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Many-electron effects of strong-field ionization described in an exact one-electron theory
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If one-electron observables of a many-electron system are of interest, a many-electron dynamics can be repre-
sented exactly by a one-electron dynamics with effective potentials. The formalism for this reduction is provided
by the exact electron factorization (EEF). We study the time-dependent features of the EEF effective potentials
for a model of an atom ionized by an ultrastrong and ultrashort laser pulse, with the aim of understanding
what is needed to develop computationally feasible approximations. It is found that the simplest approximation,
the so-called time-independent conditional amplitude (TICA) approximation, is complementary to single-active
electron approaches as it reproduces the exact dynamics well for high-photon frequencies of the laser field or
large Keldysh parameter. For relatively low frequencies of the laser field or for smaller Keldysh parameters,
we find that excited-state dynamics in the core region of the atom leads to a time-dependent ionization barrier
in the EEF potential. The time dependence of the barrier needs to be described accurately to correctly model
many-electron effects, and we conclude that a multistate extension of the TICA approximation is a possible
route as to how this can be achieved. In general, our study sheds a different light on one-electron pictures of
strong-field ionization and shows that many-electron effects for such processes may be included by solving a
one-electron Schrödinger equation, provided the core dynamics can be modeled successfully.
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I. INTRODUCTION

Ultrashort light pulses with a duration of only a few at-
toseconds provide direct access to the quantum dynamics of
electrons in atoms, molecules, and bulk systems [1–4]. Thus,
attosecond spectroscopy promises unprecedented possibilities
for testing fundamental concepts of chemistry, like electronic
structure principles or reaction mechanisms. However, the
necessary theoretical modeling of molecules interacting with
strong and short light pulses is challenging, in particular be-
cause both bound electrons and ionized electrons need to be
described accurately [5]. This situation leads to new technical
and method developments in the area of quantum dynamics,
e.g., to testing the applicability of time-dependent density
functional theory (DFT) [6,7], explicit coupling of bound and
continuum states [5], or first steps toward one-dimensional
many-electron models [8,9].

Despite these developments, analytical and numerical ap-
proaches to electron dynamics in strong laser fields often
rely on a single-active electron (SAE) assumption [10–14]
where the dynamics of one electron in some effective po-
tential is considered. The underlying idea is that only one
“active” electron is mainly influenced by the laser field and
the other electrons are treated as “frozen.” By making the SAE
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assumption, a time-dependent Schrödinger equation (TDSE)
for one electron in a (classical) laser field is solved and,
in this way, many experimental findings can be explained
qualitatively. However, the SAE assumption has challenges.
For example, finding suitable effective one-electron poten-
tials is an obstacle, especially for systems with more than
one nucleus. In such systems the potential is not spherically
symmetric but educated guesses based, e.g., on the density
may be useful [15]. Additionally, the SAE assumption is an
assumption and not an approximation in the sense that, to our
knowledge, there exists no procedure which yields an SAE
picture as a limit and which can systematically be improved
toward the exact result. It is also sometimes implied that the
SAE assumption does not allow to treat many-electron effects
[16,17], although recent studies suggest that field screening
effects due to polarization of the other electrons can be in-
cluded in an SAE approach by hand [18,19].

To clarify, the SAE assumption does include many-electron
effects via the effective potential. It does not, however,
describe dynamic changes of the effective many-electron
interaction as they may occur, e.g., during an ionization
process. Notwithstanding this, a one-electron theory can in-
corporate all many-electron effects in principle exactly via
time-dependent potentials. In particular, a many-electron de-
scription can be reduced to a one-electron description when
one-electron observables are of interest. Then, the observables
may be obtained in a straightforward way via the one-electron
wave function obtained from a one-electron Schrödinger
equation. Effects like interaction with the laser field, with
nuclei, and with other electrons, are then part of effective
one-electron potentials and neither photons, nor nuclei, nor
other electrons need to be included in the quantum description
explicitly as particles.
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A reduction of a quantum system of, say, n particles, to
a quantum system of m < n particles, is typically based on
a semiclassical approximation, e.g., when an electron-laser
interaction is modeled with a classical laser field or when nu-
clei are treated as classical particles in the Born-Oppenheimer
approximation. However, such a reduction of a quantum sys-
tem can be made without making approximations by using the
exact factorization method [20–22]: The n-particle probability
density |ψ |2 is written as product of a marginal m-particle
probability density |χ |2 and a conditional (n − m)-particle
probability density |φ|2. The wave function φ describes the
(n − m)-particle subsystem but also depends parametrically
on the remaining m particles. φ can be used, e.g., to include
quantum effects of the nuclei in a Born-Oppenheimer–type
treatment of electrons in a molecule [23], or to understand
why time is a parameter in quantum mechanics [24,25],
and the exact factorization can naturally be applied multiple
times up to a point where only single-particle wave functions
φ1(1), φ2(2; 1), φ3(3; 1, 2), . . . are left that depend succes-
sively on more and more parameters [26]. In contrast, χ

represents the full n-particle system but in terms of only m
particles, with the effect of the remaining (n − m) particles
included as scalar and/or vector potentials. For instance, χ

can represent the dynamics of a molecule in terms of a nuclear
wave function χ alone, where the effect of the electrons is
contained in potentials. A more abstract use of χ , which
considers the theoretical treatment of many-electron systems,
is that it can represent an electronic wave function via a set of
spin orbitals (a “fragment”) embedded in an environment of
other spin orbitals [27].

