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I. PHASE-MATCHING CALCULATIONS

The aim of the current section is to establish the extent to which phase-matching effects

affect the absolute intensity of a given high harmonic as well as the disparity between

adjacent 3q+1 vs. 3q+2 orders. A recent publication [1] stipulated that selective enhancement

(or suppression) of left- or right-circularly polarized high harmonics can be achieved by

tuning phase-matching parameters. The present experiment, however, is conducted in a

different experimental geometry. In contrast to using a gas cell or a capillary, HHG in a thin

gas jet is deliberately designed to minimize phase-mismatch. In the following we examine

the contribution of extrinsic phase effects to the HHG spectra of helium and neon.

The molecular beam is generated by supersonic expansion through a pulsed-valve nozzle

(Parker) with an orifice diameter of ∅ 250µm. The applied backing pressure was 6 bars. The

focus intersects the beam at a distance of ≲ 1 mm downstream the nozzle. Using the known

relations [2] for (continuous) supersonic gas expansion, the pressure in the interaction region

can be estimated as 2.4 mbar for the two species. These numbers correspond to a particle

density of ≈ 1.4 ⋅ 1018 cm−3. The estimated rotational temperature in the generation region

is 13 K. We note that these are conservative estimates, the real interaction region pressure

will be slightly lower due to the fact that the valve is operated in a pulsed regime, while

the equations are derived under the assumption of continuous flow. Following the approach

introduced in [1], we first estimate the effective index change ∆ni (i = {1,2}) for each of the

two drivers individually by using the modified equation:

∆ni = (λiki
2π

− 1) = P [(1 − η) (ni − 1) − 1

2π
ηNatmreλ

2
i ] , (1)

where P , η and re denote the pressure of the gas, the ionization fraction and the classical

electron radius, respectively. λi and ki denote the wavelength and the k-vectors of each

driver, while Natm is the number density of the respective species at atmospheric pressure.

The fit parameters for the Sellmeier equation needed for estimation of the effective refractive

index ni are taken from [3]. This expression has the same form as the phase mismatch

equations given in Refs. ([4–6]), except for the omission of the modal term associated with

the hollow-core-fibre experimental setup.

The most crucial and subtle part of the phase-matching calculation concerns the estima-

tion of the ionized gas fraction (η). One approach would be to approximate the ionization
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fraction with the time-dependent norm of the wave-function obtained from the TDSE calcu-

lations (Fig. S2). For the peak intensities / pulse durations consistent with the experimental

estimations, one obtains: ηHe ≈ 0.008 and ηNe ≈ 0.0353. The phase mismatch ∆k3q±1 for a

given pair of harmonics associated with the integer multiple q is obtained via:

∆k3q±1 = −
2π

λ1

[q (∆n1 + 2∆n2) ±∆n1] . (2)

The ratios of the coherence lengths Lcoh = π/∆k estimated with the aid of the above

quantity and the calculated absorption lengths Labs = 1/(ρσ) [7] yield the result displayed in

panel A of Fig. S1. These results, alongside with the calculated coherence lengths displayed

in Fig. S1 B (where Lcoh >> 1 mm for He and Ne), lead to the conclusion that phase

matching effects can be ignored for He and Ne in the relevant range of harmonic energies.

The experimental observations were found to be robust with respect to variation of phase-

matching parameters such as backing pressure or laser-beam aperture size.

Another propagation effect that needs to be accounted for is the Gouy phase shift. In

the current experiment, the effect of the Gouy phase shift across the focus is minimized by

placing the focus several mm in front of the jet.

A B

FIG. S1: Panel A: Estimated ratio of the coherence lengths vs. absorption lengths for harmonic

energies relevant for the current experiment. A ratio Lc/La > 5 indicates that the output HHG

flux corresponds to 90 % of the flux under ideal phase-matching conditions. Panel B: Estimated

coherence lengths of the high harmonics generated in He and Ne.

3



time (a.t.u.)
-2000 -1000 0 1000 2000

no
rm

 (
a.

t.
u.

)

0.94

0.95

0.96

0.97

0.98

0.99

1
p0
p+
p-

time (a.t.u.)
-60 -40 -20 0 20 40 60

su
b-

cy
lc

e 
ra

te
 (

a.
t.

u.
)

x 10-4

0

1

2

3

4
p0
p+
p-

A B

FIG. S2: TDSE results for the ionization fraction for each of the p-orbitals of Ne in a bicircular

field (Iω = 3.0 × 1014 W/cm2 and I2ω = 1.8 × 1014 W/cm2). Panel A: Time-dependent norm of the

wavefunction as a function of time. Panel B: Differential ionization rate for several half-cycles

around the maximum of the pulse envelope.

