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Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

(Received 1 November 2016; accepted 10 February 2017; published online 22 March 2017)

We present a theoretical formalism for the calculation of attosecond delays in molecular photoioniza-
tion. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith
delays, can be obtained from the complex dipole matrix elements provided by molecular quantum
scattering theory. These results are used to derive formulae for the delays measured by two-photon
attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared
pulse. These effective delays are first expressed in the molecular frame where maximal informa-
tion about the molecular photoionization dynamics is available. The effects of averaging over the
emission direction of the electron and the molecular orientation are introduced analytically. We illus-
trate this general formalism for the case of two polyatomic molecules. N2O serves as an example of a
polar linear molecule characterized by complex photoionization dynamics resulting from the presence
of molecular shape resonances. H2O illustrates the case of a non-linear molecule with comparably
simple photoionization dynamics resulting from a flat continuum. Our theory establishes the founda-
tion for interpreting measurements of the photoionization dynamics of all molecules by attosecond
metrology. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977933]

I. INTRODUCTION

In recent years, the techniques of attosecond spectroscopy
have led to the observation and control of electron dynam-
ics in atoms, molecules, and solids. One important branch of
attosecond spectroscopy was initiated by the study of the real-
time dynamics of photoionization, starting with photoemission
from solids1–3 and single-photon ionization of atoms.4,5 These
measurements have explored the natural attosecond time scale
on which photoelectrons leave the parent species6–9 with a
recent emphasis on the role of atomic resonances.10,11 In the
case of atoms, the accepted interpretation of these measure-
ments relies on the Eisenbud-Wigner-Smith time delay that
can be defined for most scattering processes and more or
less universal delays caused by the measurement.12–15 Pho-
toemission from solids is a much more complicated process
in which the atomic contributions to the delay should also be
important.2,16,17 The field of photoemission delays has been
comprehensively reviewed in Ref. 18.

Attosecond photoionization delays from molecules have
received surprisingly little attention so far, presumably because
of the associated experimental and theoretical complexity.
Very recently, we have reported measurements of photoion-
ization delays of N2O and H2O molecules19,20 together
with a brief summary of a theory that is fully outlined
and developed in this article. Previously reported theoret-
ical approaches to time-resolved molecular photoionization
comprise calculations based on the solution of the full time-
dependent Schrödinger equation for relatively simple proto-
typical systems such as H+

2 ,21–26 or restricted one-dimensional

a)Electronic mail: woerner@phys.chem.ethz.ch. URL: http://www.atto.
ethz.ch.

single-active-electron models of diatomic molecules.27,28

Delays in one-photon ionization of N2 and CO calculated
using a Schwinger variational procedure were reported in
Ref. 29. Here, we show that there is no simple additive rela-
tion between one-photon-ionization delays of molecules and
those measured by attosecond interferometry. This difference
between atoms and molecules arises from the facts that (i)
molecules lack spherical symmetry such that multiple partial
waves are required in the description of the initial bound state
and (ii) the photoionization matrix elements depend on the
orientation of the molecule relative to the ionizing radiation,
such that delays measured in partially to randomly aligned
molecules differ from those measured in the molecular frame
in a non-trivial manner. Despite its inherent complexity, the
understanding of molecular photoionization delays will how-
ever offer an attractive bridge between the complex world of
the condensed phase and the transparent case of atoms. It also
constitutes an essential step in extending attosecond metrol-
ogy to molecular forms of matter, comprising clusters, liquids,
and solids.

We now discuss the novelty of the information that can
be obtained from attosecond time-resolved measurements of
photoionization delays, as compared to more traditional vari-
ants of photoelectron spectroscopy. A complete description of
photoionization within the dipole approximation requires the
knowledge of the amplitude and phase of the transition dipole
matrix elements from the bound initial state to the final contin-
uum states. Photoelectron spectroscopy is frequently used to
measure energy- and final-state resolved partial cross sections.
These cross sections can be expressed as a sum of squared
magnitudes of partial-wave matrix elements. Therefore, they
are not sensitive to the phase of these matrix elements. Pho-
toelectron angular distributions, in contrast, are defined by
interference between different partial waves and are therefore

0021-9606/2017/146(12)/124306/12/$30.00 146, 124306-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4977933
http://dx.doi.org/10.1063/1.4977933
mailto:woerner@phys.chem.ethz.ch
http://www.atto.ethz.ch
http://www.atto.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4977933&domain=pdf&date_stamp=2017-03-22


124306-2 D. Baykusheva and H. J. Wörner J. Chem. Phys. 146, 124306 (2017)

very sensitive to the phase shifts between degenerate con-
tinua.30 However, frequency-domain measurements can only
determine phase differences between photoelectron continua
belonging to the same ionization threshold. Phase relations
between ionization continua corresponding to different ioniza-
tion thresholds cannot, in principle, be measured because the
corresponding photoelectrons have a different kinetic energy.
The techniques of time-domain spectroscopy do enable such
measurements, provided that the bandwidth covered by the
ionizing radiation exceeds the energetic separation of the con-
sidered ionization thresholds. Measurements of photoioniza-
tion delays in molecules do therefore provide qualitatively
new information on the dynamics of photoionization which is
not accessible to frequency-domain methods. For this reason,
comparisons of such measurements with theory are partic-
ularly interesting because they test a previously unexplored
aspect of scattering calculations.

This article is structured as follows. Section II defines
time delays in molecular photoionization. Starting from
the (Eisenbud-Wigner-Smith) delays associated with single-
photon ionization, defined in the molecular frame, we show
how the delays measured by attosecond interferometry are
obtained, first in the molecular frame and then in the labo-
ratory frame. Section III illustrates these results for the case of
two recently experimentally investigated molecules N2O and
H2O20 which illustrate the complementary cases of linear and
non-linear molecules and additionally reveal the role of shape
resonances on molecular photoionization delays. Section IV
contains the conclusions of this article.

