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Abstract: Reconstruction of attosecond beating by interference of two-photon transitions (RAB-
BITT) is one of the most widely used approaches to measure the time delays in photoionization.
The time delay, which corresponds to a phase difference of two oscillating signals, is usually
retrieved by cosine fitting or fast Fourier transform (FFT). We propose two estimators for the
phase uncertainty of cosine fitting from the signal per se of an individual experiment: (i)
σ(φfit) ≈

B
A

√︂
2
N , where B/A is the mean-value-to-amplitude ratio, and N is the total count number,

and (ii) σ(φfit) ≈
√︂

1−R2

R2nbins
, where nbins is the total number of bins in the time domain, and R2 is

the coefficient of determination. The former estimator is applicable for the statistical fluctuation,
while the latter includes the effects from various uncertainty sources, which is mathematically
proven and numerically validated. This leads to an efficient and reliable approach to determining
quantitative uncertainties in RABBITT experiments and evaluating the observed discrepancy
among individual measurements, as demonstrated on the basis of experimental data.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

1.1. RABBITT experiment

Our physical world evolves on many different timescales. The typical period of the electron
motion in atoms or molecules is in the sub-femtosecond, i.e. attosecond (as, 1 as = 10−18 s)
range, which corresponds to T = h/∆E, where the involved energy intervals are 1 ∼ 100 eV. In
order to capture such ultrafast dynamics, one needs an ultrafast signal source and a corresponding
detection scheme. This is achieved by attosecond extreme-ultraviolet (XUV) light or X-ray pulses
generated by high-harmonic generation (HHG) [1,2] or free-electron lasers (FELs) [3,4]. The
pulses can be either comb-like attosecond pulse trains (APTs) [5,6] or single attosecond pulses
(SAPs) [7]. The dynamical information is extracted by pump-probe schemes that correlate the
photoelectron spectra and the pump-probe time delays, where the attosecond XUV (or X-ray)
pulse is the pump and a femtosecond infrared (IR) pulse serves as the probe. The schemes for
APTs and SAPs are RABBITT [8–11] and attosecond streaking [12–16], respectively. In this
paper, we focus on the RABBITT technique, where cosine-like beating signals are observed and
the electron’s dynamics is characterized by the phase difference of two signals. We expect that
the proposed methods can be readily generalized to the ω − 2ω in-situ methods [17], PROOF
[16], and possibly other interferometric methods.

The origin of the beating pattern is known as the interference of different XUV-IR transition
pathways [18–20]. In short, the same observed photoelectron kinetic energy corresponds to the
absorption of one HHG-XUV photon and the exchange of ±m IR photons, where plus and minus
correspond to absorption and emission, respectively. The transition amplitude of the m-pathway
reads:

A(q;m) = Em
IREq−mM(q;m), (1)
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where EIR and Eq−m denote the amplitudes of the dressing IR field and the (q − m)-order HHG,
and M(q;m) is the corresponding matrix element that contributes to the q-th HHG band. If several
sub-pathways contribute to the m-pathway coherently [19,21], then M(q;m) is the sum of those
elements. The phase arg(EIR) = ωτ is referenced to the XUV pulse, where a greater τ indicates
that the dressing IR pulse has a shorter optical path length.

Let us recall the well-known electron two-slit interference experiment [22], where the electrons
are detected one-by-one, and the interference of the wave function is presented by the beating
probability of finding the electron as a function of position on the screen. In the RABBITT
experiment, the observed signal is proportional to the probability density function (PDF)
oscillating along the time axis (XUV-IR delay), and the pattern builds up while the number of
detected electrons increases. For an APT containing only odd-order harmonics, the even-order
sidebands (SBs) correspond to the process where m is an odd number. The q-SB signal for a
single atom or molecule can be described by:

Sq =

|︁|︁|︁|︁|︁∑︂m
A(q;m)

|︁|︁|︁|︁|︁2. (2)

Figure 1(a) illustrates possible pathways with m = ±1,±3 for an even-order harmonic SB,
which lies between two mainbands (MBs) of the XUV pulse. The high-|m| pathways become
important under a strong dressing field [23]; the m = ±2 pathways can be selectively enabled by
a double-frequency dressing field [21,24,25]. There are also reports on conducting RABBITT
with HHG frequencies separated by 1ω or 3ω [3,26,27]. Here we present the analysis mainly
based on the interference between m = ±1 pathways, but the methods are applicable to other
schemes. In our case, Eq. (2) is simplified to:

Sq =
|︁|︁A(q;1) +A(q;−1)

|︁|︁2
= |A(q;1) |

2 + |A(q;−1) |
2 + 2|A(q;1) | |A(q;−1) | cos

[︁
arg(A(q;1)) − arg(A(q;−1))

]︁
.