Another interesting case is if ψ (1, . . . , n) is an n-electron
wave function and we choose

|ψ (1, . . . , n)|2 = |χ (1)|2 |φ(2, . . . , n; 1)|2. (1)

Then, |χ (1)|2 is the one-electron density and χ (1) is a one-
electron wave function that is obtained as the solution of a
one-electron TDSE. It represents the whole n-electron system
because it yields (together with the effective one-electron
potentials) the one-electron observables of the n-electron sys-
tem, e.g., the expectation value of the position or momentum
operator. One of the authors introduced (1) as exact electron
factorization (EEF) [28], but the idea was already discussed
some time before [29,30] and is also closely related to orbital-
free DFT [31]. A related static approach to tunnel ionization
inspired by the Born-Oppenheimer approximation was also
proposed [32,33]. The EEF extends previous developments
by providing equations to calculate the effective one-electron
potentials and by applying the formalism to time-dependent
processes, in particular to the electron dynamics in strong ul-
trashort laser fields. Thus, the effective one-electron potentials
in the EEF are time dependent. The main topic of the paper at
hand is the question of how the time-dependent many-electron
effects are encoded in the exact effective potentials, as a step
toward the ultimate aim of reproducing those effects approxi-
mately but efficiently.

In the following, we first describe the EEF in Sec. II. Find-
ing the exact one-electron EEF potentials seems to be at least
as hard as solving the full problem. Hence, we want to identify
the relevant features of the exact one-electron potentials for

different laser field parameters and the origin of these features,
with the aim of learning what needs to be approximated.
To achieve this, we consider a simple (spinless) two-electron
model of an atom in one dimension because it already shows
relevant many-electron effects but can also be solved numeri-
cally for a variety of field parameters. The system is presented
in Sec. III, which is followed in Sec. IV by a conceptual
comparison to an SAE assumption based on Kohn-Sham (KS)
DFT. In Sec. V the time-dependent behavior of the effective
one-electron potentials is presented and analyzed. Finally, in
Sec. VI we discuss what still needs to be learned and what the
path toward the simulation of realistic many-electron systems
may look like.

II. EXACT ELECTRON FACTORIZATION

In nonrelativistic quantum mechanics, the wave function of
a system of n electrons can be written as sum of electron per-
mutations of a product ψ (1, . . . , n; t ) × ξ (1, . . . , n), where
ψ (1, . . . , n; t ) = ψ (r1, . . . , rn; t ) is a spatial wave function
that depends on the time parameter t , and ξ (1, . . . , n) is a
spin-wave function [34]. To simplify the discussion, we write
the equations for n = 2 and we only consider the spatial wave
function ψ (r1, r2; t ). Generalization to n > 2 is straightfor-
ward by considering r2 to be the coordinates of all but one
electron (see the Supplemental Material of [28]).

In the EEF we write the joint probability density
|ψ (r1, r2; t )|2 as product of a marginal probability density
|χ (r1; t )|2 and a conditional probability density |φ(r2; r1, t )|2,
or

ψ (r1, r2; t ) = χ (r1; t )φ(r2; r1, t ), (2)

where χ (r1; t ) is the marginal amplitude and φ(r2; r1, t ) is the
conditional amplitude. Below, ψ , χ , and φ are functions that
always depend on r1, r2, and t as indicated in (2) and those
dependencies are only repeated for emphasis. We require the
partial normalization condition

〈φ(r2; r1, t )|φ(r2; r1, t )〉2 = 1, ∀ r1, t (3)

where 〈. . . | . . .〉2 denotes the inner product over electron co-
ordinate(s) r2. If ψ is normalized to the number of electrons,
〈ψ | ψ〉 = n, we have that

|χ (r1; t )|2 = 〈ψ (r1, r2; t ) | ψ (r1, r2; t )〉2 (4)

is the one-electron density which is also normalized to the
total number of electrons 〈χ (x1; t ) | χ (x1; t )〉1 = n. We note
that the magnitude of χ is determined by (4) but its phase can
be chosen, as discussed below. Otherwise, (2) and (3) define
the marginal amplitude χ and the conditional amplitude φ

unambiguously.
The wave function ψ (r1, r2; t ) is determined from the

TDSE (we use atomic units throughout the text)

i∂tψ =
(

2∑
j=1

(ĥ( j) + F(t ) · r j ) + V (r1, r2)

)
ψ (5)

with electron-electron interaction V (r1, r2) and with t-
independent one-electron Hamiltonian

ĥ( j) = −∇2
j

2
+ Vext (r j ), (6)
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where Vext is the external potential due to the presence of the
nuclei. We write the interaction with the laser field F(t ) in (5)
using the dipole approximation and in the length gauge. The
EEF formalism extends to more complicated Hamiltonians,
e.g., such that include a vector potential, but these will not be
discussed here.