II. TIME DELAYS IN MOLECULAR PHOTOIONIZATION

The concept of time delay was introduced by Wigner31

and Eisenbud32 from a time-dependent perspective in the con-
text of the scattering of wavepackets composed of spherical
waves. By defining the concept of a “dwell time,” Smith33

arrived at an expression connecting the time delay with the
properties of stationary eigenstates, in particular the S-matrix.
While these concepts were restricted initially to the spe-
cial case of short-range potential scattering, the concept of
time-delay was shown after appropriate modifications to be
transferable to systems subject to Coulomb interaction,34,35 a
situation relevant for the case of photoionization. In Sec. II A,
we apply this concept to the case of molecular photoion-
ization and outline the calculation of molecular time delays
from state-of-the-art molecular quantum scattering theory cur-
rently employed in the theories of photoionization and photo-
electron spectroscopies. The treatment of molecular targets
involves several conceptual difficulties that have to be accom-
modated in the time-delay formalism introduced by Smith.
These include, in addition to the presence of multiple chan-
nels, the angular dependence introduced by the directional
dependence of the photoelectron on the one hand and the ori-
entation of the molecule with respect to the laboratory-frame
axes on the other hand. We first consider the case of single-
photon ionization, whereby we first employ the “angular time
delay” concept as introduced by Froissart, Goldberger, and
Watson36 to treat the angular dependence of molecular pho-
toionization and discuss the procedure for averaging over the

photoemission angle and the molecular orientation. Consid-
ering the fact that current experimental schemes targeting
photoionization time delays involve the interaction with a
second laser pulse, displaced in time relative to the ioniz-
ing extreme-ultraviolet (XUV) radiation, we next consider the
case of two-photon ionization by one high-frequency (typi-
cally XUV) photon and one low-frequency (typically infrared,
IR) photon. This case is relevant for experiments relying on
interferometry with attosecond pulse trains (APT), also used
in the reconstruction of attosecond beating by interference of
two-photon transitions (RABBIT) scheme.37 The effects of
spatial averaging over the photoelectron emission angle and
the molecular orientation are also discussed.

A. One-photon delays

Throughout this text, we use the method of single-center
partial-wave expansion to study the photoionization of molec-
ular targets. The formalism employed in the current section
closely follows the notation employed in Ref. 41. As dis-
cussed in Ref. 42, the scattering operator, in terms of which
Smith’s time delay definition is constructed, can be related
to the photoionization matrix element. The photoionization
dipole matrix elements expressed in the length gauge are of
the general form

Ii, f = 〈Ψf ,~k
(−) |~r · ~E |Ψi〉 , (1)

where |Ψi〉 represents the initial-state wave function, ~r is
the position operator, and ~E denotes the electric field of the
laser normalized to |~E | = 1. In the case of linearly polar-
ized light, Eq. (1) can be expressed in a simplified form
Ii,f = 〈Ψf ,~k

(−) |~r · n̂ |Ψi〉, with n̂ denoting the polarization direc-
tion. Here and in what follows, atomic units are used, unless
otherwise stated. The final (residual ion + photoelectron)
wavefunction is expanded into partial waves,

Ψf ,~k
(−) =

√
2
π

∑
lm

ilΨf ,lm
(−)(~r)Y ∗lm(k̂), (2)

where k̂ ≡ (θk , φk) denotes the emission direction of the pho-
toelectron with the asymptotic momentum k in the molec-
ular frame of reference. Y lm denotes a spherical harmonic
function with a phase factor given by the Condon-Shortley
convention. The partial-wave states Ψf ,lm

(−)(~r) are energy-
normalized solutions of the Lippmann-Schwinger equation
defined in Ref. 40. The three components of the position oper-
ator rµ in the molecular frame can be written explicitly in

the spherical tensor form rµ =
√

4π
3 rY1µ(r̂), where r̂ denotes

the direction of the position vector defined with respect to
the molecular frame (MF). The electric field orientation is
fixed in the laboratory frame (LF). The Z-axis of the latter
is defined parallel to the polarization direction of the electric
field for linearly polarized light or parallel to the propagation
direction for the circular polarization. The relation between
the two frames can be expressed in terms of the Euler angles
(R̂γ ≡ (α, β, γ)) defined in Fig. 1 that rotate the molecular
frame into coincidence with the laboratory frame. The scalar
product in Eq. (1) then reads (in the case of linear or circular
polarization)
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FIG. 1. Definition of the coordinate systems (molecular frame, MF, and lab-
oratory frame, LF), the set of Euler angles R̂γ = (α, β,γ) transforming the
MF into the LF, and the angles (θk,φk) defining photoemission.

ξ̂mp ≡ ~r · ~E =

√
4π
3

(−1)mp rE−mp

1∑
µ=−1

D(1)
µmp (R̂γ)Y1µ(r̂), (3)

where D(j)
mk denotes a Wigner matrix element. The symbol mp

specifies the polarization of the incident field and is given by mp

= 0 for linearly polarized light or mp =±1 for right/left circular
polarization. Therefore one can expand the dipole moment I i ,f

defined in (1) as

Ii,f =
∑
lmµ

IlmµYlm(k̂)D(1)
µmp

(R̂γ), (4)

where Ilmµ =

√
2
π i−l(−1)mp E−mp 〈Ψf ,lm

(−)(~r)| rµ |Ψi〉.
Following the reasoning of Froissart, Goldberger, and

Watson,36 we can define the “angular time delay” in the context
of molecular photoionization as

τ1hν(E, k̂, R̂γ) =
∂

∂E
arg

{
Ii,f

}

=
∂

∂E
arg




∑
lmµ

IlmµYlm(k̂)D(1)
µmp

(R̂γ)



. (5)

Equation (5) defines a delay associated with single-
photon ionization for photoemission along the direction k̂ in
the molecular frame for a particular orientation (R̂γ) of the
molecule with respect to the ionizing radiation. In the follow-
ing, we refer to such quantities as emission-angle (or short
angle-) and target-orientation (or short orientation-) resolved
delays.