(3)

Detailed analysis of the SBs’ intensities can be found in Ref. [28]. The argument of the cosine
function in Eq. (3) can be expressed as:

arg(A(q;1)) − arg(A(q;−1)) = 2ω(τ − τXUV − τA), (4)

where τXUV is known as "attochirp" [29–31] and τA is the ionization time, which consists of the
bound-continuum part τbc and the continuum-continuum part τcc [19,20,32–34]. Instead of the
absolute value of τA, experiments measure ∆τA between a reference channel and one or several
target channel(s) as the relative ionization time delay(s) [35]. Figure 1(b) shows the experimental
data from argon (Ar), where the oscillations on different bands along the pump-probe time
delay axis are clearly visible. In interference between m = ±1 and m = ∓3 pathways results
in the 4ω-oscillation, which is observed by subtracting the 2ω-component from the RABBITT
signal or from the FFT spectrum, as demonstrated in Fig. 2. Note that we have integrated the
signal within the energy range of each SB, while it is possible to extract the time delays as a
function of the electron kinetic energy, such as the Rainbow technique [36,37], which reveals the
energy-dependent phase variation [38], or the global complex-amplitude fitting method [39–41],
which is suitable for overlapping or congested bands. Its uncertainty analysis can be performed
under the principles introduced in this article with extended mathematical considerations, which
is currently in progress.

1.2. Uncertainty of the measured time delay

The determination of the time delay relies on the phase retrieval of the signal, and it is important
to obtain the uncertainty of the measurement. According to the Joint Committee for Guides in
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Fig. 1. (a) Schematic of RABBITT: qω (dashed line) refers to the q-th sideband, while the
solid lines refer to the XUV bands of the photoelectron spectrum. The blue and red arrows
refer to XUV and IR photons, respectively. For clarity, only one sideband is illustrated
with four contributing pathways: emitting 3 IR photons (3e), emitting 1 IR photon (1e),
absorbing 1 IR photon (1a), and absorbing 3 IR photons. (b) Experimental data of Ar, where
the photoelectron bands are aligned to q = 14 in (a).

Fig. 2. Observation of the 4ω-component in a typical RABBITT signal. (a) Experimental
counts (blue solid) and cosine fitting with 2ω (red dashed). (b) The residual of the 2ω-
cosine-fitting (green solid) and the 4ω-cosine fitting of the residual (magenta dashed). (c)
FFT of the RABBITT signal (with background subtracted).

Metrology (JCGM), the uncertainty determination is categorized into two types: (A) evaluated by
statistical methods, and (B) evaluated by other means [42–44]. In practice, the Type A uncertainty
is the discrepancy among individual outcomes, and Type B uncertainty reflects the precision for
each measurement. For attosecond science specifically, the outcome is sensitive to experimental
conditions (e.g. the environment for XUV generation, pump-probe overlap in space and time,
jitter of the delay stage, noise of the detector). Reference [31] discusses the uncertainty caused by
the attochirp, and a comprehensive study of the contributing factors can be found in Ref. [35]. In
general, the imperfect control of conditions can either (I) shift the expected value of the desired
attosecond time delay by an amount related to specific experimental conditions, or (II) blur the
oscillation pattern without changing the expected value; here the "expected value" is a conceptual
limit of the average of repeating a measurement an infinite number of times under exactly the
same conditions. The effect (I) may cause systematic error compared with experiments under
better control of the conditions, while the effect (II) results in unequal precision of individual
measurements. Qualitative or semi-quantitative estimations of single-measurement precision
with corresponding weighting schemes have been applied in previous studies [14,40,41,45–51],
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which yields the Type A uncertainty of the studied experiments. However, to the best of our
knowledge, no explicit formula has been proposed for determining the Type B uncertainty, namely,
the uncertainty of a single measurement. The Type B uncertainty is meaningful when the number
of individual experiments is comparatively small [42]. Furthermore, if the Type A uncertainty is
much greater than the Type B uncertainty, it is an indication of the effect (I) discussed above,
which provides hints for optimizing the experimental conditions.

1.3. Outline of this article

Here we propose two individual estimators based on the experimental signal per se: the B/A-
estimator (Sec. 3) and the R2-estimator (Sec. 4). We explicitly consider four effects: statistical
fluctuations, smearing effect, shifting effect, and background noise, which finally fall into three
categories (Sec. 2). The derived estimators are manifested by numerical simulations (Sec. 5),
where the two estimators are compared. The relation between cosine fitting and FFT can be
found in Sec. 6. The individual uncertainty leads to a weighting scheme (Sec. 7), where we
introduce the S-value to quantify the consistency between the Type A and Type B uncertainties.
Finally, in Sec. 8, we present a pair of examples from experimental data to demonstrate how one
knows from the S-value whether the expected value of the time delay may be subjected to the
experimental conditions on an unresolved degree of freedom.

