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We present calculations of time-dependent photoelectron spectra of NO2 after excitation to the
A-band for comparison with extreme-ultraviolet (XUV) time-resolved photoelectron spectroscopy.
We employ newly calculated potential energy surfaces of the two lowest-lying coupled 2A′ states
obtained from multi-reference configuration-interaction calculations to propagate the photo-excited
wave packet using a split-step-operator method. The propagation includes the nonadiabatic cou-
pling of the potential surfaces as well as the explicit interaction with the pump pulse centered at
3.1 eV (400 nm). A semiclassical approach to calculate the time-dependent photoelectron spectrum
arising from the ionization to the eight energetically lowest-lying states of the cation allows us to
reproduce the static experimental spectrum up to a binding energy of 16 eV and enables direct
comparisons with XUV time-resolved photoelectron spectroscopy. Published by AIP Publishing.
https://doi.org/10.1063/1.5029365

I. INTRODUCTION

Conical intersections play a central role in the photochem-
istry of most molecules, determining the pathway of reactions
in molecules of all sizes ranging from DNA to small molecules,
such as 1,3-cyclohexadiene, iodomethane, or nitrogen diox-
ide. The latter is a prototypical system to study the effect of a
conical intersection, which, in NO2, connects the energetically
lowest lying excited state to the ground state. Its presence leads
to complex femtosecond dynamics in the electronically excited
state after excitation around 400 nm and enables the dissoci-
ation of the molecule after internal conversion to the ground-
state surface. These properties as well as the limited number
of electrons and nuclei make NO2 an ideal candidate to bench-
mark high-level ab initio calculations against suitable experi-
mental observables. The spectroscopic properties of NO2 have
been determined with high accuracy.1–9 However, femtosec-
ond time-resolved experiments have only recently become
possible with the introduction of multiphoton time-resolved
photoelectron spectroscopy (MP-TRPES)10–15 (for a review,
see Ref. 16) and time-resolved high-harmonic spectroscopy
(TRHHS).17–22 Although these techniques could be realized
with state-of-the-art femtosecond lasers, their interpretation
is sometimes challenging because of the high peak intensi-
ties associated with femtosecond laser pulses. The previous
experiments on NO2 nicely illustrate this statement because
substantially different observations were reported with respect
to the dynamics created by single-photon excitation at 400 nm.
For example, oscillations in the yield of NO+ and slow (near-
zero eV) photoelectrons were reported with periods ranging

a)Electronic mail: hwoerner@ethz.ch

from 500 to 750 fs in pump-probe experiments involving
400-nm and 267-nm laser pulses.10,13,14 In contrast to this,
oscillations with a period of ∼220 fs were observed in time-
resolved mass spectrometry.23 Time-resolved high-harmonic
spectroscopy revealed 1-2 oscillations with a period close to
100 fs.18–20 Notably, all of these observations were attributed
to dynamics induced by single-photon excitation in the vicin-
ity of 400 nm. A distinctive feature of the TRHHS results18

was the unequivocal demonstration of dominant single-photon
excitation through the wavelength dependence of the sig-
nals, i.e., the presence of the characteristic few-picosecond
dissociation time scale of NO2 for excitation above the dis-
sociation threshold at 3.11 eV (398 nm) and its absence
for excitation below the threshold. This hallmark of single-
photon excitation in NO2 has not been reported in any of the
MP-TRPES experiments, although a small number of studies
based on coincidence detection have established the contribu-
tion of single-photon excitation at long pump-probe delays
(>400–500 fs).12,14 Recently, some of the present authors
have applied extreme-ultraviolet (XUV)-TRPES to the same
excited-state dynamics in NO2.24 The application of single-
photon ionization removes the complications induced by the
high peak intensities and reveals the genuine dynamics of
the photo-excited molecular system over its complete reaction
path. The main motivation for the present (theoretical) work
was the interpretation of these novel experimental results, as
well as a possible future modeling of TRHHS or MP-TRPES
results.

On the theoretical side, NO2 has also been exten-
sively studied. Potential-energy surfaces of the energetically
lowest lying electronic states of the neutral molecule25–33

and the cation34,35 have been calculated for a long time
and have reached a high level of accuracy. The surfaces
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with the highest density of points so far were Davidson-
corrected multi-reference configuration-interaction (MRCI)
calculations with the Dunning’s correlation-consistent polar-
ized valence quadruple zeta (cc-pVQZ) basis set36 for the two
lowest electronic states of the neutral molecule32 and MRCI
cc-pVDZ36 calculations for the cationic molecule.35 Some of
the surfaces have been used to calculate time-dependent wave
packets after excitation, leading to insights into the short-
time dynamics37 and enabling the calculation of experimental
observables, such as photoelectron spectra and photoelectron
angular distributions.38 However, due to the strong dependence
of the potential energies of the different states of NO2 on the
nuclear coordinates (both in the cation as well as in the neu-
tral molecule), there are many accessible cationic states for a
given binding energy after excitation at 400 nm. This makes
high-level calculations of photoelectron spectra very expen-
sive, which were therefore limited to the lowest two electronic
states of the cation.37,38 In this work, we extend previous
wave-packet calculations of two of the present authors37,38

to a larger grid, enabling us to accurately describe the pho-
todissociation. Simultaneously, we improve the level of theory
from complete active space self-consistent field (CASSCF) to
MRCI, which allows us to reach quantitative accuracy with
respect to the dissociation threshold. We present the results
of full-dimensional quantum-mechanical wave-packet calcu-
lations on these novel surfaces. Subsequently, we report the
calculation of time-dependent photoelectron spectra for com-
parison with recent experimental data from XUV-TRPES24 in
an extended range of binding energies for the channels leading
to each of the two lowest lying states of 1A′, 1A′′, 3A′, and
3A′′ characters of the cationic molecule within a semiclassical
model.

II. METHOD
A. Calculation of potential-energy surfaces

To describe the nuclear arrangement of NO2, we use
three different coordinate systems: internal coordinates, Jacobi
coordinates,39 and Cartesian coordinates (see Fig. 1).

