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5.1 Introduction
The purpose of this chapter is to manifest a quantum dynamical analogy of
intramolecular nuclear tunnelling and electronic charge migration, with
special emphasis on the corresponding nuclear and electronic fluxes. On
first glance, the two processes may appear so different that one may not
expect any analogy between them: on the one hand, nuclear tunnelling is a
reactive process that transforms a ‘‘reactant’’ isomer into a ‘‘product’’ isomer
by means of large-amplitude motions of the nuclei, in typical time domains
of picoseconds (ps) or even much longer. Reactants and products are centred
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at two different minima of the potential energy surface (PES) of the mo-
lecular system in its electronic ground state, and they are separated from
each other by the barrier of the PES. The system’s energy is below the barrier,
which means the reaction from the reactant to the product is classically
forbidden – it proceeds by quantum mechanical tunnelling through the
barrier. On the other hand, electronic charge migration is a non-reactive
process at much higher energies that involves not just the electronic ground
state. This allows the electronic charge to flow from one molecular site to
another, in typical time domains from few hundred attoseconds (as) to few
femtoseconds (fs); by comparison, nuclear motions appear to be nearly
frozen in this time domain.

The quantum dynamics of nuclear tunnelling has been investigated from
the early days of quantum mechanics1 up to today; for an outstanding ex-
ample of the present state-of-the-art, see the work by Fábri et al. on tun-
nelling isomerization of ammonia and its isotopomers, including
stereomutation of NHDT;2 see also the complementary chapters of this
book.3 For comparison, the first presentation of the quantum dynamics of
charge migration is in the 1944 textbook on quantum chemistry by Eyring
et al.;4 however, this was largely forgotten5 so the first experimental signa-
tures of the process6 came as a rediscovery that launched the renaissance of
the field, see for example ref. 7–12 and the surveys of the literature in ref. 13
and 14. A prominent example is the first joint experimental and theoretical
reconstruction of charge migration in the iodoacetylenic cation HCCI1.14,15

We call special attention to the two recent papers by Fábri et al. on
tunnelling of NH3 and NHDT,2 and by Kraus et al. on charge migration in
HCCI1,15 because they serve as important references for the subsequent
quantum dynamics simulations of similar processes in similar model
systems, the stereomutation of the CHFBr radical by nuclear tunnelling,
and electronic charge migration in the bromoacetylenic cation HCCBr1. The
results will be used to illustrate the analogy of nuclear tunnelling and
electronic charge migration.

The general quantum theory for the analogous processes, nuclear tun-
nelling and electronic charge migration, will be presented in Section 5.2,
with special focus on the nuclear and electronic fluxes, cf. ref. 16. In order to
emphasize the analogy, Section 5.2 uses common notations for both pro-
cesses. Illuminating applications with more special notations for the two
examples are given in Sections 5.3 and 5.4. Specifically, for the case of
nuclear tunnelling, we consider the umbrella inversion of the CHFBr radical,
as illustrated by the cartoon in Figure 5.1. Important properties of the system
have been discovered and analysed recently; see the joint experimental and
theoretical ref. 17 and 18. Section 5.3 presents the results that are essential
for the present purpose. Section 5.4 presents analogous new results for the
case of charge migration in HCCBr1, as illustrated by the cartoon in
Figure 5.2. The analogy of the results for nuclear tunnelling of CHFBr
(Section 5.3) and for charge migration in HCCBr1 of (Section 5.4) is
discussed in Section 5.5. The conclusions are given in Section 5.6.
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5.2 Quantum Theory
In order to establish the analogy of nuclear tunnelling and electronic charge
migration, we employ simple models. Examples will be presented in Sections
5.3 and 5.4, respectively. Refinements and extensions will be discussed in the
conclusions in Section 5.6. To begin with, we employ two-state models, with
two vibrational states for applications to nuclear tunnelling, and with two
electronic states for electronic charge migration. For convenience, we con-
sider the scenarios where one of the two states is the ground (g) state and the
other one is the next vibrationally or electronically excited (e) state. The two
states are represented by the corresponding quantum mechanical wave
functions Cg and Ce with energies Eg and Ee. To emphasize the analogy, we
employ the same notations for the two different phenomena, which means in
the cases of nuclear tunnelling and electronic charge migration, Cg, Ce and

