dissociation threshold. Autoionization and predissociation
are usually much faster than radiative decay and con-
tribute to broaden absorption lines in electronic spectra
by reducing the lifetime of the electronically excited state.
In most molecular systems, several effects are in competi-
tion. Considering an isolated level (or, more correctly, an
isolated resonance) of an electronic state that can decay
through a nonradiative process, its linewidth � is propor-
tional to its inverse lifetime τ−1 and, if further sources

Continuum

^
V|1〉

Figure 52 Generic illustration of the occurrence of a resonance
in autoionization or predissociation: an electronic level |1〉 is
coupled to a (electronic or dissociative) continuum. The coupling
is described by an interaction operator V̂ .

of decay (such as internal conversion, intersystem cross-
ings, intramolecular energy redistribution, see below) are
ignored, can be expressed as the sum of the autoion-
ization �a, predissociation �p, and radiative �r decay
widths:
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� = �a + �p + �r (213)

3.5.1 Autoionization

When an atom or a molecule is excited above its lowest
ionization threshold, it can ionize either directly if excita-
tion takes place to an ionization continuum or it can reach
an excited state that decays subsequently by autoionization
(i.e., an autoionization resonance). In this case, the elec-
tron is ejected by exchanging energy with the ionic core.
Autoionization is classified according to the type of energy
that is exchanged between the core and the electron as
electronic, rotational, vibrational, spin–orbit, and hyperfine
autoionization. The process of autoionization is discussed
in detail by Pratt (2011b): High-resolution Valence-shell
Photoionization, this handbook and its treatment by mul-
tichannel quantum defect theory by Jungen (2011a): Ele-
ments of Quantum Defect Theory, this handbook.

Autoionization occurs because the resonance that is pop-
ulated is not an eigenstate of the molecular system. Usually,
a resonance can decay to different final states of the molecu-
lar cation. Whereas the linewidth only provides information
on the total decay rate, a measurement of the photoelectron
kinetic energy distribution can provide information on the
product states of the ion. It is useful to define a “partial
linewidth” for the decay of an initial state characterized by
the electronic, vibrational, and rotational quantum numbers
α, J, v to a final state of the molecular cation with the quan-
tum numbers α+, J+, v+ and a photoelectron of energy ε.
Defining the interaction matrix element between the dis-
crete level |1〉 and the continuum to which it is coupled
as H1,α,J,v;2,ε,α+,J+,v+ , the partial autoionization width can
be estimated with the formula (Lefebvre-Brion and Field
2004):

Γ 1,α,J,v;2,ε,J+,v+ = 2π
∣∣H1,α,J,v;2,ε,J+,v+

∣∣2 (214)

In the case of an autoionizing Rydberg state with effec-
tive principal quantum number n∗, the electronic part I

of the matrix element H1;2 between the bound state and
the continuum varies slowly with energy and the partial
autoionization width becomes

Γ n,v;ε,v+ = 2π
2RM

(n∗)3
I 2〈v|v+〉2 (215)

where RM is the Rydberg constant. Autoionization proceeds
through an exchange of energy between the Rydberg elec-
tron and the ionic core and, therefore, its probability is
proportional to the Rydberg electron density in the region
of the ionic core (∝ n−3; see Section 2.1.6). The conceptu-
ally simplest case is that of purely electronic autoionization.
Rydberg levels converging to an electronically excited level
of the cation decay into the continuum of a lower lying

electronic state. The total electronic symmetry of the ion
core–electron system must be the same for the discrete
level and the continuum. An example is given by the nsσg
1u Rydberg series converging to the A 2u state of N2

+,
which lies ∼9000 cm−1 above the X 2	+

g ground state of
N2

+. The levels with n ≥ 5 are located above the ioniza-
tion threshold and can decay into the εpπu

1u continuum
associated with the ground electronic state. In general, this
type of electronic autoionization is allowed when the two
states (quasibound and continuum) are derived from con-
figurations that differ in the occupation of at most two
orbitals, because the interaction is mediated by electrostatic
interactions between electron pairs, and is proportional to
1/rij . Electronic autoionization is thus an example of pro-
cesses that cannot be explained within the Hartree–Fock
approximation.