The potentials, which are used in the wave-packet calcu-
lations and the photoelectron calculations, are determined on
the following grid:

r = 0.9Å + 2.625 · 10−2Å ir , with ir = 0, . . . , 90, (1)

FIG. 1. Coordinate systems for NO2: Black: internal coordinates with the NO
bond lengths r1 and r2, as well as the bond angle β. Green: Jacobi coordinates
r, R, and θ. The coordinate R is measured from the center of mass along the
NO-bond, i.e., r2m = r2mO/(mO + mN) from the nitrogen nucleus, where mO
and mN are the atomic masses of oxygen and nitrogen, respectively. Orange:
molecular-frame Cartesian coordinates. The molecule lies in the yz-plane. The
origin is located in the center of charge and z is pointing along the β-angle
bisector.

R = 0.484 375Å + 2.218 75 · 10−2Å iR,

with iR = 0, . . . , 155, (2)

θ = 180◦ − (45/64)◦iθ , with iR = 0, . . . , 250. (3)

This grid consists of 3.6 × 106 points. For the electronic
states of the neutral molecule, 28 250 points were calcu-
lated and the remaining ones were interpolated. The calculated
points were not equidistant. Their density was chosen to be
high in the potential minimum, around the conical intersec-
tion, and where problems with the interpolation on the grid
occurred. The number of points was increased until satis-
factory potential surfaces up to an energy of 3.5 eV of the
(1)2A′ state above the lowest energy in the grid were achieved.
The quantum-chemistry calculations were performed using the
Molpro suite.40 We first determined the two-state-averaged
wave functions with the multi-configurational self-consistent
field (MC-SCF) approach with a CAS(13,10)41,42 in a sim-
plified configuration, namely, rinit

1 = rinit
2 = 1/2(r1 + r2).

This was taken as an initial guess for a two-state-averaged
CASSCF(13,10) calculation at the final configuration with
a subsequent MRCI(13,10)43–45 calculation. Here, (13,10)
refers to the chosen active space: we used 10 open orbitals
with 13 active electrons. In the case of CASSCF calcula-
tions, the five orbitals with the lowest energies were closed.
For the MRCI calculation, two orbitals were closed and three
were frozen (core) orbitals. All calculations used the opti-
mized augmented Dunning’s correlation-consistent polarized
valence quadruple zeta (aug-cc-pVQZ) basis set.36 The out-
put was checked for convergence problems and, in the case of
errors, recalculated. Configurations which could not be con-
verged or which resulted in energies which were significantly
different from the surrounding points were excluded. For the
potential surfaces of the neutral states, we tried to calculate
the potential at 29 174 grid points (i.e., 924 calculations did
not converge). For the potential surfaces of the cationic states,
the number of points was decreased (between 5864 and 6167
points), as they were not needed for the propagation. Further
details are given in Appendix A.

The diabatization of the neutral adiabatic potentials was
performed on the basis of a phenomenological approach46,47

by maximizing the transition dipole moment µy
D,12 between

the diabatic states. The reliability of this diabatization scheme
has been numerically verified in Ref. 46. This leads to a
diabatization angle

αµ =
1
2

atan2
(
µ

y
11 − µ

y
22, 2µy

12

)
, (4)

where µy
11 and µy

22 are the permanent dipole moments along the
y-axis of the (1)2A′ and (2)2A′ states, respectively, and µy

12 is
the transition dipole moment between them (see Fig. 1 for the
definition of the y-axis). This method relies on the properties
of the (1)2A1 and (1)2B2 states (labeled in the C2v symmetry
of the ground state) and fails when a third state interacts signif-
icantly with these states. In these parts of the coordinate space,
the mixing angle was approximated. Generally, the angles were
visually inspected for cuts along θ and smoothly continued to
0, π/2, or −π/2, respectively. Figure 2 illustrates the diaba-
tization process. The treatment of areas with non-negligible
coupling of a third state is further discussed in Appendix B.
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FIG. 2. Illustration of the diabatization process. All plots are cuts through
the hypersurfaces of the lowest-lying electronic states of NO2 with
r = 1.1625 Å and R = 1.7047 Å. (a) Calculated permanent dipole moments
of (1)2A′ and (2)2A′ along the y-axis (blue and red) as well as their transi-
tion dipole moment (black). (b) Mixing angles: The black curve illustrates
the mixing angle calculated according to Eq. (4) and the green curve is the
modified diabatization angle which was used in the diabatization. (c) Final
result of the diabatization: The adiabatic potentials are colored in red and
blue and the diabatic potentials in yellow and violet. The additional avoided
crossings around θ = 80◦ (between the first and second adiabatic state),
105◦, and 165◦ (both between the second and third adiabatic state) were not
diabatized.

The raw data available in the supplementary material
includes the adiabatic energies, the diabatic energies and cou-
pling constants, the permanent dipole moments and the transi-
tion dipole moments in the y-direction between the two lowest
2A′ states of the neutral molecule, and the adiabatic energies
of each of the two lowest 1A′, 1A′′, 3A′, and 3A′′ states of
the cationic molecule. The interpolation method is described
in Appendix C.

B. Calculation of the vibronic wave packet

The vibronic wave packet was calculated with a split-step-
operator method presented before Ref. 37. As the wave packet
is calculated on a grid, the dissociating parts of the wave func-
tion could not be fully described. Absorbing barriers were con-
structed48 and tested for minimal reflection of the wave func-
tion at the edges of the grid. The optical potential has the shape

Vopt(θ, R, r) = max
(
A(θ, R, r), A

(
θ ′, R′, r ′

))
, (5)

with

A(θ, R, r) = max(0, mr(r − rabs), mR(R − Rabs), mθ (θ − θabs)),

(6)

where rabs = 3.0263 Å, mr = 1.2425 eV Å−1, Rabs = 3.7016 Å,
mR = 1.1828 eV Å−1, θabs = 21.7969◦, and mθ = −0.0139 eV
deg−1. The primed parameters are defined as the set of Jacobi-
coordinates using the center of mass along the other bond of
NO2 [see Eqs. (B1)–(B3)]. This definition ensures that the
symmetry of the generated wave packet is not broken due
to the absorption. The initial ground state wave function was
found by calculating an energy spectrum of a Gaussian cen-
tered at the equilibrium position49 and subsequent filtering of
the wave function with the lowest energy.50 The energy of the
ground state wave function was determined to be 0.233 eV
above the minimal energy on the grid, which is in good
agreement with the zero-point-energy derived from experi-
mental vibrational frequencies using the harmonic-oscillator
approximation (0.228 eV). The wave function was propagated
with a split-step operator method,49 explicitly including the
dipole-coupling of the two lowest-lying states due to the pump
pulse.37 The step size of a typical calculation was 0.02 fs. The
wave functions were saved every 1 fs to serve as inputs for
further calculations. The following approximations had to be
made; first, the rotational motion of the molecules was not
included. They were assumed to be aligned with their y-axis
(cf. Fig. 1) along the polarization of the pump pulse. Second,
the transition from the 2A1 ground state to the 2B1 second
excited state was neglected. Previous work51 showed this tran-
sition to be weak compared to the transition to the 2B2 state
at excitation energies above 2.9 eV. Third, the Renner-Teller
coupling of the 2A1 with the 2B1 state around θ = 0◦ and
θ = 180◦ was not treated.