II. DETAILS ON THE TDSE CALCULATION

In this work, electron dynamics in bi-chromatic bi-circular counter-rotating fields are

investigated by numerically solving the time-dependent Schrödinger equation Ĥ(t) = −1
2
∂2

∂r2 +
l(l+1)

2r2 + Veff(r) + r⃗ ⋅ E⃗(t) for the helium and neon atoms in the single-active-electron (SAE)

approximation. The wavelengths of the two drivers are set to 800 nm (RCP) and 400 nm

(LCP), resulting in an electric field E⃗(t) = Eωf(t)(cos(ωt)x̂+ sin(ωt)ŷ)+E2ωf(t)(cos(2ωt+

∆ϕ)x̂ − sin(2ωt + ∆ϕ)ŷ), f(t) being a cos2-pulse envelope. Since the azimuthal symmetry

of the electron dynamics is lifted upon interaction with the bi-circular field, the full three-

dimensional problem needs to be addressed. For this aim, we use the pseudo-spectral method

described in detail in [8] and expand the single-electron wave-function in terms of radial and

spherical harmonic functions as:

Ψ(r, θ, φ) =∑
lm

Rl(r, t)
r

Ylm(θ, φ). (3)

The radial coordinate r ∈ [0, rmax] is discretized on a non-equidistant Legendre-Lobatto

quadrature via the mapping: r(x) = L 1+x
1−x+α , x ∈ [−1,1], with L being an arbitrary constant

and α = 2L/rmax. A Legendre quadrature (l = 0,1, . . . , lmax−1) is used for the latitude variable

θ, while φ is discretized on an equidistant Fourier grid. The wave-function is propagated

using the split-operator approach outlined in [9]. Ionization is modelled by placing an

absorbing boundary.
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Typical values for the time step, intensity and angular momentum cut-off are summarized

in Tab. 1. The results were tested for convergence with respect to the number of grid points,

time step and angular momentum basis size.

intensity 1 Iω 3.0 × 1014 W/cm2

intensity 2 I2ω 1.8 × 1014 W/cm2

time step dt 0.01 − 0.1 a.u.

cut-off radius rmax 300 a.u.

cut-off l lmax 64

radial grid size Nmax 300-450

TABLE I: Parameters for the TDSE calculation.

The model potentials Veff(r) for He and Ne are taken from [10]. For argon, we use the

model potential described in [11]. For the atoms with p-orbital symmetry, the relative delay

between the two fields ∆ϕ is varied over one cycle and the harmonic emission is averaged

over the resulting contributions.

III. DETAILED TREATMENT OF THE PHOTORECOMBINATION STEP

In the following, we explain the observed asymmetry in the intensity distribution of har-

monic orders 3q + 1 and 3q + 2 in terms of a simple analytical model that does not rely on

a full numerical solution of the TDSE. The point of departure of our analysis is the link

between photoionization phenomena and the last step of the HHG process - radiative recom-

bination. The principle of detailed balance dictates that the two processes are time-reversed

counterparts of each other. This relationship has been exploited to reveal information of

electronic structure encoded in the HHG spectra [12].

Treating the photorecombination step of the HHG process as a time-reversed photoion-

ization involves one specific aspect concerning the mutual orientation of the photoelectron

momentum axis (k̂), the electric field polarization axis (n̂) and the laboratory-frame quanti-

zation axis (Ẑ). In linearly polarized fields, the emitted XUV field is parallel to the common

axis of polarization and field quantization, i. e. k̂ ∥ n̂ ∥ Ẑ. For HHG driven by bicircular

fields, we set the quantization axis (Ẑ) parallel to the propagation axis (which we denote by
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n̂) of the field. In this case, the electron trajectories are confined to the 2D-plane orthogonal

to the propagation direction, which implies that k̂ ⊥ Ẑ ∥ n̂.

We describe the photorecombination step as time-reversed coherent photoionization from

the p+- and p−-orbitals of Ne initiated by a circularly polarized field. As in the main text,

we assume an RCP fundamental (ω) and an LCP second harmonic (2ω). In this description,

the intensity of harmonic orders (3q ± 1) is proportional to:

I3q±1 ∝ ∣
√
c+⟨Ψ+

k∣r̂±∣2p+⟩ +
√
c−⟨Ψ+

k∣r̂±∣2p−⟩∣
2

, (4)

whereby r̂+ and r̂− are the components of the dipole moment operator in spherical tensor

form (r̂± =
√

4π
3 Y1±1). The coefficients c± in eq. (4) represent the ionized fractions of the

p± orbitals. In the current model, we use the estimations c+ ≈ 0.51 and c− ≈ 0.49 from the

TDSE calculation described in the preceding section.

