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Abstract
Attosecond interferometry is becoming an increasingly popular technique for measuring the
dynamics of photoionization in real time. Whereas early measurements focused on atomic systems
with very simple photoelectron spectra, the technique is now being applied to more complex systems
including isolated molecules and solids. The increase in complexity translates into an augmented
spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we
discuss currently used methods for phase retrieval and introduce two new approaches for determining
attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that
the previously used technique, consisting in the spectral integration of the areas of interest, does in
general not provide reliable results. Our methods resolve this problem, thereby opening the technique
of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms
of spectral resolution compared to attosecond streaking.

Keywords: attosecond interferometry, RABBIT, attosecond delays, photoionization dynamics,
photoionization delays

(Some figures may appear in colour only in the online journal)

1. Introduction

Attosecond interferometry was originally introduced as a
technique for the temporal characterization of attosecond
pulse trains [1]. In this context, it was called RABBIT
(standing for Reconstruction of attosecond beating by inter-
ference of two-photon transitions) [2]. It is based on quantum-
path interference using extreme-ultraviolet (XUV) radiation
consisting of consecutive odd harmonic orders and an
assisting infrared (IR) laser field at the fundamental frequency
used to generate the XUV radiation. Ionization of the sample
by the XUV pulses creates the principle photoelectron peaks,
whereas the additional action of the IR field creates sidebands
that are energetically located between the principal peaks.
Under these conditions the intensities of the sidebands
undergo oscillations as a function of the delay between the
two fields, which was first observed by Paul et al [3]. This
intensity modulation of each sideband can be expressed in
terms of a cosine function with an overall phase offset f:

A cos 2 . 1SB 0 XUV sysw t f fµ -D - D

f
  ( ) ( )

Here, 0w is the IR-laser angular frequency, τ is the delay
between XUV and fundamental laser pulses. XUVfD corre-
sponds to the difference in spectral phases of the involved
harmonic orders and is related to the relative harmonic
emission times. sysfD is given by the difference of the phases
of the two-photon matrix elements of the two quantum paths
leading to the sideband SB. This quantity depends on the
system and the final state in which it is left after ionization.
Thus, XUVfD enables the reconstruction of attosecond pulse
trains, whereas sysfD gives access to photoionization
dynamics. It can approximately be further decomposed into
the complex amplitudes of one-photon ionization and IR-
driven continuum–continuum (cc) transitions [4, 5]. This
decomposition takes the form of a simple sum of the indivi-
dual phases of the XUV and cc transitions, when photo-
ionization can be described by a single angular-momentum
channel [6]. This separation is, however, only exact in the
case of an initial atomic s state and breaks down in all other
cases. The energy derivative of the phase of the one-photon
matrix element is known as the Wigner delay, following the
pioneering work of Wigner, Smith and Eisenbud [7, 8].
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The first measurement of photoionization delays has
actually been realized in the condensed phase using attosecond
streaking [9], followed by the first application to neon atoms in
the gas phase [10]. Attosecond interferometry has been first
applied to measure the photoionization dynamics of argon
[4, 11] and other atoms [12–16]. Recently, attosecond inter-
ferometry has been extended to molecules with the first mea-
surement of attosecond delays in N2O and H2O [17] and to
solids [18, 19]. These experiments have triggered considerable
theoretical work on the photoionization dynamics of atoms
[5, 6, 20–24], molecules [17, 25–28] and solids [29–33]. Both
experimental and theoretical work has been reviewed in [34].