To depict the results of a propagation, we project the
ground state vibronic wave function χ0 out of the total wave
function according to

χproj(t) = χ(t) −
∫

R
χ0 χ(t)dR χ(t) (7)

and calculate partial densities along specific coordinates with

ρr = ρr2 =

∫
���χ

proj
i (r, R, θ)���

2
sin θ dRdθ, (8)

ρβ =

∫
���χ

proj
i (r1, r2, β)���

2 sin θ r1

R
dr1dr2, (9)

where χ
proj
i denotes the vibrational wave function of state i

without contributions of the initial state.

C. Calculation of photoelectron spectra

Due to the number of the involved cationic states as well
as their complexity, it was not possible to calculate the pho-
toelectron spectra by direct propagation of the wave functions
on the ionic surfaces.38 Instead, we turned to a semiclassical
model. The cross section σ for a transition at the energy Etr

can generally be written as

σ(Etr) =
πe2Etr

3ε0c

∑
a,b

Pa |〈Ψb |r̂|Ψa〉|
2δ(Etr − (Eb − Ea)), (10)

where Pa is the population of the initial state, r̂ is the dipole
operator, Ψa and Ψb are the initial and final molecular wave

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010826
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functions, respectively, and Ea and Eb are their energies.52

Following the literature,53 one can express Eq. (10) in terms
of the nuclear coordinates R and the electronic coordinates r
by using the Born-Oppenheimer approximation as

σ(Etr) = C
∑
i,k,f ,l

Pik

∫ ∫ 〈
ψi

(
R′

)
|r̂|ψf

(
R′

)〉
χ∗ik

(
R′

)
× χfl

(
R′

)
χ∗fl(R)χik(R)

〈
ψf (R)|r̂|ψi(R)

〉
× δ

(
Etr −

(
Efl − Eik

))
dR′dR, (11)

where ψi and ψf are the initial and final electronic wave
functions, respectively, χik and χfl are the initial and final
nuclear wave functions with their vibrational quantum num-
bers collectively described by the indices k and l, and we
collected the prefactors in C. Inserting the semiclassical
approximation54

Efl − Eik ≈ Vf (R) − Vi(R), (12)

where V i and V f are the potential energies at coordinate R of
the involved electronic states, and the identity∑

l

χfl
(
R′

)
χ∗fl(R) = δ

(
R′ − R

)
, (13)

one obtains

σ(Etr) = C
∑
i,k,f

Pik

∫
���
〈
ψf (R)���r̂|ψi(R)〉���

2
χ∗ik(R)

× χik(R)δ
(
Etr −

(
Vf (R) − Vi(R)

))
dR. (14)

This is known as the multidimensional reflection principle55,56

without the kinetic energy correction57,58 because the approx-
imation in Eq. (12) neglects effects of the vibronic energy53

and thus assumes that the kinetic energies of the nuclei do not
change during the transition. As the electronic transition dipole
moment µif (R) =

〈
ψf (R)���r̂|ψi(R)〉 as well as the δ-function

in Eq. (14) are independent of k, it can also be written in a
time-dependent form

σ(Etr, t) = C
∑
i,f

∫
���µif (R)���

2
δ
(
Etr −

(
Vf (R) − Vi(R)

))
×

∑
k

Pik(t)χ∗ik(R)χik(R)dR

= C
∑
i,f

∫
���µif (R)���

2
δ
(
Etr −

(
Vf (R) − Vi(R)

))
× | χi(R, t)|2dR. (15)

For simplicity, we contracted Pi into χi such that

Pi(t) =
∫
| χi(R, t)|2dR. (16)

For photoionization, we define Vf = Ee
kin + Vcat,f , where Ee

kin
is the kinetic energy of the measured electron and V cat,f the
electronic energy of the cationic state, to get

σ(Etr) = C
∑
i,f

∫
���µif (R)���

2
| χi(R, t)|2

× δ
(
Etr − Ee

kin − Vcat,f (R) + Vi(R)
)
dR. (17)

As Etr is typically constant in an experiment, we substitute it
with the binding energy Ebind = Etr − Ee

kin,

σ(Ebind) = C
∑
i,f

∫
���µif (R)���

2
| χi(R, t)|2

× δ
(
Ebind − Vcat,f (R) + Vi(R)

)
dR. (18)

Because we did not diabatize the cationic potential energy
surfaces, the adiabatic representation of χi, V cat,f , and V i is
used to evaluate Eq. (18). As the electronic structure of the
involved states is changing in this representation, |µif |

2 is
strongly configuration dependent. We approximate the dipole
matrix element as the norm of the Dyson orbital59–61 by using
the sudden approximation, i.e., we disregard any continuum
effects. The norm was determined by calculating a three-state-
averaged CASSCF(13,10) CI-expansion of the lowest lying
2A′ states of the neutral molecule with the aug-cc-pVQZ basis
set, with a subsequent optimization of the CI-coefficients of all
relevant states of the cation with invariant molecular orbitals.
See Appendix D for more details. In Fig. 3, the behavior of
|µif |

2 for a cut along θ is shown.
Using this approximation and defining the local ioniza-

tion potential I if
p (R) = Vcat,f (R) − Vi(R), the photoelectron

spectrum is given by

σ(Ebind, t) = C
∑
i,f

∫
| χi(R, t)|2���µif (R)���

2
δ
(
Ebind − I if

p (R)
)
dR.

(19)

The cationic potential energies were shifted collectively by
0.32 eV in order to maximally overlap the photoelectron bands
with the experimental spectrum of NO2. Using the calcu-
lated time-dependent wave functions, photoelectron spectra of
individual channels can be calculated according to Eq. (19).