Rotational autoionization has been studied in greatest
details in the H2 molecule (Herzberg and Jungen 1972, Jun-
gen and Dill 1980). As an example, we consider the np-
Rydberg states converging to the N+ = 0 and N+ = 2
thresholds of the vibronic ground state of H2

+. The low-
est lying members of these Rydberg series (n ≤ 9) are
best described in Hund’s case (b) and have either 1	+

u
or 1u symmetry. Their energetic positions are given by
equation (58), where the quantum defect is µσ for 1	+

u lev-
els and µπ for 1u levels. Higher lying Rydberg states are
better described in Hund’s case (d) (see Section 2.1.6). The
autoionization width for the decay of a high Rydberg state
of principal quantum number n converging to the threshold
N+ = 2 into the continuum of N+ = 0 is given by

Γ n,J = 2π
2RM

(n∗)3

J (J + 1)

(2J + 1)2

(
µπ − µσ

)2
(216)

where µπ and µσ are the quantum defects and J is the total
angular momentum quantum number of the autoionizing
level (Herzberg and Jungen 1972, Jungen and Dill 1980).
The rate of rotational autoionization is thus seen to be
related to the energy splitting between 	 and  states that
originates from the nonspherical nature of the ionic core
or, equivalently, from the interaction between the Rydberg
electron and the electric quadrupole of the ionic core.

Vibrational autoionization occurs when a Rydberg state
converging to a vibrationally excited level of the cation
decays into the continuum of a lower lying vibrational state.
The interaction is mediated by the nuclear kinetic energy
operator. The potential energy curve of a Rydberg state with
electronic angular momentum projection quantum number
Λ, Vn,Λ(R), is not strictly parallel to that of the molecular
cation V +(R), which leads to a weak R-dependence of the
quantum defect µλ(R) according to

VnΛ(R) = V +(R) − RM

(n − µλ(R))2
(217)
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Defining n∗ = n − µλ,(R=Re+) and keeping only the linear
term of a Taylor expansion of µλ(R), one can express the
linewidth for vibrational autoionization of the level n, v+
into the continuum v+ − 1 as (Herzberg and Jungen 1972)

Γ n,v+−1 = 2π
2RM

(n∗)3

[
dµλ

dR

]2

〈φv+|R̂ − R+
e |φv+−1〉 (218)

In the harmonic approximation, the only nonzero matrix
elements of the (R̂ − Re

+) operator are ∆v = ±1, which
gives rise to a strong propensity rule in vibrational autoion-
ization (Berry 1966, Herzberg and Jungen 1972). In H2, the
width for ∆v = −2 autoionization is typically two orders
of magnitude smaller than for ∆v = −1 (Lefebvre-Brion
and Field 2004).

Spin–orbit autoionization affects Rydberg levels lying
between different multiplet components of the cation. The
best known example are the rare-gas atoms Rg = Ne, Ar,
Kr, and Xe (see, e.g., Beutler 1935, Lu 1971, Wörner
et al. 2005 and also Figures 36 and 37). Rydberg levels
converging to the 2P1/2 level of the Rg+ ion can decay into
the continuum associated with the 2P3/2 level. Spin–orbit
autoionization also occurs in molecules, for example, in O2.
Rydberg states converging to the 23/2 upper spin–orbit
component of the X+ ground state of O2