Figure 5.1 Periodic stereomutation of the CHFBr radical by nuclear tunnelling, from
the reactant S-enantiomer (left) to the product R-enantiomer (right) along
the angle au for umbrella inversion, and back. (a) Illustration of the
stereomutation. The symmetric double-well potential energy curve V(au)
with two equivalent minima which support the two enantiomers is shown
as purple dashed line. The horizontal line is at the mean energy of the two
vibrational levels Eg and Ee for the ground and excited states of the lowest
tunnelling doublet – they coincide within graphical resolution. The level
splitting is DE¼Ee�Eg¼ 3.16 h c cm�1; the corresponding tunnelling
period is tstereo¼ h/DE¼ 10.57 ps. The horizontal line serves as baseline for
the densities rR(au) and rP(au) of the reactant (R, blue) and product (P, red).
The horizontal arrow symbolizes the nuclear flux from R to P during the first
half period, 0rtrtstereo/2. (b) Density difference Dr(au)¼ rP(au)� rR(au)
(black) and the resulting yield y(au) (green). The yield serves as spatial profile
of the flux, cf. eqn (5.28) and (5.29) and Figure 5.3(c).
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Eg, Ee represent nuclear and electronic wave functions and energies, re-
spectively. The wave functions depend on the specific coordinates of the
molecule (or the molecular radical or ion, or in general the molecular ‘‘model
system’’). For the time being, these coordinates will not be written down
explicitly. For simplicity, we consider scenarios of oriented model systems.

The wave functions Cg, Ce and energies Eg, Ee are evaluated as eigenfunctions
and eigenenergies of the time-independent Schrödinger equation (TISE)

H Cj¼ Ej Cj, j¼ g, e (5.1)

Figure 5.2 Periodic electronic charge migration in the linear HCCBr1 cation along
its axis z. (a) Cartoon of HCCBr1 with the nuclei fixed at the global
minimum structure of the precursor molecule HCCBr in the electronic
ground state ( ~X1 1S1). Initially, the cation is prepared in the reactant (R)
superposition state 1/O2(CgþCe) of the electronic ground state
Cg (g¼ ~X1 2P) and the first-excited state Ce (e¼ Ã1 2P). The corres-
ponding electronic eigenenergies are Eg and Ee, with energy gap
DE¼Ee�Eg¼ 2.74 eV. The reactant (R) state evolves periodically to the
product (P) superposition state, which is represented by 1/O2 (Cg�Ce)
(except for an irrelevant phase factor), and then back to R. The period for
one cycle R-P-R is tchm¼ h/DE¼ 1.51 fs. Also shown are the one-
dimensional axial densities of the valence electrons rR(z) (blue) of the
initial state (‘‘reactant’’ R) and rP(z) (red) for the corresponding ‘‘prod-
uct’’ (P) state; they are obtained by integrating the related 3D one-electron
densities of the valence electrons over the planes (x, y) perpendicular to
the molecular axis (z). The curved, nearly horizontal arrows symbolize the
flux of the valence electrons during the first half period 0rtrtchm/2,
mainly from the acetylenic moiety to the domain close to the bromine
nucleus. (b) The density difference Dr(z)¼ rP(z)� rR(z) (black) and the
resulting yield y(z) (green). The yield serves as spatial profile of the
electronic flux that is shown in Figure 5.4(c), cf. eqn (5.28) and (5.29).
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where H denotes the system’s model Hamiltonian. In the case of tunnelling,
the two states belong to the lowest tunnelling doublet of the molecular
system in its electronic ground state, embedded in a symmetric double-well
potential. Effects of nuclear and electronic couplings are assumed to be
negligible, i.e. the nuclear wave functions and energies Cg, Ce and Eg, Ee may
be evaluated in the frame of the Born–Oppenheimer approximation
(BOA).19,20 Likewise, in the case of charge migration, the electronic wave
functions and energies Cg, Ce and Eg, Ee of the system are evaluated using
the approximation of fixed nuclei, i.e. again in the frame of the BOA, without
consideration of the couplings between electrons and the nuclei. The effects
of the couplings will also be discussed in the conclusions.