The photoelectron spectrum of most systems consists of
more than one band, which leads to overlap between the pho-
toelectron spectra created by multiple neighboring harmonic
orders, overlap of sidebands and/or overlap between side-band
and principal peaks. All of these situations are schematically
illustrated in figures 1(a) and (b), which shows the hypothetical
case of a system with 6 electronic shells that are being ionized
by two neighboring harmonic orders, i.e. the simplest laser-field
configuration required for attosecond interferometry. Some
quantum paths have been omitted for clarity. The approach that
has been followed in all published literature to date, except [16],

consisted in carefully choosing the spectral area of interest, with
the goal of isolating the phase information contained in a part-
icular sideband (see, e.g. [17–19, 35]). We will refer to this
method as the ‘spectral-integration’ method. An alternative
approach, introduced in [36], consists in analyzing the phase of
the side-band oscillation as a function of the electron kinetic
energy. This approach provides energy-resolved information but
it does not resolve the problem of spectral overlap, which is the
main topic of this article. We present an energy-resolved
approach that goes beyond the method discussed in [36] and
accounts for phase variation caused by spectral overlap.

In this article, we investigate the analysis of spectrally
overlapping attosecond interferograms. We show that the spec-
tral-integration method only provides reliable results when the
spectral overlap is sufficiently small or the undesired spectral
components do not modulate as a function of the XUV-IR delay.
We propose two alternative methods, critically asses their per-
formance and show that they do not suffer from the limitations
of the spectral-integration method. The first method consists in
performing a two-dimensional global fit of the attosecond
interferogram in the kinetic-energy / time-delay domain. This
method has been employed in our very recent determination of
spin–orbit delays in the photoionization of xenon atoms [16],

Figure 1. (a) Illustration of attosecond interferometry of a hypothetical system with six accessible electronic shells that is exposed to a pair of
neighboring odd high-order harmonics and an assisting infrared laser field. Some quantum paths have been omitted for clarity. (b) Simulated
photoelectron spectrum containing principal peaks (shown in blue) and side-band peaks (red). (c) Difference between an XUV+IR spectrum
and an XUV-only spectrum. (d) Difference spectra as a function of the XUV-IR delay. (e) Amplitude (dotted line) and phase (full line) of the
line-wise Fourier transform of the difference spectrogram, evaluated at the 2 0w oscillation component. The phases used as input for the
principal and side-band oscillations are shown as blue and red crosses, respectively.
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where principal peaks and side-bands of the neighboring final
state of the cation were spectrally overlapping. We present
unpublished data from this work to illustrate the method in
detail. The second method consists in Fourier transforming the
attosecond interferogram along the time-delay axis and subse-
quently retrieving the phases of interest from an analysis of the
complex-valued Fourier transform. This method is the most
powerful one because it does not only correctly retrieve phases,
even in the presence of extensive spectral overlap, but it does
also account for a possible finite contrast in the attosecond
interferograms, which is of relevance for future work on the role
of decoherence on attosecond time scales.

2. Phase extraction

This section illustrates the three methods for extracting phase
information from attosecond interferograms. We point out the
advantages and disadvantages of each method in terms of acc-
uracy and reproducibility by applying them to the same simulated
attosecond interferogram (figure 1), which includes different
types of spectral overlap between Gaussian-shaped peaks.

Principal and side-band peaks generated by the XUV- and
IR-induced transitions illustrated in figure 1 a were assigned an
individual amplitude (panel (b), maximum peak ampl-
itude = 1) and a cosine-type oscillation with an individual
modulation depth and phase (crosses and plus signs in panel
(e)). Noise was simulated in both dimensions by a 25% random
amplitude fluctuation and an offset by a random number
between 0 and 0.025 for each point. The delay-averaged dif-
ference spectrum ((XUV+IR)-(XUV only)) is shown in panel
(c). The representation of this difference spectrum as a function
of the XUV-IR time delay yields the simulated attosecond
interferogram shown in panel (d). Results of line-wise Fourier
transform along the time-delay axis are shown for the 2 0w
component in terms of amplitude and phase in panel (e). The
solid black line corresponds to the phase extracted by line-wise
Fourier transformation from a simulated spectrogram without
noise. The light gray line represents phases associated with
random amplitude fluctuations in the range of±25% for each
delay step. Apparently, the amplitude fluctuations of the
spectrogram manifest themselves as a distribution of phases
around the noise-free phase. The width of the phase distribu-
tion scales with the signal-to-noise ratio and the modulation
depth. This behavior reflects the uncertainty expected from
experimental data and demonstrates that several independent
scans are usually necessary to retrieve correct phases, parti-
cularly for low-contrast oscillations.