The equations of motion for the marginal and conditional
amplitudes can be derived algebraically or variationally. For
the marginal amplitude χ (r1; t ), the equation of motion is

i∂tχ = (
1
2 [−i∇1 + A(r1; t )]2 + ε(r1; t )

)
χ, (7)

with t-dependent scalar potential ε(r1; t ) and vector potential
A(r1; t ). The scalar potential (hereafter called EEF potential)
is given by

ε(r1; t ) = Vext (r1) + εav + εF + εFS + εGD, (8)

where

εav(r1; t ) = 〈φ | ĥ(2) + V (r1, r2) | φ〉2 (9)

is the average kinetic and potential energy of the electron(s) at
r2 given one electron is clamped at r1,

εF(r1; t ) = εF1(r1; t ) + εF2(r1; t ) (10)

represents interaction with the laser field via the usual one-
electron interaction

εF1(r1; t ) = F(t ) · r1, (11)

and an additional interaction

εF2(r1; t ) = F(t ) · d(r1; t ) (12)

with a t-dependent dipole contribution d(r1; t ) = 〈φ|r2|φ〉2,

εFS(r1; t ) = 1
2 〈∇1φ|(1 − |φ〉 〈φ|)|∇1φ〉2 (13)

is a geometric term that is needed because the electron at r1

is actually not clamped and that is related to the Fubini-Study
metric [35], and

εGD(r1; t ) = 〈φ| − i∂t |φ〉2 (14)

is a gauge-dependent term. The (gauge-dependent) vector po-
tential A(r1; t ) is

A(r1; t ) = 〈φ| − i∇1|φ〉2 . (15)

All these potentials carry a t dependence because of the
t-dependent conditional wave function φ and, in this way,
encode the t-dependent many-electron interaction.

As mentioned above, the phase arg (χ (r1, t )) of the
marginal amplitude is arbitrary and the transformation
(χ, φ) → (χ̃ , φ̃) with

χ̃ (r1; t ) = e−iS(r1;t )χ (r1; t ), (16)

φ̃(r2; r1, t ) = e+iS(r1;t )φ(r2; r1, t ) (17)

for real-valued S(r1; t ) leaves the total wave function (2)
unchanged, fulfills the partial normalization condition (3),
and leaves the equations of motion for χ and φ (see below)
invariant provided the potentials are changed as

Ã = A + ∇1S, (18)

ε̃GD = εGD + ∂t S. (19)

Thus, the choice of S(r1; t ) fixes a gauge.

For the EEF it is important to note that χ is deter-
mined from a one-electron TDSE (7), that ρ(r1; t ) = |χ |2
is the exact one-electron probability density, and j(r1; t ) =
Im (χ∗∇1χ ) + A|χ |2 is the exact one-electron probability
current density. Also, the one-electron expectation values for
position, momentum, and kinetic energy are given as

〈r1〉 (t ) = 1

N
〈χ | r1 | χ〉1, (20)

〈p1〉 (t ) = 1

N
〈χ | −i∇1 + A | χ〉1, (21)

〈T1〉 (t ) = 1

N
〈χ | 1

2
[−i∇1 + A]2 + εFS | χ〉1 (22)

with N = 〈χ | χ〉1. Consequently, the marginal one-electron
amplitude χ (r1; t ) together with A and εFS yield essentially
all relevant one-electron quantities (operators that contain any
power of r1 as well as the first and second derivatives with
respect to r1), but for the total n-electron system. Thus, we
call χ the EEF wave function in the following. We note
that (−i∇1 + A) is the canonical momentum operator and
that A and εFS can be combined into the quantum geometric
tensor which describes the effect that the presence of the elec-
tron(s) at r2 has on the wave function χ (r1; t ) for infinitesimal
changes of r1 [36].

In attoscience, typical observables are the high-harmonic
generation spectrum and one-electron ionization rates. For the
choice of gauge A = 0 (which is only possible iff ∇1 ∧ A = 0
[37]), those observables can be determined from χ alone,
hence, we would only need to solve a one-electron TDSE
(7) to obtain the observables of the many-electron system.
However, for this purpose we need the t-dependent effective
potential ε(r1; t ), for which we need to know the conditional
amplitude φ(r2; r1, t ).

The equation of motion for the conditional amplitude is

(i∂t + Ĉ + ε(r1; t ))φ(r2; r1, t ) = (ĥ(2) + Û )φ(r2; r1, t ),

(23)

which is a generalized TDSE with operators

Ĉ = − (−i∇1 + A)χ

χ
· (−i∇1 − A), (24)

Û = (−i∇1 − A)2

2
. (25)

In terms of these operators, the EEF potential is given by the
expression

ε(r1; t ) = 〈φ | ĥ(2) + Û − i∂t − Ĉ | φ〉2. (26)

Solving the coupled equations (7) and (23) exactly seems
harder than to solve the full many-electron problem (5), in
particular because solving (23) numerically is mathematically
challenging. However, if there was a way to find the scalar
potential ε(r1; t ) approximately, only the one-electron TDSE
(7) needs to be solved. Thus, in the following we want to
learn how the exact scalar potential ε(r1; t ) behaves during
an ionization process in a strong and ultrashort laser field.
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III. MODEL

For this purpose, we study a one-dimensional two-electron
system similar to those used, e.g., in [38]. It is described by the
t-dependent wave function ψ (x1, x2; t ) obtained as solution of
the TDSE

i∂tψ = (Ĥ + F (t )(x1 + x2))ψ, (27)

with

Ĥ =
2∑

j=1

(
−∂2

j

2
+ Vext (x j )

)
+ V (x1, x2), (28)

where we use the soft-Coulomb potentials

Vext (x) = − 2√
cen + x2

, (29)

V (x1, x2) = 1√
cee + (x1 − x2)2

(30)

with parameters cen = cee = 0.55 a2
0 to describe the inter-

action of the electrons with one nucleus and the electron-
electron interaction, respectively.

