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The detection of electron motion and electronic wave-packet dynamics is one of the core goals of attosecond
science. Recently, choosing the nitric oxide molecule as an example, we have introduced and demonstrated an
experimental approach to measure coupled valence electronic and rotational wave packets using high-order-
harmonic-generation (HHG) spectroscopy [Kraus et al., Phys. Rev. Lett. 111, 243005 (2013)]. A short outline
of the theory to describe the combination of the pump and HHG probe process was published together with
an extensive discussion of experimental results [Baykusheva et al., Faraday Discuss. 171, 113 (2014)]. The
comparison of theory and experiment showed good agreement on a quantitative level. Here, we present the
theory in detail, which is based on a generalized density-matrix approach that describes the pump process and
the subsequent probing of the wave packets by a semiclassical quantitative rescattering approach. An in-depth
analysis of the different Raman scattering contributions to the creation of the coupled rotational and electronic
spin-orbit wave packets is made. We present results for parallel and perpendicular linear polarizations of the
pump and probe laser pulses. Furthermore, an analysis of the combined rotational-electronic density matrix in
terms of irreducible components is presented that facilitates interpretation of the results.
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I. INTRODUCTION

Measuring and controlling electronic and nuclear motion
is one of the core interests of ultrafast atomic, molecular,
and optical physics. High-order-harmonic generation (HHG)
is a sensitive tool to measure the coherent rotational [1–9]
and vibrational [10,11] wave-packet dynamics [12] of a
prepared molecular ensemble. Although the detection of
coherent electronic wave packets through the HHG process
has been proposed in theory [13–21], it hitherto remained
experimentally unexplored. Several experiments have studied
the electronic dynamics by HHG spectroscopy [22–26], but
the effect of the electronic coherence has not been studied
so far. Recently, we demonstrated that the HHG process can
map out electronic coherences with high sensitivity [8]. The
basic principle of the detection process is a cross channel of
the HHG process that coherently connects different electronic
states [see Fig. 1(a)].

In our experiment [8], a supersonically cooled nitric oxide
(NO) molecular beam is first irradiated by an IR laser pulse,
which creates rotational wave packets by Raman scattering
and prepares the molecular ensemble in a superposition of
two electronic states: the F1 (�1/2 dominated) and F2 (�3/2

dominated) states. In a second step, the rotational and spin-
orbit electronic wave packets are probed by a short laser pulse
inducing the process of HHG. HHG spectra are recorded as a
function of the delay time between the two pulses. The total
HHG yield shows a strong dependence on the delay time.
In addition to the known traces of phasing of the rotational
wave packets of an impulsively aligned ensemble of molecules,
fast oscillations in the HHG yield are observed that reflect
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the electronic spin-orbit wave packet. This trace is inherently
connected to the electronic coherence of the wave packet.
Figure 1(a) illustrates the concept of the HHG from a coherent
superposition of two electronic states: the two left channels
depict the conventional HHG pathways—ionization from and
recombination to the same state (direct channels). In the case
of a fixed phase relation between the two electronic states—in
terms of an electronic density matrix this means a nonzero
off-diagonal matrix element—a cross channel contributes to
the HHG signal, which coherently connects ionization from
one and recombination to the other electronic state.

Several groups worked on theoretical frameworks to
describe the process of laser alignment and a subsequent
HHG probe process, based on a density-matrix formalism
of the rigid-rotor states [27–30] or S-matrix theory [31–33]
to describe the molecular rotational wave packets. In these
approaches, the HHG process is treated within the single-active
electron approximation and the strong-field approximation
[34], or the Keldysh-Faisal-Reiss approximation (KFR) [35].
The quantitative rescattering method (QRS) [36–38] is another
successful theory for both diatomic and polyatomic molecules
that expresses the HHG spectra as the product of a return-
ing electron wave packet and the photorecombination cross
section. These approaches, however, have not been developed
to describe the dynamics of a coupled rotational-electronic
coherent wave packet. Recently we extended these theories to
a combined electronic and rotational density-matrix approach
that allows one to study the new cross channel of the HHG
process [39]. Here, we give an in-depth derivation of this
generalized density-matrix formalism of HHG. We analyze
the density matrix in terms of irreducible tensor components
and also present more detailed calculations that underline
the importance of different Raman scattering terms in the
interaction Hamiltonian of the pump process.
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FIG. 1. (Color online) (a) Illustration of HHG starting from a coherent superposition of two electronic states: the first two pathways, HHG
from different electronic channels, happen independently (direct HHG channels); the other two pathways are connecting different electronic
states (cross channel HHG). These channels only contribute to a macroscopic signal when they are coherently connected. In the density-matrix
description it is the off-diagonal matrix element (the coherence) that determines the HHG signal. (b) Rotational level diagram of the two
electronic states F1 and F2 of NO.

The theoretical model, including a discussion of the
rotational level structure of NO, the description of the Raman
pump process and the approximation to determine the HHG
spectra are given in Sec. II, followed by a discussion of the
results in Sec. III. Finally, we will summarize the work in
Sec. IV. We opted for a self-consistent presentation of the
theory that necessarily leads to the introduction of some results
already presented in Refs. [8,39].

II. METHODS

A. Rotational structure of NO

The NO molecule possesses a degenerate 2� open shell
electronic ground state. Its field-free effective rotational
Hamiltonian is given by the sum of the kinetic energy
associated with the rotational motion of the molecule and the
spin-orbit interaction term [40,41]:

H0 = Hrot + Hso = B( J − L − S)2 + A(L · S) (1)

Here J = L + S + R denotes the total angular momentum of
the molecule, L is the total orbital angular momentum, S is the
total spin angular momentum, and R is the angular momentum
of the rotating nuclei. The ground-state rotational constant
and the spin-orbit coupling constant are B = 1.6961 cm−1

and A = 123.13 cm−1, respectively [42]. The projections of
L and S onto the internuclear axis are denoted by � and
�, respectively. � = �+� is defined as the projection of
J onto the internuclear axis. The Hamiltonian of Eq. (1) can
be easily diagonalized by first expressing it in the basis of
states of Hund’s coupling case (a) |J,|�|,M0,ε〉. Here M0

denotes the projection of the total angular momentum J
onto a laboratory fixed axis. We choose this axis along the
polarization direction of the pump-laser field, which creates
the rotational wave packets. ε = ±1 is a symmetry index,
related to the total rotational parity p [p = ε(−1)J−1/2] [40].
Diagonalization of the Hamiltonian of Eq. (1) in that basis then

yields the eigenvectors {|�JM0ε〉,� = 1,2} and eigenvalues
{E(�)

J ,� = 1,2} given by [43](|� = 1JM0ε〉
|� = 2JM0ε〉

)
=

(
aJ bJ

−bJ aJ

) (∣∣J, 1
2 ,M0,ε

〉∣∣J, 3
2 ,M0,ε

〉) (2)

and (
E

(1)
J

E
(2)
J

)
=

(
B[(J − 1/2)(J + 3/2) − XJ /2]

B[(J − 1/2)(J + 3/2) + XJ /2]

)
. (3)

The kets |J,�,M0,ε〉 are defined by

|J,�,M0,ε〉 = 1√
2

(|J,�,M0〉 + ε|J,−�,M0〉), (4)

and |J,�,M0〉 relates to the Wigner D matrix DJ
M0,�

as

〈ϕ,θ,χ |J,±�,M0〉 =
√

2J + 1

8π2
DJ

M0,±�
(ϕ,θ,χ ). (5)

Here we defined � = |�| = 1
2 , 3

2 , and (ϕ,θ,χ ) are the Euler
angles defining the orientation of the body-fixed frame or
molecular frame with respect to the laboratory frame [44].
The coefficients of aJ and bJ are given by aJ =

√
XJ +Y−2

2XJ

and bJ =
√

XJ −Y+2
2XJ

, where XJ =
√

4(J + 1/2)2 + Y (Y − 4)
and Y = A/B. Generally, the states characterized by Eq. (4)
are referred to as ��, alluding to the total angular momentum
projection � = |�| = 1

2 , 3
2 of the spin-orbit-coupled electronic

state. The eigenstates [described by Eqs. (2) and (3)] are
usually referred to as F1 and F2 states. Hund’s coupling case (a)
is valid for small angular momentum numbers J, or when the
condition BJ � A is satisfied. In that case aJ ∼ 1, bJ ∼ 0,
so that the lower F1 state is �1/2 dominated, and the upper F2

state is �3/2 dominated. The level diagram of the rotational
states for the two electronic states are shown in Fig. 1(b).
It should be noted that, generally, a linear molecule has only
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two rotational degrees of freedom. The dependence of Eq. (5)
on the Euler angle χ has the form of a mere phase factor e∓i�χ ,
and for an eigenstate, χ is usually fixed arbitrarily [43,44]. The
choice χ = 0 is conventionally made, so that the molecule’s
x axis lies in the plane spanned by that of the spaced-fixed Z

axis and the molecule’s z axis. For eigenstates this convention
has to be adopted for both rotational and electronic wave
functions. Since we are interested in combined rotational and
electronic wave packets, the angular momentum projections
on the molecular axis will generally not have a single value,
i.e., the molecular ensemble will be described by fractional
occupations of the � = 1/2 and � = 3/2 states. The shape
of the electronic density of such superposition will generally
not be symmetric under rotations around the molecular axis.
Therefore, it is necessary to keep the dependence on the angle
χ and, contrary to the usual treatment of eigenstates, do not set
it equal to zero. The density matrix, describing the combined
rotational-electronic wave packets will hence depend on the
angle χ , as discussed in the following sections.