The formula given in Eq. (5) cannot be directly applied
to describe an experimental situation sampling the time delay
only as a function of one of the solid angles k̂ or R̂γ while
the resolution with respect to the other is absent. The correct
procedure for performing spatial averaging over τ(E, k̂, R̂γ)
must take into account the contribution of a particular emission
direction to the total photoionization cross section. The method
to achieve this consists of weighting the delay associated with
a particular set of angles k̂ and R̂γ with the corresponding cross

section,

τ1hν(E) =
1

8π2

∫
dR̂γ

∫
dk̂
|
∑

lmµ IlmµYlm(k̂)D(1)
µmp

(R̂γ)|2∑
lmµ |Ilmµ |

2

×
∂

∂E
arg




∑
lmµ

IlmµYlm(k̂)D(1)
µmp

(R̂γ)



. (6)

This expression defines the one-photon-ionization delay aver-
aged over both emission angles and target orientation, i.e., the
result of a non-angle-resolved measurement on a randomly
oriented molecular sample. A formula similar to expression
(6) for the case of scattering on a short-range potential has
been derived and discussed by Nussenzveig.43,44

B. Two-photon delays in molecular photoionization
1. Angle- and orientation-resolved delays

In the following, we derive the two-photon matrix ele-
ments describing photoionization delays measured by a com-
bination of XUV and IR laser pulses, typical of attosecond
interferometry. In doing so, we make the following assump-
tions. First, the XUV photon energy Ω is assumed to be
much larger than the relevant ionization potential (Ip) of the
molecule. This allows one to ignore bound-state contributions
to the two-photon matrix elements. Second, the intensity of
the IR pulse is sufficiently low (typically�1012 W/cm2) that
multiphoton absorption of the IR plays no role. Third, ioniza-
tion pathways in which the XUV photon is absorbed after the
IR photon of energy ω are neglected. The two-photon ioniza-
tion matrix element for a fixed-in-space target in the molecular
frame (MF) is then given by

M(~k; εi +Ω)

=
1
i

lim
ε→0+

∫
dεν
〈Ψf ,~k

(−)(~r)| ξ̂IR
m′p
|ν〉 〈ν | ξ̂XUV

mp
|Ψi〉

εi +Ω − εν + iε
, (7)

where Ψf ,~k
(−)(~r) and Ψi are the final and initial states defined

in Sec. II A, while |ν〉 denotes an intermediate continuum
state with energy εν . We choose a Hartree-Fock wave func-
tion description for the initial state |i〉, as implemented in
ePolyScat. We now perform a single-center partial wave
decomposition of the initial-state Ψi =

∑
lm Rnl(r)Ylm(r̂) and

intermediate-state wave functions |ν〉 =
∑
λµ Rνλ(r)Yλµ(r̂).

Since we restrict our analysis to the case where the energy of
the XUV pulse exceeds the ionization potential of the system,
the summation over the intermediate states labelled ν in Eq. (7)
effectively involves only partial-wave components of the inter-
mediate continuum states accessible. In analogy to Eq. (2),
Rκλ is also chosen such that the incoming-wave boundary
conditions are satisfied. We treat the final-state wavefunction
Ψf ,~k

(−)(~r) within the frozen-core Hartree-Fock approximation,
assuming a single-determinant representation of the final state
in which the ionic orbitals are identical to the ones used for
the description of the ground state. The photoelectron orbital
corresponds to the solution of the one-electron Schrödinger
equation with a potential defined by the static-exchange inter-
action with the molecular ion, a short-range potential term,
and the Coulomb interaction.45
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We separate the final state given by Eq. (2) explicitly in
terms of radial and angular-dependent parts,

Ψf ,~k
(−)(~r) =

√
2
π

∑
LM

iLe−iηL(k)Y ∗LM (k̂)YLM (r̂)RkL(r), (8)

where the radial solution RkL, corresponding to continuum
momentum k, satisfies the proper incoming-wave boundary
conditions, k̂ captures the angular dependence of the ejected
electron, and ηL(k)= δL(k) + σL(k) is the partial-wave phase
shift that consists of a short-range (δL(k)) and Coulomb
(σL(k)) parts. The general expression in Eq. (7) defines the
two-photon photoionization amplitude for a fixed-in-space
target in the molecular frame. Thus, the transition operators

ξ̂XUV/IR are tied to the MF. The polarizations of the XUV/IR
fields, however, are defined with respect to the LF and corre-
spondingly, ξ̂XUV/ξ̂IR has to be transformed to the MF accord-
ing to Eq. (3). From now on, the dependence of M(~k; εi +Ω) on
the target orientation will be denoted explicitly: M(~k; εi + Ω)
→M(~k; εi + Ω; R̂γ). In addition, we adopt the following con-
vention for the indices for the polarizations of the XUV/IR
fields,

ρ′, m1 → XUV, (9)

ρ, m2 → IR. (10)

After inserting all partial-wave expansions into (7) and evalu-
ating the angle-dependent integrals, we obtain

M(~k; εi +Ω; R̂γ) =
1
i

EXUV
−m1

EIR
−m2

4π
3

√
2
π

(−1)m1+m2
∑

LMλµ
ρρ′

lm

(−i)LeiηL(k) 〈YLM | Y1ρ |Yλµ〉 〈Yλµ | Y1ρ′ |Ylm〉

×TLλl(k; εκ)D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)YLM (k̂), (11)

where TLλl(k; εκ) is the radial part of the two-photon transition matrix element

TLλl(k; εκ) =
∑

ν,εν<0

〈RkL | r |Rνλ〉 〈Rνλ | r |Rnl〉

εi +Ω − εν
+ lim
ε→0+

∫ ∞
0

dεκ′
〈RkL | r |Rκ′λ〉 〈Rκ′λ | r |Rnl〉

εi +Ω − εκ′ + iε
. (12)

In the above, the symbols ν, λ, and µ denote the set of quantum numbers corresponding to the intermediate states, while κ denotes
the asymptotic momentum of the electron following the XUV-induced bound-continuum transition and εκ = εi +Ω.