The crosses and plus signs in figure 1(e) indicate the
simulation input phases for the cosine functions. In the case of
overlap-free spectral regions these phases are reproduced well

by the black and the gray line. This means that the input
phases would be correctly retrieved by the spectral-integration
method, as expected. However, regions of spectral overlap are
found to oscillate with phases that result from the super-
position of at least two oscillations. In these cases, the phases
obtained from line-wise Fourier transformation do not reflect
the simulation input phases but a certain value lying between
them. Peaks p3 and p4 clearly demonstrate the phase variation
along the kinetic-energy axis in the region of overlap between
both peaks. In the case of p5 and p6 the overlap prevents
extracting the input phase of p5 using the integration method.

The absolute values of the FFT spectrogram are inte-
grated along the frequency axis within the boundaries of the
2 0w oscillation (not shown) and compared to the input peaks
in figure 1(e). The Fourier amplitude correlates with the
oscillation amplitude and, assuming constant modulation
depth over the peak width, reflects the peak shapes.

2.1. Spectral integration

The method used in most previous studies is the spectral-
integration method, which is based on the identification of the
spectral regions of interest, its integration along the kinetic-
energy axis, followed by the retrieval via Fourier transfor-
mation or sine fitting of the obtained amplitude oscillation
along the time-delay axis. Spectral integration is preferred
over choosing a single cut for signal-to-noise reasons.
Nevertheless, the same arguments pro or contra the integra-
tion method also apply to the analysis of slices through the
spectrogram at individual kinetic energies.

The phase evolution over the kinetic-energy range of a
photoelectron peak is of fundamental importance. Flatness is
a prerequisite for the spectral-integration method to yield
correct oscillation phases. Phase variation over the photo-
electron peak is an indication for spectral overlap and the
spectral-integration method would yield falsified phases. This
becomes very clear in the simulated spectrogram in figure 1
for peaks p3 and p4, where the spectral region for integration
would be very narrow and only at the opposite edges of both
overlapping peaks. For peak p5, however, the underlying
principal-peak oscillation prevents the correct retrieval of the
input phase based on the spectral-integration method.

It should be noted that a phase variation as a function of
the kinetic energy can also have a physical origin, as
demonstrated in [36]. However, the influence of possible
spectral overlap has to be carefully examined beforehand.

Based on the discussion above, it becomes very clear that
the phases in the regions of spectral overlap do not resemble
the input phases of the involved oscillations. The deviation
scales with the amount of overlap with the unwanted oscil-
lation. Rephrased in mathematical terms, the sum of two sine
functions
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has a total phase that is the weighted average of the
underlying oscillations. The phase of the superimposed
oscillation as a function of the amplitudes a1 and a2 of the
underlying oscillations was computed using equation (2) and
is shown in figure 2. The two phases, 01f = and 2f p= ,
were assigned to the two involved contributions. The phase of
one component transits gradually to the phase of the other
component according to their relative amplitudes.

These results show that spectral integration must only be
performed in overlap-free regions. However, spectral overlap
with a non-modulating band, i.e. a constant amplitude offset,
will not influence the extracted phase. Therefore, the restric-
tion only applies to spectral overlap where the unwanted
contributions are associated with non-negligible modulation
depths.

2.2. Two-dimensional fit

The global fitting is based on a two-dimensional representa-
tion of the attosecond interferogram. Photoelectron spectra
generated with only XUV radiation are fitted on the kinetic-
energy axis using Gaussian functions. The fitted peak posi-
tions are fed into the fit of the XUV+IR spectrum where
sideband peaks are added. Optionally, the delay-integrated
difference spectrum can also be fitted using the results from
the fit of the XUV+IR-spectrum. This bears the advantage,
that peak positions can be located more precisely in the dif-
ference spectrum, since sidebands and principal peaks appear
with opposite signs. After the delay-integrated peak infor-
mation was extracted, each photoelectron peak is assigned a
cosine oscillation with a constant phase over the entire peak
width. Amplitudes, modulation depths and phases of the
oscillations are fitted for each peak individually, the fre-
quency being the global fit parameter for all oscillations.