For special cases, the wave functions Cg, Ce are real-valued, but in general
they are complex,

Cj¼cj exp(i dj), j¼ g, e, (5.2)

with real-valued functions cj and phases dj that depend on the coordinates.
We consider the scenario where the initial state of the system is prepared

as superposition state

C(t¼ 0)¼Cg CgþCe Ce. (5.3)

The coefficients Cg and Ce may be real, and they may be equal to each other
(e.g. Cg¼Ce¼ 1/O2), but in general they are complex and not equal to
each other,

Cj¼ cj exp(i Zj), j¼ g, e (5.4)

with real-valued amplitudes cjZ0 and phases Zj. The corresponding
initial populations (or occupation probabilities) of the ground and excited
states,

Pg(t¼ 0)¼ cg
2, Pe(t¼ 0)¼ ce

2 (5.5)

are normalized,

Pg(t¼ 0)þ Pe(t¼ 0)¼ cg
2þ ce

2¼ 1. (5.6)

The system’s time evolution is described in terms of the time dependent
wave function C(t). It is evaluated as solution of the time-dependent
Schrödinger equation (TDSE)

i �h d/dt C(t)¼H C(t) (5.7)

with initial value (5.3). The result is

C(t)¼Cg exp(�i Eg t/�h) CgþCe exp(�i Ee t/�h) Ce. (5.8)

The corresponding populations of states g and e are time independent,

Pg(t)¼ Pg(t¼ 0)¼ cg
2, Pe(t)¼ Pe(t¼ 0)¼ ce

2. (5.9)

This means that, for our scenarios, there are no transitions that transfer the
population between states g and e – the system evolves adiabatically.
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The time evolution of the system’s density is

s(t)¼ |C(t)|2¼ Pg sgþ Pe seþ 2 cg ce cg ce cos (DE t/�h�Dd�DZ).

(5.10)

Here

sg¼cg
2, se¼ce

2 (5.11)

denote the time-independent densities of the ground and excited states,

DE¼ Ee� Eg (5.12)

is the energy gap between the states, and

Dd¼ de� dg, DZ¼ Ze� Zg (5.13)

are the phase differences. Apparently, the density evolves periodically, with
period1

t¼ h/DE (5.14)

where h denotes Planck’s constant.
In the applications below, we consider the scenarios where the eigen-

functions are real-valued, such that Dd¼ 0 in eqn (5.10) and (5.13). More-
over, the results do not depend on the absolute phase of the wave function
C(t), which means we may set Zg¼ 0 and DZ¼ Ze in eqn (5.4), (5.10) and
(5.13). Eqn (5.10) then simplifies to

s(t)¼ |C(t)|2¼ Pg sgþ Pe seþ 2 cg ce Cg Ce cos (DE t/�h�DZ). (5.15)

For the present purposes, it is convenient to rewrite eqn (5.15) in the way
laid out in ref. 21, with proper adaption of the notation. Accordingly, we
employ the variable

t0 ¼ t� tDZ (5.16)

which denotes the time shifted by

tDZ¼DZ �h/DE¼ t DZ/2p. (5.17)

The densities at times t0 ¼ 0 and t0 ¼ t/2 when the cos term in eqn (5.15)
achieves its maximum and minimum values are labelled by R (‘‘reactant’’)
and P (‘‘product’’),

sR¼ Pg sgþ Pe seþ 2 cg ce Cg Ce (5.18)

sP¼ Pg sgþ Pe se� 2 cg ce Cg Ce, (5.19)