2. Statistical fluctuations, smearing effect, shifting effect, and background noise

Experimentally, the detected electrons are binned by the step size of the delay time, and the
number of counts in each bin Fi obeys a Poisson distribution; when the count number is large
enough (≳ 10), the distribution can be approximated by normal distribution with variance equal
to the mean value [52]

Fi ∼ N(f (ti), f (ti)), (5)

where
f (ti) = A cos(2ωti + φ) + B (6)

is the PDF integrated over the time bin, which is approximately the PDF multiplied by the bin
width, and ti is the central time of the i-th bin. A is a positive real number, and we define T = π/ω
as the oscillation period of the signal. Equation (5) therefore gives the statistical fluctuation of
the signal.

In the derivation of Eq. (1), we have assumed that different pathways contribute coherently.
In reality, the system undergoes partial decoherence, where pathways are mixed incoherently,
and the total PDF is the sum of individual PDFs. The decoherence can be characterized by
reconstructing the density matrix, and the origin of decoherence includes the spatial variation
of the electric field, scattering of the ejected electrons, imperfect detector, and so on [53]. For
RABBITT experiments, the decoherence (referred as the smearing effect) occurs both spatially
and temporally.

The spatial smearing effect is related to the fact that the PDF is integrated over the focal
volume. Mismatches in the XUV and IR focal-spot sizes, imperfect overlap, different Rayleigh
lengths and the focusing of different harmonic orders at different positions along the propagation
direction, among others, contribute to this effect, which can be expressed as a spatial variation of
the amplitudes and phases:

f (t) =
∫

A(r) cos[2ωt + φ(r)] + B(r)d3r, (7)

where we assume interference within a small volume of d3r, and A(r), B(r), and φ(r) correspond
to Eqs. (3) and (4) with position-dependent coefficients. Comparing Eq. (7) with Eq. (6), we
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have:
Aeiϕ =

∫
A(r)eiϕ(r)d3r, B =

∫
B(r)d3r, (8)

and A ≤
∫

A(r)d3r, where the equal sign holds only when φ(r) is constant over the whole focal
volume. Moreover, if the focal volume varies among individual experiments, the expected value
of φ may change, as the effect (I) discussed in Sec. 1.2. Nevertheless, if channels from the same
SB are compared to retrieve the relative time delays ∆τA , this effect is largely cancelled.

The temporal smearing effect arises from the inaccuracy of defining the XUV-IR delay.
Specifically, we consider the following scenarios: (i) the delay stage position is binned by the
step size; (ii) the delay stage jitters randomly between the sequential electrons being detected;
(iii) there is shot-to-shot XUV-IR phase jitter due to the fluctuation of generation conditions,
and we assume each photoelectron originates from a different shot; (iv) if multiple scans are
superimposed, there can be a long-term drift of the path length caused by thermal expansion.
There can be other sources of temporal inaccuracy, but they are generalized by a redistribution
function D(τ) that is normalized to 1, which describes the probability that the time delay is
recorded as t but the true value should be t + τ. Its effect on the PDF is expressed by convolution:

fsmeared(t) =
∫ +∞

−∞

f (t + τ)D(τ)dτ =
∫ +∞

−∞

f (t − τ)D̄(τ)dτ = (f ∗ D̄)(t), (9)

where D(τ) is the redistribution function, and D̄(τ) = D(−τ). Equations (6) and (9) give:

fsmeared(t) =
[︁
F {D̄}(2ω)

]︁
· A cos(2ωt + φ) + B = A′ cos(2ωt + φ) + B, (10)

which is a cosine signal with the same mean value and phase, but reduced amplitude by a factor

of the Fourier transform of the redistribution function. For (i) and (iv), D(τ) = 1
∆t rect

(︃
τ
∆t

)︃
is a rectangular function, and A′

A = sinc
(︃
∆t
T

)︃
, where ∆t is the bin width or the drift range,

respectively. For (ii) and (iii), we can assume the jitter obeys normal distribution N(0,σ2
τ ),

and A′

A = exp
[︃
− 2π2

(︃
στ

T

)︃2]︃
. Therefore, the smearing effects are fully characterized by the

signal-to-noise ratio, or equivalently, the B/A ratio.
The shifting effect refers to the correlated jitter, where all counts in the i-th bin are recorded

as a delay-stage position that deviates ∆ti = ηi/(2ω) from the true value. This is relevant when
multiple detected electrons are from the same shot, or at least between the typical timescale
within which the jitter randomizes, which are denoted as a batch of electrons in the following
discussion. The change of counts yields:

∆Fi = A
[︂
− sin(2ωt + φ)ηi −

1
2

cos(2ωt + φ)ηi2 + O(ηi
3)
]︂
. (11)