Two-dimensional fitting of an XUV+IR spectrogram
derived from the difference spectrogram shown in figure 1 is
presented together with the residuals in figure 3. The spec-
trogram was separated into four slices and each slice was
treated separately in order to maintain a reasonable amount of
fit parameters per slice. Otherwise, the global minimum is less
likely to be found, and, in the case of strongly varying peak
amplitudes, a weighting function would be necessary. The
slices have to be chosen such that they contain the sets of
sideband oscillations whose relative phases will be compared.
The simulated spectrogram is well reproduced by the fit and
no systematic deviations can be observed in the residuals.

For the least-squares fitting to be reproducible, a
dependence on the initial guesses has to be excluded. Such a
dependence could be observed in the presence of a high
density of local minima, particularly if the spectral features do
not support the number of fit parameters required by the
model.

In order to estimate the reproducibility of the fit para-
meters for the simulated spectrogram presented in figure 3,
initial guesses have been varied randomly within defined
boundaries for each parameter. The resulting phases from 100
fit runs are shown in figure 4 for the isolated peak p1 and in
figure 5 the overlap situation between p5 and p6.

In the case of the overlap-free oscillation (referring to
figure 4) associated with the peak p1 in figure 1(e), the fit
converges mostly to the input value within a defined dis-
tribution (figure 4(b)). Residuals are referenced to the lowest
value for a given noise-level setting. The width of the phase
spread was found to depend only on the noise level and the
modulation depth (not shown here). Fit failure in the case of
poorly guessed initial values manifests itself in significantly
higher residuals (figure 4(a)) such that fit failure and residuals
are clearly correlated. In the absence of noise, the input phase
is reproduced with negligible deviations by the fit
(figure 4(c)). For one given noise configuration, variation of
initial guesses has only a minor effect on the retrieved phase
(figure 4(d)). The phases in figure 4(d) are shown with respect
to the mean of the obtained distribution.

In the case of oscillations affected by peak overlap
(referring to peak p5 in figure 5) the fit performs, in general,
comparably well as for the overlap-free oscillation discussed
above. Low residuals can be taken as a criterion for a
successful fit. In contrast to the integration method, the
phase of the oscillation of peak p5 is retrieved correctly by the
fit for both, noise-free and noisy, spectrograms (compare
figures 5(b) and (c)). However, repeatedly fitting the spectral
slice containing p5 and varying only the initial guesses shows
that the quality of those guesses starts to play a role (compare
figure 5(d)). Nevertheless, sufficient sampling of the initial-
guess space still ensures that the correct phases are extracted.

Besides estimating the repeatability of the two-
dimensional fit for different initial guesses, the accuracy was
quantified as well. This was studied by moving the two peaks
on top of each other in a stepwise manner and simulating and
fitting a spectrogram at each step. This distance scan was
repeated 100 times. Amplitude fluctuations of 25% and 100%
were generated at each scan step for each distance scan

Figure 2. Center panel: effective phase of the sum of two
superimposed oscillations as a function of the individual oscillation
amplitudes. Amplitude a1 of component 1, which is assigned an
oscillation phase of 0 rad1f = is shown in the upper panel,
amplitude a2 of component 2 assigned 22f p= is shown in the left
panel.
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individually. Similarly, initial guesses were varied for each
single fit. The extracted phases are shown in the lower panel
of figure 6 and the configuration of the peaks is indicated in
the upper panel. The peak distance is given in % of the peak
full-width-at-half-maximum (FWHM). Error bars refer to the
standard deviation associated with 100 fit runs per step. All fit
results were considered (no discrimination based on
residuals).