B. The pump process: Impulsive laser alignment and creation
of electronic and rotational wave packets

The ensemble of molecules is prepared in a coherent su-
perposition of eigenstates {|�JM0ε〉,� = 1,2} by interaction
with an optical laser pulse. The combined rotational and
electronic spin-orbit wave packet is created by optical Raman
scattering—the process typically inducing impulsive field-
free alignment of the molecular ensemble—induced by the
linearly polarized pump-laser field ε1(t) = ε1(t) cos(ω0t )̂ε1 =
ε1,0e

−2 ln 2(t/τp)2
cos(ω0t )̂ε1, where ε̂1 is a unit vector parallel

to the polarization axis of the pump field. ε1,0 is the electric
field amplitude, which is in the range 0.029–0.041 a.u. in the
experiment, corresponding to experimental peak intensities in
the range of 3–6 × 1013 W/cm2, τp denotes the pulse duration
at full width at half maximum of the field intensity. In the
experiment, τp is estimated to be 60 fs. ω0 = 1.5 eV is the fun-
damental frequency of the pump field of 800 nm applied in the
experiment. The effective rotational Hamiltonian including the
coupling to the linearly polarized laser field can be written as

H1(t) = H0 + Hint(t), (6)

where H0 denotes the field-free Hamiltonian of Eq. (1). The
effective cycle-averaged field interaction Hamiltonian Hint(t)
is given in terms of the polarizability tensor α and reads
[39,40,45]

Hint(t) = −ε2
1(t)

4
ε̂1α̂ε1

= −ε2
1(t)

2

1√
6

{
D2

0,0(ϕ,θ,χ )T 2
0 (α)

+ [
D2

0,2(ϕ,θ,χ ) + D2
0,−2(ϕ,θ,χ )

]
T 2

2 (α)
}

= −ε2
1(t)

4

2

3
�α

{
D2

0,0(ϕ,θ,χ )

+ γ
[
D2

0,2(ϕ,θ,χ ) + D2
0,−2(ϕ,θ,χ )

]}
. (7)

Here, we expressed the effective interaction Hamiltonian in
terms of the Wigner D matrix, and the polarizability tensor in

terms of its irreducible tensor components T (α). The isotropic
interaction, proportional to the tensor T 0

0 (α) is excluded since
it only introduces an overall phase to the total wave function.
The matrix elements of the interaction Hamiltonian can be
easily calculated in the basis set {|J,�,M0,ε〉} (that strictly
speaking is not the eigenbasis of the stationary Hamiltonian
H0) and selection rules for the transition matrix elements
can be given. In the basis set {|J,�,M0,ε〉}, the interaction
proportional to the terms D2

0,0(ϕ,θ,χ ) and D2
0,±2(ϕ,θ,χ )

have only nonzero matrix elements for �� = 0 and
�� = ±2, respectively. The quadrupolar term proportional to
D2

0,0(ϕ,θ,χ )T 2
0 (α) [T 2

0 (α) = 1√
6
[2αzz − αxx − αyy]] therefore

predominantly excites higher angular momentum states J ,
i.e., a rotational wave packet, within the electronic subspace
� = 1 or � = 2. The selection rules for the transition
operator 〈J1,�1,M0,ε|D2

0,0|J2,�2,M0,ε〉 are �1 = �2 and
�J = J2 − J1 = 0,±1,±2. Since the representation of
the interaction Hamiltonian in terms of the eigenbasis
of H0 {|�JM0ε〉,� = 1,2} has a small contribution in
the off-diagonal block connecting states F1 and F2, D2

0,0
can induce transitions between different electronic states.
The quadrupolar interaction D2

0,±2(ϕ,θ,χ )T 2
2 (α) [T 2

2 (α) =
1
2 [(αxx − αyy) + 2iαxy]] is mainly responsible for creating
the electronic excitations. The selection rules for the
transition operator 〈J1,�1,M0,ε|D2

0,±2|J2,�2,M0,ε〉 are
�2 − �1 = ±2 and �J = J2 − J1 = 0,±1,±2. This means
that this interaction term mediates excitations to the other
electronic state along with excitations of a rotational wave
packet in the excited electronic state. The relative importance
of these two contributions D2

0,0 and D2
0,±2 will be discussed

in Sec. III. Here the components of the polarizability tensor
are defined in the molecular-fixed Cartesian frame. For the
NO molecule the values of the polarizabilities are given by
α|| = αzz = 15.34 a.u. and α⊥ = αxx = αyy = 9.715 a.u. [46].
�α = α|| − α⊥ = 5.625 a.u. is the difference between the
parallel and perpendicular components of the polarizability.
The parameter γ = 〈T 2

2 (α)/T 2
0 (α)〉 quantifies the intensity

ratio between electronic and purely rotational Raman
scattering and has been attributed to the empirical value 0.2
[40].

Initially the molecular ensemble is assumed to be in thermal
equilibrium and in the electronic ground state or F1 state.
According to the experimental conditions [8], we assume
an initial rotational temperature of about T = 10 K of the
molecular ensemble and that initially only the F1 state is
occupied, so that the initial density matrix is described by
a thermal, diagonal density matrix

ρ̂(t = 0) =
∑
J0M0

wJ0

∑
ε

1

2
|� = 1J0M0ε〉〈� = 1J0M0ε|, (8)

where wJ0 are the statistical weights according to a Boltzmann
distribution of the rotational degrees of freedom. Figure 2
gives the initial occupation of the density matrix for the case
T = 10 K. Only states up to Jmax = 19/2 are considerably
occupied, implying that Hund’s case (a) is an appropriate
description [47]. The density matrix at later times t can
be constructed in terms of states |ϕJ0M0 (t)〉, that follow the
evolution under the total Hamiltonian of Eq. (6) for an initial
condition |ϕJ0M0 (0)〉 = ∑

ε
1√
2
|� = 1J0M0ε〉. Note that the
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FIG. 2. (Color online) J state populations for states F1 and F2

before and after the alignment pulse with the inset of the temporal
populations for those two states.

quantum number M0 is conserved under the interaction with
the linearly polarized field. In practice, we can expand the
time-dependent rotational wave function |ϕJ0M0 (t)〉 in terms
of the eigenbasis {|�JM0ε〉,� = 1,2}:

|ϕJ0M0 (t)〉 =
∑
Jε

(
C

J0M0
F1

(Jε,t) 0

0 C
J0M0
F2

(Jε,t)

)

×
(|� = 1JM0ε〉

|� = 2JM0ε〉
)

. (9)

At later times the density matrix is then constructed by

ρ̂(t) =
∑
J0M0

wJ0 |ϕJ0M0 (t)〉〈ϕJ0M0 (t)|

=
∑
J0M0

wJ0

∑
Jε�,J ′ε′�′

C
J0M0
F�

(Jε,t)

×C
J0M0

∗
F�′ (J ′ε′,t)|�JM0ε〉〈�′J ′M0ε

′|. (10)

Here the structure of this density matrix should be noted. The
interaction with the laser pulse generally introduces transitions
between the electronic states, indicated by the presence of both
quantum numbers � and �′ in the expansion. By tracing the
density matrix over the purely rotational degrees of freedom,
one therefore can obtain a reduced electronic density matrix
ρ̂el(t), which describes the occupation and coherence between
spin-orbit states F1 and F2