If ∆ti ∼ N(0,σ2
s ), then to the lowest order,

∆Fi ∼ N

(︃
0, A2ση

2
)︃
, (12)

where ση = 2ωσs = 2πσs/T . Large shifting destroys the oscillating pattern, while ellipse-
specific fitting can still retrieve the phase difference between two channels [3,54]; this is named
"timing-jitter unaffected RABBITT time delay extraction method" (TURTLE) [55]. Our work
on combining TURTLE with cosine fitting is in progress. Note, however, that we have used an
implicit assumption that the number of electrons in a batch is the same as the binned value, which
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decreases for finer binning. If we assume that the average number of electrons in a batch, denoted
as b, depends on the pulse intensity and the randomization of the jitter but does not depend on
the step size, then a finer bin contains fewer batches. Let κ = N/(b · nbins) be the average number
of independent batches that each bin contains. The standard deviation (std) of the shift of the bin
(each batch contributes 1/κ to the bin) becomes:

σs = σbatch, s/
√
κ, ση = σbatch, η/

√
κ. (13)

Furthermore, the detector may have a background noise (approximately white noise) with variance
of σ2

noise = γB. The fluctuation, shifting, and background noise are assumed to be independent
uncertainty sources. Overall, we have B/A ≥ 1, where the equality is reached only when the
signal has |A(q;1) | = |A(q;−1) | defined in Eq. (3) and no smearing effect, shifting effect, or
background noise arises.

3. Cosine fitting for the binned histogram and the B/A-estimator

The RABBITT signal is fitted by a cosine function, which can be equivalently written as the
linear decomposition into three parts:

Ffit(ti) = Bfit + α cos (2ωti) + β sin (2ωti) = Bfit + Afit cos (2ωti + φfit), (14)

where for integer number of oscillation periods,

Bfit =

∑︁
i Fi

nbins
, α =

∑︁
i cos (2ωti)Fi

nbins/2
, β =

∑︁
i sin (2ωti)Fi

nbins/2
, (15)

and φfit = − arctan(β/α). For non-integer number of periods, Bfit, α, and β are given by formulae
in the Supplement 1 (Ref. [56]). Here we have assumed the oscillation period is perfectly fitted
from the reference channel; the effects of the deviation of the fitted T will be discussed in Sec. 6.
Assuming that the deviations of different bins are uncorrelated, we have the expected values:

Ex(Afit) ≈ A′

[︃
1 − 2π2

(︂σs
T

)︂2
]︃
, Ex(Bfit) = B, (16)

where A′ is defined by Eq. (10) and is denoted as A in the following discussion. Ex(α) =
Ex(Afit) cos φ, Ex(β) = −Ex(Afit) sin φ, and Ex(φfit) = φ. The variances and the correlation of α
and β are:

Var(α) =
∑︂

i

cos2(2ωti)
n2

bins/4
Var(Fi) ≈

∫ nT T
0 cos2(2ωt)Var(ε; t)dt

nTTnbins/4
,

Var(β) ≈

∫ nT T
0 sin2(2ωt)Var(ε; t)dt

nTTnbins/4
,

Cov(α, β) ≈

∫ nT T
0 sin(2ωt)cos(2ωt)Var(ε; t)dt

nTTnbins/4
.

(17)

The propagation of uncertainty yields:

Var(φfit) ≈
1
A2

[︂
sin2φVar(α) + cos2φVar(β) + 2sinφcosφCov(α, β)

]︂
. (18)

Without loss of generality, we suppose the PDF has φ = 0. We use integer number of periods
(nT ) for mathematical proofs, which is extended to non-integer values by numerical simulations

https://doi.org/10.6084/m9.figshare.15039294
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in Sec. 5. Then Eq. (18) is simplified to:

Var(φfit) ≈
1
A2

1
π

∫ 2π
0 sin2ξVar(ε; ξ)dξ

nbins/2
, (19)

where ξ = 2ωt. The random variable ε(t) includes all uncertainty sources mentioned above:

ε(ti) := Fi − Ffit(ti) ∼ N(0, Var(ε; ti)). (20)

Different types of uncertainty, their integrals, and the contributions to Var(φfit) are listed in
Table 1, where N = B · nbins is the total count number. Independent sources of uncertainty (s) are
combined by simple addition:

Vartotal(ε; ξ) =
∑︂

s
Vars(ε; ξ). (21)

The B/A ratio is independent of N or nbins and can easily be obtained from the signal per se
(Afit ≈ A when shifting is not very large). If the statistical fluctuation is the main uncertainty

Fig. 3. Simulated RABBITT signals are generated with N = 104, B/A = 4.0, nT = 5,
np = 10. Each simulation scans one parameter. The standard deviation of fitted φ is
calculated based on 100 independent trials for each green circle. (a) Scan over N (in
logarithm scale); in theory, the slope is -0.5 and the intercept is 0.7526. (b) Scan over B/A
ratio; in theory, the slope is 0.0141 and the intercept is 0. (c) Scan over nT (with interval of
5/3); the expected σ(φ) = 0.0566. (d) Scan over np (with interval of 17/19); the expected
σ(φ) = 0.0566, and the binning effect is only significant for np = 3.