We consider “spinless” electrons where the spatial wave
function is antisymmetric, hence, we use as initial state the
lowest eigenstate ψ0 of

Ĥψ j = Ejψ j, (31)

where we only consider states with correct symmetry property
ψ j (x1, x2) = −ψ j (x2, x1). Our model may also be interpreted
as a one-dimensional model of a helium atom, then ψ0 corre-
sponds to its lowest triplet state. We chose this state because
for the symmetric ground state of Ĥ , KS-DFT and the EEF
are identical, as there is only one orbital which both electrons
share, and the electron interaction effects which we describe
below are largely absent. There are also electron-interaction
effects for spin-paired electrons occupying the same orbital
(see, e.g., [39]) which are, however, not the focus of the inves-
tigations presented here. We find that the qualitative features
of the EEF potentials change when the number of orbitals
occupied in a Kohn-Sham picture change. Hence, our spinless
two-electron model contains effects similar to those that occur
for a spin-paired three- or four-electron model where (in the
KS picture) only two orbitals are occupied, even though nei-
ther the number of electrons nor the nuclear charge matches,
as can be seen by comparing the behavior of the model as
presented below with the spin-paired three-electron model
used in [28].

In Fig. 1 the two energetically lowest states ψ j of (31) with
correct symmetry are shown together with the one-electron
densities ρ j = |χ j |2 and potentials ε j appearing in the time-
independent version of (7),

Ejχ j (x1) =
(

−∂2
1

2
+ ε j (x1)

)
χ j (x1) (32)

with ε j (x1) = Vext (x1) + εav(x1) + εFS(x1) where εav and εFS

are evaluated for ψ j . Each state ψ j corresponds to a reduced
potential ε j which has χ j as its ground state with the energy
eigenvalue Ej of the full system. The electronic structure is
encoded in ε j , which thus has features like barriers in the core

FIG. 1. Lowest two antisymmetric eigenstates ψ j of (31) (top)
and corresponding EEF potentials ε j (bottom). In the bottom panels,
also the one-electron density ρ is shown as filled area. Vertical lines
indicate the position of maxima of ε j which correspond to minima or
some depletion of ρ.

region (see the gray vertical lines in the panels of Fig. 1)
that correspond to a suppression of probability density in
those regions. We note that smaller values of the one-electron
density correspond to higher barriers, but that the one-electron
density ρ j and hence χ j is never zero. The appearance of
those barriers (see below) is well known from orbital-free
DFT, where the potential ε j (x1) of (32) is to be approximated,
typically as functional of the one-electron density [40].

We choose the six-cycle laser pulse

F (t ) = F0Ee(t ) cos(ω0t ) (33)

with envelope function Ee(t ) that increases quadratically
as (t/ton)2 during the first two cycles ton = 2 2π

ω0
, is 1

during the next two cycles, decreases quadratically dur-
ing the following two cycles, and is zero otherwise. The
six-cycle laser pulse depends on two parameters: the cen-
tral angular frequency ω0 and the maximum amplitude of
the laser field F0. We consider values of the angular fre-
quency ω0 ranging from 0.1 Eh/h̄ (wavelength 456 nm)
to 1.0 Eh/h̄ (wavelength 46 nm) and three different max-
imal amplitudes of the laser field F0, 0.015 Eh/(ea0),
0.030 Eh/(ea0), and 0.050 Eh/(ea0), which correspond
to the intensities 7.9 × 1012 W/cm2, 3.2 × 1013 W/cm2,
and 8.8 × 1013 W/cm2, respectively.

There are qualitatively different regimes depending on the
field parameters ω0 and F0, as well as on the Keldysh param-
eter γ = √

2Ipω0/F0 [41]. The Keldysh parameter combines
the Ip as relevant system parameter with the field parameters
ω0 and F0. One regime defined by F0 is over-the-barrier ioniza-
tion, where the field strength is strong enough that electron(s)
can freely leave the core region without the necessity of tun-
neling. Assuming an asymptotic Coulomb potential −Z/|x|,
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FIG. 2. Parameter space of the six-cycle laser pulse used in our
simulations with a central angular frequency ω0 and maximal ampli-
tude of the laser field F0 for our model with an ionization potential
Ip = 0.377 Eh. We mark the necessary electric field strength Fover for
over-the-barrier ionization, for Z = 1, as well as regions of different
Keldysh parameters γ and the minimal number of absorbed photons
required for ionization, given by 	Ip/ω0
. The color bar below the
abscissa indicates the position of the visible part of the spectrum.

the field strength needs to be larger than Fover = I2
p /(4Z ) for

over-the-barrier ionization [42], with Z being the screened
nuclear charge and Ip being the ionization potential. For
our model Ip = 0.377Eh, hence, calculations with the field
strength F0 = 0.050 Eh/(ea0) correspond to over-the-barrier
ionization. A second regime is tunnel ionization, which hap-
pens for γ < 1 or � 1 and F0 < Fover, as the electron has
enough time to tunnel through barrier within a laser cycle.
Then, the parameter space of the laser field can also be sep-
arated based on the minimum number of absorbed photons
required for ionization given by 	Ip/ω0
: For h̄ω0 > Ip, we
have single-photon ionization, while otherwise multiphoton
ionization takes place. The parameter space of the laser field
for our model is shown in Fig. 2. A more detailed discussion
of the regimes can, e.g., be found in [43].