ρ̂el(t) :=
∑
��′

∑
Jε,J ′ε′

〈�′J ′M0ε
′|ρ̂(t)|�JM0ε〉. (11)

The matrix representation of this reduced electronic density
matrix with respect to the quantum number � explicitly reads

ρ̂el
��′ (t) =

∑
J0M0

wJ0

∑
Jε,J ′ε′

C
J0M0
F�

(Jε,t)CJ0M0
∗

F�′ (J ′ε′,t). (12)

We define the degree of coherence between the two
electronic states of the reduced electronic density matrix as

C(t) =
∣∣ρ̂el

12(t)
∣∣√

ρ̂el
11(t)ρ̂el

22(t)
. (13)

On the other hand, tracing over the electronic quantum
number � will lead to the pure rotational density matrix of the
ensemble. An important object in our analysis is

ρ̂(ϕ,θ,χ,t) := 〈ϕ,θ,χ |ρ̂(t)|ϕ,θ,χ〉, (14)

which can be interpreted as the angular distribution of the
electronic density matrix. To analyze the angular dependence
of this object, we will express ρ̂(ϕ,θ,χ,t) in terms of
multipoles. The Wigner D functions fulfill the following
product rule, resulting from the group-addition theorem of
the rotation group:

〈ϕ,θ,χ |J1,�1,M0〉〈J2,�2,M0|ϕ,θ,χ〉

=
√

2J1 + 1
√

2J2 + 1

8π2
D

J1
M0,�1

(ϕ,θ,χ )DJ2
M0,�2

(ϕ,θ,χ )∗

= (−1)M0−�2

√
2J1 + 1

√
2J2 + 1

8π2
D

J1
M0,�1

(ϕ,θ,χ )

×D
J2
−M0,−�2

(ϕ,θ,χ )

= (−1)M0−�2

√
2J1 + 1

√
2J2 + 1

8π2

∑
K

C
J1,M0;J2,−M0
K,0

×C
J1,�1;J2,−�2
K,Q DK

0,Q(ϕ,θ,χ )δQ,�1−�2 , (15)

where C
J1,M1;J2,M2
J,M indicates the Clebsch-Gordan coefficients.

We therefore get the following irreducible representation of
the angular distribution of the electronic density matrix:

ρ̂(ϕ,θ,χ,t) = 〈ϕ,θ,χ |ρ̂(t)|ϕ,θ,χ〉
=

∑
J0M0

wJ0

∑
Jε�,J ′ε′�′

C
J0M0
F�

(Jε,t)CJ0M0
∗

F�′ (J ′ε′,t)

×〈ϕ,θ,χ |�JM0ε〉〈�′J ′M0ε
′|ϕ,θ,χ〉

=
∑
��′

∑
J0M0

wJ0

∑
KQ=−3,3

× [
f ��′

K,Q(J0M0,t)D
K
0,Q(ϕ,θ,χ ) + c.c.

]
=

∑
��′

∑
KQ=−3,3

f ��′
K,Q(t)DK

0,Q(ϕ,θ,χ ) + c.c.

=:
∑
��′

ρ̂��′ (ϕ,θ,χ,t). (16)

Here we give an expansion of the occupations of the angular
degrees of freedom in terms of matrix elements with respect
to the quantum numbers � and �′, which characterize the
electronic state. The object ρ̂��′ (ϕ,θ,χ,t) can therefore be
interpreted as the angular distribution of the reduced electronic
density matrix. The above expression has the structure of the
expansion of the density matrix in terms of irreducible tensor
operators, only that we limited the expression to the diagonal
terms of the rotational degrees of freedom. The coefficients
in such an expansion are then usually referred to the state
multipoles of the density matrix [48]. Here, the coefficients
f ��′

K,Q(t) can therefore be interpreted as the state multipoles
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of the “electronic” density matrix. f 11
K,Q(t) and f 22

K,Q(t)
therefore physically refer to the angular multipole-expansion
coefficients of the occupations of electronic states F1 and F2,
respectively. f 12

K,Q(t) and f 21
K,Q(t) describe the multipoles of

the electronic coherence between states F1 and F2. The values
for those generalized multipoles will be studied in the next
section. Note that under the experimental conditions the system
is not highly excited, i.e., aJ ∼ 1, bJ ∼ 0. In this case f 11

K,Q(t)
and f 22

K,Q(t) are dominated by the terms with Q = 0, while
f 12

K,Q(t) is dominated by the terms with Q = ±2. In the present
case, the contribution of K is restricted to even numbers,
since only alignment (that means no orientation) is achieved
by the interaction. Since DK=2

0,Q=0(ϕ,θ,χ ) = 1
2 (3 cos2θ − 1),

f 11
K=2,Q=0(t) and f 22

K=2,Q=0(t) are linearly related to the time-
dependent expectation value 〈cos2 θ〉 in the subspace of F1

and F2 states, respectively. As Eq. (16) also clearly shows, the
quantum number M0 is conserved under the interaction with
the linearly polarized field. This means that ρ̂(ϕ,θ,χ,t) does
not have a specific dependence on the angle ϕ. However, since
Q is, in general, not equal to zero, ρ̂(ϕ,θ,χ,t) depends not
only on the angle θ , but also on the angle χ .

In order to study the effect of the HHG probe pulse
under different direction of the polarization, a rotation of the
density matrix becomes necessary. Let us define R(α,β,γ )
the rotational operator inducing finite rotations by the Euler
angles (α,β,γ ) with respect to the laboratory frame; the rotated
angular distributions of the density matrix ρ̂R(α,β,γ )(ϕ,θ,χ,t)
can then be obtained by

ρ̂R(α,β,γ )(ϕ,θ,χ,t)

= 〈
ϕ,θ,χ |R†(α,β,γ )ρ̂(t)R(α,β,γ )|ϕ,θ,χ

〉
=

∑
��′

ρ̂
R(α,β,γ )
��′ (ϕ,θ,χ,t)

=
∑
��′

∑
KQ=−3,3

f ��′
K,Q(t)R(α,β,γ )DK

0,Q(ϕ,θ,χ ) + c.c. (17)

and

R(α,β,γ )DK
0,Q(ϕ,θ,χ ) =

∑
X

DK
X,Q(ϕ,θ,χ )DK

X,0(α,β,γ ).

(18)

C. The probe process: High-order-harmonic generation

In this section we describe the HHG of the delayed probe
pulse ε2(t − τ ) in the prepared molecular ensemble. The HHG
process is studied as a function of the delay time τ between the
pump and probe pulses, measured with respect to the peaks of
the field envelope. Since relatively slow wave-packet dynamics
is probed by the HHG pulse—the rotational wave packet has
a revival time of about 20 ps and the relatively slow spin-
orbit period is about 280 fs—the density matrix of Eq. (10),
describing the rotational and spin-orbit wave packets, will be
considered as frozen during the interaction with the probe
pulse, which has a duration of about 30 fs. For every time
delay τ , the density matrix ρ̂(τ ) therefore defines an initial
state for the HHG probe process. In order to study the HHG
process, the rigid-rotor density matrix of Eq. (10) has to be

extended to also include the electronic degrees of freedom

ρ̂ total(τ ; t) =
∑
J0M0

wJ0 |�J0M0 (τ ; t)〉〈�J0M0 (τ ; t)|. (19)

Here the wave function |�J0M0 (τ ; t)〉 denotes the extension
of the rotational wave function |ϕJ0M0 (t)〉 by the electronic
degrees of freedom. The rotational part of the wave function
is assumed to be constant during the HHG process; τ is hence
a parameter which defines the rotational and spin-orbit initial
states for the HHG probe process. The electronic degrees of
freedom are acting under the influence of the probe pulse. To
determine the temporal evolution of the density matrix under
the action of the HHG probe pulse, within the single-active-
electron approximation, we have to solve for the propagation
of the “initial” states |�J0M0 (τ ; t)〉 under the evolution of the
electronic Hamiltonian

i
∂

∂t
|�(τ ; t)〉 = [He − μ · ε2(t)]|�(τ ; t)〉, (20)

where He is the field-free Hamiltonian in the molecular frame,
including both electronic and rotational parts, and μ is the
electronic dipole operator. The probe field ε2(t) has a pulse
duration of ∼30 fs. The polarization axis of the probe pulse is
arbitrary and will be varied. In particular, we will study parallel
and orthogonal polarization directions of the pump ε1(t) and
the probe field ε2(t).