The retrieved phases depend on the initial guesses if the
peaks are closer than 50% of their FWHM and deviate sig-
nificantly from the correct values, indicated by the gray dotted
lines in figure 6. The error bars scale with the noise level. It is
also found that the critical distance depends on the total points
per peak, i.e. peaks can approach more closely in the case of
large FWHM compared to narrow peaks on the same kinetic
energy grid. In summary, the two-dimensional fit is capable of
handling spectral overlap, however both accuracy and

precision depend on the extent of overlap and the retrieved
phases might depend on the initial guesses.

This approach was applied to attosecond interferograms,
obtained by ionizing the 5p shell of xenon, which gives rise to
two photoelectron peaks, associated with the 2P1 2 and 2P3 2
levels of the electronic ground state of Xe+. Since these two
levels are separated by 1.31eV, which is close to the energy
of one 800 nm photon (1.55 eV), this case is a nice illustration
of overlap between the principal photoelectron peak and the
neighboring side-band peak associated with the other final
state of the cation (cp. figure 1(a), upper kinetic energy
region). Figure 7 shows the experimental photoelectron
spectra generated from XUV-only (blue) and XUV+IR (red)
radiation in panel (a), followed by the difference spectrum in
panel (b) and its variation with the XUV-IR delay in panel (c).
In our experimental work, we found that the signal-to-noise
ratio of the attosecond interferogram can be considerably

Figure 3. Two-dimensional global fit of a simulated attosecond interferogram. The spectrogram on the left corresponds to the simulation in
figure 1, however, instead of the difference spectrogram the XUV+IR spectrogram as a function of the XUV-IR delay is shown. The
simulation was fitted in both dimensions simultaneously with a global frequency for all oscillation contributions (central panel). Vertical
white lines represent the borders between the spectral slices that were treated separately. The residuals (absolute square of the difference
between fit and simulation) is shown on the right.

Figure 4. Reproducibility of fitted phases using the two-dimensional fitting approach at three different noise levels (noise-free, 10% and 25%
amplitude fluctuations) for peak 1 (referring to figure 1). Residuals refer to the sum of squared differences between simulation and fit. (a) full
distribution of fitted phases from 100 fit runs, with newly generated noise and guess values for each fit run. (b) Zoom into (a) at low residuals.
(c) Retrieved phases relative to the input phase (π) for repeated fitting (100 runs) of the noise-free spectrogram, with newly generated guess
values for each fit run (zoomed at lowest residuals). (d) Phases from repeated fitting of a single spectrogram (25% noise level, not changing
between fit runs, 100 fit runs), with newly generated guess values for each fit run. Phases are shown relative to the mean of the obtained
distribution.
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improved by recording photoelectron spectra as the difference
between XUV+IR and XUV-only photoelectron spectra on a
single-shot basis. The great advantage of this approach, used
in [16, 17], is that the effect of XUV-intensity and target-
density fluctuations are minimized. The partial overlap of
each principal peak with the side-band of the neighboring
harmonic leads to the characteristic observed dispersion-type
line shapes. Positively signed peaks are associated with
spectral regions dominated by sideband contributions (shown
in red) whereas negatively signed peaks are associated with
spectral regions dominated by principal peaks (shown
in blue).

The spectrogram shown in figure 7(c) was divided into 3
kinetic-energy regions such that each region contained the
same sideband orders for the two spin–orbit components.
Cutting the spectrogram into such regions reduces the number
of fitting parameters per spectrum and avoids a strong

variation of the amplitudes across the spectrum. Otherwise
spectral regions of high intensity would be fitted more pre-
cisely than those of low intensity. Panel (d) shows the results
of the two-dimensional fits of the experimental spectrogram
in panel (c). The comparison of the two panels nicely illus-
trates the very high fidelity of this approach. The delays
extracted from these measurements are 11 43 2 1 2t t- = 
as, 31±5as, 33±6as, for the side-band orders 16, 18 and
20, respectively [16].