+ can decay into
the continuum associated with the 21/2 lower spin–orbit
component. As an example, we consider the (pπ)(nsσ)
31 and 11 Rydberg series converging to the X+ 2

state of O2
+. The lowest members of these series are

best described in Hund’s case (a) because the exchange
interaction is much larger than the spin–orbit interaction in
the cation (see analogous discussion for the rare-gas atoms
in Section 3.2.2). Therefore, their energetic position follows
the Rydberg formula (equation 58) with quantum defects
µ3 and µ1 for the 31 and 11 levels, respectively. The
autoionization linewidth of the Rydberg levels converging
to the X+ 23/2 substate into the continuum of the X+
21/2 substate is given by (Lefebvre-Brion and Field 2004)

Γ n = 2π
2R

(n∗)3

(
µ3 − µ1

2

)2

(219)

Consequently, spin–orbit autoionization can be considered
to be a consequence of the nondegeneracy of singlet and
triplet levels that is caused by the exchange interaction.

Hyperfine autoionization has been discussed only very
recently (Wörner et al. 2005) because it can only be
observed at very high spectral resolution and in very high
Rydberg states. It occurs when Rydberg levels converging
to an excited hyperfine-structure component of an ionic
fine-structure level decay into the continuum associated
with a lower-lying hyperfine component of the same fine-
structure level. The simplest case is the decay of np-
Rydberg levels converging to the F+ = 0 level of the

2S1/2 ground state of 3He+ (with nuclear spin I = 1/2)
into the continuum of the lower lying F+ = 1 level. The
hyperfine autoionization linewidth can also be estimated
with equation (219) where µ3 and µ1 are the quantum
defects in LS coupling of the 3P1 and 1P1 Rydberg series
of He, respectively. The hyperfine interval of the 2S1/2

state of 3He+ amounts to only 0.2888 cm−1 (Fortson et al.
1966), setting a lower limit of n ≈620 for the lowest level
that can decay by hyperfine autoionization. In the heavier
rare-gas atoms, e.g., 83Kr, 129Xe, and 131Xe, hyperfine
autoionization rates have been predicted by calculations
(Wörner et al. 2005, Paul et al. 2009).

The discussion so far was based on the implicit assump-
tion of Lorentzian line shapes, which are observed when
photoexcitation populates exclusively the resonance and
direct ionization is forbidden (Figure 5b of Merkt et al.
2011: High-resolution Photoelectron Spectroscopy, this
handbook). In most atomic and molecular systems, the
selection rules allow both the excitation of the quasibound
state and the continuum. Two pathways to the same final
state exist, which results in interference phenomena and
in deviations of the observed line shapes from Lorentzian
profiles (Fano 1961). In the case of an isolated resonance
interacting with one continuum, the line shape is described
by the Beutler–Fano formula: (Fano 1961)

σa = σd + σi
(q + ε)2

1 + ε2
(220)

where σd represents the cross section for direct excitation
of the continuum and σi that for the excitation of the
quasibound state. The lineshape is characterized by the
parameters ε = (E − Er)/(Γ /2), where Er and Γ are the
energy and width of the resonance state, and q characterizes
the interaction between the bound state and the continuum
(see Fano 1961). The limit q → ±∞ corresponds to a
Lorentzian line shape, whereas for q = 0, the resonance
appears as a local minimum in the cross section also called
a window resonance (Figure 5 of Merkt et al. 2011: High-
resolution Photoelectron Spectroscopy, this handbook).

The Beutler–Fano formula has been generalized to the
case of overlapping resonances by Mies (1968) and to
the case of two interacting continua by Beswick and
Lefebvre (1975). In most systems, multiple overlapping
resonances interact with multiple continua. In such cases,
multichannel quantum defect theory (see Jungen 2011a:
Elements of Quantum Defect Theory, this handbook)
is required to achieve a quantitative understanding of the
spectral structures.

3.5.2 Predissociation

Predissociation is a process by which a nominally bound
vibrational level decays into atomic or molecular fragments
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through coupling to a dissociation continuum. Two different
types of predissociation have been characterized: predisso-
ciation by rotation and electronic predissociation.

