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Attosecond interferometry relies on the application of a train of attosecond extreme-ultraviolet (XUV) pulses
and a synchronized low-intensity infrared (IR) field to measure the dynamics of photoemission via the interference
signal in the spectrum of emitted electrons. So far, all condensed-phase experiments relying on this technique have
investigated metallic, i.e. nontransparent, systems and have revealed the importance of transport and final-state
effects. Here, we demonstrate the existence of a nonlocal mechanism of attosecond interferometry general to all
condensed-matter systems and particularly important for those that are transparent to the IR. Key to the process is
that, after XUV absorption, additional emission pathways result from the absorption or emission of an IR photon
at remote positions due to the potential of neighboring atoms (or molecules). By solving the time-dependent
Schrödinger equation (TDSE) in one dimension, we show that interference of the resulting local and remote
pathways leads to a mapping of the atomic or molecular environment onto the attosecond interference signal. We
derive an analytical theory for the local and remote pathways as well as the resulting response and find excellent
agreement with the TDSE. Our analytical theory shows that the nonlocal mechanism generally encodes both
mean-free paths and scattering delays into the experimental observables. We generalize the analytical theory to
the case of multiple collisions and study the effect of path-length distributions typical of electron scattering in
condensed matter.
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I. INTRODUCTION

Photoemission is a fundamental phenomenon that entirely
takes place on the attosecond timescale. The photoionization
dynamics of isolated particles in the gas phase can be described
in terms of delays which are defined as the energy derivative of
the scattering phase shifts [1,2]. The energy dependencies of
scattering phases therefore contain all information necessary
to understand photoionization in the time domain. Photoion-
ization delays have been measured in atoms using attosecond
streaking [3–5] and attosecond interferometry [6–11] and very
recently also in molecules [12]. The theory of attosecond
photoionization delays is well developed for atoms [13–19] and
first results have also been obtained for molecules [12,20–23].

Photoemission from the condensed phase is considerably
more complex. Following the initial emission step, the electron
propagates through the condensed-matter environment where
it scatters elastically or inelastically off other particles. Each
elastic scattering process is characterized by its own com-
plex scattering amplitude f (θ,φ), where θ and φ describe
the polar and azimuthal scattering angle, respectively. The
scattering amplitude defines both the associated differential
scattering cross section (DCS) dσ/d� = |f (θ,φ)|2 and the
scattering delay τs = ∂/∂E arg(f (θ,φ)), initially discussed by
Wigner, Eisenbud, and Smith [1,2]. The total cross section σ =∫ |f (θ,φ)|2 sin θdθdφ, therefore, determines the associated
mean-free path λ = 1/(nσ ), with n the number density, and
thus the scattering time ts = λ/v, where v is the velocity of the
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particle. We emphasize the difference between the scattering
delay, caused by a single collision, and the scattering time,
which is the average time that elapses between two consecutive
collisions.

Most previous measurements of photoemission delays from
condensed-matter systems have been performed on metals
using either the attosecond streaking technique [24,25] based
on isolated extreme-ultraviolet (XUV) attosecond pulses [26–
28] or attosecond interferometry [29–31], based on XUV
attosecond pulse trains [32–34]. In all of these studies, the
effect of the IR field on the electrons inside the solids has
either been neglected or found to have a minor influence
on the measured delays. Since the interaction with the IR
field is the “clock”, both in attosecond interferometry and
in attosecond streaking, this situation explains the primary
sensitivitiy of these experiments to the transport time, i.e.,
the time required by the electron emitted inside the bulk to
reach the surface. Considerable theoretical work has also been
done on the interpretation of these measurements (see, e.g.,
Refs. [35–39] and references therein). Both experimental and
theoretical work has been reviewed in Ref. [40].

Liquids, dielectrics, and wide-band-gap semiconductors are
transparent to the near-infrared radiation (with wavelengths
typically centered around 800 nm) used in attosecond inter-
ferometry, which leads to a fundamentally different situation
than in metals. The electron can interact with the IR field over
its entire trajectory. Since the interaction with the IR field
acts as the probe, the question naturally arises what timing
information is eventually encoded in the measurement. Very
recently, attosecond streaking has been employed to measure
photoemission delays from SiO2 nanoparticles. This study
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concluded, on the basis of a purely classical Monte Carlo
trajectory analysis, that the experiment was mainly sensitive
to the inelastic scattering times [41].

Here, we present the first fully quantum-mechanical analy-
sis of attosecond interferometry in one-dimensional transpar-
ent media with the goal of understanding the relevant temporal
information that the method accesses.