Research Article Vol. 29, No. 17 / 16 Aug 2021 / Optics Express 27739

Table 1. Different Types of Random Variables ε(t), their Integrals of the Variances, and the
Contributions to the Variance of ϕfit

Type Var(ε; ξ) 1
π

∫ 2π
0

1
2 Var(ε; ξ)dξ 1

π

∫ 2π
0 sin2ξVar(ε; ξ)dξ Var(ϕfit)

Poisson Acosξ + B B B 2
N
(︁ B

A
)︁2

Background γB γB γB 2γ
N
(︁ B

A
)︁2

Shifting A2σ2
η sin2ξ 1

2 A2σ2
η

3
4 A2σ2

η
3b
2N σbatch,η2

source, the phase fitting uncertainty has a concise expression:

σ(φfit) ≈
B
A

√︃
2
N

. (22)

In this case, the phase retrieval precision is proportional to N−1/2, which agrees with the previous
study [35]; it is also independent of nbins, as shown in Fig. 3 (see Sec. 5 for details). The
background noise increases the std of φfit by a factor of (1 + γ)1/2. The contribution of the
shifting effect is 3

2nbins
σ2
η =

3
2nbins
σbatch, η2/κ = 3b

2Nσbatch, η2, which ultimately depends on N
instead of nbins, as numerically verified in Sec. 5.

4. R2-estimator

The determination of the background noise and the shifting effect needs a priori knowledge of γ
and ση . However, the combined uncertainty can be estimated by the coefficient of determination
defined as [57]:

R2 := 1 −

∑︁
i
[︁
Fi − Ffit(ti)

]︁2∑︁
i (Fi − ⟨F⟩)2

≈ 1 −

∫ 2π
0

[︁
ε(ξ)

]︁2dξ∫ 2π
0

[︁
A cos ξ + ε(ξ)

]︁2dξ
, (23)

where ⟨F⟩ is the mean value of Fi. The R2-value describes the closeness between the signal and
the fitted model; for an ideal cosine signal, R2 = 1. The expectation value of R2 yields:

Ex
(︁
R2)︁ = ∫ 2π

0 Var(ε; ξ)dξ

πA2 +
∫ 2π
0 Var(ε; ξ)dξ

. (24)

Therefore, the R2-estimator is expected to be:

Ex
(︃

1 − R2

R2nbins

)︃
=

1
A2

1
π

∫ 2π
0

1
2 Var(ε; ξ)dξ
nbins/2

. (25)

Comparing Eq. (25), Eq. (19), and the integrals in Table 1, we find that for the Poisson-like and
background (constant white noise) ε(t), the R2-estimator is unbiased, while for the shifting effect,
the R2-estimator is smaller by a factor of 2/3. With Eq. (21), the std of φfit with multiple sources
of uncertainty lies between the lower and upper boundaries:√︄

1 − R2

R2nbins
≤ σ(φfit) ≤

√︃
3
2

√︄
1 − R2

R2nbins
. (26)

Although Eq. (26) formally depends on nbins, it does not contradict Eq. (22) when the statistical
fluctuation dominates the total uncertainty, since at given N, R2 decreases for larger nbins, as
shown in Supplement 1.

https://doi.org/10.6084/m9.figshare.15039294
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5. Validation by numerical simulations

5.1. B/A-method

Simulated RABBITT signals are generated by the accept-reject algorithm [58], and the detailed
method is given in Supplement 1. In order to verify Eq. (22), the total count number N, the
B/A ratio, the number of oscillation periods nT , and the bins per period np are scanned, which
perfectly agrees with the expression, as shown in Fig. 3. Note that the relation also holds for
non-integer np or nT .

5.2. R2-method

Figure 4 manifests that the upper limit in Eq. (26) is precise for an ideal signal that is only subject
to the shifting effect with small jitter. The simulated σ(φfit) falls between the two limits up to
σs/T ∼ 0.4. Note that for white noise [59], σ(φfit) = π/

√
3 ≈ 1.81, which corresponds to uniform

distribution, while the lower limit of Eq. (26) gives
√︁
π/2 ≈ 1.25, because R2nbins ∼ χ

2(k = 2).
This corresponds to the plateaus in Fig. 4(b).

Fig. 4. Correlated jitter of an ideal signal with nbins = 500. Each red circle corresponds to
5000 independent trials. The line and shadow indicate the mean value and standard deviation
of the estimated σ(φfit) for each trial, respectively. (a) shows the small-σs regime, while (b)
shows the large-σs regime.

Figure 5 shows the effects of various uncertainty sources on the simulated RABBITT signals
and compares the uncertainty predicted by the B/A- and the R2-estimators based on each
independent trial. It is clear that Eq. (22) underestimates the uncertainty unless the statistical
fluctuation is the main uncertainty source compared with correlated jitter (Fig. 5(a) and (b)).
Nonetheless, the B/A-estimator fails to determine the white-noise level, which is included by the
R2-estimator (Fig. 5(c)). The uncertainty is independent of nbins for small σbatch, η, as shown in
Fig. 5(d); the increase of the estimators for greater nbins is attributed to the higher-order effects.
It is also notable that the uncertainty is generally closer to the lower limit of the R2-estimator;
therefore, we suggest simply using

σ(φfit) ≈

√︄
1 − R2

R2nbins
(27)

to estimate the experimental uncertainty.