Depending on the excitation energy, a significant part of
the wave function runs into the absorption barrier at large R
and r. To include the absorbed population into our model, its
spectrum σabs has to be approximated. To take the configu-
ration dependence of the spectra of the absorbed parts of the
wave functions into account, we calculated the time-integrated
density

Pint(r, R, θ) =
∫

t

���χ
proj(r, R, θ, t)���

2
dt (20)

and from this the conditional probability density in r,

Pcond(R, θ |r ) =
Pint(r, R, θ)

∫R,θ Pint(r, R, θ) sin θdRdθ
. (21)

The photoelectron signal of the absorbed wave packet can then
be approximated by

σ
if
abs = C

∫
R,r≥rabs

Pcond(R)|µif (R)|2δ(Ebind − I if
p (R))dR.

(22)
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FIG. 3. Illustration of the calculated transition-matrix element |µif (R) |2 for
the example of the transitions from the two energetically lowest adiabatic 2A′

states [black curves in (b)] to the cationic (1)3A′ (blue), (1)3A′′ (red), and
(2)3A′′ (yellow) states in a cut through r = 1.1625 Å and R = 1.7047 Å. (a)
Dyson norm. The three colors (blue, red, and yellow) indicate the final state and
the line style the initial state. [The legend is given in (b).] (b) Cut through the
potential surfaces of the states. The magnitude of the overlap is strongly depen-
dent on the electronic structure of the initial and the final state. Avoided cross-
ings in the involved states can lead to sharp changes in the Dyson norm, as can
be observed for the case of the transition from (2)2A′ to (2)3A′′ (dashed yellow
line) due to the crossing at θ = 140◦ in the final state. However, not all cross-
ings lead to a change in the Dyson norm, as can be observed for the crossing
of the neutral states at θ = 130◦ in the transition to the (1)3A′ state (solid blue
line).

The total photoelectron signal was then calculated using

σtot =
∑
i,f

σif (Ebind, t)

=
∑
i,f

σ
if
0 (Ebind, t) + (1 − P(t))σif

abs(Ebind, t), (23)

where σ
if
0 (Ebind, t) is the photoelectron spectrum without

absorbed contributions from state i to state f, and P is the
total population in the grid. We simulated the limited energy
resolution of the experiment by convolving the resulting spec-
trum with a Gaussian with a FWHM of 0.35 eV. To simulate
the probe pulse, the spectra were convolved with a Gaussian
with a FWHM of 8 fs (electric field envelope).

III. RESULTS
A. Potential-energy surfaces

The potential-energy surfaces used in the propagation
agree very well with earlier high-level calculations and exper-
imental values (see Table I). The dissociation threshold, which
is shifted by −0.2 eV (−6.25%) from the experimental value,
shows the largest deviation. A cut through the calculated
potential energy surfaces with rNO = 1.625 Å is shown in
Fig. 4.

B. Vibronic wave packets

The result of a wave packet propagation with a Fourier-
limited excitation pulse of 8 fs duration (FWHM of the electric
field envelope), centered at 400 nm, and a peak intensity of
1 · 1012 W/cm2 is illustrated in Fig. 5 (Multimedia view) and
Fig. 6. Figure 5 (Multimedia view) shows the density of the
excited wave packets with isosurfaces. It is a static represen-
tation of the linked animation of the densities in steps of 1 fs.
Figure 6 shows the partial densities in r and β as defined in
Eqs. (8) and (9) and the behavior of the populations in the elec-
tronic states. Note that the partial density in r has to remain in
the C2v symmetry of the vibronic ground state equilibrium of
the molecule, i.e., ρr = ρr2 = ρr1 . Thus, a molecule which is
strongly asymmetrically stretched is associated with density
at small and large r at the same time.

The excited wave packet initially moves symmetrically
toward longer r1 and r2 and smaller β and reaches the conical
intersection within 12 fs after its excitation, where most of the
population transfers to the lower adiabatic state. The remain-
ing part of the wave packet scatters at the conical intersection
and reaches a turning point at θ ≈ 100◦ and 14 fs, moving
back toward the conical intersection [cf. the upper panels of
Figs. 5(a)–5(d) (Multimedia view) and Fig. 6(b)]. The excited
wave packet on the lower adiabatic state reaches the turning
point at β ≈ 88◦ later (20 fs) and afterwards moves toward
180◦ (lower panels). In contrast to this, the turning point in r

TABLE I. Comparison of the calculated potential surface with the work of Kurkal et al.32 and experimental values.

This work Kurkal et al.32 Experiment

V (eV) r1 = r2/a0 β (deg) V (eV) r1 = r2/a0 β (deg) V (eV) r1 = r2/a0 β (deg)

(1)2A1 minimum 0 2.258 134.0 0 2.2609 134.3 0 2.2551 133.92

(1)2B2 minimum 1.248 2.380 101.9 1.31 2.3659 101.9 1.213 2.3513 102.63

(1)2Πu minimum 1.766 2.266 180 1.726 2.263 180 1.834,5 2.3244,5 180
(1)2A1/(1)2B2 cusp 1.313 2.374 107.4 1.28 2.3590 106.6 1.21 ± 0.091 2.3551 103.11

(1)2A′: NO + O 3.028 3.11 3.236,7
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FIG. 4. Cut at r = 1.625 Å through the 2A′ potential energy surfaces of neutral
NO2 in Jacobi coordinates. (a) shows the adiabatic potentials and the result of
the diabatization is shown in (b). In the back planes, cuts through R = 1.35 Å
are shown, and on the right, cuts through θ = 128◦ are illustrated.

occurs earlier (16 fs), leading to a maximal contraction of the
molecule (around 24 fs) and a subsequent expansion [Fig. 6(a),
bottom]. Only during this extension is the asymmetric stretch
mode significantly excited, where one NO bond length oscil-
lates around the equilibrium distance, while the other oxygen

moves toward the absorption barrier (at 3.0263 Å). Simul-
taneously, the wave packet spreads in the angle dimension.
The leading edge of the wave packet reaches the absorbing
barrier after 87 fs [Figs. 5(g)–5(j) (Multimedia view) and
Fig. 6]. The second crossing of the upper adiabatic wave packet
over the conical intersection around 20 fs after the excitation
[Figs. 5(b)–5(d) (Multimedia view)] leads to a second distinct
wave packet on the lower surface, which does not lead to fast
dissociation. While the coherent vibration of one of the bond
lengths is visible until the end of the simulation [Fig. 6(a)], the
wave packet clearly disperses very rapidly such that no distinct
variations in the wave-packet density can be observed for times
longer than ∼150 fs. The loss of population due to absorption
is mainly caused by the elongation of the bond length into the
absorbing barrier at large r, rather than at small β.