We evaluate Eq. (12) in the asymptotic approximation following the work of Ref. 14. Specifically, following the derivation
leading from Eq. (7) to Eq. (20) in Ref. 14, leads from our Eq. (12) to

TLλl(k; εκ) ≈
1

√
kκ |κ − k |2

exp

[
−
πZ
2

(
1
κ
−

1
k

)]
iL−λ−1ei(ηλ(κ)−ηL(k)) (2κ)iZ/κ

(2k)iZ/k

Γ
[
2 + iZ(κ−1 − k−1)

]

(κ − k)(1/κ−1/k)
〈Rκλ | r |Rnl〉 . (13)

Setting

Aκk =
1

√
kκ |κ − k |2

exp

[
−
πZ
2

(
1
κ
−

1
k

)]
(2κ)iZ/κ

(2k)iZ/k

Γ
[
2 + iZ(κ−1 − k−1)

]

(κ − k)1/κ−1/k
(14)

results in

M(~k; εi +Ω; R̂γ) = −EXUV
−m1

EIR
−m2

4π
3

√
2
π

(−1)m1+m2 Aκk

∑
LMλµ
ρρ′

lm

(i)−λeiηλ(κ)〈Rκλ | r |Rnl〉 〈Yλµ | Y1ρ′ |Ylm〉 〈YLM | Y1ρ |Yλµ〉

×D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)YLM (k̂). (15)

The quantity Aκk can be identified as an IR-induced, “continuum-continuum” part of the two-photon amplitude as it does not
depend on the target structure within the asymptotic approximation used here. By comparison with the definition of Ilmµ after
Eq. (4), one can also identify the photoionization matrix element corresponding solely to the XUV-absorption step

Iλµρ′ := (−1)m1 EXUV
−m1

√
4π
3

(i)−λeiηλ(κ)
∑
lm

〈Rκλ | r |Rnl〉 〈Yλµ | Y1ρ′ |Ylm〉. (16)

We note that Eq. (16) corresponds to the complex-conjugate of the PI-matrix element defined in Ref. 41. With these auxiliary
definitions, the matrix element

M(~k; εi +Ω; R̂γ) =

√
4π
3

(−1)m2+1EIR
−m2

Aκk

∑
LM
ρρ′

λµ

Iλµρ′ 〈YLM |Y1ρ |Yλµ〉D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)YLM (k̂) (17)

can be cast in a concise form
M(~k; εi +Ω; R̂γ) = Aκk

∑
LM

bm1,m2
LM (R̂γ)YLM (k̂), (18)
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where the orientation-dependent coefficients bm1,m2
LM (R̂γ) are defined as

bm1,m2
LM (R̂γ) =

√
4π
3

(−1)m2+1EIR
−m2

∑
ρρ′

λµ

Iλµρ′ 〈YLM |Y1ρ |Yλµ〉D(1)
ρ′m1

(R̂γ)D(1)
ρm2

(R̂γ)

= (−1)mp+ρ+1EIR
−m2

∑
ρρ′

λµ

√
2L−1
2λ+1 〈L010|λ0〉〈LM1 − ρ|λµ〉Iλµρ′D(1)

ρ′m1
(R̂γ)D(1)

ρm2
(R̂γ), (19)

where the symbol 〈....|..〉 denotes a Clebsch-Gordan coefficient.
In the following, we discuss the two-photon delays accessible in a RABBIT measurement. Up to this point, our equations are

valid for both linearly and circularly polarized radiations and arbitrary relative polarizations of XUV and IR. For simplicity, we
now restrict the polarizations of XUV and IR fields to be linear and parallel to each other, i.e., m1 = m2 = 0 and the superscripts
in the bm1,m2

LM -coefficients will be omitted for brevity. The angle- and orientation-resolved intensity of a photoelectron sideband
corresponding to energy 2qω (q ∈ N) created in an attosecond interferometry experiment is given by

d2P2q

dk̂ dR̂γ
∝ |M(2q−1) + M(2q+1) |2 = |M(2q−1) |2 + |M(2q+1) |2 + 2|M(2q−1) | |M(2q+1) | cos

[
arg

{
M(2q−1)∗M(2q+1)

}]
. (20)

Here and in what follows, the label (2q ± 1) attached to a
particular symbol indicates that the corresponding quantity
has to be evaluated at a value κ± ≡

√
2((2q ± 1)ω − Ip) for

the asymptotic momentum of the intermediate photoelectron
state. The final asymptotic momentum of the electron after the
IR-induced transition is given by k =

√
2(2qω − Ip).

The angle- and orientation-resolved delay in the finite-
difference approximation14 reads

τ(2q, k̂, R̂γ) =
1

2ω
arg

(
M(2q−1)∗M(2q+1)

)
, (21)

where

M(2q−1)∗M(2q+1) = A(2q−1)∗
κ−k A(2q+1)

κ+k

∑
LM

L′M′

b∗L′M′;(2q−1)(R̂γ)

× bLM;(2q+1)(R̂γ)Y ∗L′M′(k̂)YLM (k̂). (22)

This quantity contains the maximal available information
about the attosecond photoionization dynamics. The delay can
accordingly be written as a sum of two terms,

τ(2q, k̂, R̂γ) = τcc(2q) + τmol(2q, k̂, R̂γ). (23)

The structure of Eq. (23) shows that measurements of molec-
ular photoionization delays by attosecond interferometry, just
as their atomic counterparts, can be interpreted in terms of a
continuum-continuum contribution (or measurement-induced
delay),5,14

τcc(2q) =
1

2ω
arg

[
A(2q−1)∗
κ−k A(2q+1)

κ+k

]
, (24)

which only depends on the photon energies, i.e., the harmonic
orders. However, the angular momentum addition describing
the interaction with the IR photon leads to a non-trivial modifi-
cation of the angle-dependence of the delays that we factorize
into a molecule-specific contribution that can be expressed as20

τmol(2q, k̂, R̂γ) =
1

2ω
arg



∑
LM

L′M′

Y ∗L′M′(k̂)YLM (k̂)b∗L′M′;(2q−1)(R̂γ)

× bLM;(2q+1)(R̂γ)



. (25)

The reason for this additional complexity as compared to atoms
lies in the fact that molecules lack spherical symmetry and
therefore several (in principle, infinitely many) partial waves
are required to describe molecular photoionization. Although
molecular photoionization delays can, in principle, be mea-
sured with angular resolution for fixed-in-space molecules,
such experiments have not been reported to date. We there-
fore now discuss the effects of angular and target-orientation
averaging.