We employ a numerical simulation of the time-dependent
Schrödinger equation (TDSE) to calculate attosecond interfer-
ometry in the simplest possible model potentials representing
condensed-matter systems. These calculations reveal a mech-
anism of attosecond interferometry in which the interactions
with the XUV and IR fields take place at spatially separated
positions. Following the photoionization of an isolated atom
(or molecule), the electron can only exchange photons with
the IR field in the immediate vicinity of the parent cation.
Energy and momentum conservation forbid the absorption
or emission of photons at larger distances because of the
absence of a potential gradient. However, in a condensed-
matter environment the presence of neighboring atoms or
molecules naturally provides potential gradients along the
path of the propagating electron. We show that this situation
enables an exchange of photons with the IR field, which
results in the formation of photoelectron side bands at remote
sites. Their interference with the regular local mechanism of
attosecond interferometry gives rise to signal contributions
that encode details about the scattering dynamics into the
observed delays. We rationalize the results of the TDSE by
developing an analytical model of these phenomena within
the theory of laser-assisted electron scattering (LAES), which
enables us to extract a transparent physical picture that will
be transferable to the interpretation of both experiments and
more advanced three-dimensional calculations. We note that
our usage of the term “nonlocal mechanism” is motivated
by the fact that the eventually observed electronic response
depends on the potentials (and laser electric fields) at local and
remote positions.

II. TDSE CALCULATIONS

Figure 1 shows the model potentials used in our study.
We chose an attractive Yukawa potential to represent the site
from which photoemission takes place. A second Yukawa
potential (dotted line) is optionally added at a variable distance
r from the attractive well to represent the interaction of the
electron with (neutral) neighboring sites. We call this scattering
site the “perturber.” Throughout the following discussion we
use atomic units unless stated otherwise. The total potential
therefore takes the form

V (x) = − V1e
− |x|

λ√
x2 + s2

+ Vpe− |x−r|
λ√

(x − r)2 + s2
, (1)

with V1 = 1Eh, λ = 10 a0, s = 1.2741 a0, and variable Vp.
The parameters of the strongly attractive potential [first term
in Eq. (1)] were chosen such that the lowest eigenstate [shown
in Fig. 1(a)] had a binding energy of 13.61 eV (0.5Eh). The
TDSE is then solved for an electron exposed to a 40-fs IR
pulse centered at 800 nm and a 30-fs XUV attosecond pulse
train consisting of harmonic orders q − 1 and q + 1 of 800
nm (with q being an even integer). Numerical details on the

(a)

(b)

FIG. 1. (a) Model potential employed in solving the TDSE and
spectrogram of XUV/IR attosecond interferometry for electrons
propagating to the right-hand side using harmonic orders 15 and 17
as a function of the CEP of the IR field (inset). (b) Relative delays
between photoemission from the isolated attractive potential and
photoemission perturbed by the additional presence of the repulsive
potential with Vp = 4 eV [dashed line in (a)]. The delays (green
circles) have been determined from the phase of the calculated
side-band intensity (SB16), shown in panel (a). The full line represents
the delay calculated according to Eq. (7).

solution of the TDSE are given in the Supplemental Material
[42]. A minimal separation of r ≈ 0.4 nm was used in all TDSE
calculations, such that the binding energy remained unchanged
within the quoted accuracy. The results of the analytical theory,
discussed in Sec. III, are given for all values of r .

Both pulse envelopes are cosine-square functions and all
spectral phases are chosen to be flat. Instead of varying the
offset 	t between the XUV and IR pulses, we continuously
scan the carrier-envelope phase (CEP) δ of the IR pulse

E = E0 cos(ωt − δ), (2)

which is equivalent to scanning the offset 	t = δ/ω between
XUV and IR pulses in the continuous-wave limit, but avoids
effects related to the envelopes of the two laser pulses. Pho-
toelectron spectra are calculated from the part of the electron
wave packet propagating toward x → ∞. An example of such
a photoelectron spectrum as a function of the CEP δ (bottom
axis) and the associated offset 	t (top axis) is shown in the
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inset of Fig. 1(a). The photoelectron spectrum is dominated
by two main lines (yellow) that originate from the ionization
of the ground state by harmonics 15 and 17. The sideband
16, located between these two lines, displays an intensity
oscillation with an angular frequency of 2ω, i.e., a period of
1.33 fs. The analysis of the oscillation phase φ (white dashed
line) of a given sideband q directly reflects the photoemission
delay τ = φ/(2ω) for the case of unchirped pulses.

Figure 1(b) shows the delay obtained from the phase φ

of the side-band oscillation as a function of the distance r

between the photoemission and perturber sites [see Fig. 1(a)].
The delay is found to undergo a periodic beating around a
constant value (marked with a dashed line) as a function of the
spatial separation between the two Yukawa potentials.