The chosen pump pulse excites 2.58% of the sample. The
adiabatic population dynamics show that most of the excited
population relaxes to the adiabatic ground state with the first
crossing of the conical intersection. The significant net transfer
to the upper adiabatic state around 38 fs correlates with the
second crossing of the initially formed wave packet across the
conical intersection, visible in Figs. 5(e) and 5(f) (Multimedia
view) and Fig. 6(b).

The results of our new calculations closely resemble the
original work over the first 50-100 fs, i.e., before the wave
packet has started to explore the dissociative regions of the
potential energy surface. This can be seen by comparing the
population dynamics shown in Fig. 6(c) of the present article
with Fig. 3 of Ref. 37. The population dynamics for longer
delays are also similar, i.e., the population of the upper diabatic
state [red curve in Fig. 6(c)] shows local maxima at 100 and
170 fs in both calculations. However, the local maxima are
somewhat less pronounced in the new calculations compared
to those in Ref. 37.

FIG. 5. Isosurfaces of the time-
dependent difference in adiabatic
nuclear densities in internal coordinates
calculated as ρi(t) = |Ψi(t, R) |2

− |Ψi(t = 0, R) |2. Blue are negative
contributions, i.e., where population
was removed due to the excitation,
and red are positive contributions. The
black line indicates the seam of the
conical intersection. The animated
version of this figure is linked in steps
of 1 fs. An animation of the isosurfaces
shown from another perspective is part
of the supplementary material. Multi-
media view: https://doi.org/10.1063/
1.5029365.1

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010826
https://doi.org/10.1063/1.5029365.1
https://doi.org/10.1063/1.5029365.1
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FIG. 6. Results of a wave packet calcu-
lation with an 8-fs long excitation pulse
(see text for details). (a) Adiabatic pro-
jected densities ρr for the (2)2A′A and
(1)2A′A states in the upper and lower
panel, respectively. (b) Adiabatic pro-
jected densities ρβ . (c) Populations:
dotted lines represent the diabatic rep-
resentation and solid lines the adiabatic
representation. The total population in
the grid is shown with the black dashed
curve (left scale).

Experimentally, pump pulses of 8 fs are difficult to achieve
and very challenging to apply to single-photon excitation. The
total fraction of excited molecules indeed scales linearly with
the total pump fluence, whereas multi-photon excitation and
ionization both scale faster than linearly with the peak inten-
sity. Therefore, it is challenging to achieve a sufficient exci-
tation fraction (e.g., >1%), while avoiding multi-photon pro-
cesses with a short pump pulse. Recent experimental work24

therefore used 56 fs long (FWHM of the electric field envelope,
i.e., 40 fs FWHM of the intensity envelope) excitation pulses.
The longer excitation duration leads to a significant broaden-
ing of the wave packets in configuration space, as can be seen
in Fig. 7. In particular, the longer pump pulse blurs the fine
details of the fast wave-packet motion in the bond-length coor-
dinate, especially the predicted coherent vibrations in the lower
adiabatic state [Fig. 6(a)]. The slower dynamics in the bond-
angle coordinate are less affected by the long pump pulse.
In this case, the dominant part of the wave packet moving to
larger bond angles on the lower adiabatic surface is preserved
[Fig. 7(b)]. The main difference between the dynamics induced
by the short and long pulses is the blurring of the second
wave-packet component created on the lower adiabatic surface
around t = 20 fs when the conical intersection is approached for
the second time. However, the relative amplitude of this second
wave-packet component is small in Fig. 6(b), explaining why
the dominant features observed in the case of the 8-fs pulse are
retained in the case of the 56-fs pulse. A similar conclusion is
reached when comparing the population dynamics in Figs. 6(c)
and 7(c). The main features in the population dynamics

induced by the long pump pulse can be rationalized as a tem-
poral convolution of the short-pulse dynamics with a Gaussian
envelope.

In the picosecond time range, the dynamics are known
to be complex. Individual resonances show strongly varying
dissociation constants close to the dissociation threshold, lead-
ing to excitation-energy-dependent dissociation times.62,63 In
picosecond and femtosecond time-resolved experiments, due
to the bandwidth of the excitation pulse and the associated
spectral averaging, a monotonic increase of the dissociation
rates with increasing excitation energies64,65 has been reported
[see crosses in Fig. 8(b)]. This trend is reproduced by our cal-
culations. Figure 8(a) shows the adiabatic and total populations
as a function of time for different excitation energies. For all
excitation energies, we observe an initial fast decay due to the
coherent movement of a wave packet to the absorption barrier
around 150 fs after excitation. Subsequently, the dissociation
can be approximated by an exponential decay. The extracted
dissociation times τ, which are determined by exponential fits
to the total population at 250 fs < t < 10 ps, are shown as black
circles in Fig. 8(a). These results cannot directly be compared
with the experimental dissociation rates because the latter were
obtained with picosecond pump pulses with correspondingly
narrower spectra. We have therefore converted the decay rates
from the literature (crosses) into expected decay rates induced
by 56-fs pulses, as described in Appendix E. The result is dis-
played as a red line in Fig. 8(b). Our calculations reproduce the
general trend of an increasing dissociation rate with increas-
ing excess energy and agree with the experimental results for

FIG. 7. Result of a wave packet cal-
culation with a 56 fs long excitation
pulse. (a) Adiabatic projected densities
ρr for the (2)2A′A and (1)2A′A states in
the upper and lower panel, respectively.
(b) Adiabatic projected densities ρβ . (c)
Populations: dotted lines represent the
diabatic representation and solid lines
the adiabatic representation. The total
population in the grid is shown with the
black dashed curve (left scale).
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FIG. 8. Simulation of the picosecond dissociation dynamics of NO2: Results
of wave packet calculations with a 56 fs long excitation pulse centered at
2.95, 3.05, and 3.15 eV with a peak intensity of 1·1012 W/cm2 in the top,
middle, and bottom panel, respectively. The total population (black) and the
population of the lower adiabatic state (blue) are indicated with the left scale
and the population of the upper adiabatic state (red) is indicated with the right
scale. The parameter τ is the lifetime of the excited molecule determined by a
fit to Ptot = a exp(−t/τ) + b with t ∈ [0.25, 10] ps. (b) Decay constants vs. the
energy offset of the central pump energy Epump with respect to the calculated
dissociation energy E0 = 3.028 eV. The expected experimental femtosecond
response of the system was simulated with an exponential fit to the population
when exciting with a Fourier-limited laser pulse characterized by a Gaussian
spectrum centered at the pump energy.63 Experimental values were taken from
picosecond time-resolved measurements.64

excess energies above 0.1 eV. Our calculations overestimate
the dissociation rate at lower excess energies and in particular
for the cases where the spectrum of the pump pulse is centered
below the dissociation threshold.