The typical values for the probe peak intensities are in
the range of 1.0−1.5 × 1014 W/cm2 [39]. At these intensities,
the bound state is gradually depleted due to the strong-field
ionization [30], but the main effect of depletion is to reduce
the overall intensity of high-order-harmonic emission [34].
Since we are not interested in the absolute intensities but
only in the time-dependent relative intensities we assume that
the electronic bound-state wave function |�J0M0 (τ ; t)〉 is not
depleted. Moreover, the probe field does not directly couple to
the rotational degrees of freedom [30]. Under these conditions,
we expand the rotational-electronic wave function in

|�J0M0 (τ ; t)〉
=

∑
Jε

ei(Ip+E
(1)
J )tC

J0M0
F1

(Jε,τ ) |F1; JM0ε〉

+
∑
Jε

ei(Ip+E
(2)
J +�E)tC

J0M0
F2

(Jε,τ )|F2; JM0ε〉

+ eiIpt
∑
JcMc

∫
d3kCc(�k,JcMc,t)|k; JcMc〉, (21)

where Ip = 9.26 eV is the ground-state ionization potential,
and δE = 0.015 eV is the energy difference between the two
lowest rotational states of each of the electronic states. Since
the rotational energies E

(�)
J and the energy difference δE

between these two states are much smaller than the ioniza-
tion potential Ip (E(�)

J ∼ 10−5Ip, δE ∼ 10−4Ip), it is a good
approximation to neglect both E

(�)
J and δE in Eq. (21). The

coefficients C
J0M0
F1

and C
J0M0
F2

are determined by the interaction
with the pump (alignment) pulse and we assume that these
coefficients are not modified during the probe-pulse interac-
tion; {|F�; JMε〉}(� = 1,2) denote the combined electronic-
rotational eigenstates, i.e., they include the electronic radial
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ZHANG, BAYKUSHEVA, KRAUS, WÖRNER, AND ROHRINGER PHYSICAL REVIEW A 91, 023421 (2015)

wave function, in contrast to {|�JMε〉}(� = 1,2) of Eq. (2),
which only contains the rotational degrees of freedom. The
superscript J0M0 indicates the “initial” electronic-rotational
wave function |F1; J0M0ε〉; |k; JcMc〉 = |k〉 ⊗ |JcMc〉, where
|k〉 denotes the electronic continuum states of asymptotic wave
vector k, and |JcMc〉 denotes the remaining rotational states of
the ionic core. The continuum coefficients Cc(k,JcMc,t) are
calculated within the strong-field approximation [34] and are
approximated by

Cc(k,JcMc,t) = i

∫ t

0
dt ′

∑
Jε�

C
J0M0
F�

(Jε,τ )

×〈k′; JcMc|μ · ε̂2(t ′)|F�; JM0ε〉e−iS(t,t ′).

(22)

Here S(t,t ′) = ∫ t

t ′ dt ′′{[k + A(t) − A(t ′′)]2
/2 + Ip} denotes

the part of the classical action of the continuum electron
acquired during the interaction with the probe laser pulse
between the moment of ionization at time t ′ and recollision
at time t , k′ = k + A(t) − A(t ′) is the electronic momentum
at the time of the recollision, and A(t) = − ∫ t

0 ε(t ′)dt ′ denotes
the vector potential of the electric field. As any approximation
to the full time-dependent many-body Schrödinger equation,
the strong-field approximation is not gauge invariant. Both
length gauge and velocity gauge have their respective merits
in different situations, and the length gauge is suggested as
a preferred gauge in describing molecular orientation effects
on the HHG [49]. We therefore employed the length gauge in
this work. Moreover, the use of the conventional strong-field
approach neglects the interaction of the continuum electron
with the short-range and Coulomb potentials of the molecular
cation [50]. We have therefore replaced the traditional plane-
wave-based recombination matrix elements of the strong-field
approximation with matrix elements calculated within a proper
description of the electron-cation scattering process [see
Eq. (34) below and Ref. [51]].

The emitted HHG spectrum of linear polarization along the
direction n̂ in the laboratory frame is then determined by the
expectation value of the electronic dipole μ along the direction
n̂. The dipole operator μ here refers to the molecular frame,
whereas n̂ is measured within the laboratory frame. Explicitly,
the dipole expectation value at time t , for a probe pulse of time
delay τ is given by

d(t,τ ) = tr[ρ̂ total(t)μ · n̂]

=
∑
J0M0

wJ0〈�J0M0 (τ ; t)|μ · n̂|�J0M0 (τ ; t)〉

=
∑
J0M0

wJ0

∑
Jε,JcMc�

C
J0M0

∗
F�

(Jε,τ )
∫

d3k

×Cc(k,JcMc,t)〈F�; JM0ε|μ · n̂|k; JcMc〉 + c.c.

(23)

The next step in the derivation of the final expression is to
insert the expansion of the continuum coefficients, and using
the closure relation [30]∑

JcMc

|JcMc〉〈JcMc| = 1 =
∫

dR̂|R̂〉〈R̂|, (24)

where {R̂} denotes the Euler angles (ϕ,θ,χ ) defined with
respect to the lab frame. We define |k; R̂〉 = |k〉 ⊗ |R̂〉. The
induced dipole is then given by

d(t,τ ) = i
∑
J0M0

wJ0

∫
dR̂

∑
Jε��′

C
J0M0

∗
F�

(Jε,τ )

×
∑
J ′ε′

C
J0M0
F�′ (J ′ε′,τ )

∫
d3k〈F�; JM0ε|μ · n̂|k; R̂〉

×
∫ t

0
dt ′〈k′; R̂|μ · ε̂2(t ′)|F�′ ; J ′M0ε

′〉e−iS(t,t ′) + c.c.

(25)

As discussed earlier, Hund’s case (a) is an appropriate
description for the system;1 the total molecular wave functions
can therefore be approximated by products of electronic
spin-orbit states (|F�〉, includes the angular and spin degrees
of freedom) and the rotational rigid-rotor wave functions as

|F�; JM0ε〉 = |F�〉 ⊗ |�JM0ε〉, (26)

where the electronic wave functions are given by [8]

|F1〉 = 1√
2

(|π+β〉 + |π−α〉),
(27)

|F2〉 = 1√
2

(|π+α〉 + |π−β〉).

Here |π±〉 = |πx〉 ± i|πy〉, and ± in the subscript stand for
the orbital angular momentum projection |� = ±1〉. |α〉/|β〉
stands for |� = ±1/2〉, respectively. πx and πy are two
degenerate components of the singly occupied π molecular
orbital of NO [8]. Note that the dependence of π+ and
π− on χ have the form e−iχ and eiχ , respectively [43].
Having introduced the separation of the rotational from the
electronic degrees of freedom, the expression for the dipole
expectation value can be simplified and is given as an integral
of a reduced rotational-electronic density matrix and a pure
electronic dipole expectation value:

d(t,τ ) 
∫

dR̂
∑
��′

ρ��′ (R̂,τ )D��′ (R̂,t). (28)

Here, we defined the reduced electronic density matrix

ρ��′ (R̂,τ ) =
∑
J0M0

wJ0

∑
Jε

C
J0M0
F�

(Jε,τ )〈R̂|�JM0ε〉

×
[∑

J ′ε′
C

J0M0
F�′ (J ′ε′,τ )〈R̂|�′J ′M0ε

′〉
]∗

,

(29)

that is, equivalent to the expression in Eq. (16). The reduced
electronic matrix elements D��′ of Eq. (28) contain electronic

1Our theory can be extended to the other Hund’s cases. For
this purpose, it is convenient to introduce a new coupled angular
momentum basis according to the cases (b), (c), (d), or (e), that
can be achieved by a unitary transformation of the coupled angular
momentum basis of case (a) [52].
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dipole transition matrix elements for tunnel ionization from
state F�′ and the recombination to state F�;

D��′(R̂,t) = i

∫
d3k〈F�|μ · n̂|k〉

×
∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|F�′ 〉e−iS(t,t ′) + c.c.