2. Effect of averaging over emission angle
and target orientation

In the following, we describe several possible configu-
rations of experimental interest. We first introduce the effect
of averaging over the emission angle k̂ of the photoelectron.
Equation (20) is easily uniformly averaged over k̂ by exploiting
the orthonormality of the spherical harmonics (see Eq. (22))
leading to

τ(2q, R̂γ) = τcc(2q) +
1

2ω
arg



∑
LM

b∗LM;(2q−1)(R̂γ)

× bLM;(2q+1)(R̂γ)


. (26)

This quantity represents the delay measured from perfectly
oriented molecules by averaging over the emission angle of
the photoelectron.

Measurements of molecular photoionization delays have
so far only been reported for unaligned samples.20 This
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situation is described by additionally averaging over all
molecular orientations leading to

τ(2q) = τcc(2q) +
1

2ω
arg



∑
LM

∫
dR̂γb∗LM;(2q−1)(R̂γ)

× bLM;(2q+1)(R̂γ)


. (27)

Molecular photoionization delays could also be mea-
sured by aligning and orienting molecules in space using
non-resonant laser pulses46–49 or by post-selection in coin-
cidence/covariance experiments for cases where dissociative
photoionization pathways can be cleanly separated and the
axial recoil approximation is valid. In all such cases, averag-
ing must be performed over a characteristic axis distribution
A(R̂γ) and the corresponding delays are given by

τ(2q) = τcc(2q) +
1

2ω
arg



∑
LM

∫
dR̂γA(R̂γ)

× b∗LM;(2q−1)(R̂γ)bLM;(2q+1)(R̂γ)


. (28)

Finally, a measurement of angle-resolved delays could
be performed for a randomly aligned molecular sample. This
situation is described by uniformly averaging over R̂γ only, but
not over k̂,

τ(2q, k̂) = τcc(2q) +
1

2ω
arg



∑
LM

L′M′

Y ∗L′M′(k̂)YLM (k̂)

×

∫
dR̂γb∗L′M′;(2q−1)(R̂γ)bLM;(2q+1)(R̂γ)



. (29)

C. Comparison to the atomic case

At this point, it is pertinent to outline the differences
between the molecular case discussed so far and the result
for an atomic system. Specifically, we compare Eq. (15) from
this article with Eq. (24) of Ref. 14.

The first difference arises from the lack of spherical sym-
metry of molecules and applies both in the molecular and
in the laboratory frames. The absence of spherical symmetry
requires the summation over `, the angular-momentum quan-
tum number of the partial waves involved in the expansion
of the initial bound state. In contrast, the initial bound state
of atoms can be described by a single value of `. Addition-
ally, exploiting the Fano propensity rule,50 which states that
the transition ` → ` + 1 strongly dominates over the transi-
tion ` → ` − 1, the phase of the two-photon matrix elements
for atoms can be reduced to a sum containing the scattering
phase η`+1(κ) and the cc-phase (the argument of Eq. (14) in
this article), as done in Ref. 5. Consequently, the two-photon
delay accessible in angle-integrated RABBIT measurements
of atoms can be written as

τ(2q) = τcc(2q) + τ1hν(2q), (30)

i.e., as a sum of a one-photon-ionization delay (the Wigner
delay) and a continuum-continuum delay. In the case of
molecules, this separability does not exist in the same form
because the initial state cannot be represented by a single
partial wave. Multiple partial waves are required to repre-
sent the initial state, therefore multiple partial waves are also
required to represent the intermediate (one-photon-ionized)
state, which leads to interference phenomena, e.g., between
the pathways ` → ` + 1 and ` + 2 → ` + 1. Additional inter-
ferences occur at the level of the two-photon transitions, e.g.,
between ` → ` + 1→ ` and ` + 2→ ` + 1→ `.

For these reasons, the two-photon delays in molecular
photoionization cannot be written as a sum of a one-photon-
ionization delay and a universal continuum-continuum con-
tribution. In other words, there is no simple additive relation
between τ(2q, k̂, R̂γ) and τ1hν(2q, k̂, R̂γ) in the molecular case.
However, owing to the independence of τcc on the values of
the angular-momentum quantum numbers, one can still isolate
a “continuum-continuum contribution” (see Eq. (23)), but the
residual τmol has no simple relation to τ1hν . Consequently, the
effect of the probing IR field on the delays measured in the
molecular case cannot be represented by a simple, universal
quantity. Instead, one has to first evaluate Eq. (19), followed
by Eqs. (25)–(29), depending on the case of experimental
interest.

The second difference to the atomic case is the dependence
of all matrix elements on the orientation of the target molecule,
i.e., the dependence on the Euler angles R̂γ, which is explicitly
given in the preceding equations. The dependence of the delays
on R̂γ is very pronounced, as we show below, and it plays
a crucial role in averaging over the axis distribution, which
is relevant for all experiments. The non-trivial aspect of the
orientational-averaging arises from the fact that Eqs. (27)–(29)
represent coherent integrals over complex quantities. This fact
can completely change the energy-dependence of τmol(2q),
as we illustrate in Section III C. We show that the coherent
averaging over molecular orientations can shift the position
of the maximal delay caused by a shape resonance by ∼7 eV
when comparing the one-photon-ionization delays τ1hν with
the molecular part of the two-photon delays τmol.