The radial part R21(r) of the bound neon ∣2p⟩ orbital is obtained by diagonalization of

the field-free Hamiltonian including the model SAE potential on a Legendre-Lobatto radial

grid. The total wavefunction is then constructed as ∣2p±⟩ = R21(r)Y1±1(r̂). The scattering

continuum states Ψ+
k are normalized on the wave-vector scale ( 1√

k
) and are expressed in

terms of the partial-wave expansion:

Ψ+
k =

1√
k

∞

∑
l=0

l

∑
m=−l

ilei(δl+σl)Rkl(r)Ylm(r̂)Y ∗
lm(k̂). (5)

The radial parts Rkl(r) of the continuum wave functions as well as the phase shifts consisting

of a Coulomb (σl) and a short range (δl) part are obtained using a Numerov algorithm. The

continuum functions are normalized by matching them asymptotically at large distances to

a potential consisting of a short-range potential and an ionic Coulomb tail. Insertion of this

ansatz into eq. (4) leads to the following expressions for the individual matrix elements:

6



⟨Ψ+
k∣r̂−∣2p+⟩ =
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9

k
e−i(δ0+σ0)⟨Rk0∣r∣R21⟩

⎛
⎜
⎝

0 1 1

0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 1 1

0 −1 1

⎞
⎟
⎠
Y00(k̂)

+
√

15
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FIG. S3: Panel A: Real-time electron trajectories for a Ne atom calculated for the intensities

employed in the experiment. The individual paths do not commence at the origin but rather at

the tunnel exit. Nevertheless, they all return to the origin for the recombination event. The inset

illustrates the coordinate system convention adopted in this section. Panel B: Calculated relative

recombination angles φk for Ne.

An important question concerns the recombining electron trajectory, which enters the

above matrix elements via the angle-dependent part Ylm(k̂) ≡ Ylm(θk, φk). The choice k̂ ⊥
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Ẑ ∥ n̂ implies that θk = π/2 and the recolliding electron trajectory is expressed via the

azimuthal angle φk (cp. also the inset in Fig. S3 A). In general, the choice of the space-fixed

x̂- and ŷ-axes is arbitrary. In the following, we choose to identify the x̂-axis (which sets

φ = 0) as the axis corresponding to the instantaneous ionization direction of the electron. In

order to obtain the tunneling ionization trajectory as well as the relative recollision angles,

we employ the semiclassical saddle-point method outlined in [13]. The thereby obtained

complex-valued stationary points (tion, trec,pst) can be interpreted as instants of ionization,

recombination and stationary momentum, respectively, and used to calculate the quantum

trajectories contributing to a given harmonic order.

Im(t)

Re(t)

tion

trec

Re(trec)

Re(tion)

Im(tion)

FIG. S4: Illustration of the integration path used to determine the electron trajectories. Details

are given in the text.

We calculate the real-space electron trajectories r(t), a selection of which are displayed

in Fig. S3 A, by integrating the corresponding equations of motion from tion to trec first

along the imaginary time axis (from tion to R{tion}) and subsequently along the real axis

(from R{tion} to R{trec}, neglecting the small imaginary part I{trec} associated with the

electron return time. This integration path is illustrated in Fig. S4 . As a consequence of

the imaginary part of tion, the ”starting” point of each trajectory is not exactly at the origin,

but several atomic units away from it, compatible with the tunneling ionization mechanism.

We calculate the relative angles φk between the instantaneous ”ionization” and ”recollision”

axes by evaluating the direction of the electron kinetic momentum vector at the ”tunnel
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exit” and at the recombination event. As evident from Fig. S3 B, typical values of φk span

the range 30 − 140○.

A B

C D

FIG. S5: Panel A: Absolute value of the individual matrix elements ⟨Ψ+
k∣r̂±∣2p±⟩ as well as their sum

for neon. The matrix elements contributing to I3q+2 exhibit a suppression around H15-H20. Panel

B: Relative phase of the photoionization matrix elements contributing to I3q+1 (blue) and I3q+2

(red) in Ne. The red curve crosses the value −3π around H17, leading to a destructive interference

in the I3q+2-intensity. Panels C and D: Amplitudes and phases of the matrix elements for argon.