5.3. Effect of the 4ω-component

When the RABBITT signal has a 4ω-component, as shown in Fig. 2, the expected value and
variance of φfit are not affected, according to Eqs. (15) and (19). On the other hand, the

https://doi.org/10.6084/m9.figshare.15039294


Research Article Vol. 29, No. 17 / 16 Aug 2021 / Optics Express 27741

Fig. 5. Simulated RABBITT signals are generated with N = 104, B/A = 4.0, nT = 5,
np = 10, σ2

noise/B = 0, and correlated jitter of σs/T = 0.05. (a) Scan over the jitter
amplitude. (b) Scan over the B/A ratio. (c) Scan over the relative noise level. (d) Scan over
np, the correlated jitter σbatch, s/T = 0.10 applies on a batch of 50 electrons. Each red circle
corresponds to 5000 independent trials.

R2-value for the 2ω-fitting cannot exceed A2
2ω/

(︁
A2

2ω + A2
4ω

)︁
, which causes an overestimation of

the uncertainty level. The 4ω-effect can be corrected if R2 is defined based on an extension of
Eq. (14):

Ffit(ti) = Bfit + α2 cos (2ωti) + β2 sin (2ωti) + α4 cos (4ωti) + β4 sin (4ωti). (28)

It should be noted that this leads to R2nbins ∼ χ
2(k = 4) for a random signal, which reduces the

plateau of the lower limit in Fig. 4(b) to
√︁
π/8 ≈ 0.63. Therefore, Eq. (28) is suggested to be

used only when there is clear evidence of the 4ω-component to avoid artifacts. The numerical
simulations are in Supplement 1.

6. Period-fitting uncertainty and spectral leakage in FFT

6.1. Propagation of the period-fitting deviation

So far, we have assumed that the oscillation period is precise. If the fitted period deviates by ∆T
from the true value, the fitted phase deviates by (to the lowest order):

∆φ ≈ πnT
∆T
T

. (29)

https://doi.org/10.6084/m9.figshare.15039294
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For cosine fitting, the period is retrieved via non-linear least-squares fitting of the reference
channel. Numerical simulations (see Supplement 1 for details) indicate that

σ

(︃
∆T
T

)︃
≈

0.8
nT

Bref
Aref

√︃
1

Nref
, (30)

and thus ∆φ ∼ N
(︁
0, 0.64π2/Nref · B2

ref/A
2
ref
)︁
. Since the same fitted T is applied to all channels,

Eq. (29) gives a constant systematic bias; the phase difference between the reference and target
channels, however, is unaffected. The uncertainty of the phase difference reads:

σ(φdiff) =

√︂
σ2(φref) + σ2(φtar). (31)

On the other hand, the period-fitting error results in a reduction of R2. For an ideal signal, the
effect to the lowest order can be calculated by direct expansion to the lowest order:

R2 ≈ 1 −
2 − 3/π2

6
(∆φ)2. (32)

Equations (30), (31), and (32) suggest that the period-fitting uncertainty has minor effect when
Nref ≫ Ntar.

6.2. FFT and spectral leakage

Although FFT uses the same principle of Eq. (14), the fitted period is restricted to an integer
fraction of the time range. If a single-frequency signal contains non-integer number of periods,
the oscillation is decomposed to all discrete frequencies, which is known as spectral leakage [60],
as illustrated in Fig. 6. Here we only take the largest Fourier component, yet it is possible to
reconstruct the signal with neighboring components, which results in an envelope, as shown in
Ref. [14]. The ∆φ caused by spectral leakage does not affect phase differences, but reduces the
R2-value, and ∆φ does not approach zero when Nref → ∞. Hence, the B/A-estimator (Eq. (22))
is preferred, provided that the statistical fluctuation is the main uncertainty source.

Fig. 6. Illustration of spectral leakage in FFT. (a) and (b) correspond to an ideal sinusoidal
signal with exactly 6 periods of oscillation, while (c) and (d) have 6.3 periods of oscillation.
(a) and (c) are the FFT spectra (amplitude) of the signals. The time-domain signal (blue
solid) and fitted signal (red dashed) in (b) and (d) are based on the non-zero FFT component
with the highest amplitude.

https://doi.org/10.6084/m9.figshare.15039294
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7. Weighting scheme

A typical RABBITT experiment is comprised of M individual experiments that are unequal
precision measurements with individual uncertainties determined by Eq. (31). Here we suggest
the weighting scheme used by the Particle Data Group (PDG) in particle physics [61]:

φ =

∑︁M
j=1 wjφj∑︁M

j=1 wj
, (33)

where the weight wj = 1/σ2
j . The uncertainty of the weighted mean value is:

σw
(︁
φ
)︁
= S′ ·

(︃ M∑︂
j=1

wj

)︃−1/2

, S′ = max{S, 1}, (34)

and the χ2-based factor

S =

√︄∑︁M
j=1

(︁
φj − φ

)︁2
/σ2

j

M − 1
(35)

indicates unaddressed uncertainty sources if S>1. For S ≤ 1, the reported uncertainty can be
regarded solely from the individual uncertainties. Alternatively, one can use the weighted sample
standard deviation:

sw
(︁
φ
)︁
=

⌜⃓⎷ ∑︁M
j=1 wj

(︁
φj − φ

)︁2
(Meff − 1)

∑︁M
j=1 wj

=

√︃
M − 1

Meff − 1
· S ·

(︃ M∑︂
j=1

wj

)︃−1/2

, (36)

where Meff =
(︁ ∑︁M

j=1 wj
)︁2
/
(︁ ∑︁M

j=1 w2
j
)︁
≤ M is the effective sample size [62], which reflects the

inequality of weights. Equation (34) gives the Type B uncertainty in the limit S′ = 1, whereas
Eq. (36) gives the Type A uncertainty if all measurements are given the same weight. Similar
formulae for the Type A uncertainties can also be found in Refs. [48–50]. If no systematic shift
of the time delay is present among the individual measurements, the two types of uncertainties
should be comparable.

8. Examples based on experimental data

Here we present two examples based on the same set of data from the laboratory-frame angular-
resolved RABBITT with Ar. The electrons are detected by coincidence measurements using
cold target recoil ion momentum spectroscopy (COLTRIMS) [63–65], which pairwise records
the 3-dimensional momenta of the photoelectron and photoion, and θ is defined as the angle
between the electron ejection and the polarization direction. The two examples show the cases
where the discrepancy is dominated by the statistical fluctuation and the variation of experimental
conditions, respectively, which is reflected by the S-value.

8.1. Angular-resolved time delays of each sideband

The angular distribution of counts is shown in Fig. 7(a). For each SB, the angular-resolved
time delays are referenced to the summed signal over all angles, where negative time delays at
higher angles are found (Fig. 7(b), (c)), which agrees with previous studies [32,51,66]. The mean
values and uncertainties calculated without weighting or with weighting by Eqs. (34) and (36)
are compared in Table 2 and in Supplement 1. S<1 indicates that the uncertainty is properly
addressed, which indeed explains the discrepancy between individual experiments, although in
some regions the uncertainty may be overestimated. Because the electron count rate (∼ 2 kHz) is

https://doi.org/10.6084/m9.figshare.15039294
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lower than the repetition rate (5 kHz), indicating that most electrons come from independent
shots, and the interval between two counts in the same channel is ∼ 1 s, during which jitter
already randomizes, the jitter is predominantly uncorrelated and can be treated as smearing effect.
Assuming that the background noise is small, the B/A-estimator is applicable, and the results
are listed in Supplement 1, where the S-value is typically greater but still less or close to 1. The
comparison of time delays obtained from individual experiments can be found in Supplement 1,
where the discrepancies are generally well covered by the error bars. Figure 7(b) and (c) compare
the results from the two estimators. Neither weighted mean value nor the uncertainty shows a
substantial difference.

Fig. 7. Angular resolved time delays of Ar in the laboratory frame. (a) shows the signal-
strength distribution (summed over all data acquisition times in an individual experiment).
(b) and (c) show the relative time delays (referenced to the summed signal over all angles
in each SB) based on cosine fitting with uncertainties determined by the B/A ratio and the
R2-value, respectively. The error bars correspond to the uncertainties determined by the
PDG method.

8.2. Time delays between sidebands

The phase difference between SBs, as given in Eq. (4), has contributions from both the attochirp
(τXUV) and the atomic time delay (τA). Here we focus on the precision of retrieving this total
time delay from the experimental data, while the assignment to each component and comparison
to theoretical calculations can be found in Ref. [31]. The relative time delays of SBs (with signal
summed over all angles and referenced to SB-12) are plotted in Fig. 8; the uncertainties obtained
by statistical approach and the R2-estimator are compared in Table 3 . We have intentionally used
all data measured in a period of about one week, including some individual experiments with

https://doi.org/10.6084/m9.figshare.15039294
https://doi.org/10.6084/m9.figshare.15039294
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Table 2. Angular-resolved time delays for Ar at SB-12 from 18 individual measurements with (w)
and without (r) weighting. The weighting is based on the R2-method