III. APPLICATIONS

We apply the expressions derived in Sec. II B to the
case of two polyatomic molecules that have recently been
investigated experimentally using attosecond interferometry,
i.e., N2O and H2O.20 The scattering calculations were per-
formed numerically using ePolyScat,38,39 which is based on
the Schwinger variational principle.40 The initial-state single-
determinant wavefunction Ψi was obtained from a Hartree-
Fock quantum chemistry calculation using the 3-21G basis set
and bond lengths of R(N–N) = 1.207 Å and R(N–O) = 1.237 Å
in the case of N2O. In the case of H2O, the cc-pVTZ basis
set was used with bond lengths of R(O–H) = 0.9578 Å and a
bond angle of θ(HOH) = 104.5 ◦. In both cases, we employed
the frozen-nuclei approximation and performed the scatter-
ing calculation keeping fixed bond distances and angles. The
choice of a rather small basis in the case of N2O is justified by
the fact that the scattering calculations correctly reproduce the
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experimentally observed photoionization cross sections and
the asymmetry parameters (see the supplementary material of
Ref. 20). The comparison of calculated and observed pho-
toionization cross sections indeed validates the magnitude of
the photoionization dipole-matrix elements. The comparison
of photoelectron angular distributions additionally validates
the accuracy of the relative phases of different partial-wave
channels belonging to the same final electronic state of the
cation. Relative delays in photoionization20 are moreover sen-
sitive to the relative phases of photoelectron continua belong-
ing to different final states of the cation, which constitutes
an additional motivation for measuring and calculating such
delays.

A. Delays in one-photon ionization

We first illustrate the angle- and orientation-resolved
delays in one-photon ionization, as defined by Eq. (5). These
delays for ionization from the X̃1Σ+ electronic ground state of
N2O to the first electronically excited state Ã+2Σ+ of N2O+

are shown in Fig. 2 for a molecule aligned parallel ((α = 0,
β = 0, γ = 0), panel (a)) or perpendicular ((α = 0, β = π/2,
γ = 0), panel (b)) to the polarization of the ionizing radia-
tion. These choices of the Euler angles enable us to isolate the

FIG. 2. Delays in the one-photon ionization of N2O to the Ã+ 2Σ+ state of
N2O+, given in the molecular frame. (a) XUV polarization parallel to the
molecular axis, (b) XUV polarization perpendicular to the molecular axis.

parallel transition to the σ continuum from the perpendicular
one, associated with the continuum of π-symmetry. The cylin-
drical symmetry of the N2O system lifts the dependence of the
angle-resolved time delay on the azimuthal photoemission
angle φ. Figure 2 shows the delays as a function of the
molecular-frame photoemission direction, quantified by the
polar angle θ measured from the internuclear axis.

The same quantities are illustrated in Fig. 3 for the case of
one-photon ionization from the X̃1A1 electronic ground state
of H2O to the Ã+ 2A1 electronically excited state of H2O+. The
accessible continua have a1 and b1 symmetries in this case. The
azimuthal angle φ has been set to 0 in this case. Note the use
of different color scales in Figs. 2 and 3, motivated by the fact
that the delays are much smaller in magnitude in the case of
H2O than in N2O.

At low photon energies, the angle-resolved delay maps of
both N2O and H2O are dominated by large positive delays
due to the attractive nature of the Coulomb potential, the
regions around 2.5�3 rad in N2O and the narrow region cen-
tered around 1 rad in H2O being exceptions to this trend.
The most striking feature that becomes apparent when com-
paring these results is the richness of the angular struc-
tures in the angle-resolved photoionization time delays of

FIG. 3. Delays in the one-photon ionization of H2O to the Ã+ 2A1 state of
H2O+, given in the molecular frame. (a) XUV polarization parallel to the
principal axis, (b) XUV polarization perpendicular to the principal axis.
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N2O and the contrasting simplicity of the same quantities in
H2O.

The rich angular structure in the case of N2O is partially
attributed to shape resonances embedded in the photoion-
ization continua of this molecule. Previous work51–58 in the
realm of photoelectron spectroscopy has revealed a weak shape
resonance associated with the 7σ → kσ channel in N2O
located in the region around photon energies of 32 eV.55

Notably, the single-photon angle-resolved time delay of the
parallel transition in N2O (panel (a) of Fig. 2) is character-
ized by large values (in terms of absolute amplitude) and rapid
variations as a function of the photoemission direction θ in this
particular region (30–35 eV). These delays are first strongly
positive for small angles (0.5–0.8 rad), then change rapidly
in the region from 1 to 2.4 rad, and finally reach large nega-
tive values as evident from the “ridge” located at θ > 2.5 rad.
With increasing energies, the angular dependence of the delays
becomes smoother, the sole exception being a narrow feature
(θ ≈ 0.5 − 0.6 rad) associated with strongly negative values
of the delays. The transition to the π-continuum shown in
Fig. 2(b) contains a very broad and weak shape resonance cen-
tered at around 38 eV.55 It is presumably the broadness of this
resonance that leads to smearing out of the angular features
in this region. Regions of large positive, abruptly followed by
large negative delays are observed at θ ≈ 1 rad and around
35 eV; this feature becoming progressively less negative and
moving towards higher angles with increasing energy.

In contrast to the non-uniform behaviour of the time
delays in both channels of the Ã+ 2Σ+-continuum of N2O, the
angular maps for the corresponding photoionization transi-
tions in H2O are essentially monotonic. The predominantly
negative delays and the relatively subtle angular dependen-
cies (at least in Fig. 3(b)) reflect the dominant effect of the
attractive Coulomb potential on the photoionization delays.
The main exception to this trend is the narrow negative ridge
centered at θ ≈ 1 rad extending through the entire energy range
in Fig. 3(a). This structure has an intuitive interpretation.
Since the Ã+ 2A1 state of H2O+ is well described by an elec-
tron being removed from the 3a1 orbital of dominant atomic
p-character (see inset of Fig. 3(a)), the continuum is dominated
by s- and d-waves. Since s-waves are spherically symmetric,
whereas the d-waves accessible by symmetry change sign at
the magic angle (θ ≈ 54.7◦ ≈ 1.05 rad), the total photoioniza-
tion matrix elements to the continuum of a1 symmetry dis-
play a rapid variation of their amplitude and phase around 1
rad, which manifests itself as a local extremum in the pho-
toionization delays. Photoionization by radiation polarized
perpendicular to the C2 symmetry axis leads to the contin-
uum of b1 symmetry (Fig. 3(b)), dominated by d-waves of
dxz symmetry (where z is the direction of the C2 axis and x
the polarization direction of the ionizing radiation). Since we
have restricted our analysis to the value φ = 0 for the emission
direction, the contribution from the b2 continuum accessible
via a transition polarized along the molecule-fixed y-axis can
be neglected as the dominant dyz waves have a nodal surface at
this value of the azimuthal angle. The photoionization delays
in the b1 channel therefore display a rapid variation around
θ ≈ 90◦ ≈ π/2 rad, where the matrix elements to the dxz

continuum change sign, but not around θ ≈ 1 rad, where the

matrix elements vary smoothly with θ and energy, leading to
very small angle-dependent delays.