For all numerical eigenstate calculations and time propa-
gations we use QMSTUNFTI [44], which is a Python toolbox
designed to solve grid-based quantum mechanics. In partic-
ular, we use a sparse-matrix representation of the respective
Hamiltonian where derivatives are obtained within a finite-
difference approximation. Both for the eigenstate calculation
and for the propagation we rely on functionalities of the
SCIPY.SPARSE module [45] which partially uses the ARPACK

library [46]. We use a grid spacing of 0.01/ω0 for the t grid
and of 0.2 a0 for the spatial grid with |x j | < 100 a0. To avoid
reflections at the grid boundaries, we absorb the wave function
in the region 90 a0 < |x j | < 100 a0 by multiplication with a
mask function being 1 at |x j | = 90 a0 and decreasing to 0 until
|x j | = 100 a0 as cos1/8.

IV. COMPARISON TO A SINGLE-ACTIVE
ELECTRON ASSUMPTION

A standard approach to attoscience modeling is the SAE
assumption, but there are different ways how this assumption
can be implemented. Here, we consider an SAE model based
on KS-DFT with the exact KS potential.

FIG. 3. Kohn-Sham potential and lowest two Kohn-Sham or-
bitals (left) as well as the exact electron factorization potential and
wave function (right) for the antisymmetric initial state of the consid-
ered two-electron model. For comparison, the external soft-Coulomb
potential Vext (SC) is also shown.

In KS-DFT, the one-electron density for a spinless n-
electron system is obtained as

ρ(r1) =
n−1∑
j=0

∣∣ϕKS
j (r1)

∣∣2
, (34)

where ϕKS
j (r1) are the KS orbitals that are eigenstates of a

one-electron Hamiltonian with KS potential V KS(r1):(
−∇2

1

2
+ V KS(r1)

)
ϕKS

j (r1) = εKS
j ϕKS

j (r1). (35)

An SAE approach can be defined by

i∂tχ
SAE(r1; t ) = (− 1

2∇2
1 + V KS(r1) + F(t ) · r1

)
χSAE(r1; t )

(36)

with initial state χSAE(r1; t = 0) = ϕKS
j (r1) which is one of

the KS orbitals, typically the highest occupied KS orbital.
Thus, in this SAE approach only one orbital is propagated
while the others are kept frozen, and we assume that V KS(x1)
is t independent.

The presented SAE approach is close to the idea of re-
constructing effective SAE potentials for molecules from the
static KS potential [13] and it uses the correct ionization
potential, which is considered to be a decisive parameter in
the SAE assumption [47].

For our one-dimensional model, the exact KS potential
and KS orbitals are shown in Fig. 3 together with the EEF
quantities for the ground state. While the EEF describes all
electrons with a single one-electron wave function χ , KS-DFT
relies on multiple orbitals. In some sense this is an advantage,
as KS-DFT maps the interacting many-electron problem to
a noninteracting many-electron problem with a wave func-
tion that is a Slater determinant of the KS orbitals, and thus
has the (anti)symmetry requirements already contained in the
ansatz. In contrast, while the product of χ and φ is the exact
many-electron wave function and hence fulfills all relevant
symmetry constraints, the ansatz (2) does not include the sym-
metry requirements explicitly. Thus, the effective one-electron
potential ε of the EEF is different compared to the KS poten-
tial. In particular, while the KS potential looks qualitatively
like the soft-Coulomb potential, the EEF potential for the
ground state has an additional local barrier at approximately
1a0. This barrier reflects the electronic structure, but in a way
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that is somewhat less intuitive than the multiorbital picture
of KS-DFT. However, we note that similar barriers can also
appear in the KS potential, e.g., for an excited symmetric state
of a model similar to the model used here [48].

For Fig. 3 the potentials are shifted such that the asymp-
totic energy for |x1| → ∞ corresponds to the energy of the
cation. Thus, the KS eigenvalue εKS

1 of the highest occupied
KS orbital is equal to the energy of the two-electron system,
which is also the EEF eigenvalue for χ in the absence of the
laser field.

In [28], a first approximation to the EEF was proposed
which looks very similar to the SAE approach and which
is computationally feasible for realistic many-electron sys-
tems. In the time-independent conditional amplitude (TICA)
approximation it is assumed that the conditional amplitude
does not change during the interaction with the laser field,
i.e., φ(r2; r1, t ) ≈ φ0(r2; r1) for all times t . When we chose
the gauge such that the vector potential is zero, A(r1; t ) = 0,
the TICA Schrödinger equation is

i∂tχ
TICA(r1; t )

= (− 1
2∇2

1 + εTICA(r1)+F(t ) · [r1+d0(r1)]
)
χTICA(r1; t ),

(37)

with time-independent potential εTICA(r1) that can be ob-
tained from φ0(r2; r1) or from the initial electron density
ρ0(r1) = |χTICA(r1; 0)|2, up to a constant, as

εTICA(r1) = ∇2
1
√

ρ0

2
√

ρ0
, (38)

assuming the initial phase of χTICA is zero. The dipole opera-
tor d0(r1) is given by

d0(r1) = 〈φ0|r2|φ0〉2 . (39)

If we compare the TDSE for the TICA approximation (37)
and the TDSE for the SAE assumption (36), we see that both
are one-electron approaches with a time-independent effective
potential that models the many-electron dynamics. However,
the initial states and the effective potentials are very different,
and the SAE approach models only one electron while the
TICA in principle models all electrons. Thus, we can expect
that their applications are rather different.