C. Photoelectron spectra

The time-dependent wave functions can be used to
calculate extreme-ultraviolet time-resolved photoelectron

spectra24,66 according to Eq. (23). The time-dependent spec-
trum of NO2, assuming an 8-fs long pump pulse centered at
400 nm and an 8-fs long probe pulse centered at 45.75 nm (27.1
eV) with a bandwidth of 0.33 eV, is depicted in Fig. 9(a). In this
article, we concentrate on the analysis of the time-dependent
photoelectron spectra generated by these short pulses. The
comparison of calculations with longer pulses and experimen-
tal data will be shown in a future publication.24 We consider all
transitions from the neutral (1)2A′ and (2)2A′ states to each of
the energetically lowest-lying two states of 1A′, 1A′′, 3A′, and
3A′′ characters of the cationic molecule. The spatially confined

FIG. 9. Calculated time-dependent photoelectron spectrum of NO2. (a) Total
time-dependent photoelectron spectrum of the excited part of the wave func-
tion. (b) Comparison of the static spectrum calculated from the ground-state
wave function with experimental spectra (red24 and blue8). The calculation
using a constant photoionization matrix element µif (yellow) shows a signif-
icantly worse agreement with the experiment than the calculation including
variable matrix elements (violet). (c) Individual contributions from different
channels to the photoelectron spectrum at a pump-probe delay∆t of 50 fs. The
contributions from different channels are differentiated by their initial states
(solid and dashed) and final states (colors). All spectra are normalized with
respect to the maximum of the cross section of the first photoelectron peak
[assigned to the transition (1)2A1 → (1)1A1 around Ebind = 11.2 eV] of the
static spectrum.
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character of the wave packets up to 70 fs after excitation leads
to strong modulations in the spectrum. For delays larger than
70 fs, i.e., when the wave packet covers a dominant fraction
of the available configuration space and one NO-bond is sig-
nificantly elongated, the spectrum can be structured into three
parts: ionization of the NO-fragment leading to a band around
9.3 eV, ionization of the O-fragment leading to a sharp band
around 13.3 eV, and the hot ground state of NO2 leading to a
broad band ranging from 10 to 14 eV, peaking at 12.3 eV. Note
that significant loss of population in the grid only occurs for
delays longer than 100 fs [cf. Fig. 6]. To illustrate the accu-
racy of the method, Fig. 9(b) compares the calculated spectrum
of unexcited NO2 to the corresponding experimental spectra.
The blue line shows the experimental spectrum reported by
Baltzer et al.8 using He–I radiation (21.2 eV), whereas the
red line shows the experimental spectrum obtained in our lab-
oratory using a 27.1 eV high-harmonic source.24 The yellow
line shows the calculated photoelectron spectrum with all pho-
toionization matrix elements µif set to unity, whereas the black
line shows the full calculation that uses the Dyson norm as an
approximation to these matrix elements. A good agreement
is obtained between the full calculation and our experimental
spectrum. In particular, the relative intensities are all reason-
ably well reproduced, the largest deviation (of less than a factor
of two) occurring for the band at 13.0 eV binding energy, i.e.,
the (1)3B2 ((1)3A′) state of NO+

2 . This agreement motivates our
use of the Dyson-norm approximation in the present work. The
comparison of the experimental results further shows the sig-
nificant variation of the photoionization cross section into the
(1)3B2 ((1)3A′) continuum as a function of the photon energy.
The comparison of the two calculations further shows the
importance of including the photoionization matrix elements
as the latter entirely suppress the broad photoelectron band
centered around 16 eV because the corresponding photoioniz-
ing transitions are forbidden by Koopman’s correlations. The
absence of the photoelectron band with an onset at ∼17 eV
from both calculations is due to the fact that the corresponding
states of the cation [(3)3A′ and (3)3A′′ according to Ref. 8]
were not included in our calculation.

These calculations reveal the complex nature of the time-
dependent photoelectron spectra of the excited-state dynamics
in NO2. The present calculations are therefore essential for a
detailed interpretation of experimental XUV-TRPES spectra
because they enable an identification of the contributions of
individual channels. The contributions of the different chan-
nels are exemplarily shown for a pump-probe delay of 50 fs in
Fig. 9(c).

Figure 10 shows the signal arising from the ionization
channel from the coupled states of the neutral molecule to
the (1)1A′ state of the cation in more detail. While the bind-
ing energy of the photoelectron is determined by the local
ionization potential Ip at the position of the wave packet,
the probability to ionize is determined by the photoioniza-
tion matrix element. Cuts through the potential surfaces along
r and β are illustrated in Fig. 10(a), which give rise to the
Ip shown in panel b. The electronic structures of the states
lead to a strongly varying matrix element along these cuts
(panel b, right scale). A calculation with the transition matrix
elements set to 1, as illustrated in panel c, shows the strong

FIG. 10. Illustration of the photoionization channels (1)2A′ → (1)1A′ and
(2)2A′ → (1)1A′. (a) shows the potential surfaces of the involved states in
cuts along r1 with r2 = 1.190 Å and β = 134◦ (left) and β with r1 = r2
= 1.190 Å (right). The potentials of the neutral molecule are only shown
in regions which are energetically accessible to the wave packet. Both the
ionization potentials depicted in (b) (left scale, blue) as well as the norm of
the Dyson orbital (red, right scale) vary strongly along the cuts. Panel (c)
depicts the calculated photoelectron spectrum of the channels with the matrix
elements set to 1, while panel d illustrates the complete implementation of
Eq. (19).