Having outlined the relationship between the angle-
resolved molecular delays and the structure of the correspond-
ing continuum for one particular target orientation, we now
turn to the effect of angular averaging over the photoemission
and/or orientation directions. Figure 4 shows the delays for
N2O (after coherently adding the contributions of the parallel
and perpendicular transitions) as a function of the emission
angle k̂ ≡ θ after averaging over the Euler angles (panel (a)),
or, alternatively, as a function of the Euler angle β (the polar
angle between the molecular and lab frames) after averaging
over all emission directions (panel (b)). In general, the inte-
gration with respect to either direction leads to a decrease in
the absolute magnitude of the time delays, which motivates
the use of a new color scale in Fig. 4. The averaging over
the direction of photoemission leads to an overall smearing
and smoothing of the previously discussed features. However,
the 7σ → kσ-shape-resonance region remains identifiable as
an area (around 33 eV) of locally increased photoionization
delays for the entire range of β. Interestingly, the orientation-
averaged, photoemission-angle-resolved delays displayed
in panel (b) still feature a region with remarkably large

FIG. 4. (a) Photoemission-angle-resolved one-photon photoionization delays
of N2O to the Ã+ 2Σ+-state of N2O+, averaged over the molecular orientations
according to Eq. (6). (b) Orientation-resolved one-photon photoionization
delays for the same system, averaged over the photoemission direction and
reported as a function of the Euler angle β.
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positive values (localized at angles θ between 0.2 and 0.6 rad
and 2.4–2.8 rad) close to the above discussed shape resonance
and extending towards the region near 40 eV. The compari-
son of Figs. 2 and 4 shows that the orientational averaging
preserves a substantial amount of the time-delay structure
observed in the molecular frame. However, the quantity repre-
sented in Fig. 4 is not related to the experimentally measured
delays in a simple way, as discussed in Section II C.

B. Delays in two-photon ionization

Attosecond interferometry relies on the use of synchro-
nized XUV and IR pulses and consists of measuring the
phase of the intensity oscillations of sidebands created by
1 + 1′ two-color photoionization. The effective photoioniza-
tion delays obtained in such measurements are defined by
Eq. (21). These effective photoionization delays, just like the
one-photon-ionization delays, have a non-trivial dependence
on the angles k̂ and R̂γ. Since these delays can however be
written as a sum of an angle-independent term (Eq. (24)) and
an angle-dependent part (τmol(2q, k̂, R̂γ), Eq. (25)), we now
illustrate the latter quantity for values of R̂γ selected by sym-
metry. In the following, the IR photon energy is chosen to

FIG. 5. Two-photon ionization delays (τmol, as defined by Eq. (25)) of N2O
to the Ã+ 2Σ+ state of N2O+, given in the molecular frame. (a) XUV and
IR polarizations are both parallel to the molecular axis, (b) XUV and IR
polarizations are both perpendicular to the molecular axis.

be 1.55 eV, corresponding to the most-frequently used central
wavelength of 800 nm, and the XUV photon energy is treated
as a continuous variable.

In analogy to Sec. III A, we show in Figs. 5 and 6 the
emission-angle-resolved two-photon delays for the transition
X̃ 1Σ+ N2O→ Ã+ 2Σ+ N2O+ and X̃1A1 H2O→ Ã+ 2A1 H2O+

for β= 0 and β= π/2. The general features of the one-photon
angular-dependent maps are preserved in the maps for the two-
photon transitions. Both the sign and the magnitudes of the
delays are comparable, but a detailed inspection of the results
reveals many differences. For example, a wide area of negative
delays appears in Fig. 5(a) between θ = 1.6 and 2 rad below
energies of ∼29 eV, where the delays in Fig. 2(a) are positive.
Similarly, a region of negative delays also appears between
θ = 0.8 and 1 rad between photon energies of 22 and 28 eV.
Additionally, the angular variation of the one- and two-photon-
ionization delays is also quite different, as illustrated by the
comparison of the central regions of positive delay in Figs. 2(a)
and 5(a). Turning to Fig. 5(b), we find more subtle changes
as compared to Fig. 2(b). However, a new region of positive
delays appears below θ = 0.2 rad, and the overall range of
the delays is significantly reduced in Fig. 5(b) compared to
Fig. 2(b). A similar trend is also observed when comparing

FIG. 6. Two-photon ionization delays (τmol, as defined by Eq. (25)) of H2O
to the Ã+ 2A1 state of H2O+, given in the molecular frame. (a) XUV and
IR polarizations are both parallel to the molecular axis, (b) XUV and IR
polarizations are both perpendicular to the molecular axis.



124306-10 D. Baykusheva and H. J. Wörner J. Chem. Phys. 146, 124306 (2017)

Figs. 3 and 6. The main features are qualitatively very similar.
However, the sharp ridge of negative delays for θ ≈ 1 rad in
Fig. 3(a) is replaced by a line of weakly positive delays in
Fig. 6(a). The results shown in Figs. 3(b) and 6(b) are even
more similar, except for the appearance of an additional ridge
of small positive delays around θ ≈ 0.2 rad in Fig. 6(b).