2.3. Complex fit

The complex fit starts with the same fitting of XUV-only and
XUV+IR spectra as the two-dimensional fit approach, but

Figure 5. Reproducibility of fitted phases using the two-dimensional fitting approach at three different noise levels (noise-free, 10% and 25%
amplitude fluctuations) for peak 5 (referring to figure 1). Residuals refer to the sum of squared differences between simulation and fit. (a) Full
distribution of fitted phases from 100 fit runs, with newly generated noise and guess values for each fit run. (b) Zoom into (a) at low residuals.
(c) Retrieved phases relative to the input phase (π) for repeated fitting (100 runs) of the noise-free spectrogram, with newly generated guess
values for each fit run (zoomed at lowest residuals). (d) Phases from repeated fitting of a single spectrogram (25% noise level, not changing
between fit runs, 100 fit runs), with newly generated guess values for each fit run. Phases are shown relative to the mean of the obtained
distribution.

Figure 6. Accuracy of the two-dimensional fit as a function of the
peak distance expressed in % of the peak FWHM for two different
noise levels (25% and 100%). Top panel: peaks used to simulate the
spectrogram at 3 different distances (0% corresponds to complete
overlap). Bottom panel: phases extracted by the two-dimensional fit
as a function of the peak separation. Error bars refer to standard
deviation from 100 fit runs. Gray lines indicate input values.

Figure 7. Experimental data from attosecond interferometry of
spin–orbit delays in the photoionization of Xe. (a) Photoelectron
spectra (blue: XUV only, red: XUV+IR), (b) difference spectrum,
(c) difference spectrum as a function of the XUV-IR delay, (d) two-
dimensional global fit of the data in panel (c).
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instead of fitting the actual intensity modulations in a two-
dimensional spectrogram, the attosecond interferogram is
Fourier transformed line-by-line along the time-delay axis and
integrated within the boundaries of the 2 0w oscillation peak to
yield a one-dimensional complex-valued array along the
kinetic-energy axis. Peak shapes and oscillation amplitudes
are now encoded in the absolute value of the Fourier trans-
form whereas the phase variation as a function of the kinetic
energy reflects the transition between input phases, weighted
by the amount of overlap. We note that the first step of our
approach is similar to the concept of the rainbow-RABBIT
[36], which consists in interpreting the phase of the Fourier
transform as a function of the kinetic energy. This approach
alone does however not resolve the problem of spectral
overlap, which is demonstrated by the fact that the thick line
in figure 1(e) does not coincide with the input phases, e.g. in
the case of p5, given by the red crosses. Our complex-fit
method therefore goes one step further and consists in a direct
fit of the complex-valued Fourier transform such that the
actual phase transition is properly reproduced. While in [36]
any energy-dependent phase variation is assigned to a phy-
sical origin, i.e. a resonance, our results show that such a
phase variation can also result from spectral overlap.

Assigning a complex-valued fit parameter z a bij j j= +
to each band, pj(E), obtained from fitting delay-integrated
XUV+IR spectra and subsequent summation gives an one-
dimensional complex array, I(E), which can be fitted to the
Fourier-transform.

I E p E p Ee e e . 3
j

j
z

j

a
j

A E

bij j

j

jå å= =   ( ) ( ) ( ) ( )
( )

Each oscillation component j is now interpreted in terms of its
Fourier amplitude Aj related to the oscillation amplitude, and
the phase bj, being the imaginary part of the complex fit
parameter zj. In the present work, we use Gaussian functions
for pj(E), but our method is not restricted to this particular
choice. In general, the deconvolution described in
equation (3) reduces the number of fit parameters compared to
the full two-dimensional fit on the one hand and the total
array size entering the fitting procedure on the other hand.
The fit is thus much more likely to rapidly converge to the
global minimum.