(30)

This reduced matrix element depends on the Euler angles,
since the electronic dipole operator is defined with respect
to the molecular frame, whereas the polarization directions
of the applied field and the emitted light are defined with
respect to the laboratory frame. Moreover, as will be shown
in the next paragraph and Appendix A, the matrix elements
between the states F1 and F2 introduce a χ -dependent phase
factor. In the expression of Eq. (28), one immediately sees
that the HHG signal has contributions from four different
electronic channels, depicted in Fig. 1(a). Contributions to
the dipole expectation value containing ρ��(R̂,τ )(� = 1,2)
correspond to the single-channel HHG process (direct chan-
nels). In addition to these conventional HHG channels, the
dipole expectation value also depends on a coherent cross
channel contribution, determined by the electronic coherences
ρ12(R̂,τ ) and ρ21(R̂,τ ) between the F1 and F2 states.

The HHG spectrum at delay time τ is determined by the
Fourier transform of d(t ,τ ) with respect to t :

d(ω,τ ) =
∫

dR̂
∑
��′

ρ��′ (R̂,τ )D��′ (R̂,ω), (31)

where D��′ (R̂,ω) denotes the Fourier transform of the product
of the tunnel ionization and recombination matrix elements
of Eq. (30). Equation (31) describes the situation of parallel
polarizations of the pump and probe laser. For the general case
of relative angles of the two polarization directions given by
the Euler angles (α,β,γ ), the dipole expectation value is given
by

d(ω,τ ) =
∫

dR̂
∑
��′

ρ̂
R(α,β,γ )
��′ (R̂,τ )D��′ (R̂,ω). (32)

It now remains to give an explicit expression for
D��′(R̂,ω). As presented in Appendix A, if both fine-structure
components π+ and π− are assumed to have the same radial
wave function, the matrix D��′(R̂,ω) is given by

D��′(R̂,ω)  i

∫
d3k〈�HOMO(θ,χ = 0)|μ · n̂|k〉

×
∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|�HOMO(θ,χ = 0)〉

× e−iS(t,t ′) e
−i2(�−�′)χ + ei2(�−�′)χ

2
+ c.c.

(33)

Following the concepts introduced in molecular-orbital
tomography [53,54] or the QRS [37], D(R̂,ω) can be expressed
by the following product [55]:

D(R̂,ω) =
√

�(R̂)aewp(ω)drec(R̂,ω), (34)

where �(R̂) is the angle-dependent strong-field ionization rate,
aewp(ω) is called the complex photoelectron wave packet,
�(R̂)|aewp(ω)|2 describes the flux of the returning electrons
[37], and drec(R̂,ω) is the complex dipole recombination matrix
element [1]. So Eq. (33) can then be rewritten as

D��′ (ϕ,θ,χ,ω) =
√

�(θ,χ = 0)aewp(ω)drec(θ,χ = 0,ω)

× e−i2(�−�′)χ + ei2(�−�′)χ

2
. (35)

Note that Appendix B provides an alternative derivation
of Eq. (35). The expectation value of the dipole moment of
Eq. (32) for the general case of pump and probe polarization
can be explicitly expressed in terms of the irreducible tensor
components of the density matrix and reads

d(ω,τ ) = 4π2
∫

dθ sin θ
√

�(θ,χ = 0)aewp(ω)

× drec(θ,χ = 0,ω)
∑
K

dK
0,0(β)

× Re
{[

f 11
K,−2(τ ) + f 22

K,−2(τ ) + f 12
K,−2(τ )

]
dK

0,−2(θ )

+ 2
[
f 11

K,0(τ ) + f 22
K,0(τ ) + f 12

K,0(τ )
]
dK

0,0(θ )

+ [
f 11

K,2(τ ) + f 22
K,2(τ ) + f 12

K,2(τ )
]
dK

0,2(θ )
}
. (36)

Note that the integrations of ϕ and χ in Eq. (32) only select
the term with X = 0 in DK

X,0(α,β,γ ) and the terms with Q =
0,±2 in ρR(α,β,γ ) and DK

0,0(α,β,γ ) = dK
0,0(β).2 Our numerical

evaluation shows that Re[f 11
K,Q=±2(t)], Re[f 22

K,Q=±2(t)], and
Re[f 12

K,Q=0(t)] are about three orders of magnitude smaller
than Re[f 11

K,Q=0(t)], Re[f 22
K,Q=0(t)], and Re[f 12

K,Q=±2(t)], re-
spectively. Taking into account only the main contributions
of Re[f 11

K,Q(t)], Re[f 22
K,Q(t)], and Re[f 12

K,Q(t)] with the ir-
reducible components of Q = 0 and Q = ±2, respectively,
Eq. (36) can be approximated by

d(ω,τ )  4π2
∫

dθ sin θ
√

�(θ,χ = 0)aewp(ω)

× drec(θ,χ = 0,ω)[WMC(θ,β,τ ) + WCC(θ,β,τ )],

(37)

where we have defined the purely geometric quantities giving
rise to the direct HHG channel

WDC(θ,β,τ ) =
∑
K

2dK
0,0(β)Re

[
f 11

K,0(τ ) + f 22
K,0(τ )

]
dK

0,0(θ ),

(38)

2It should be noted that in the theoretical treatment of Ref. [39],
χ was set to be zero in the density matrix. Compared to the exact
expression of Eq. (36), the evaluation of the dipole expression value
by Eq. (28) of Ref. [39] resulted in additional contributions from terms
proportional to Re(f ��′

K,Q ) with Q = ±1,±3 in ρ̂R(α,β,γ ); those terms

are much smaller than the terms proportional to Re(f ��′
K,Q ) with Q =

0,±2 in ρ̂R(α,β,γ ). Therefore, the numerical differences of the HHG
spectra between the exact treatment and the approximated treatment
by neglecting the dependence on the angle χ of Ref. [39] turn out to
be negligible, giving virtually the same numerical results.
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and the component giving rise to the cross channel HHG

WCC(θ,β,τ ) =
∑
K

dK
0,0(β)Re

[
f 12

K,−2(τ )dK
0,−2(θ )

+ f 12
K,2(τ )dK

0,2(θ )
]
. (39)

Equations (36) and (37) show that the induced dipole
only depends on the angle β, defined as the relative angle
between the polarizations of the pump and probe pulses.
Note that in the case of parallel polarization dK

0,0(β = 0) is
1 for all K; and in the case of perpendicular polarizations
dK

0,0(β = π/2) is 1,−1/2, 3/8, and −5/16 for K = 0, 2, 4,
and 6, respectively. Equations (36) and (37) also show that the
intensities of different harmonics are mainly dominated by the
recombination dipole-matrix elements, which depend on the
energy of the recombining continuum electron, and hence on
the harmonic order. In Ref. [39] we showed both experimental
and theoretical results of the entire harmonic plateau. Here,
we focus on the delay dependence of the harmonic yield of
two typical harmonics of the plateau region. The harmonics
are chosen in a demonstrative way, to highlight the strong
dependence on electronic degrees of freedom in 15th harmonic
and the strong sensitivity of rotational dynamics in ninth
harmonic.

III. DISCUSSION OF NUMERICAL RESULTS

Our calculations are performed with parameters according
to the experimental conditions. Within the range of experi-
mental conditions, we choose parameters to best fit the exper-
imental data: the molecular initial rotational temperature was
set to be 10 K; pump-pulse parameters: wavelength 800 nm,
pulse duration 60 fs, and peak intensity 4 × 1013 W/cm2.

The J state populations before and after the pump pulse of
F1 and F2 electronic states are shown in Fig. 2. Initially, only F1

is occupied and the populations of different J states satisfy the
Boltzmann distribution for an initial temperature T = 10 K.
The rotational states with J = 1/2 and 3/2 possess the largest
weight of about 39%, and only states up to Jmax = 9/2 are
considerably occupied; after the interaction with the pump
pulse, the system is rotationally excited to higher rotational
states. States up to Jmax = 17/2 are considerably occupied
for F1, and the state with J = 5/2 possesses the largest
weight of about 23%. The rotational states of F2 are weakly
excited. The inset of Fig. 2 shows the time-dependent total
occupation probabilities of the F1 and F2 states, i.e., ρ̂el

11(t)
and ρ̂el

22(t) [see Eq. (12)]. The total excitation fraction from
the electronic states F1 to F2 is about 4% for molecules
exposed to the peak intensity of the laser pulse. Note that
although focal-volume averaging will reduce the averaged
excitation fraction, 4% is considerably larger than the number
of 0.2% reported in Ref. [8]. In Ref. [8] we only treated
the first term of the interaction Hamiltonian of Eq. (7),
which resulted in an incomplete treatment of the pump
interaction. The relative importance of the two main terms
in the interaction Hamiltonian of Eq. (7) is discussed in the
following. Reference [39] correctly included all terms of the
interaction Hamiltonian and focal-volume averaging.