V. TIME-DEPENDENT DYNAMICS

In the following, we discuss results for the spinless one-
dimensional two-electron model. We choose the gauge where
the vector potential is zero, A(x1; t ) = 0, and we calculate all
quantities from the solution ψ (x1, x2; t ) of the two-electron
problem for the different laser field parameters. Thus, we have
both the EEF wave function χ as well as the EEF potential
ε and can compare how features of one of these functions
manifest in the other function.

Prominent time-dependent features of the EEF potential
are spikes and steps outside the core region, illustrated in
Fig. 4. Those spikes and steps appear for some parameters
t but also quickly disappear, and it seems that they are rather
unimportant features for the construction of suitable approxi-
mations.

FIG. 4. Representative snapshot of the exact one-electron po-
tential ε (top) and the corresponding one-electron density ρ = |χ |2
(bottom, shown logarithmically) at some time during the interaction
with the laser pulse. Vertical lines indicate the presence of spikes and
steps that appear at minima of the density.

Spikes typically appear at the same place and time in the
components of the EEF scalar potential, εav, εFS, εGD, εF2, and
the EEF vector potential A. From the mathematical formalism
of the EEF, the origin of the spikes can be understood by
writing (9), (12), (13), (14), and (15) in terms of ψ and
χ because for each term we find that it is proportional to
1/|χ |2. Alternatively, the spikes can be analyzed by looking
at a feature of the EEF wave function χ : This function can be
written in polar representation as

χ (x1; t ) = eiθ (x1;t )
√

ρ(x1; t ) (40)

with phase θ (x1; t ) ∈ R determined by the choice of gauge
and with one-electron density

ρ(x1; t ) = 〈ψ (x1, x2; t ) | ψ (x1, x2; t )〉2. (41)

For |χ | to be zero, we need that |ψ (x1,0, x2; t0)| = 0 for all x2

at some x1,0 and some t0. While ψ clearly may have nodes,
we find that they never lie exactly along a line at some x1,0

in the x2 direction, a wave function with this property can
be obtained as eigenstate from suitably designed potential,
but that such an exactly “vertical” node appears during a
time-dependent simulation is extremely unlikely. Hence, the
magnitude |χ | never reaches zero, but it may become very
small. However, while such a node is very unlikely from the
perspective of the full wave function ψ , a propagation of χ by
solving the TDSE (7) for some potential allows in principle
for nodes in χ , i.e., for |χ | to become exactly zero. The
appearance of nodes is a very common situation when a wave
function is propagated in some static potential. In contrast,
the EEF potential ε has time-dependent spikes of finite height
in regions and at times where |χ | becomes small. Scattering
at these spikes changes (the phase of) χ such that the sign
change is avoided. For an approximate simulation we find that
we can ignore the spikes and simply allow the one-electron
wave function to have nodes, thus these spikes are of little
relevance.

The steps appear in the gauge-dependent potential and are
equivalent to spikes in the vector potential if a different gauge
was chosen. From the simulation, we have the vector potential
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FIG. 5. (a) Six-cycle laser pulse used in the simulations. The black dot indicates the t parameter at which the potentials in the other panels
are shown. The other panels are, for laser frequency ω0 = 0.1 Eh/h̄ and for different values of the field strength F0, the norm of the wave
function (b), the one-electron potential ε (c), as well as its contributions εav, εFS (d), and εF1, εF2, εGD (e), (f).

for the gauge χ̃ = √
ρ (χ being real-valued) given by

Ã(x1; t ) = 1

ρ
〈ψ | −i∂1ψ〉2, (42)

and we determine the phase θ of χ for the gauge A
!= 0 from

θ (x1; t ) = −
∫ x1

−∞
Ã(x′; t )dx′ (43)

such that A(x) = Ã(x′) + ∂1θ (x; t ) ≡ 0. When Ã has a spike,
we get from (43) that the phase θ (x1; t ) has a step which trans-
fers to the gauge-dependent potential via εGD = ε̃GD + ∂tθ .
The steps seem to be related to steps found in DFT [49–51]
and hint at some qualitative change in the behavior of the elec-
tron density ρ, but we do not yet have a clear understanding
of the steps within the framework of the EEF. In DFT, the
steps are, for example, relevant to correctly describe charge
transfer and are related to ionization phenomena [52], hence,
they might be important in some situations. However, as (42)
suggests, we find that the steps in εGD always appear where ρ

is small (as Ã ∝ 1
ρ

) and we find that they can be ignored for
the considered simulations.

To describe an ionization dynamics, a more important
many-electron effect encoded in the effective potential is the
time dependence of the core region. When we compared DFT
with the EEF in Fig. 3 above, we noted that the electronic
structure of the ground state translates to the EEF as an addi-
tional barrier at approximately |x1| = 1 a0. During interaction
with the laser field, this barrier can change significantly in
height and width. Also, the depth of the potential well in the
core region may vary.