respectively. Let us take a minute here to discuss the definitions of the
‘‘reactant’’ and ‘‘product’’ in eqn (5.18) and (5.19). From a formalistic point
of view, the assignments of the right-hand sides of eqn (5.18) and (5.19) to
‘‘R’’ and ‘‘P’’ are arbitrary, because the signs of the real-valued wave func-
tions Cg and Ce are arbitrary – both Cg, Ce and �Cg, �Ce are solutions of
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the TISE [eqn (5.1)]. By convention, the sign of the wave function of the
ground state is set such that Cg is dominantly positive, but for Ce, there is no
such rule. That means that we are free to determine the sign of Ce such that
the assignment of ‘‘R’’ in eqn (5.18) conforms to the experimental prepar-
ation of the ‘‘reactant’’. The definition of the ‘‘product’’ in eqn (5.19) then
follows automatically. Applications will be demonstrated in Sections 5.3
and 5.4.

Using the density difference

Ds¼ sP� sR¼�4 cg ce Cg Ce (5.20)

the time evolution of the density (5.15) can be rewritten in compact form,

s(t)¼ sRþDs sin2(pt0/t). (5.21)

The first term in eqn (5.21) is the (time-independent) density of the reactant,
which serves as a reference. The second term accounts for the deviation of
the density at time t from the reference. The periodicity of the sin2-function
implies that the density alternates between s(t)¼ sR for t¼ 0, t, 2t, . . . and
s(t)¼ sP for t¼ t/2, 3t/2, 5t/2,. . .. Furthermore, eqn (5.20) and (5.21) show
that efficient periodic shifts of the density from the reactant to the product
and back call for good overlap of the wave functions Cg and Ce, or turning
the table, there is neither tunnelling nor charge migration if Cg and Ce do
not overlap. Eqn (5.20) and (5.21) also tell us that for the given wave func-
tions Cg and Ce of the ground and excited states, the most efficient shift of
the density is obtained if the product of the coefficients achieves its
maximum value

max cg ce¼ 1
2 for cg¼ ce¼ 1/O2, (5.22)

cf. eqn (5.6). That means, in the ideal case, the superposition state (5.3)
should be prepared with equal populations of the ground and excited states,
Pg¼ Pe¼ 1

2.21

In principle, the wave functions Cg, Ce and the densities s(t), sg, se and Ds
in eqn (5.15) and (5.21) depend on all coordinates of the system. It is helpful
to reduce these high-dimensional (high-D) densities to low-D ones, for ex-
ample to 3D or even to 1D ones. In the subsequent applications to nuclear
tunnelling and to electronic charge migration, we shall employ 1D densities
which depend on the corresponding nuclear or electronic coordinate q, re-
spectively. The 1D densities will be denoted by the letter ‘‘r’’, in order to
distinguish them from the high-D densities that are denoted by ‘‘s’’. Thus
eqn (5.21) is reduced to

r(q, t)¼ rR(q)þDr(q) sin2(p t0/t). (5.23)

Various methods for reducing high-D to 1D densities are detailed in ref. 16.
Two examples will be demonstrated in Sections 5.3 and 5.4.

Next, we determine the nuclear or electronic fluxes F(q, t) during tunnelling
and charge migration, respectively. Fluxes and densities are complementary
to each other, which means at a given time t, the density r(q, t) of the system
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tells us where it is, whereas the flux F(q, t) quantifies its temporal rate and
direction of change. In 3D models, the flux F(q, t) at time t determines the
number of particles that flow through a surface perpendicular to the co-
ordinate q per time, at the instant t. Positive and negative values of F(q, t)
mean that the particles flow along q, or in the opposite direction, respectively.

In 1D models, the fluxes F(q, t) are equal to the 1D flux densities j(q, t).16

They are related to the corresponding densities r(q, t) by means of the 1D
continuity equation,

@r(q, t)/@tþ @j(q, t)/@q¼ 0 (5.24)

with boundary conditions that depend on the system.16 In the present ap-
plications, we consider scenarios where both the density as well as the flux
are negligible for values of q smaller than some minimum value, qmin,

r(q, t)¼ 0, F(q, t)¼ j(q, t)¼ 0 for qrqmin. (5.25)

The 1D flux can then be evaluated by integration of the continuity eqn (5.24),
with the boundary conditions (5.25). The result is