To get an idea about the angular distribution of the
occupation probabilities of the reduced electronic density

FIG. 3. (Color online) Temporal variations of the multipole co-
efficients Re[f 11

K,0(t)] and Re[f 22
K,0(t)] for K = 0, 2, 4, and 6, which

are related to the electronic occupations.

matrix as a function of time, we analyze the state multipoles
Re[f ��

K,Q(t)] [see Eq. (16)]. Figure 3 shows the temporal
evolution of Re[f 11

K,0(t)] and Re[f 22
K,0(t)] for K = 0, 2, 4 and

6. The absolute values of those state multipoles drop fast
with increasing K . The isotropic part (K = 0) is constant
before and after the interactions with the pump pulse. The
state multipoles for higher K show complex dynamics. For
K = 2, Re[f 11

K,0(t)] and Re[f 22
K,0(t)] are linearly related to the

expectation value of cos2θ in the subspace of F1 and F2 states,
i.e., the typical measure for the degree of alignment of the
molecular ensemble. Clearly seen is the rotational revival
structure at around 20 ps. The state multipoles connected to
the electronic coherence between states F1 and F2 show much
faster dynamics. Figure 4 shows the temporal variation of

FIG. 4. (Color online) Temporal variations of the multipole co-
efficients Re[f 12

K,±2(t)] for K = 2, 4, and 6, which are related to the
electronic coherence.
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FIG. 5. (Color online) Temporal contour plots of the quantity
W DC(θ,β,τ ) for β = 0 and π/2, which corresponds to parallel
and perpendicular polarizations of the pump and probe pulses,
respectively.

the state multipoles Re[f 12
K,±2(t)] for K = 2, 4, and 6. Clearly

visible is the fast modulation, corresponding to a period of
about 0.28 ps, which is the spin-orbit period corresponding
to the energy separation of the F1 and F2 states of about
120 cm−1.

In order to understand how these angular distributions of
the electronic density matrix determine the HHG spectrum
as a function of delay time τ , we have a closer look at
the approximated expression for d(ω,τ ) given in Eq. (37).
The HHG contributions resulting from the direct channel,
for which ionization and recombination proceed from and
to the same electronic state, are determined by the purely
geometric quantity WDC(θ,β,τ ). In Fig. 5 we plot the quantity
WDC(θ,β,τ ) for parallel (β = 0) and perpendicular (β = π/2)
polarization of the pump and the probe laser fields. For a delay
time around τ = 5.2 ps we see maxima in the distribution
WDC(θ,β,τ ) around θ = 0° and 180°. These peaks correspond
to the main rotational revival structure of the wave packet
also visible in Fig. 3. The direct channel contribution to HHG
therefore shows a maximum at the rotational revivals, when
probed by a field of parallel polarization. Switching to the
perpendicular polarization (β = π/2), molecules aligned at
θ = 90° give the highest signal contribution at τ = 5.2 ps.
For β = π/2 the highest HHG yield is observed at delay times
τ = 4.8 ps, coinciding with the antialigned ensemble in Fig. 3
(red curve, corresponding to the K = 2 contributions). An
interesting point is also to look at the relative modulation
strength of the direct channel contribution at times 4.8 and
5.2 ps and compare the cases of parallel and perpendicular
polarizations. By comparing the numbers, it is seen that for
perpendicular polarizations, the relative modulation of the
signal is decreased by a factor of about 2. This variation of the
modulation strength comes from the dependence of dK

0,0(β) for
different K .

Now, let us turn to the cross channel contributions of HHG,
determined by the quantity WCC(θ,β,τ ) of Eq. (39). This
quantity, shown in Fig. 6 for β = 0 and β = π/2, is related
to the electronic coherence between states F1 and F2, and

FIG. 6. (Color online) Temporal contour plots of the quantity
W CC(θ,β,τ ) for β = 0 and π/2.

shows fast oscillations, on a time scale of about 280 fs, i.e.,
the spin-orbit period. A direct comparison between the case of
parallel β = 0 or perpendicular polarization β = π/2 clearly
shows a π phase shift. At the rotational wave-packet revival
time at around 4.8 ps, WCC shows a clear maximum for β = 0
and a minimum for β = π/2. The angular distribution of this
maximum and minimum is almost flat. Generally, the angular
variation at a fixed time of WCC is much weaker, as compared
to the angular variation of the direct channel contribution
WDC.

We now analyze the temporal dependence of different
harmonics. Figure 7 shows the HHG signal of the ninth
harmonic (H9) for parallel polarization of pump and probe
laser (β = 0) as a function of the delay time between the two
pulses. Our calculations (upper panels) are compared to the
experimental results (lower panels). Shown are time traces
(left panels) and their Fourier transforms (FFT) (right panels).

FIG. 7. (Color online) Yield of the ninth harmonic (H9) as a
function of pump-probe time delay for β = 0 and the Fourier
transform for both theory (upper panel) and experiment (lower panel).
Furthermore, we show the expected signals (shifted up) by omitting
the coherent cross channel contribution.
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FIG. 8. (Color online) Yield of the 15th harmonic (H15) as a
function of pump-probe time delay for β = 0 and the Fourier
transform for both theory (upper panel) and experiment (lower panel).
Furthermore, we show the expected signals (shifted up) by omitting
the coherent cross channel contribution.

Our calculations capture most of the relevant dynamics and
theory and experiment can be compared on a quantitative
level. The agreement is remarkably good. The oscillations
of the electronic coherence are clearly visible within the
first few picoseconds. With increasing time their modulation
becomes weaker due to dephasing of the electronic wave
packet: the energy splitting of the F1 and F2 states, pertaining
to a total angular momentum state J , depends weakly on
J , which induces a dephasing for long delays. To underline
the importance of the coherent cross channel HHG process,
governed by off-diagonal parts of the density matrix, we also
plot the delay-dependent H9 yield omitting this channel (black
line). Although the rotational revival structure is reproduced
in this case, omission of the cross channel coupling results
in a loss of the modulation characteristic of the spin-orbit
dynamics. The Fourier transform of the time traces gives a
good way of comparing theory to experiment [8]. The peaks
around 30 cm−1 correspond to the rotational wave-packet
coherence associated with a change of angular quantum
number �J = 2. Peaks around 120 cm−1 result from the
electronic wave-packet coherence [8]. The peaks in the range
from ∼ 60 cm−1 to ∼ 100 cm−1 correspond to the rotational
excitations by �J = 4 [8,39].

Similarly, Fig. 8 shows the delay-dependent HHG signal of
the 15th harmonic (H15) for β = 0 for both theory (upper
panels) and experiment (lower panels), along with their
corresponding Fourier transforms. In contrast to H9, H15 has a
weak dependence on the rotational wave packet and is mainly
dominated by the electronic coherence. This behavior is also
captured by our theoretical results. The lower sensitivity to
the rotational degrees of freedom for H15 can be explained
by the relatively flat angular dependence of the recombination
dipole-matrix elements for H15 [8].

We now study in more detail the dependence of the temporal
HHG traces as a function of the probe-pulse polarization.
Figure 9 shows the HHG signals for H9 and H15 for parallel
and perpendicular probe-pulse polarization. The experimental

FIG. 9. (Color online) Yield of harmonics H9 and H15 as a func-
tion of pump-probe delay time for parallel (β = 0) and perpendicular
(β = π/2) polarization of pump and probe laser fields.

data are shown as well. The calculated signals reproduce
the general structures of the experimental data. The most
prominent difference is an observed π phase shift of the
fast electronic modulations for β = 0 and π/2, which is
recovered by the theory. This phase shift is directly related
to the off-diagonal parts of the angular distributions of the
density matrix shown in Fig. 6.