θ range (◦) ∆tr (as) ∆tw (as) sr
(︁
∆t
)︁

(as) σw
(︁
∆t
)︁

(as) sw
(︁
∆t
)︁

(as) Meff S

0 ∼ 10 47.3 44.9 5.8 6.2 5.9 13.3 0.81

10 ∼ 20 40.2 40.2 4.8 4.7 4.3 11.3 0.71

20 ∼ 30 32.4 32.6 3.3 4.8 3.8 11.8 0.64

30 ∼ 40 19.2 18.3 3.1 4.8 2.7 11.6 0.44

40 ∼ 50 -15.8 -13.4 5.6 5.8 4.3 12.7 0.63

50 ∼ 60 -82.5 -76.2 13.9 8.3 12.0 7.7 0.91

60 ∼ 70 -240.0 -230.5 34.2 18.0 24.4 10.3 1.10

70 ∼ 80 -470.7 -460.1 35.4 27.3 36.2 10.7 1.42

Table 3. Relative time delays of SBs referenced to SB-12 from 18 individual experiments with (w)
and without (r) weighting. The weighting is based on the R2-method

Sideband ∆tr (as) ∆tw (as) sr
(︁
∆t
)︁

(as) σw
(︁
∆t
)︁

(as) sw
(︁
∆t
)︁

(as) Meff S

SB-14 85.3 84.6 11.0 7.5 10.3 10.8 2.25

SB-16 461.6 461.6 34.7 18.1 22.7 11.8 3.69

SB-18 768.6 790.3 28.4 24.5 31.4 11.4 4.22

inappropriate spatial or temporal overlap (e.g. the inset panel of Fig. 8(a)) that yield barely visible
oscillations. The estimated uncertainty of these signals are large, and therefore they contribute
little to the final result. One can immediately notice that there are outliers with relatively small
statistical uncertainties, as compared in Fig. 8(b) and (c), where the relative phases between
SB-12 and SB-14 show noticeable differences. The S-values are significantly greater than 1,
which means that the discrepancy among individual experiments cannot be fully attributed to the
statistical fluctuations and the above-considered effects; this indicates that the attochirp of each
individual experiment may not stay constant. This is not surprising, since the gas pressure for
HHG was tuned every day to maximize the XUV flux, which is related with the phase matching
conditions and has an effect on the pulse structure [67–71]. It agrees with a previous observation

Fig. 8. (a) Relative time delays of SBs (referenced to SB-12) measured by 18 individual
experiments (error bars are estimated by the R2-method and are horizontally displaced to
avoid overlap) and their weighted average (bold dashed line, error bar obtained by the PDG
method). The beating patterns of 3 individual experiments are shown in the inset of (a), (b),
and (c). The green dashed lines in (b) and (c) are guide to the eye.
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that the attochirp varies on different days but remains stable during a few hours [31]. Besides,
the atomic phase can also be affected by the intensity of the dressing field [72] which varies
when the pump-probe overlap changes. Nevertheless, if channels are referenced within the same
sideband, as shown in Sec. 8.1, the effect is cancelled, which results in smaller S-values.

9. Conclusion

We have shown that the uncertainty of phase retrieval can be extracted along with the fitted phase
from the signal per se of a single experiment. We have proven that the statistical fluctuation
caused by the Poisson distribution of each bin gives σ(φfit) ≈

B
A

√︂
2
N (the B/A-estimator). This

expression is particularly concise, as the binning effect, uncorrelated jitter, and long-term drift
are included in the decrease of A (the smearing effect). For a given B/A ratio, the uncertainty is
inversely proportional to

√
N.

In order to include the correlated jitter (the shifting effect) and the background noise, the R2-
estimator: σ(φfit) ≈

√︂
1−R2

R2nbins
based on the coefficient of determination was proposed. Although

it formally depends on nbins, R2 is also a function of nbins, and the overall ratio is in accordance
with the B/A-estimator for the statistical fluctuation. The R2-estimator, however, is sensitive
to the 4ω-component of the signal and the spectral leakage when FFT is applied, while the
B/A-estimator is more robust.

Under the assumption that the phase jitter affects the electrons by constant batches (Eq. (13)),
we showed that the shifting effect is independent of nbins. If the background noise obeysσ2

noise ∝ B,
then its contribution to the uncertainty is also independent of nbins. The main effect of the bin
width is the binning effect, which reduces the A-value if the bins are too wide; otherwise finer
bins do not provide improvement of precision.

A weighting scheme based on the individual uncertainty was proposed, which allows one to
combine data of unequal qualities, as illustrated with real experimental data. The S-value allows
one to check whether the considered uncertainty sources explain the discrepancy among different
measurements, as demonstrated by the two examples. When the experimental conditions may
alter the expected value of the measured time delay (Sec. 8.2), if one conducts the experiment
with better monitoring, the expected outcome will fall on one of those individual experiments,
which may deviate from the average of individual experiments under varying conditions. It is
therefore suggested to search for the corresponding condition (e.g. HHG gas pressure, dressing
field intensity); it not only improves the repeatability and reproducibility, but also potentially
leads to new physical insight and discoveries.

Our quantitative uncertainty determination provides a framework of data analysis for future
work, which can be extended for the uncertainty analysis of TURTLE fitting and for the two-
dimensional energy–time delay RABBITT signal with overlapping or congested bands in the
energy domain [36–41]. The related works are in progress.
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