In Fig. 5 we compare different parts of the EEF potential
for a laser frequency ω0 = 0.1 Eh/h̄ at an instant of time
where the laser field amplitude is maximal and the effects in
the exact potential are most pronounced. Figure 5(a) shows
the laser pulse and the time at which the potentials in the
other panels are depicted, while Fig. 5(c) shows the exact
potential ε for the three different F0 and in comparison to the
external one-electron potential Vext. The larger F0, the higher
is the effective barrier. This barrier keeps the electrons bound:
In Fig. 5(b) the norm of the wave function for these cases
is shown, which indicates that there is significant ionization
happening for the higher field strengths. If we think, e.g.,
in the SAE KS picture about such an ionization, we expect
the electron from the higher orbital to be ionized more easily
compared to that in the lower orbital. The equivalent in the
EEF seems to be the appearance of the higher barrier, which
makes it harder to ionize the second electron: ignoring the
time dependence of the barrier in such a simulation, e.g.,
by using the TICA approximation, would overestimate the
amount of electron density leaving the core region.

The barrier is also a sign of excited states in the core
region. Looking at Fig. 1, we see that the EEF potential of
the first excited state ψ1 has a higher barrier in the core region
compared to that of the ground state and the corresponding
average energy εav as well as the Fubini-Studi potential εFS

look very similar to those shown for F0 = 0.050 Eh/(ea0) in
Fig. 5. Occupation numbers |c j |2 with

c j (t ) = 〈ψ j (x1, x2)|ψ (x1, x2; t )〉 (44)

confirm this observation, as they show significant population
of lower excited states of our model Hamiltonian. An in-
teresting case are the simulations for ω0 = 0.2 Eh/h̄ where
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FIG. 6. Like Figs. 5(d) and 5(e), but for laser frequencies ω0 =
0.3 Eh/h̄ (left) and ω0 = 0.5 Eh/h̄ (right).

the laser frequency is very close to the transition between
ψ0 and ψ1 (E1 − E0 = 0.201 Eh). There, the initial potential
ε(x1; t ) resembles ε0(x1) but becomes close to ε1(x1) in the
core region during the pulse, with a t-dependent variation that
indicates some population of other states.

Further information about the EEF potential ε can be
gained by looking at the one-electron laser interaction poten-
tial εF1, the effective interaction potential εF2 with the laser
field, and the gauge-dependent part εGD of the EEF potential.
For SAE calculations, recent publications have found that
there is a screening effect due to polarization of the “other”
electrons which cancels the effect of the laser potential in the
core region [18,19]. In the EEF, the behavior is somewhat
different: First, we note that εF2 and εGD cancel each other
mostly, as illustrated in Figs. 5(e) and 5(f), for a laser fre-
quency ω0 = 0.1 Eh/h̄. What remains is a potential well in the
core region that is more pronounced with higher field strength
F0. It partially counteracts the one-electron laser interaction
potential εF1, as can be seen by comparing εF1 and εF2 + εGD

in the bottom-right panel of Fig. 5. For smaller F0 the effect
of εF2 + εGD may indeed be approximated by “switching off”
εF1 in the core region, but for larger F0 the potential well is
relevant and modeling within the EEF framework seems to be
more involved than what was proposed for SAE approaches.

The situation is different for higher frequencies ω0, as
illustrated in Fig. 6. We find that for higher ω0 both the
average energy εav and the Fubini-Studi potential εFS have
little t dependence and can thus be approximated by the initial
potentials. Also, the effective interaction potential εF2 with the
laser field and the gauge-dependent part of the potential εGD

cancel almost perfectly in the core region, leaving only the
one-electron laser interaction potential εF1 as contribution to
the total potential ε.

From those findings, we expect that a TICA simulation
should be appropriate for high frequencies of the laser field

FIG. 7. Left: Integrated absolute difference �ε between the EEF
potential and the TICA potential (black) as well as the TICA poten-
tial neglecting the modified dipole d0 (magenta), for different field
strengths F0 and laser frequencies ω0. Right: Like left panel, but
for the density difference �ρ . The gray lines show �ρ for the SAE
simulation.

because it is close to the EEF potential which represents the
exact dynamics. To quantify this statement, we computed the
integrated absolute difference

�ε = 1

6T

∫ 6T

0

∫
|ε(x1; t ) − ε′(x1; t )|ρ(x1; t ) dx1dt (45)

between the EEF potential ε(x1; t ) and the potential in a TICA
simulation

ε′(x1; t ) = εTICA + F (t )[x1 + d0(x1)], (46)

and without the dipole modification

ε′(x1; t ) = εTICA + F (t )x1, (47)

as well as the integrated density differences

�ρ = 1

6T

∫ 6T

0

∫
|ρ(x1; t ) − ρ ′(x1; t )| dx1dt (48)

with the exact electron density ρ(x1; t ) and with ρ ′(x1; t ) being
either the density from an SAE simulation, the density from a
TICA simulation using the potential (46), or the density from
a TICA simulation without modified dipole using the potential
(47). The absolute value of �ε is weighted by the one-electron
density ρ(x1; t ) to count only relevant parts of the potential,
and the time integration is performed over the duration 6T of
the six-cycle laser pulse. As T changes with the frequency, we
also divide both differences by the pulse duration. The results
are shown in Fig. 7. As expected, �ε becomes smaller with
increasing frequency ω0, hence, the TICA potential becomes
closer to the EEF potential. A notable exception is when ω0 =
0.2 Eh/h̄, which is close to resonance of the transition between
the ground state and the first excited state: the TICA potential
has, by construction, always the character of the ground state.
In contrast, the time-dependent EEF potential resembles the
ground-state EEF potential only initially but becomes close to
the EEF potential of the first excited state during the propaga-
tion. Neglect of d0 always makes the agreement better for �ε,
but only slightly. However, it needs to be tested if d0 plays
a more prominent role when more electrons are part of the
system.