In the following we highlight the relative importance
and influence of the two different terms in the interaction
Hamiltonian of Eq. (7). We study the case where only
terms proportional to D2

0,0 in the interaction Hamiltonian are
maintained; we refer to that as interaction term D0. In the
second case, we study the interactions mediated by the term
proportional to D2

0,±2, interaction term D2. Figure 10 shows
the J state populations of the F1 and F2 states before and after
the pump pulse for both interaction terms. The insets show the
total occupations of the F1 and F2 states as a function of time.
Whereas the interaction term D0 only excites ∼0.15% of the
population in the F1 state, D2 gives rise to an excitation frac-
tion of ∼4%. Hence, as already mentioned in the discussion of
the matrix representation of the interaction Hamiltonian, D2 is
mainly responsible for transferring population to the spin-orbit
excited states; while the rotational wave packets are mainly
induced by the interaction term D0. Therefore there is a clear
separation of the interaction Hamiltonian: tensor components
proportional to D2

0,0 are responsible for rotational Raman
excitations, whereas those proportional to D2

0,±2 dominate
electronic Raman scattering. Consistent conclusions can be
drawn from the dynamic evolutions for the cross term of
the reduced electronic density matrix ρ̂el

12(t) and the defined
coherence C(t) for interactions D0, D2 and the full interaction
Hamiltonian of Eq. (7) in Fig. 11. It turns out that the
modulation amplitude of ρ̂el

12(t) for D0 and D0 + D2 are similar
and about ten times stronger than that for D2. The system only
treating the interaction D0 shows a large electronic coherence
(about 0.75 after the pump pulse), the inclusion of interaction
D2 will significantly reduce the electronic coherence of the
system (about 0.11 after the pump pulse), and the interaction
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FIG. 10. (Color online) J state populations for states F1 and F2 before and after the alignment pulse. The inset shows the temporal evolution
of the total occupation in states F1 and F2. The upper panel shows results for including only the first term (D0) of the interaction Hamiltonian
of Eq. (7); the lower panel shows results for treating only the second term (D2).

term D2 alone results in a very small coherence (about 0.01
after the pump pulse). This can be explained by analyzing the
interaction Hamiltonian, Eq. (7), in more detail.

In the eigenbasis {|�JM0ε〉,� = 1,2} expansion, the ma-
trix elements related to the interaction terms D2

0,0 or D2
0,±2

can be split into four main blocks: two direct blocks with

FIG. 11. (Color online) Temporal evolution of the off-diagonal reduced electronic density-matrix element ρ̂el
12(t) and the degree of coherence

C(t) for interactions D0, D2, and D0 + D2 terms of interaction Hamiltonian of Eq. (7).
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FIG. 12. (Color online) Temporal evolution of the multipole coefficients Re[f 11
K,0(t)] and Re[f 22

K,0(t)] for K = 0, 2, 4, and 6, and Re[f 12
K,±2(t)]

for K = 2, 4, and 6 for interactions D0 and D2.

transitions within the states F1 and F2, and two cross blocks,
inducing transitions between F1 and F2. In each block,
D2

0,0 or D2
0,±2 is block diagonal for �J = 0,±1,±2. For

the interaction term proportional to D2
0,0, the interaction is

strong, i.e., nonperturbative, in the direct blocks, for which
the matrix elements are proportional to aJ aJ ′ . This interaction
in the direct blocks creates rotational wave packets within
one electronic subspace. Our initial state is in subspace
F1; D2

0,0 mainly creates rotational wave packets in that
subspace. The interaction is weak, i.e., perturbative in the
cross blocks, for which the matrix elements are proportional
to aJ bJ ′ . This interaction in the cross blocks creates a small
excitation from state F1 to F2. The nonperturbative part, hence
creates a rotational wave packet within F1, which then in
first-order perturbation theory results in a small excitation
fraction to electronic state F2 by the transition matrix elements
proportional to aJ bJ ′ , with well-defined phases between states
[56] of different angular momentum states J of manifold F1

and J ′ of manifold F2. Tracing over the rotational degrees of
freedom to determine the reduced electronic density matrix
hence yields a high degree of coherence between electronic
states F1 and F2.

Let us now consider the interaction term proportional to
D2

0,±2. For that interaction term, the dominant and nonpertur-
bative contributions are the cross blocks of the interaction
matrix, proportional to aJ aJ ′ ; while the interaction matrix
elements of the direct blocks are weak and proportional to

aJ bJ ′ . The dominant interaction therefore induces a transition
from state F1 to F2 along with excitation of a rotational wave
packet. Since the interaction is nonperturbative, there is no
“fixed” phase relationship between the rotational states of
the lower and the upper electronic manifold. The electronic
coherence of the excited electronic wave packet is therefore
smaller than that mediated by D2

0,0.
Evidence for this can also be seen by comparing the

occupations of the different rotational states before and after
the pump-pulse interaction, which is shown in Fig. 10 for terms
D0 and D2. In the case of D0 (upper panel of Fig. 10), one sees
that the distribution in F2 shifts to states with higher J with
respect to the distribution of state F1. The very small excitation
fraction to F2 results in a distribution of J states after the
pump-pulse interaction that is very similar to that of the lower
state after the pump-pulse interaction. One can conclude that
the rotational wave packets pertaining to states F1 and F2 are
similar, so that when tracing the density matrix over the total
angular momentum J , a high degree of coherence is achieved.
As seen in Fig. 11, the degree of coherence for interaction D0
right after the pump pulse is about 0.75. As a function of time,
the degree of coherence decays. This is due to dephasing of the
wave packet, since the energy difference between electronic
states F1 and F2 is dependent on the angular momentum
number J (see level system in Fig. 1). Interaction term D2
excites a larger excitation fraction to state F2 (roughly 4%)
along with excitation of a rotational wave packet in manifold
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FIG. 13. (Color online) Temporal evolution of the purely ge-
ometric quantity W CC(θ,β,τ ) for interaction D2 for β = 0 and
β = π/2.

F2, without really modifying the rotational wave packet in
the electronic initial state F1. This results in distributions
of J states that are substantially different for the F1 and F2

states after the end of the pump-pulse interaction, as can be
seen in the lower panel of Fig. 10. Tracing over the angular
momentum states J then results in a reduced density matrix
with a low degree of coherence of only about 0.01 right after
the pump-pulse interaction. Since the J state distribution of
states F1 and F2 is much narrower for interaction Hamiltonian
D2, the dephasing is weaker and the coherence is not falling
off as fast as compared to the interaction term D0.

The different roles of the interaction terms D0 and D2
can also be seen by directly looking at the density matrix.
The temporal traces of the state multipoles Re[f 11

K,0(t)],
Re[f 22

K,0(t)], and Re[f 12
K,±2(t)] for D0 and D2 are shown

in Fig. 12. The traces are quite different for both cases.
Re[f 11

K,0(t)] for D0 recaptures the overall rotational dynamics
of the full interaction Hamiltonian in Fig. 3. Re[f 12

K,±2(t)] for
D2 recovers the fast modulation structures with the spin-orbit
period of about 0.28 ps. Remarkably, all Re[f 12

K,±2(t)] for D0
are equal to zero. Note that K = 2 gives the largest contribution
among Re[f 12

K,±2(t)] for D2.
For completeness, we show WCC(θ,β,τ ) for β = 0 and

β = π/2 for the interaction term D2 in Fig. 13. The modulation
on the spin-orbit time scale is clearly visible and has almost
flat angular dependence. This highlights the fact that K =
2 is the only dominant component for D2. Since dK=2

0,0 (β =
π/2)/dK=2

0,0 (β = 0) = −1/2, the contour plots for β = 0 and
β = π/2 show a relative phase shift by exactly π .

The delay-dependent HHG signals of H9 and H15 for
interaction terms D0 and D2 are shown in Fig. 14. The HHG
spectra for D0 are entirely determined by the rotational wave
packets. The HHG signal following interaction with the term
D0 is not sensitive to the electronic wave packet. This can be
seen from Eq. (36) and an analysis of the state multipoles of
the density matrix. As can be seen in Eq. (36), the HHG cross
channel is proportional to Re[f 12

K,±2(t)]. It turns out, however,

FIG. 14. (Color online) Yield of harmonics H9 and H15 as a
function of the pump-probe time delay for the interactions D0 and
D2 for β = 0 and π/2.

that all Re[f 12
K,±2(t)] are zero for the interaction Hamiltonian

D0 (see Fig. 12). Note that the electronic wave packets induced
by D0 have nonvanishing state multipoles Re[f 12

K,±1(t)] and
Re[f 12

K,±3(t)]. Electronic wave packets are excited, but the
HHG process is not sensitive to those multipoles. The HHG
traces for D2 are mainly dominated by the fast electronic
modulation. When the polarization of the probe pulse changes
from parallel to perpendicular with respect to the pump pulse,
or β changes from zero into π/2, the spectra for D2 show
exactly a phase change of π , while the main structures of the
spectra for D0 change roles (minima and maxima exchange).
This is in accordance with the overall contributions WDC and
WCC as plotted in Figs. 5 and 13.