This result clearly contrasts with the Wigner delay of the
combined potentials, which would approximately be equal to
the sum of the individual Wigner delays of the two potentials
and would therefore be independent of the location of the
perturbing potential. We show below that the dashed line
mainly reflects the Wigner delay of the attractive potential
describing the site of photoemission and that the oscillating
feature encodes the effect of the environment described by the
additional potential. The fast oscillation of this beating has
a spatial period of π/(kq+1 − kq−1), where kn are the wave
numbers describing the photoelectron waves emitted by the
harmonic of order n. This is the consequence of quantum-
mechanical interference between electron wave packets that
have propagated with different wave numbers kq−1, kq , or kq+1

before undergoing a transition to the common final state of
wave number kq .

III. ANALYTICAL THEORY

A. General framework

The obtained result cannot be explained in terms of Wigner
delays alone. However, it can be fully explained by introducing
the existence of “remote” pathways of IR absorption and
stimulated emission in addition to the usual “local” pathways
(see Fig. 2). In the traditional understanding of attosecond
interferometry, the interaction of the XUV and IR fields with
the electron wave packet takes place while the latter is still
located within the potential of the parent cation. These two
local pathways give rise to the purely local process, illustrated
in Fig. 2(a), and assumed to be the dominant process in previous
work. However, in the presence of neighboring scattering sites,
the interaction of the electron wave packet with the IR field
can also take place in a different spatial region, leading to
remote pathways. In Fig. 2, the top and bottom rows of the
panels illustrate the local and remote IR absorption pathways,
respectively, whereas the two columns correspond to the local
and remote IR stimulated emission pathways. Hence, the
“off-diagonals” of the 2 × 2 panel matrix [Fig. 2(b) and 2(c)]
correspond to processes that contain one local and one remote
pathway, leading to a nonlocal response. Finally, the process
shown in Fig. 2(d) consists of two remote pathways. These
three nonlocal processes illustrated in Figs. 2(b)–2(d) arise
solely from the presence of a remote potential that enables the
absorption or emission of an IR photon in a pathway that is the

FIG. 2. Illustration of the local (a) and nonlocal (b–d) processes
of attosecond interferometry in condensed-matter systems. The blue
(long) arrows represents single-photon ionization by an XUV attosec-
ond pulse train. The red (short) arrows represent interaction with the
IR field, i.e., absorption or stimulated emission.

one-dimensional analog of laser-assisted electron scattering
(LAES)[43].

The expected interference can be calculated analytically as
a sum of four quantum-mechanical amplitudes contributing to
the signal that is eventually measured in the SBq state. These
contributions are the absorption of a photon from harmonic
Hq+1 and the subsequent stimulated emission of an IR photon
either in the cationic potential [with amplitude A1 in Eq. (3)]
or at the perturber potential (A4), and the absorption of a
Hq−1 photon followed by the IR absorption in the cationic
potential (A2) or during scattering (A3). The amplitudes Ai

of these four pathways are chosen to be real-valued and the
corresponding phases are expressed as the sum of contributions
from photoemission, free propagation, and scattering. On this
basis, the complex second-order amplitude of SBq can be
written as

c(2)
q = A1 exp

[
i
(
φP

q+1 + φem + δ + kqr + φS
q

)]
+ A2 exp

[
i
(
φP

q−1 + φab − δ + kqr + φS
q

)]
+ A3 exp

[
i
(
φP

q−1 + kq−1r + φLS
q−1,q − δ

)]
+ A4 exp

[
i
(
φP

q+1 + kq+1r + φLS
q+1,q + δ

)]
. (3)

The phases of the photoemission matrix elements correspond-
ing to harmonic order q ± 1 are represented by φP

q±1. The phase
δ denotes the CEP of the IR field as introduced above. The
interaction with the IR field during photoemission leads to the
additional accumulation of the phases φab and φem, with values
φab ≈ φem ≈ π/2, as verified from the solution of the TDSE
and further discussed in the next section. On its way from the
photoemission to the scattering site, the electron wave packet
travels the distance r , which leads to a propagation phase kqr
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for a kinetic energy of k2
q/2. The scattering of the electron

wave packet without exchange of energy with the laser field
contributes the phase φS

q , whereas scattering accompanied by
exchange of energy contributes the phases φLS

q±1,q . Analytical
expressions for all phases and amplitudes appearing in Eq. (3)
are derived below.

The phases φab and φem are closely related to the
“continuum-continuum” phases φcc, or equivalently the
“Coulomb-laser-coupling” phases φCLC discussed in the lit-
erature on photoionization delays [15,16] with two main dif-
ferences. First, φcc does not include the additive quantity π/2
originating from the interaction with the IR field that is, instead,
included in the definition of the two-photon matrix elements
[16]. Second, φcc and φCLC are strongly energy dependent
because of the long-range character of Coulomb potentials
[15,16], whereas φab and φem are nearly energy independent in
our calculations that exclusively use short-range potentials. A
similar result has very recently been obtained in the context of
photoemission delays from atomic anions [44].