Equation (4) suggests that the emission intensity I3q±1 contains two contributions from

matrix elements involving each of the p+- and p−-orbitals. Examination of eqs. 6-9 reveals

that the contributions from the state involving an orbital that is ”counter-rotating” with

respect to r̂± are identical (⟨Ψ+
k∣r̂−∣2p+⟩ = ⟨Ψ+

k∣r̂+∣2p−⟩). The contributions from the ”co-

rotating”-orbitals ⟨Ψ+
k∣r̂−∣2p−⟩ and ⟨Ψ+

k∣r̂+∣2p+⟩ are equal in terms of their magnitude, but

differ in phase due to the contribution of the angular part mediated by Y2±2(k̂). In Fig. S5 A

9



we show the absolute magnitude of the individual ⟨Ψ+
k∣r̂±∣2p±⟩. The dominance of the ”co-

rotating” contributions when compared to the ”counter-rotating” ones is a manifestation of

the ”propensity rules” ([14, 15]) in atomic transitions that have been applied in the study

of Rydberg atoms in microwave circular fields ([16–18]). Figure S5 B displays the relative

phases between the contributions arising from the two orbitals for the (3q + 1)- (⟨r̂+⟩) and

the (3q + 2)- (⟨r̂−⟩). Whereas the interference between ⟨Ψ+
k∣r̂+∣2p+⟩ and ⟨Ψ+

k∣r̂+∣2p−⟩ remains

constructive over the spectral region of interest, the phase difference between ⟨Ψ+
k∣r̂−∣2p+⟩

and ⟨Ψ+
k∣r̂+∣2p+⟩ is close to −3π between H16-H25. As a consequence, a suppression of the

I3q+2 is expected to occur, in accord with our experimental results. The predicted I3q±1-

intensities for helium, neon and argon are displayed in Fig. S6. As evident from Fig. S6 B,

this simplified model reproduces two of the main experimental observations: the suppression

of the (3q + 2)-orders in the region between H15 and H27 as well as the their subsequent

increase after H28. The last-mentioned feature is overestimated in this simple model.
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FIG. S6: Estimated relative intensities for the (3q + 1)- (red stars) vs. (3q + 2)- (blue circles)

harmonic orders for He (panel A), Ne (panel B) and Ar (panel C).

As mentioned in the main text, besides angular momentum symmetry, the ionic potential

can also affect the intensity distribution in bicircular HHG. In the case of argon (Fig. S7),

the radial parts of the 3p-photorecombination matrix elements have opposite signs from the

ionization threshold (15.76 eV) up to the Cooper minimum (≈ 53 eV) depending on whether

the continuum has s- or d-symmetry. Our analysis indicates that this effect counteracts

the suppression of the 3q + 2 orders, leading to an intensity distribution similar to that of

helium (Fig. S6 C). Figs. S5 C and D display the individual contributions of the matrix

elements ⟨Ψ+
k∣r̂±∣2p±⟩ of Ar and the corresponding phase differences. We note that although

this simple model accounts correctly for the relative intensity between adjacent members
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FIG. S7: Panel A: Experimental HHG spectrum of argon in the bicircular configuration (loga-

rithmic scale). Panel B: TDSE calculation of the harmonic emission in Ar corresponding to the

experimental conditions in A (Iω = 2.0 × 1014W/cm2, I2ω = 0.5 × 1014W/cm2).

of a given 3q + 1/3q + 2-pair, the overall intensity distribution is not well reproduced. The

disagreement is most prominent in the low-energy part of the spectrum, where recollision-

based theories cannot be expected to be accurate. For completeness, we show in Fig. S7 B

the TDSE simulation of BHHS in argon. The scale in Figs. S7 A and B is logarithmic in

order to facilitate the comparison between experimental and theoretical results. Overall,

the 3q + 1/3q + 2-ratios are correctly reproduced in the range H9 − H18 but the theory

overestimates the contribution of the 3q + 2-member in the cutoff-region.

IV. RECOMBINATION STEP IN BHHS OF MOLECULES

A. Isotropic ensemble

The Z-axis of the laboratory frame is chosen to coincide with the photon propagation

direction, i. e. Z ∥ n̂. The electron trajectory is characterized by the recombination angle

φk, measured with respect to the laboratory X-axis. The values of φk are obtained with

the saddle-point-method introduced in the preceding section. We stress that this approach

does not take the angular dependence of the ionization step into account. We restrict our

analysis to motion within the XY (lab)-plane, thus the recombination trajectory is given

by k̂L = (θk = π/2, φk). Let α, β, γ be the Euler angles such that the rotation D(α, β, γ)
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A B

C D

FIG. S8: Panel A: Relation between the various coordinate systems discussed in the text. Unprimed

letters pertain to the laboratory frame, primed ones define the ”pump frame”. In the calculations,

we employ Z ′ ∥ X, here both vectors are offset by φpump for clarity. The red axis defines the

molecular-frame Z ′′
mol-axis, whose orientation is specified by (ϑalign, ϕalign) in the pump frame and

(β,α) in the lab frame. α is not shown. Panel B: Photorecombination matrix elements with

respect to the lab frame for various harmonic orders, averaged over one cycle assuming an isotropic

distribution. Panel C: Calculated alignment distribution A(ϑalign) sinϑalign in the pump frame.