IV. CONCLUSIONS

We presented a derivation of a density-matrix approach
combined with the strong-field approximation and semiclassi-
cal quantitative rescattering approach, to quantitatively predict
results of a HHG spectroscopic technique, to capture the
combined rotational and electronic wave packets prepared by
impulsive Raman scattering on an ensemble of NO molecules.
Our theoretical approach not only reproduces all qualitative
features of the experiment, but also allows for a quantita-
tive comparison of theory and experiment. Generally, the
agreement between theory and experiment is good. Different
interaction terms of the pump Hamiltonian were compared
and studied in detail. The present formalism can be extended
to other atomic or molecular systems for the study of the
wave-packet dynamics with HHG. Our simulations support
that HHG spectroscopy is a prospectively powerful probe
mechanism for electronic and nuclear wave packets.

ACKNOWLEDGMENT

We thank Professor R. R. Lucchese for providing the
photoionization matrix elements for the calculation of the
HHG signals.

023421-13
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APPENDIX A

Substituting Eq. (27) into Eq. (30), we have

D11(R̂,t) = D22(R̂,t) = i

∫
d3k

1

2

[
〈π+|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|π+〉 + 〈π−|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|π−〉

]
e−iS(t,t ′)

+ c.c. (A1)

and

D12(R̂,t) = D21(R̂,t)
∗ = i

∫
d3k

1

2

[
〈π+|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|π−〉 + 〈π−|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|π+〉

]
e−iS(t,t ′)

+ c.c. (A2)

The explicit coordinate representation of the orbitals π+ and π− on χ is given by −e−iχ and eiχ , respectively [43]. The
χ -dependent phase factor in Eq. (A1) cancel each other, since the matrix elements are of bracket combination 〈π+| · · · |π+〉 and
〈π−| · · · |π−〉. In Eq. (A2), 〈π+| · · · |π−〉 and 〈π−| · · · |π+〉 result in the phase factor ei2χ and e−i2χ , respectively. In practice,
due to the spin-orbit interaction the radial wave function pertaining to the states π+ and π− are not identical, and the spin-orbit
splitting lifts the degeneracy. The reduced radial matrix elements in Eqs. (A1) and Eq. (A2) will, however, vary only very little
by inclusion of the spin-orbit interaction. We therefore suppose that the radial wave function for both π+ and π− states are given
by a single orbital, �HOMO. In practice this orbital can be the highest-occupied molecular orbital from an electronic structure
calculation, or a Dyson orbital, which would be more appropriate, when deriving the strong-field approximation starting from a
many-body wave function. In the above equations we can therefore factor out the dependence on the angle χ , since the products
μ · n̂ and μ · ε̂2 do not depend on that angle explicitly. We get

D11(R̂,t) = D22(R̂,t)  i

∫
d3k 〈�HOMO(θ )|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|�HOMO(θ )〉e−iS(t,t ′) + c.c.

= i

∫
d3k〈�HOMO(θ,χ = 0)|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|�HOMO(θ,χ = 0)〉e−iS(t,t ′) + c.c. (A3)

and

D12(R̂,t) = D21(R̂,t)
∗  i

∫
d3k〈�HOMO(θ,χ = 0)|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|�HOMO(θ,χ = 0)〉e−iS(t,t ′) e

−i2χ + ei2χ

2
+ c.c.

(A4)

We can rewrite Eqs. (A3) and (A4) as

D��′(R̂,t) = i

∫
d3k〈�HOMO(θ,χ = 0)|μ · n̂|k〉

∫ t

0
dt ′〈k′|μ · ε̂2(t ′)|�HOMO(θ,χ = 0)〉e−iS(t,t ′) e

−i2(�−�′)χ + ei2(�−�′)χ

2
+ c.c.

(A5)

APPENDIX B

The amplitude for photoionization can be written as [51]

I
�i,�f

k̂,̂n
=

∑
l,m,μ

〈��i |rμ|��f ψklm〉Y ∗
l,m (̂k)Y ∗

1,μ (̂n). (B1)

where �i is the quantum number of the orbital angular momentum projected on the molecular axis (i.e., the azimuthal angular
momentum, in the initial state |��i 〉), �f is the corresponding azimuthal quantum number of the final ionic state |��f 〉, and
|ψklm〉 is the partial wave function of the continuum electron. k̂ and n̂ are the directions of emission of the photoelectron and
direction of polarization of the linearly polarized light, respectively. In the case of ionization of NO to its ground ionic state,
�i = ±1 and �f = 0. And |��i=±1〉 correspond to π+ and π− states. The nonzero matrix elements follow the selection rule

�i = μ + �f + m = μ + m. (B2)

Note that HHG is the inverse process of photoionization. In the HHG process, k̂ is supposed to be parallel to the driving laser,
and n̂ is the direction of the emitted HHG spectrum. And the case of k̂||̂n would contribute most to the recombination matrix
[37]. So both vectors k̂ and n̂ can be replaced with the angles (θ,χ ) with respect to the molecular axis, and Eq. (B1) can be
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rewritten as

I
�i,�f

k̂,̂n
(θ,χ ) =

∑
l,m,μ

〈
��i |rμ|��f ψklm

〉
(−1)m

√
2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )e−imχ (−1)μ
√

2 + 1

4π

(1 − μ)!

(1 + μ)!
P

μ

1 (cos θ )e−iμχ

=
∑
l,m,μ

〈��i |rμ|��f ψklm〉
√

3(2l + 1)

4π

√
(l − m)!(1 − μ)!

(l + m)!(1 + μ)!
P m

l (cos θ )P μ

1 (cos θ )(−1)m+μe−i(m+μ)χ

= (−1)�i e−i�iχ
∑
l,m,μ

〈��i |rμ|��f ψklm〉
√

3(2l + 1)

4π

√
(l − m)!(1 − μ)!

(l + m)!(1 + μ)!
P m

l (cos θ )P μ

1 (cos θ )

= (−1)�i e−i�iχ I
�i,�f

k̂,̂n
(θ,χ = 0). (B3)

Equation (B3) expresses that a χ -dependent phase term in the ionization matrix element can be factored for the expression of
the photoionization dipole-matrix element. We therefore can write the ionization matrix from the |��i 〉 state [d�i

ion(θ,χ )] and the

recombination matrix to the |��f 〉 state [d
�f

rec (θ,χ )] as

d�i

ion(θ,χ ) = (−1)�i e−i�iχd�i

ion(θ,χ = 0), d
�f

rec (θ,χ ) = (−1)�f ei�f χd
�f

rec (θ,χ = 0). (B4)

Note that d�i
ion(θ,χ = 0) = d

�f

ion (θ,χ = 0) and d�i
rec(θ,χ = 0) = d

�f

rec (θ,χ = 0). So Eqs. (A1) and (A2) can be rewritten as

D11(R̂,t) = D22(R̂,t) = 1
2

[
d

�f =1
rec (θ,χ )d�i=1

ion (θ,χ ) + d
�f =−1
rec (θ,χ )d�i=−1

ion (θ,χ )
]
aewp

= d
�f =1
rec (θ,χ = 0)aewpd

�i=1
ion (θ,χ = 0) (B5)

and

D12(R̂,t) = D21(R̂,t)
∗ = 1

2

[
d

�f =1
rec (θ,χ )d�i=−1

ion (θ,χ ) + d
�f =−1
rec (θ,χ )d�i=1

ion (θ,χ )
]
aewp

= d
�f =1
rec (θ,χ = 0)aewpd

�i=−1
ion (θ,χ = 0)

e−i2χ + ei2χ

2
. (B6)

We can rewrite Eqs. (B5) and (B6) as

D��′ (R̂,t) = d��

rec (θ,χ = 0)aewpd
��′
ion (θ,χ = 0)

e−i2(�−�′)χ + ei2(�−�′)χ

2
. (B7)
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ZHANG, BAYKUSHEVA, KRAUS, WÖRNER, AND ROHRINGER PHYSICAL REVIEW A 91, 023421 (2015)

[21] T. Bredtmann, S. Chelkowski, and A. D. Bandrauk, Phys. Rev.
A 84, 021401(R) (2011).

[22] P. M. Paul, T. O. Clatterbuck, C. Lyngå, P. Colosimo, L. F.
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