The complex fit was applied to the simulated spectro-
gram in figure 1 and the results are presented in figure 8.
Retrieved phases and amplitudes are shown in the upper
panel, real and imaginary parts of the fit array in the lower
panel. Circles indicate phases and amplitudes (upper panel of
figure 8) or real and imaginary parts (lower panel) obtained
from the line-wise Fourier transformation of the noise-free
simulated spectrogram and integration within the 2 0w peak
width along the frequency axis (compare lower panel in
figure 1). The fit reproduces the input spectrogram with very
high fidelity. The dependence on the initial guesses and peak
separation was studied here as well and is shown in figures 9
and 10, respectively. Since no absolute phases can be inferred
from the Fourier transform, the fit results have to be presented
to a reference. In the case of the simulated spectrogram from

figure 1, phases are referenced to the overlap-free oscillation
of p1. When studying the peak separation, the phases of both
peaks are referenced against each other.

The precision of the complex fit is very good. This is
visualized in figures 9(a) and (b), where the oscillation phase
of peak p5 is shown. Particularly for very low residuals, the
retrieved phases are almost identical. Compared to the two-
dimensional fit, the distribution of phases at low residuals is
very narrow. We found that the input phase is not exactly
reproduced for this particular pulse overlap, however, the
deviation is less than 1% and hence much better, than the
spectral-integration method. This deviation is attributed to
the underlying oscillation of p6, since the phase of the
background-free oscillation at 20eV is reproduced with
high accuracy and precision (see figure 9(c)). Varying
the initial guesses 100 times for the same spectrogram
with a 25% noise level does reveal a dependency on the fit
parameter (see figure 9(d)), but also the correct phases are
found when discarding fit runs associated with too high
residuals.

Figure 10 illustrates the accuracy of the complex fit,
using the same example as in figure 6, i.e. that of two
Gaussian peaks with a variable separation. The direct com-
parison of the two figures shows the clear superiority of the
complex-fit approach, which yields nearly perfect results for
all separations. The error bars are also smaller in general, with
the exception of the case of full overlap. The performance of
the complex fit, however, depends on the delay range. In the
study presented here, the delay was set to 10fs with a 0.2fs
step size. If the delay range becomes shorter, the energy-
dependent phase exhibits more noise and fitting becomes less
accurate.

The modulation depths are readily extracted from the
complex fit through the real part of the fitted complex number
z. As equation (3) implies, the Fourier amplitude and there-
fore the oscillation amplitude of a sideband peak is given by
the product of the spectral intensity pj(E) and e zj( )R . Hence,

Figure 8. Results of a complex-valued fit to the Fourier transform of
the difference spectrogram from figure 1(e). Solid lines represent
phases and angles (upper panel), and real and imaginary parts (lower
panel) of the fit, circles represent the outcome of the line-wise
Fourier-transform of a noise-free simulated difference spectrogram.
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the term e zj( )R reflects the oscillating fraction of the sideband
intensity (pj(E) is the delay-integrated peak intensity). Its
numerical value is expected to be 1 in case the sideband
amplitude modulates between the baseline and its maximum
value. The modulation depth is defined as the ratio between
the oscillation amplitude and the oscillation offset (delay-
integrated sideband intensity). Thus, the modulation depth is
directly obtained from p E p Ee ej

z
j

zj j* =( ) ( )( ) ( )R R .

3. Conclusion and outlook

We have systematically analyzed the performance of three
different approaches to retrieve photoionization delays from
attosecond interferograms. We have found that the widely
used technique of spectral integration is problematic in the
presence of spectral overlap when the undesired spectral
component possesses a non-negligible modulation contrast.
We have introduced two alternative techniques that overcome
these limitations. The first consists in a global two-dimen-
sional fit of the relevant parts of the attosecond interferogram.
This technique has been successfully applied to extract spin–
orbit delays in the electronic ground state of Xe+ [16] and has
been illustrated in more detail here. The second technique

consists in Fourier-transforming the attosecond interferogram
along the time-delay axis, followed by a multi-component fit
of the complex Fourier-transform using the principal com-
ponents determined in the analysis of XUV-only and XUV
+IR spectra. Both techniques are applicable to the analysis of
spectrally overlapping attosecond interferograms and will be
of great use in the analysis of photoionization delays of
molecules [17], solids [18, 19] and liquids [37].
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