F q; tð Þ¼ j q; tð Þ¼ �
Ð q

qmin
dq0 @rðq0; tÞ=@t: (5:26)

We re-emphasize that the densities and flux (densities) carry comple-
mentary information about the system. For example, in applications where
one has complete knowledge about the time evolution of the density r(q, t),
this still does not suffice to calculate the flux F(q, t) or the flux density j(q, t),
because one also needs boundary conditions such as in eqn (5.25).22 Turning
the tables, two identical or practically indistinguishable densities r(q, t) may
be associated with two entirely different fluxes or flux densities, depending
on the boundary conditions.23

For the present 1D two-state models with time evolutions of the density
specified by eqn (5.23), the time derivative in eqn (5.26) can be carried out
analytically. As a result, the boundary condition (5.25) yields the 1D flux or
flux density

F q; tð Þ¼ j q; tð Þ¼ �
Ð q

qmin
dq0Drðq0Þp=t sinð2pt0=tÞ: (5:27)

Accordingly, the flux depends exclusively on the time-dependent part of the
density, eqn (5.15) or (5.23). It evolves periodically, with the same period t as
the density, eqn (5.14), but with phase shift p/2. As a consequence, maximum
or minimum shifts of the density at the times when cos(2pt0/t)¼�1 correlate
with zero fluxes, and vice versa.

Finally, it is instructive to consider the yield y(q) of the flux,13,24 which
means the time integrated number of particles that pass via q when they flow
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from the domain qminrq0rq to the complementary domain qrq0 during
the half period 0rt0rt/2,

y qð Þ¼
Ð t=2

0 dt0jðq; t0Þ ¼ �
Ð q

qmin
dq0Drðq0Þ: (5:28)

The 1D flux or flux density (5.27) can, therefore, also be expressed as

F(q, t)¼ j(q, t)¼ y(q) p/t sin (2pt0/t). (5.29)

Eqn (5.29) tells us that the 1D flux or the 1D flux density evolves with robust
spatial profile y(q), and this is modulated by the periodic time evolution
factor, sin (2pt0/t). Alternating maximum and minimum values of the fluxes
in forward and backward directions from R to P and from P to R are achieved
at times t0 ¼ t/4, 5t/4, 9t/4,. . . and t0 ¼ 3t/4, 7t/4, 11t/4,. . ., respectively. The
maximum absolute values of the fluxes are reciprocal to the period t, or they
are proportional to the energy gap DE between the levels of the excited and
ground states, cf. eqn (5.14).

5.3 Application to the Stereomutation of CHFBr by
Nuclear Tunnelling

Our first application of the general quantum theory for the analogy of nu-
clear tunnelling and electronic charge migration is to the stereomutation of
the CHFBr radical; as an example of nuclear tunnelling, see Figure 5.1. There
are several motivations for the choice of this system:

Experimentally, the stereomutation of CHFBr is initiated by enantiomer
selective preparation of the precursor (S)-CHFBrI, and by photo-dissociating
it according to the scheme17,18

(S)-CHFBrI-(S)-CHFBrI*-(S)-CHFBr� I-(R)-CHFBr� I

-(S)-CHFBrþ I-(R)-CHFBrþ I-(S)-CHFBrþ I-. . .. (5.30)

Specifically, an ultrashort UV laser pump-pulse (wavelength 266 nm, full
temporal width at half maximum, FWHM¼ 70 fs) excites the educt
(S)-CHFBrI from its electronic ground state ~X11A to the dissociative state
Ã1 1E(1). This induces two processes, namely C–I bond breaking as well as
stereomutation from the (S)-enantiomer to the (R)-enantiomer, and back.
The two processes are launched simultaneously, which means the first cycle
of stereomutation starts during photodissociation. After photodissociation,
the stereomutation persists in the CHFBr radical. Experimental details are
presented in ref. 17 and 18. Suffice it here to say that the bond breaking is
measured by means of time-resolved photo-ion yield spectroscopy (TR-PIS)
as well as photo-electron pump (266 nm)–probe (133 nm) spectroscopy
(TR-PES). The stereomutation is monitored by means of a new technique:
time-resolved photoelectron circular dichroism (TR-PECD). Accordingly,
the photodissociation is completed after about 70 fs, whereas the first
cycle of stereomutation (‘‘(S)-CHFBr� I-(R)-CHFBr� I-(S)-CHFBrþ I’’ in
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eqn (5.30)) takes about 200 fs; subsequently, it slows down to the ps time
domain. The experimental TR-PECD spectra suggest stereomutation of the
CHFBr radical by tunnelling,