The measurable sideband amplitude is proportional to
the squared magnitude of the contributions from all four
pathways illustrated in Fig. 2. By grouping all terms with-
out δ-dependence into a constant C, the side-band intensity
oscillation is given by

∣∣c(2)
q

∣∣2 = 2
4∑

j=1

bj cos(2δ + 	φP + ϕj ) + C, (4)

where we introduced the difference of photoemission phases
	φP = φP

q+1 − φP
q−1, and where we defined the products of

amplitudes,

b1 = A1A2, b3 = A1A3,

b2 = A2A4, b4 = A3A4,

and the angles,

ϕ1 = φem − φab,

ϕ2 = (kq+1 − kq)r − φab − φS
q + φLS

q+1,q ,

ϕ3 = (kq − kq−1)r + φem + φS
q − φLS

q−1,q ,

ϕ4 = (kq+1 − kq−1)r + φLS
q+1,q − φLS

q−1,q .

The four δ-dependent terms in Eq. (4) correspond to the
four panels of Fig. 2 in the order (a)–(d), i.e., to purely
local pathways (j = 1), local absorption and remote emission
(j = 2), local emission and remote absorption (j = 3), and to
purely remote pathways (j = 4). We note that the purely local
term does not contain an r-dependence and is thus connected
with a constant delay, equal to the photoemission delay.

We now discuss the expected modifications of the de-
lay resulting from the dependence of the signal on the
photoemission-perturber distance r . As all four terms in Fig. 4
represent signals that oscillate with 2δ + 	�P and differ only
in amplitude and phase, their sum can be written as

∣∣c(2)
q

∣∣2 = A cos(2δ + 	φP + φnl) + C, (5)

with amplitude

A2 = 2
4∑

j=1

4∑
k=1

bjbk cos(ϕj − ϕk) (6)

and phase

φnl = atan

( ∑4
j=1 bj sin ϕj∑4
j=1 bj cos ϕj

)
. (7)

In the language of attosecond delays, the photoemission-
phase difference 	φP yields the photoemission delay τ P =
	φP/(2ω), which reflects the properties of the potential from
which photoemission takes place.

The phase φnl depends on the distance r to the perturber
and collects the contributions from all “non-local” processes,
which can therefore be viewed as contributing the additional
delay

τnl = φnl

2ω
. (8)

We now discuss the underlying physical processes in more
detail and provide analytical formulas for each of them. For
this purpose, we use the one-dimensional scattering amplitude
f (for forward scattering) as in Ref. [45],

lim
|x|→∞

�k(x) → eikx + f

(
x

|x|
)

eik|x|, (9)

where �k(x) is the scattered wave function. We note that
different definitions of the scattering amplitude may be used
[46].

B. Description of local pathways

The pathways that we designated as local can be de-
scribed with the theory of the laser-assisted photoelectric effect
(LAPE) [47–49]. In this theory, it is assumed that the initial
state is a bound state which has a trivial time dependence,
that the final state is the laser-dressed state of a free electron
in the IR field, and the ionizing laser pulse can be treated
as perturbation. Also, the IR field is treated as a continuous
wave. Using the LAPE theory, we find that the laser-assisted
photoemission amplitude f LAPE

q+ν,q from state q + ν to state q is
related to the photoemission amplitude to state q + ν without
the assisting IR field, f PE

q+ν , by

f LAPE
q+ν,q ≈ eiν(π/2+δ)Jν

(
kqE0

ω2

)
f PE

q+ν . (10)

Here, Jν are the Bessel functions of first kind [50], E is the
maximum IR field strength, and kq is the final wave number of
the electron. The parameter ν indicates whether an IR photon
was absorbed/emitted (ν = −1/1) or not (ν = 0).

Comparing Eq. (10) with Eq. (3) yields the phases 	φP,
φem, and φab. Specifically, we have

	φP ≈ arg
(
f PE

q+1

) − arg
(
f PE

q−1

)
, (11)

and

φem ≈ arg

[
e+i π

2 J+1

(
kqE0

ω2

)]
(12)
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φab ≈ arg

[
e−i π

2 J−1

(
kqE0

ω2

)]
. (13)

For the laser parameters considered below, we find that

φem ≈ φab ≈ π

2
. (14)

C. Description of remote pathways

The nonlocal pathways can be described with the theory
of laser-assisted electron scattering (LAES) [43,48]. In this
theory, it is assumed that the initial and the final state are laser-
dressed states of a free electron in the IR field, that the IR
field is a continuous wave, and that the scattering potential
can be treated as a perturbation. Using the LAES theory, the
laser-assisted scattering amplitude f LAES

q+ν,q can be expressed in
terms of the field-free scattering amplitude f ES

q+ν,q as

f LAES
q+ν,q ≈ eiν( π

2 +δ)Jν

(
(kq − kq+ν)E0

ω2

)
f ES

q+ν,q , (15)

where kq+ν and kq are initial and final momenta, respectively.
Again, the phase π/2 in Eq. (15) originates from the choice
of the IR field in Eq. (2), and ν = −1/1 corresponds to
absorption/emission of a photon, while ν = 0 corresponds to
scattering without photon exchange. As we study the influence
of the perturber potential [the second part of Eq. (1)] below,
we also need the explicit equation for f ES in one dimension,

f ES
q+ν,q ≈ − i

kq

〈eikq r | Vpe− |x−r|
λ√

(x − r)2 + s2
|�kq+ν

〉 , (16)

where �kq+ν
is the scattering wave function of asymptotic

momentum kq+ν . With the scattering amplitudes, the phases
occurring in Eq. (3) can be expressed as