Predissociation by rotation occurs for levels with J > 0
when the centrifugal energy �

2J (J + 1)/2µR2 added to the
potential energy curve is large enough to lead to the appear-
ance of quasibound levels. Such levels lie above the dis-
sociation threshold of their electronic state but are trapped
behind a centrifugal barrier (see also Schinke 2011: Pho-
todissociation Dynamics of Polyatomic Molecules: Dif-
fuse Structures and Nonadiabatic Coupling, this hand-
book).

Electronic predissociation occurs when a bound vibra-
tional level of an electronically excited state decays by
coupling to the dissociation continuum of another electronic
state. The potential energy curves of the two electronic
states do not necessarily have to cross.

The mixing of a bound state Ψ 1,α,v,J with a state in a
dissociation continuum Ψ 2,α,E,J is described by the matrix
element:

Hv,J ;E,J = 〈Ψ 1,α,v,J |V |Ψ 2,α,E,J 〉
= 〈φ1(r, R)χv,J (R)|H |φ2(r, R)χE,J (R)〉 (221)

where r and φ are the electronic coordinates and wave
functions, respectively, R and χ are the vibrational coordi-
nates and wave functions, respectively, and E is the kinetic
energy of the free nuclei in the continuum. The contin-
uum states are taken to be energy normalized. Fano’s the-
ory of resonances shows how the discrete state amplitude
is mixed into the continuum eigenfunctions (Fano 1961).
When Hv,J ;E,J varies slowly with energy, the admixture
of the bound level into the continuum is a Lorentzian
function, with predissociation linewidth Γ E,α,v,J given
by

Γ E,α,v,J = 2π
∣∣Vv,J ;E,J

∣∣2 (222)

In diatomic molecules, if the electronic matrix element
Hv,J ;E,J varies slowly with the internuclear separation R,
the matrix element can be factorized into an electronic and
a vibrational part;

Hv,J ;E,J = 〈φ1(R, R)|V |φ2(R, R)〉〈χv,J (R)|χE,J (R)〉
(223)

in which case the predissociation linewidth can be
expressed as a product of an electronic and a vibrational
factor

Γ E,J = 2π |Ve|2 〈χv,J (R)|χE,J (R)〉2 (224)

3.5.3 Dynamics in Large Polyatomic Molecules

In addition to the decay mechanisms of predissociation and
autoionization discussed above, and which are the dominant
decay mechanisms in small molecules, large polyatomic
molecules can be subject to additional types of nonradia-
tive transitions. The different kinds of dynamics are often
described in terms of the so-called bright and dark states,
which can be regarded as “fictive” zero-order levels in the
absence of interactions between the levels. The bright state
can be populated by the absorption of a photon as illus-
trated in Figure 53 while the excitation to the dark states
is forbidden. When the interaction between bright and dark
states is considered, the dark state becomes optically acces-
sible. The Herzberg–Teller coupling mechanism discussed
in Section 3.4.2 may be described in these terms, the dark
state being the electronically forbidden but vibronically
allowed state.

Different types of couplings can be distinguished, such
as those associated with the phenomena known as intersys-
tem crossing (ISC), internal conversion (IC), and internal
vibrational redistribution (IVR). In a time-dependent pic-
ture, the molecule can be thought of as being first excited
to a bright state and subsequently evolving according to the
couplings to isoenergetic dark states. When only few states
are coupled, for instance, because the molecule is small
or it possesses a high symmetry, periodic motions occur,
leading to distinct structures in the absorption spectrum and
recurrence phenomena in time-domain experiments. If the
bright state is coupled to a dense manifold of dark states,

T1

S2

S1

S0

IC ISC

Bright state

Dark states
Ground state

Q

Figure 53 Schematic representation of the potential energy
surfaces of a polyatomic molecule as a function of a vibrational
coordinate Q of the molecule. The absorption of a photon excites
the molecule from the singlet electronic ground state S0 into a
bright state S2, which subsequently decays into a set of dark
states through IC (to another singlet state, S1) or through ISC
into a triplet state (T1).
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the long-time behavior mimics an irreversible decay. This
usually results in structureless absorption spectra (see also
the more detailed discussion in Merkt and Quack (2011):
Molecular Quantum Mechanics and Molecular Spectra,
Molecular Symmetry, and Interaction of Matter with
Radiation, this handbook).