The density difference �ρ illustrates that the different po-
tentials influence the dynamics. Clearly, the agreement of the
TICA densities (with and without modified dipole) becomes
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FIG. 8. Like Fig. 2, but with a number of eigenstates needed to
model the exact electron factorization potential indicated as color or
shade. The thick black dashed line indicates the approximate bound
where the time-independent conditional amplitude approximation is
valid for our model.

better with higher frequencies, while the SAE simulation
is better than the TICA approximation for low frequencies
but worse for high frequencies. A closer look at the dy-
namics shows what can be expected from the neglect of
the time-dependent barrier in the TICA simulation for low
frequencies: far too much electron density leaves the core
region and becomes highly delocalized. In contrast, the SAE
simulation captures the dynamics qualitatively correctly for
low frequencies. The applicability of the TICA approximation
thus seems complementary to the SAE assumption, as the
latter is often applied for relatively low frequencies ω0 (in the
visible regime, e.g., for 800 nm laser radiation) and is con-
sidered a good description of tunnel ionization in the strong
field.

We note that, interestingly, the ionization yield at the grid
boundaries is well reproduced with the TICA simulations and
is, for low frequencies, in even better agreement with the
exact ionization yield than what is obtained from an SAE
simulation. However, this finding is a coincidence for our
model because the dynamics of the TICA simulation differs
drastically from the exact simulation for these low frequencies
of the laser field.

The TICA approximation is based on one electronic state
only. To understand better what is needed in the EEF frame-
work to correctly describe the dynamics beyond the TICA
approximation, we determined how many states ψ j are actu-
ally needed to reproduce the dynamics of the system. Based
on the expansion coefficients (44) of the bound states ψ j

during a propagation, EEF potentials were constructed from
the truncated wave function

ψne (x1, x2; t ) =
ne∑

j=0

c j (t )ψ j (x1, x2) (49)

and compared to the exact potentials in the core region.
Figure 8 shows graphically the index ne of the highest excited
state needed to reasonably reproduce the EEF potential. Less
states may be necessary as it may happen that some states
with j < ne are not populated. To find the highest state to be
included, we also calculated the occupation numbers based on

a Rabi model of the ground and the first excited states. Start-
ing with the initial occupation numbers |c0|2 = 1, |c1|2 = 0,
within the rotating-wave approximation the occupation num-
bers evolve with t as(|c0(t )|2

|c1(t )|2
)

=
(

δ2+|�|2 cos2(ωRt )
δ2+|�|2

|�|2 sin2(ωRt )
δ2+|�|2

)
, (50)

where δ = E1 − E0 − ω0, � = F0 〈ψ0|x1 + x2|ψ1〉, and ωR =
1
2

√
δ2 + |�|2. Here, we consider the occupation numbers only

until the end of the pulse. The thick dashed line in Fig. 8 shows
where the transition from a one-state to a multistate model
approximately is located, based on the criterion that |c1(t )|2
does not exceed 0.8%.

From Fig. 8 we see where TICA is expected to reproduce
the dynamics accurately: For high laser field frequencies ω0

or for large Keldysh parameter γ , as well as for small ω0

and laser field strength F0 (smaller than the field strengths
F0 used in our simulations), where the initial state is only
little perturbed. For parameter regions around γ = 1 and the
frequencies of visible light, which is where tunnel ionization
happens and where a lot of activity in attoscience was focused
in recent years, many states are needed to reproduce the exact
EEF potential and thus the exact dynamics.

VI. CONCLUSIONS

In the framework of the EEF, a many-electron dynamics
can be mapped to a one-electron dynamics exactly. The effec-
tive potentials appearing in this one-electron dynamics carry
a heavy burden, as they encode the time-dependent many-
electron effects and the antisymmetry requirements of the
many-electron wave function. From the study of our simple
model we found that to study ionization dynamics in laser
fields, correct description of low-lying excitations in the core
region is of central importance to obtain good effective poten-
tials. However, we also found that some terms in the effective
potential can be neglected. It will be interesting to study how
the features found in the EEF potential carry over to more
electrons.

Additionally, we found that the simplest approximation of
the EEF, the TICA approximation, provides a good descrip-
tion of the dynamics for relatively high frequencies of the
laser field. It is thus complementary to the SAE assumption,
which is typically used for comparably low frequencies. A
TICA simulation for a realistic system is computationally as
expensive as a SAE simulation, hence, it is worthwhile to
test how the TICA approach works compared to experimental
data. However, the TICA approximation is based on only one
electronic state of the many-electron system and does not, for
our model, reproduce the exact dynamics for relatively low
frequencies of the laser field. In this regime, further electronic
states are populated and a TICA simulation does not describe
the core dynamics correctly.

Methods improving on the TICA approximation are con-
ceivable, e.g., by simulating the dynamics of the bound states
with an approach based, e.g., on a few many-electron Slater
determinants. Although there are problems due to a truncated
dynamics in the core region [53], an approach based on that
idea may provide suitable one-electron EEF potentials which
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reproduce the exact dynamics well. In this way, it would also
be possible to avoid the difficult explicit coupling of bound
and continuum states by simulating the bound-state dynamics
and the ionization dynamics separately. Further developments
are needed to find a practical method based on the EEF,
but our analysis shows that the features of the exact EEF
potentials can be understood and seem to be accessible from a

computational point of view also for systems of experimental
interest.
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