φLS
q−1,q ≈ arg

{
e−i π

2 J−1

[
(kq − kq−1)E0

ω2

]
f ES

q−1,q

}
(17)

φS
q ≈ arg

(
f ES

q,q + 1
)

(18)

φLS
q+1,q ≈ arg

{
e+i π

2 J+1

[
(kq − kq+1)E0

ω2

]
f ES

q+1,q

}
. (19)

The special form of Eq. (18) is due to the presence of an
incoming wave in the channel kq . For the laser parameters
considered below, we find

φLS
q−1,q ≈ arg(f ES

q−1,q ) + π

2
, (20)

φS
q ≈ arg

(
f ES

q,q + 1
)
, (21)

φLS
q+1,q ≈ arg(f ES

q+1,q ) − π

2
. (22)

From Eq. (14) we see that in the LAPE, both emission and
absorption of an IR photon lead to a phase shift of π/2 of the
field-dressed scattering amplitude compared to the field-free
case. In the case of LAES, absorption leads to a phase shift of
+π/2 and emission is accompanied by a phase shift of −π/2.
Comparing the effect of the IR-laser field on the field-free
amplitudes, Eqs. (10) and (15), we find that those are identical

if we assume that the initial momentum ki in the LAPE is zero.
The difference of the two cases, however, is that kf − ki is
always positive in the LAPE, while during LAES in forward
direction it is positive for absorption and negative for emission
of a photon.

IV. DISCUSSION

Based on the results of the analytical theory, it is possible to
predict the expected phase shift φ = 	φP + φnl as a function
of the distance r by using Eq. (7) and to compare the result
with that of the TDSE. For this purpose, we need to determine
the necessary parameters. The photoemission phase 	φP and
the probability of photoemission |f PE

q+ν |2 are obtained from
a TDSE propagation of the ground state of the potential
Eq. (1) without additional perturber potential. The probabilities
|f LAPE

q+ν,q |2 for the LAPE are obtained from Eq. (10). In the case
of the LAES pathway, the scattering amplitudes Eq. (15) are
obtained numerically by constructing the scattering solutions
of the isolated perturber potential and by evaluating the relevant
matrix elements given in Eq. (16). This procedure yields
the phases φS

q , φLS
q−1,q , and φLS

q+1,q . The amplitudes Aj are
calculated as products of the respective LAPE and LAES
amplitudes,

A1 = ∣∣f LAPE
q+1,q

∥∥1 + f LAES
q,q

∣∣, (23)

A2 = ∣∣f LAPE
q−1,q

∥∥1 + f LAES
q,q

∣∣, (24)

A3 = ∣∣f LAPE
q−1,q−1

∥∥f LAES
q−1,q

∣∣, (25)

A4 = ∣∣f LAPE
q+1,q+1

∥∥f LAES
q+1,q

∣∣. (26)

By using these values in Eq. (7), we obtain an ab initio
prediction of the dependence of the phase φ and hence of the
delay τ = τ P + τnl on the perturber distance r , as shown in
Fig. 1(b) (full blue line).

Figure 3 presents a more extensive comparison of the results
from our analytical theory with the TDSE results for two
different side-band orders q and for repulsive and attractive
remote potentials, i.e., Vp = +2 eV or −2 eV. Clearly, the
agreement between TDSE and our analytical theory is excellent
in all cases. We emphasize that this agreement is obtained
without any adjustable parameter.

On the basis of the analytical formula in Eq. (7), we now
discuss the origin of the observed beating and the influence of
the various parameters. First, we note that the amplitudes A3

and A4 of the remote pathways are much smaller than those
of the local pathways (A1 and A2). In our model calculations,
their ratio (remote/local) is approximately 1:10 for Vp = 4 eV,
on one hand, because the potential from which the electron
is emitted was chosen to be much deeper than the perturbing
potential and, on the other hand, because the values of the
Bessel-type prefactors favor the local LAPE over the remote
LAES pathways. In this situation, the term b1 in Eq. (7) is
by far dominant, whereas the terms proportional to b4 can
be neglected. Since in good approximation A1 ≈ A2 =: Alocal

and A3 ≈ A4 =: Aremote � Alocal, we can expand the phase φnl
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(a) (b)

(c) (d)

FIG. 3. Comparison of analytical theory (solid blue curves) and
TDSE results (green circles) for the side-band orders and Vp values
indicated above each figure panel.