modulations due to the movement of the wave packet. For
example, the excitation in the Franck-Condon region leads
to the appearance of a peak at 8.1 eV, which is offset from
the binding energy of the corresponding band in the static
photoelectron spectrum by the excitation energy. The peak
shifts fast toward higher binding energies as the wave packet
moves toward the conical intersection (mainly along β). The
crossing of the conical intersection leads to the appearance
of the transition from the lower adiabatic state, which initially
shows strong modulations due to the oscillation in β and r (see
Fig. 6). The intensity maximizes due to accumulation of den-
sity at turning points of the dynamics or, on longer time scales,
when the wave packet reaches areas where the local Ip is sim-
ilar for many configurations (e.g., when the molecule reaches
configurations with an elongated r). The spread of the wave
packet in the potential leads to a spectrum with a 4 eV width.
If one includes the ionization probability [Fig. 10(d)], the
direct interpretation of the spectra becomes more complicated.
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Exemplarily, the ionization of the initially formed wave packet
is strongly suppressed, leading to the near-vanishing of the
expected peak at 8.1 eV around ∆t = 0. In the case of the tran-
sition to the (1)1A′ state, the ionization of the NO fragment is
Koopman’s forbidden such that the band is losing intensity
when the molecule reaches strongly stretched configurations.
The large range of local Ips covered by the wave packet, which
leads to the overlap of contributions from many ionization
channels, as well as the strong influence of the matrix element
make it challenging to interpret experimental time-resolved
photoelectron spectra without extended theoretical modeling
of the system.24,66

IV. CONCLUSION

The potential energy surfaces presented here are, to our
knowledge, the most spatially extended (for NO+

2) and are
obtained at the highest level of theory (for NO2) published so
far. We performed full-dimensional wave-packet calculations
on the electronic surfaces of the neutral molecule, revealing
the signatures of the conical intersection and extending the
time scale of previous studies to the picosecond range. This
enabled us to report time-dependent photoelectron spectra for
a broad range of binding energies, involving many ioniza-
tion channels which are needed for a direct comparison to
recent experimental results in XUV time-dependent photoelec-
tron spectroscopy (XUV-TRPES).24 The comparison allows
for a stringent test of the ab initio method presented here.
The calculations allow interpretations of time-dependent spec-
tra of XUV-TRPES, laying the foundation for a quantitative
evaluation of such experiments. They also open the perspec-
tive for the quantitative interpretation of time-resolved high-
harmonic spectroscopy and several other experimental tech-
niques, such as core-level transient absorption spectroscopy,67

by using similar techniques. Finally, NO2 is an ideal can-
didate to demonstrate electronic control over non-adiabatic
wave-packet dynamics,68–70 one of the major perspectives of
attosecond science.

SUPPLEMENTARY MATERIAL

See supplementary material for the following files:
NO2 2Ap.txt—Adiabatic and diabatic energies of the dou-
blet A′ states of NO2. Table of potential energies and dipole
moments along the y-axis of the two energetically lowest lying
doublet A′ states of the neutral NO2 molecule in dependence
of the Jacobi coordinates. The table is organized in 14 columns
and has one header row. The first three columns are the indices
ir , iR, and iθ , according to Eqs. (1)–(3) in the main text of
the article. The columns 4–6 are the associated Jacobi coor-
dinates r, R, and θ. The distances are given in Angstrom and
the angle is given in degrees. The subsequent two columns, 7
and 8, are the calculated adiabatic energies in eV of the (1)2A′

and (2)2A′ states, respectively. Columns 9 and 10 describe
the diabatic potential energies in electron Volts. Column 11
is the coupling matrix element between the two surfaces in
eV. The columns 12 and 13 are the dipole moments along the
y-axis of the two states in debye. Column 14 is the transition
dipole along the y-axis between the states in debye. The dipole

moments are direct outputs of the Molpro program. The sign
of the transition dipole moment is adjusted to correct for the
arbitrary phase-flipping in the calculation. The axis conven-
tion is given in Fig. 1 of the article. NO2 1Ap.txt: Adiabatic
energies of the singlet A′ states of NO+

2 . Table of the adiabatic
potential energies of the two energetically lowest lying singlet
A′ states of NO+

2 in dependence of Jacobi coordinates. The
table is organized in 8 columns and has one header row. The
first five columns contain the same information as in the para-
graph above. The subsequent two columns, 7 and 8, are the
calculated adiabatic energies in eV of the (1)1A′ and (2)1A′

states, respectively. NO2 1App.txt: Adiabatic energies of the
singlet A′′ states of NO+

2 . The same as the previous item for
the two energetically lowest lying singlet A′′ states of NO+

2 .
NO2 3Ap.txt: Adiabatic energies of the triplet A′ states of
NO+

2 . The same as the previous item for the two energeti-
cally lowest lying triplet A′ states of NO+

2 . NO2 3App.txt:
Adiabatic energies of the triplet A′′ states of NO+

2 . The same
as the previous item for the two energetically lowest lying
triplet A′′ states of NO+

2 . WP8fs r 200fs.avi: An animation
of the time-dependent wave-packet dynamics viewed from a
different perspective compared to Fig. 5 (Multimedia view).
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APPENDIX A: POTENTIAL SURFACE CALCULATIONS

For the calculation of the potential energy surfaces of the
neutral molecule, two main difficulties had to be treated. First,
as can be seen in Fig. 11, a sharp avoided crossing of the

FIG. 11. Illustration of the artifact at large θ and small r in the adiabatic
potentials: Blue and red: state-averaged potential surfaces. Yellow: single state
calculation of the lower surface, shifted for minimal deviation between 152◦

and 161◦.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010826


034307-11 Tehlar et al. J. Chem. Phys. 149, 034307 (2018)

second with the third 2A′ state at large θ and r below 1.5 Å
led to an artificial jump in the calculated energy of the lower
state (indicated by an arrow). This was corrected by calculating
the relevant volume without state-averaging and shifting the
energy to maximize the overlap at smaller θ. As the energy of
the (2)2A′ state is larger than 4 eV and the diabatic coupling
of the lowest two states is negligible, no accurate energy of the
higher state is needed at these structures.

Second, due to the approximation of the (3)2A′ state to
the lower states at large R, three-state averaged calculations
had to be performed in these regions. The energy was shifted
for minimal deviation along R = 3.1469 Å.

APPENDIX B: DIABATIZATION DETAILS

For r > rref = 1.8188 Å, the third 2A′ state couples
too strongly to the other states to use the phenomenological
diabatization method. Instead, the angle was taken to be con-
stant [i.e., αD(θ, R, r > rref ) = αD(θ, R, r = rref )], which was
checked by comparing it to cuts at larger r. An example is
shown in Fig. 12. For large R, the same problem occurred.