Panel D: Calculated alignment distribution A′(β) sinβ, transformed to the lab frame and averaged

over the azimuthal angle α.

transfers the lab frame (LF) into the molecular frame (MF). In particular, α and β represent

the azimuthal and the polar angle of the molecular z-axis in the LF (cp. Fig. S8 for the

definition of the various coordinate systems). The photorecombination matrix element in
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the MF can be obtained in terms of the partial-wave matrix elements Ilmµ using the relation:

Tf←i =
√

4π

3
∑
lmµ

IlmµY
∗
lm(k̂M)Y ∗

1µ(n̂M). (10)

The quantities Ilmµ are caculated with the ePolyScat code ([19, 20]). k̂M is the recombining

electron trajectory in the MF, its value is known the lab frame. We can express Tf←i in the

LF by:

T
(LF)
f←i (α, β, γ) =

√
4π

3
∑
lmµ

Ilmµ
l

∑
m′=−l

Dlm′,m(α, β, γ)Y ∗
lm′(k̂L)

1

∑
µ′=−1

D1
µ′,µ(α, β, γ)Y ∗

1µ′(n̂L). (11)

This event repeats itself three times each cycle, the individual trajectories are spaced by

∆φ = 2π
3 in angular space and by a phase factor of N 2π

3 in time (N is the harmonic or-

der). Adding the three bursts vectorially in the lab frame gives the following result for the

clockwise/counter-clockwise helicity:

T
(LF)
f←i (α, β, γ) =

√
4π

3

j=+1

∑
j=−1

∑
lmµ

Ilmµ
l

∑
m′=−l

1

∑
µ′=−1

Dlm′,m(α, β, γ)Y ∗
lm′(π2 , φk + j

2π
3 ) ×

D1
µ′,µ(α, β, γ)Y ∗

1µ′(π2 , φk + j
2π
3 ) (cos(φk + j 2π

3 )x̂L ± ι sin(φk + j 2π
3 )ŷL) eιjN

2π
3 . (12)

The total intensity is obtained after coherent integration over all orientations:

If←i = ∣∫
2π

0
dα∫

2π

0
dγ ∫

π

0
dβT

(LF)
f←i (α, β, γ) sinβ∣2. (13)

For N = 3k, k ∈ N+, (12) vanishes.

B. Aligned ensemble

Equation (12) is generally valid. The problem is how to set the Euler angles. The easiest

way is to introduce an intermediate ”pump” system denoted by primed symbols (X ′, Y ′, Z ′).

Z ′ is the pump polarization axis and we set Z ′ ∥X. This means that the X-lab-axis is now

defined by the pump axis. Let (ϑalign, ϕalign) define the molecular orientation with respect

to the pump frame for a linear molecule. The angle distribution function in this frame is

isotropic with respect to ϕalign, A(ϑalign, ϕalign) → A(ϑalign). If the pump frame is tilted by

an angle θpump with respect to the lab frame (here θpump = π/2), the molecular distribution

in the lab frame can be obtained using the cosine theorem as:

A′(β,α) = A(ϑalign(β,α)) = A(arccos(cosα sinβ)). (14)

13



The alignment distribution is obtained from a rotational TDSE-calculation ([21]) assuming

a pump pulse of intensity I = 7 × 1013W/cm
2
, a pulse duration of 60 fs and a rotational

temperature of 25 K. The intensity is obtained by weighting (12) with the axis distribution:

If←i = ∣∫
2π

0
dα∫

π

0
dβA′(β,α)T (LF)

f←i (α,β, γ = 0) sinβ∣2, (15)

since γ can be set arbitrarily for a linear molecule. In the above, we have assumed that

Z ′ ∥ X. This assumption implicitly requires that the phase delay between the fundamental

and its second harmonic (∆ϕ) is known. Since interferometric stability cold not be achieved

in our optical setup, the results presented in S8 are calculated for many ∆ϕ between 0 and

2π and subsequently averaged.
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