ISC arises from the spin–orbit coupling between elec-
tronic states of different multiplicities. Typically, it occurs
between the vibrational levels of an excited singlet state
that are mixed with the dense manifold of vibronic lev-
els of a lower-lying triplet state. In diatomic molecules,
the singlet-triplet (spin–orbit) interaction matrix element
is easily decomposed into an electronic and a vibrational
overlap factor. The situation is more complex in polyatomic
molecules. The coupling between two electronic states of
similarly shaped potential energy surfaces decreases con-
tinuously with increasing energy separation (an effect often
refered to as the energy-gap rule). If the potential energy
surfaces differ significantly in shape, a small number of
“active” vibrational modes usually mediate the coupling
and the corresponding vibrational levels are called doorway
states. In this case, ISC becomes mode specific.

IC is a dynamical process that conserves the total spin
of the molecule (∆S = 0). In diatomic molecules, potential
energy functions of the same symmetry cannot cross (a
fact refered to as the noncrossing rule). In polyatomic
molecules, this rule no longer applies because certain
vibrational modes distort the molecule and change its point-
group symmetry. Two electronic states may thus have
different quantum numbers in a high-symmetry region but
the same quantum numbers in a region of lower symmetry,
leading to conical intersections. A special case of conical
intersections arises from the JT effect and is discussed in
Section 2.3.6 (see Figure 30).

IVR differs from ISC and IC in that it does not
result from the coupling of different electronic states.
It occurs between near-resonant vibrational levels of the
same electronic state by rovibrational interaction (Coriolis
interaction, Fermi interaction, and high-order anharmonic
interaction; see Albert et al. 2011: Fundamentals of Rota-
tion–Vibration Spectra, this handbook) and is also highly
specific to the molecule. The interactions can be ordered
by their relative strength. A bright state is typically only
strongly coupled to a relatively sparse group of dark levels,
sometimes refered to as the first tier of states as repre-
sented in Figure 54. These levels are also called doorway
states because they are usually coupled to a second denser
set of states, known as second tier. In a time-dependent
picture, the molecule can be thought of as being prepared
in the bright state through the absorption of a photon and
subsequently decays through the first tier into the second
tier of levels. IVR thus leads to a rapid redistribution of
the energy of the absorbed photon into vibrational degrees

Second
tier

First
tier

Bright
state

Figure 54 Schematic representation of the mechanism of inter-
nal vibrational redistribution. The level initially populated by pho-
toabsorption decays into a set of “first tier” states that are usually
strongly coupled to the bright state. The molecule subsequently
decays into a denser “second tier” of states.

of freedom of the molecule. IVR can also be studied by
high resolution spectrosopy; when the eigenstates can be
resolved very detailed information on the dynamics and the
hierarchy of interactions can be derived (see Albert et al.
2011: Fundamentals of Rotation–Vibration Spectra and
Merkt and Quack 2011: Molecular Quantum Mechan-
ics and Molecular Spectra, Molecular Symmetry, and
Interaction of Matter with Radiation, this handbook).
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ABBREVIATIONS AND ACRONYMS

HF-SCF Hartree–Fock self-consistent field
HMO Hückel molecular-orbital
IC internal conversion
ISC intersystem crossing
IVR internal vibrational redistribution
JT Jahn–Teller
LCAO linear combinations of atomic orbitals
LIF laser-induced fluorescence
PFI-ZEKE pulsed-field-ionization zero-kinetic energy
REMPI resonance-enhanced multiphoton ionization
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Köppel, H., Cederbaum, L.S., and Domcke, W. (1984) Strong
non-adiabatic effects in C2D4

+. Chemical Physics Letters,
110(5), 469–473.
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