Eq. (7) to obtain

φnl ≈ 2Aremote

Alocal
sin

(
ϕ2 + ϕ3

2

)
cos

(
ϕ2 − ϕ3

2

)
(27)

= 2Aremote

Alocal
sin((kq+1,q + kq,q−1)r + 	φLS)

× sin((kq+1,q − kq,q−1)r + 	φS), (28)

with

	φLS = 1
2

(
φLS

q+1,q − φLS
q−1,q

)
, (29)

	φS = 1
2

(
φLS

q+1,q − 2φS
q + φLS

q−1,q

)
, (30)

kq+1,q = 1
2 (kq+1 − kq), (31)

kq,q−1 = 1
2 (kq − kq−1). (32)

Typically, the scattering phases arg(f ES
q+ν,q) differ only little for

ν = −1, 0, or +1.
Clearly, the relevant processes for the behavior of the

nonlocal phase φnl are those illustrated in Figs. 2(b) and 2(c),
respectively. The form of Eq. (28) explains the beating patterns
observed in Fig. 1(b) and in Fig. 3. It shows that the beating
originates from the fact that the electrons travel the distance
r to the perturber with different momenta before recombining
their paths. Since the energies are directly related to the wave
numbers ki , they accumulate different propagation phases kir ,
which give rise to the oscillating delay. The fast oscillation of
φnl with r Eq. (28) is determined by the oscillation frequency
kq+1,q + kq,q−1, while the slow oscillation of the envelope is
determined by the oscillation frequency kq+1,q − kq,q−1.

Inserting the values given in the first row of Table I, we
find that for our calculations with Vp > 0 	φLS ≈ 	φS ≈
π/2, such that both the fast and the slow oscillations are

TABLE I. Numerical values (in rad) of the relevant phases for
photoemission and laser-assisted scattering pertaining to side-band
order q and the potentials described in Eq. (1). The phases were chosen
to be in the interval [−π,π ].

q Vp φP
q+1 − φP

q−1 φLS
q−1,q φS

q φLS
q+1,q

16 +2 eV −0.204 −0.203 −0.378 2.965
16 −2 eV −0.204 −2.946 0.365 0.171
22 +2 eV −0.102 −0.144 −0.277 3.008
22 −2 eV −0.102 −3.000 0.272 0.131

+cosine-like, as seen in Fig. 3(a) [and Fig. 1(b)]. If we change
the sign of the perturbing potential, we find 	φLS ≈ π/2 and
	φS ≈ −π/2, i.e., the rapid oscillation is still of +cosine type,
whereas the envelope is of −cosine type.

Second, we analyze the maximal amplitude τmax of the delay
τnl, Eq. (8). For this purpose, we can neglect the fast oscillation
with r in Eq. (28), hence

τmax ≈ 1

ω

Aremote

Alocal
, (33)

which is located at

rmax ≈ 1

kq+1,q − kq,q−1

[(
n + 1

2

)
π − 	φS

]
(34)

for integer n. We note that τmax is independent of the IR
intensity, as in the previously discussed cases of attosecond
interferometry. The location of rmax with n = 0 in our examples
above is close to r = 0. It follows from Eqs. (20)–(22) that
this is in general the case in one-dimensional systems, if the
perturber potential can indeed be treated as a perturbation. In
this case, the magnitude of the scattering amplitude is small
compared to 1, hence Eq. (21) always yields a phase φS

q ≈ 0
and thus 	φS ≈ ±π/2, as in our examples. In contrast, if the
effect of the incoming channel could be neglected, we would
find 	φS ≈ 0, and hence τnl would be close to zero at r = 0.

It is instructive to compare the value of τmax to the scattering
delay of the perturbing potential alone, which is given by

τscat ≈ 1

2ω

(
φS

q+1 − φS
q−1

)
. (35)

The quantities τmax and τscat are shown in Fig. 4 as a function
of Vp for q = 16 and q = 22. Interestingly, we find that the

FIG. 4. Comparison of the maximal delay contributed by the
nonlocal processes (blue) calculated via Eq. (33) and the scattering
delay of the isolated perturber (red) calculated via Eq. (35) for
sideband orders 16 (left) and 22 (right).
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two types of delays converge to a linear dependence with a
common slope for small Vp. Although we illustrate this result
only for positive values of Vp, it is clear that it also holds for
negative values, i.e., attractive perturbing potentials, since we
have seen in Fig. 3 that in this case τmax has the opposite sign
and so does τscat. To conclude this section, we have found that
the nonlocal processes contribute a maximal delay that scales
linearly with Vp for small Vp and is similar to the scattering
delay for sufficently small Vp. The linearity of τmax and the
equality τmax ≈ τscat represent approximations of improving
quality with increasing kinetic energy of the electrons.