C. Comparison of angle-averaged delays
in one- and two-photon ionization

Sections III A and III B have illustrated the angle and ori-
entation dependencies of the one- and two-photon-ionization
delays. This comparison has shown that the angle-dependent
features of the one-photon-ionization delays are qualitatively
retained in the two-photon-ionization delays but that the two
types of delays differ on a quantitative level. This insight will
be useful and important in future angle-resolved measurements
of molecular photoionization delays. We now compare the
effects of angular or orientational averaging on the one- and
two-photon-ionization delays on a more quantitative level.

We first compare in Fig. 7 the one- and two-photon-
ionization delays for selected orientations (β values) of N2O
after averaging over the direction of photoemission (θ). All
delays display a local maximum which shifts from 32.8 eV
at β = 0 rad to 34.5 eV at β = π/2 rad in panel (a) and
from 32.5 eV to 33.0 eV in panel (b). The location of this
maximum coincides well with the position of the shape reso-
nance discussed above. Although the positions of the maxima
are similar, we note that the magnitude of the delays and
their energy dependencies differ substantially between the one-
and two-photon-ionization delays. This is a consequence of
the non-universal effect of the probe photon on molecular
two-photon-ionization delays.

In the second step, we now investigate the even more
significant impact of the additional averaging over the tar-
get orientation. Figure 8 shows the corresponding one- and
two-photon-ionization delays for the cases of N2O and H2O
discussed in this article. The solid blue curve represents the
one-photon-ionization delay of N2O following complete angu-
lar averaging. It displays a pronounced local maximum at a
photon energy of 33 eV, i.e., again in the region of the shape
resonance. The angle- and orientation-averaged one-photon-
ionization delays result from an incoherent averaging over their
only angle-averaged counterparts (cf. Fig. 7(a)). The effect of
orientational averaging on one-photon-ionization delays in this
case therefore mainly consists of changing their magnitude. In
contrast to this, orientational averaging has a much more dra-
matic effect on the two-photon-ionization delays. Comparing
the red curve in Fig. 8(a) with the red curves in Fig. 7(b),
we find that the maximum in the orientation-averaged two-
photon-ionization delays is shifted downwards by ∼7 eV to a
photon energy of ∼26 eV.

The seemingly surprising difference in the effects of ori-
entational averaging on the one- and two-photon-ionization
delays can be understood by the inspection of Eqs. (6) and
(19). Whereas the orientation dependence of the one-photon-
ionization delays arises from the presence of a single Wigner
rotation-matrix element, the orientation dependence of the
two-photon matrix element involves a sum over products of
two Wigner rotation-matrix elements. This more complex
dependence enables much richer interference phenomena to
take place in the angle-averaging process. In the present case,
we find that the orientational average can shift the position of
the maxima in the two-photon-ionization delays by a substan-
tial amount. The generality of this result will be investigated
in future work.

FIG. 7. Comparison of one-photon-
ionization (a) and two-photon-ion-
ization delays (b) for selected molecu-
lar orientations (β given in the legend,
results integrated over γ) for the case of
the photoionizing transition X̃ 1Σ+ N2O
→ Ã+ 2Σ+ N2O+ after averaging over
the photoemission direction.

FIG. 8. Comparison of one-photon
-ionization (solid lines) and two-
photon-ionization (dashed lines) delays
for the two investigated systems
((a) X̃ 1Σ+ N2O→ Ã+ 2Σ+ N2O+ and
(b) X̃ 1A1 H2O→ Ã+ 2A1 H2O+) after
averaging over both photoemission
direction and molecular orientation.
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In the case of the water molecule, illustrated in Fig. 8(b),
the differences between angle-averaged one- and two-photon
delays are much less pronounced, which is most likely a con-
sequence of the lack of the structure in the photoionization
continuum of H2O considered here. Both the one- and the two-
photon-ionization delays monotonically decrease as a function
of energy but the two-photon delays are slightly lower in mag-
nitude than the one-photon case. Finally, we point out that the
theoretical results described in this article are supported by the
experimental results reported in Ref. 20.

IV. CONCLUSIONS

In this article, we have developed the theory for cal-
culating one- and two-photon ionization delays of arbitrary
molecules using ab initio quantum scattering calculations.
Starting with an expression connecting the single-photon pho-
toionization matrix element and the concept of “time delay” as
employed in the context of the analysis of scattering phenom-
ena, the time delays encountered in molecular photoionization
phenomena were found to be subject to pronounced variations
as a function of energy, photoemission direction, and target
orientation. The highly anisotropic nature of the scattering
potential experienced by the outgoing wavepacket gives rise to
pronounced angular dependences of the photoionization time
delay as revealed by both emission- and orientation-direction-
resolved angular maps. By comparing the location of these
features with results of spectral measurements, in particular
photoelectron spectroscopy, and results from molecular pho-
toionization calculations, we were able to relate the angular
structures to the presence of shape resonances in the valence
continuum. This fact is clarified by comparing the one-photon
delays in the two molecules N2O and H2O for photoioniza-
tion initiating from the electronic ground states of the neutral
species and terminating in the first excited electronic states
of the cation. We find that the energy positions associated
with the presence of shape resonances in the 7σ→ kσ and
7σ→ kπ-channels lead to rapid variations of the time delay
as a function of angle in the case of N2O, a situation that con-
trasts with the rather monotonic angular dependence of the
time delays in the water molecule. These features were found
to be very sensitive to averaging effects, both with respect to
the photoemission and target-orientation directions. We then
provided a formalism for calculating the two-photon matrix
elements that are relevant to interferometric measurements
where the delays associated with the XUV-mediated photoion-
ization step are entangled with the contributions of IR-induced
transitions coupling different continua. Photoemission- and
orientation-direction averaging can have significant effects on
the observed total delays, leading even to an energy shift of
the local maximum of the delay, associated with the posi-
tion of a shape resonance, as demonstrated in the case of
N2O. In principle, the formalism presented in this article
can easily be applied to other molecular targets, including
more complex systems such as large polyatomic molecules
or clusters, provided that the scattering matrix elements as
defined by Eq. (1) are available. Our work thus establishes
the foundation for the calculation and theoretical analysis of
the photoionization of molecules on attosecond time scales.

Interesting applications and refinements of this work will
include the analysis of electron correlation phenomena in
molecular photoionization.
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