FIG. 12. Illustration of the diabatization process at long r. Shown are the cuts
through the hypersurfaces with R = 1.9266 Å and with r = rref = 1.8188 Å and
r = r1 = 1.9500 Å, respectively. (a) Mixing angles: The black curve shows
the mixing angle calculated from the dipole moments at r = rref [according
to Eq. (4)] and the green curve its modification for the diabatization proce-
dure. The black dashed curve illustrates the calculated diabatization angle for
r = r1. (b) Potential surfaces for r = rref: the adiabatic potentials are in red and
blue and the diabatic potentials are in yellow and violet. (c) Potential surfaces
for r = r1: the same color code as in (b). Additionally, the dashed curves indi-
cate the diabatic surfaces calculated with the dipole-dependent mixing angle
αµ (shown as the black dashed curve in panel a). The proximity of the third
adiabatic state leads to problems with the phenomenological model of the
diabatization. The mixing angle was approximated by the values at r = rref.

Here, the construction of the diabatic potentials was more
involved. We used an inherent property of the Jacobi coor-
dinates; for every set of Jacobi-coordinates (θ, R, r), there is a
second set (θ ′, R′, r ′) with identical properties, where

r ′ =
√

(mr + R cos θ)2 + R2 sin θ2, (B1)

R′ =
√

m2R2 + 2m
(
m2 − 1

)
rR cos θ +

(
m2 − 1

)2r2, (B2)

θ ′ = atan2

(
rR sin θ

mr2 − m3r2 − mR2 + (1 − 2m2)rR cos θ

)
, (B3)

m =
mO

mO + mN
. (B4)

Here, mO and mN are the atomic masses of O and N. The
diabatic potentials around (θ ′, R′, r ′) were used to interpolate
the potential and extract a mixing angle for (θ, R, r). For a set
of coordinates with 2.0375 Å ≤ R ≤ 2.2594 Å, this enabled
us to make an educated guess how to consistently extrap-
olate the mixing angle into areas (at small θ) where three
states interact. Furthermore, with R > 2.2594 Å, the inter-
polated mixing angles were fitted with a heuristic function
α = a arctan(b θ + c) + π/4 for each cut along θ.

APPENDIX C: INTERPOLATION

The adiabatic and diabatic energies as well as the
dipole moments at the calculated points were interpolated
on the complete grid by iterative one-dimensional Akima-
interpolations.71 Sections of the surface with at least six sub-
sequent points with a maximal distance of d between them
were searched and the missing points in between them inter-
polated (only interpolating up to the third point from each end
of the array). The new set of points was included in the sim-
ilar next interpolation along the second dimension (R). This
was repeated along the first two dimensions with increasing d.
Then, the interpolation along the third dimension (r) was per-
formed and the process repeated until no additional points were
generated anymore. Finally, the interpolation was extended to
the data points at the edge. For the interpolation along θ, the
mirror plane at θ = 180◦was taken into account. As the interpo-
lations of the diabatic and adiabatic surfaces were performed
independently, small errors had to be corrected afterwards:
e.g., if the lowest diabatic energy at a certain geometry was
smaller than the lowest adiabatic energy, the diabatic energy
was adjusted to coincide with the adiabatic energy. The ampli-
tudes of the diabatic coupling constant were calculated from
the interpolated surfaces. Its sign was taken from a direct inter-
polation of the defined coupling constants at the calculated
points of the grid.

APPENDIX D: CALCULATION OF IONIZATION
PROBABILITY

The calculation of the structure dependent transition
strength is motivated by the work of Åberg.59,72,73 Within the
MC-SCF approach,41 electronic states Ψ can be expanded on
a basis of Slater determinants φi as

Ψ =
∑

k

ckφk , (D1)
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where ck are CI coefficients. The Slater determinants can be
expressed as a sequence of creation operators associated with
the molecular orbitals (acting on the empty space),74 resulting
in expressions for the initial i and final states f,

Ψ
i =

∑
k

ckφk =
∑

k

ck

N∏
r=1

(
â+

r
)Sr,k |vac〉, (D2)

Ψ
f =

∑
l

clφl =
∑

l

cl

N∏
r=1

(
â+

r
)Sr,l |vac〉, (D3)

where r runs over the number of (spin-)orbitals in the CI cal-
culation and Sr ,n are the occupation-number vectors of the
individual orbitals in the nth determinant. If we choose a
biorthonormal basis, the operators are the same for the neutral
and cationic molecule. We approximate the ionization prob-
ability within the sudden approximation as the norm of the
Dyson orbital of the transition from state i to state f,60,61

��Φif
��2 =

�������

∑
q

〈
Ψ

f |âq |Ψ
i
〉
ϕq

�������

2

, (D4)

where ϕq are the individual orbitals associated with the annihi-
lation operators âq. Using the Eqs. (D2) and (D3), this results
in

��Φif
��2 =

∑
q

������

∑
l

∑
k

ckcl

〈
vac

������

1∏
r=N

(âr)Sr,l âq

N∏
r=1

(
â+

r
)Sr,k

������
vac

〉������
2

,

(D5)

where we used the orthonormality of the individual orbitals
ϕq. The bra-ket evaluates to ±1 or 0, depending on the occu-
pation of the initial state and the number of permutations
needed to annihilate the qth electron from the initial state.74 In
practice, we evaluated Eq. (D5) by calculating the state aver-
aged electronic structure of the three lowest 2A′ states with
CASSCF(13,10) within the Molpro suite40 and, subsequently,
while not optimizing the orbitals anymore, the three lowest
cationic 1A′, 1A′′, 3A′, and 3A′′ states. All determinants with
ck , cl ≥ 0.0001 were included.

APPENDIX E: CALCULATION OF EXPECTED
EXPERIMENTAL fs RESPONSE

The femtosecond response illustrated in Fig. 8(b) was
calculated similar to a previously presented method.63 The
picosecond decay rates from jet-cooled NO2

64 were interpo-
lated to a function kps(E) with the excitation energy E. The
expected bound population PB after a broadband excitation
was then calculated as

PB

(
Epump, t

)
=

∫
E

Ipump

(
E, Epump

) (
1 − exp

(
−kps(E)t

))
dE,

(E1)

where Ipump describes the intensity spectrum of the exci-
tation pulse. We assumed a Fourier-limited Gaussian pulse
centered at Epump with a FWHM of 56 fs. Subsequent mono-
exponential fits to the population PB

(
Epump, t

)
result in the

energy-dependent femtosecond decay constants.
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