V. EFFECT OF MULTIPLE COLLISIONS AND
PATH-LENGTH DISTRIBUTIONS

The extension of these results from the considered model
system to the condensed phase requires the inclusion of at least
two additional effects. First, the number of collisions can be
larger than one. Second, the distance traveled by the electron
between photoemission and the first collision, or between two
consecutive collisions is a distributed quantity, the average of
which defines the mean free path.

We first consider the effect of multiple (elastic) collisions.
Since we are considering photoelectron spectroscopy as the
detection method, we assume that inelastic collisions are
associated with a sufficiently large energy loss that the electron
is no longer detected within the bandwidth of the investigated
sideband. Therefore, since the inelastic mean-free path is
usually longer than the elastic mean-free path, on average a
finite number of elastic collisions takes place before the first
inelastic collision occurs.

We therefore simulate the effect of n ∈ 1, . . . ,4 collisions
as a function of the fixed common distance between each of
the n perturber potentials. Extending the total second-order
amplitude from Eq. (3) to the case of two perturbing potentials
separated by the common distance r results in the expression

c(2)
q = A1 exp

[
i
(
φP

q+1 + φem + δ + 2kqr + 2φS
q

)]
+ A2 exp

[
i
(
φP

q−1 + φab − δ + 2kqr + 2φS
q

)]
+ A3 exp

[
i
(
φP

q−1 + (kq−1 + kq)r + φLS
q−1,q − δ + φS

q

)]
+ A4 exp

[
i
(
φP

q+1 + (kq+1 + kq)r + φLS
q+1,q + δ + φS

q

)]
+ A5 exp

[
i
(
φP

q+1 + 2kq+1r + φS
q+1 + φLS

q+1,q + δ
)]

+ A6 exp
[
i
(
φP

q−1 + 2kq−1r + φS
q−1 + φLS

q−1,q − δ
)]

,

(36)

where the symbols φS
q+1 and φS

q−1 represent the phase contri-
bution of scattering without exchange of photons with the IR
field in the states q + 1 and q − 1, respectively. In this case,
the amplitudes can be expressed as:

A1 = ∣∣f LAPE
q+1,q

∥∥1 + f LAES
q,q

∣∣2
, (37)

A2 = ∣∣f LAPE
q−1,q

∥∥1 + f LAES
q,q

∣∣2
, (38)

A3 = ∣∣f LAPE
q−1,q−1

∥∥f LAES
q−1,q

∥∥1 + f LAES
q,q

∣∣, (39)

A4 = ∣∣f LAPE
q+1,q+1

∥∥f LAES
q+1,q

∥∥1 + f LAES
q,q

∣∣, (40)
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FIG. 5. Effect of multiple collisions separated by a fixed distance
between the center of each potential. Repulsive perturbing potentials
with Vp = 4 eV were used. This figure shows the delay corresponding
to SB16.

A5 = ∣∣f LAPE
q+1,q+1

∥∥1 + f LAES
q+1,q+1

∥∥f LAES
q+1,q

∣∣, (41)

A6 = ∣∣f LAPE
q−1,q−1

∥∥1 + f LAES
q−1,q−1

∥∥f LAES
q−1,q

∣∣, (42)

where all symbols have already been defined in Sec. III.
This formalism can be readily extended to the case of n > 2
scattering events.

Figure 5 shows the numerical results for the cases of n

scattering events. For very short distances, the contribution of
multiple collisions displays an additive behavior with respect
to the total delay. For the present potential parameters with
Vp = +4 eV, τmax ≈ 22 as. For very short distances, we find
in excellent approximation that τ ≈ τ P + nτmax. The overall
result of the delay as a function of the distance can immediately
be interpreted as the superposition of the “fundamental”
oscillation, obtained in the case of a single collision (blue
line), with its n higher harmonics. The result is similar to that
of a truncated Fourier series, i.e., it displays local maxima of
increasing sharpness with increasing number of collisions at
the positions where the fundamental oscillation has its maxima.
However, just as the blue line actually corresponds to a beating,
rather than an oscillation of constant amplitude [see Fig. 1(b)],
the other curves also display a weaker second maximum (at
5.3 nm).

We now consider the effect of the path-length distribution.
For the sake of simplicity, we begin again by restricting the
number of collisions to one and compare three cases. First, the
perturber is assumed to be located at a fixed distance r . Second,
the distances follow the exponential distribution given by

r = λ × ln

(
1

1 − x

)
, (43)

where x is a random number between 0 and 1 and all four
complex amplitudes from Eq. (3) for all r are added coherently.
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FIG. 6. Comparison between the delay determined from SB16
that emerges if the perturbing potential (with Vp = 4 eV) is at a fixed
distance (blue line) and if the distance r is distributed according to
a mean-free path with coherent addition of the contributions from
different r (red) or incoherent addition (green).

Third, the four complex amplitudes for each r are added
coherently, but the contributions from different values of r are
added incoherently. We note that the path-length distribution
given by Eq. (43) corresponds to assuming that the condensed
medium has a uniform pair-correlation function.

The results of these three types of calculations are shown
as the blue, red, and green curves in Fig. 6, respectively.

In case 1, the familiar beating pattern, similar to Fig. 3(a),
is obtained. In cases 2 and 3 the delay is found to rapidly
decay toward the value of the photoemission delay with
increasing mean perturber distance (or mean-free path). This
result has an intuitive interpretation. The superposition of
side-band oscillations with different phase shifts leads to a
rapid cancellation of the positive and negative contributions of
τnl obtained in case 1, which leads to the observed rapid decay
of the effective delay with λ in cases 2 and 3. The difference
between coherent and incoherent addition is very minor. The
coherently averaged result (case 2) follows the cosine-like
behavior of case 1 for very short distances before turning into
an exponential-like decay, whereas the incoherently averaged
result (case 3) displays the exponential-like decay from the
shortest perturber distances. We find that the total delay in the
coherently averaged case is well approximated by

τ ≈ τ P + τmax

1 + k2λ2
, (44)

where k = kq,q−1 + kq+1,q = (kq+1 − kq−1)/2.
Based on Eq. (44), we can distinguish three different

regimes. In the limit λ � 1/k the scattering event will add
a delay τmax to the intrinsic photoemission delay leading to
τ = τ P + τmax. In the opposite limit λ 
 1/k, the effect of
scattering on the delays is averaged out, such that the total
measured delay is equal to the photoemission delay τ = τ P. In
the intermediate regime λ ≈ 1/k the total measured delay will
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FIG. 7. Dependence of the delay determined from SB16 on the
number of collisions and the mean distance between the perturbing
potentials (with Vp = 4 eV).

lie between τ P and τ P + τmax and will therefore be sensitive to
both τmax and λ.

Finally, we study the simultaneous effect of multiple colli-
sions and the path-length distribution on the observable delay.
Figure 7 shows the result of numerical calculations based
on our analytical theory for a variable number of collisions
(one to four) as a function of λ, using separations between
the individual potentials that were all sampled according to
Eq. (43). The contributions from all collisions were treated
coherently in this calculation to facilitate the comparison with
Fig. 5.

For very short mean-free paths, the contribution of multiple
collisions displays an additive behavior with respect to the total
delay, as expected. We further find that τ decays approximately
n times more rapidly with increasing number of collisions
n. This behavior can also be expected on the basis of the
fixed-distance results in Fig. 5. These results generalize our
interpretation of Fig. 6 to the case of multiple collisions.

A complete physical picture of attosecond interferome-
try in partially transparent media requires three-dimensional
simulations. Here, we briefly discuss how the present results
from one-dimensional calculations can be applied to a three-
dimensional Monte Carlo trajectory simulation. Photoemis-
sion or laser-assisted photoemission from multiple locations
would be represented by randomly selecting a large number of
points inside the material. The propagation of the electron wave
packets from each of these points would be represented by a
large number of semiclassical trajectories starting from each
point. After a random distance r sampled from the distribution
given in Eq. (43), scattering or laser-assisted scattering would
occur, described by the formalism outlined in the present
work. The contributions of all trajectories exiting from the
medium would then be added to obtain the simulated side-band
oscillation.
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VI. CONCLUSIONS

In conclusion, our results demonstrate the importance of
nonlocal electron-IR field interactions for attosecond interfer-
ometry in the condensed phase. Following photoemission, the
liberated electron can either interact with the IR field while it
is still within the potential range of the parent cation (“local”
pathway) or at a later time when it crosses a remote potential
variation created by the presence of another atom or molecule
(“remote” pathway). These pathways interfere with each other,
resulting in a nonlocal contribution with a periodic dependence
of the total observable delay on the separation between the
photoemission and scattering sites. The maximal delay is
defined by the ratio of the probabilities of the remote to the local
pathways, which encodes the depth of the potential describing
scattering. For electron kinetic energies significantly larger
than the scattering potentials, the maximal delay converges to
the scattering delay. When the distances between the perturbers
are sampled according to a mean-free path, the contributions
of the nonlocal mechanisms to the observed delays decrease
rapidly to zero with increasing mean-free path. In the case of
short mean-free paths, the observed delay reflects the sum of
the elastic scattering delays of all collisions and the photoemis-

sion delays. In the case of long mean-free paths, the observed
delay is equal to the photoemission delay. Hence, we conclude
that attosecond interferometry in one-dimensional transparent
amorphous media is, in general, sensitive to both the mean-free
paths and the scattering delays. In addition to uncovering
the nonlocal mechanism of attosecond interferometry, this
work also lays the foundation for treating such processes in
three-dimensional media and the corresponding experiments,
which will both be the subject of future publications.
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