(S)-CHFBr-(R)-CHFBr-(S)-CHFBr-. . . (5.31)

[compare with the second line of eqn (5.30)], with tunnelling period
tstereoE10 ps, for a full cycle from R to P and back to R. The results presented
in ref. 17 and 18 provide the first experimental observation of stereomuta-
tion in the fs-to-ps time domain. This attracts our attention to the model
system, calling for its quantum dynamics simulation.

The present investigation of the stereomutation of CHFBr by tunnelling,
eqn (5.31), is encouraged furthermore by recent quantum dynamical
simulations of the analogous stereomutation of the isotopically substituted
ammonia molecule2

(S)-NHDT-(R)-NHDT-(S)-NHDT-. . .. (5.32)

Here the representative nuclear wave function was propagated in full
dimensionality (full-D) on the PES of ammonia in the electronic ground state,
without considerations of any couplings to more excited states. The PES was
evaluated by means of quantum chemistry state-of-the-art ab initio methods.
Similar quantum dynamics simulations were also performed for the umbrella
inversion of the non-substituted ammonia by tunnelling.2 The results for the
full-D nuclear fluxes of 14NH3 were then compared with our previous quan-
tum dynamical results based on a two-state model25 with empirical 1D model
potential.26 The full-D and 1D results agree with each other almost quanti-
tatively.2 This supports the present 1D quantum dynamical two-state model
simulation of the stereomutation (5.31) by nuclear tunnelling.

Thus, we perform a quantum dynamics model simulation of the stereo-
mutation of the CHFBr radical (5.31). Specifically, we employ a 1D model for
the nuclear tunnelling along the angle au for the umbrella (u) inversion of
CHFBr, as illustrated in Figure 5.1(a). The angle au thus takes the role of the
generic coordinate which is called ‘‘q’’ in Section 5.2. The corresponding 1D
model Hamiltonian is

H(au)¼� �h2 @ 2/2 I @ au
2þ V(au). (5.33)

The first term accounts for the kinetic energy of the angular nuclear motion
along au, with moment of inertia I¼mH RCH

2, where mH¼ 1.0079u is the
mass of the hydrogen atom, and RCH is the C–H bond length which is
approximately constant during the umbrella inversion, RCH¼ 1.08 Å. This
expression for the kinetic energy is equivalent to the term used in ref. 25. The
details of the construction of this kinetic energy operator, by reduction of
the full-D expression to the 1D model, are presented in ref. 18, based on the
general approach of ref. 27 to applications in terms of arbitrary curvilinear
coordinates.

The second term in eqn (5.33) is the potential energy curve along au,
illustrated in Figure 5.1(a). It is a symmetric double-well potential. The ‘‘left’’
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and ‘‘right’’ potential wells support the reactant (R) and product (P) enan-
tiomers, which are centred at the potential minima at auR¼�381 and at
auP¼�auR ¼þ0.66 rad (þ381), respectively. For convenience, we define
corresponding domains of R (auo0) and P (au40). These domains are sep-
arated from each other by the potential barrier at au¼ aub¼ 0, also called the
transition state,¼j . The corresponding cartoons of R and P in Figure 5.1(a) are
mirror images of each other, with the mirror plane in vertical orientation
perpendicular to the paper plane. The potential curve V(au) has been calcu-
lated by means of the ORCA program package,28 by performing a relaxed scan
at the Møller–Plesset-2 level of quantum chemistry, with the correlation
consistent valence basis set from the Karlsruhe basis set family, specifically
valence triple-zeta and two sets of polarization functions and a set of diffuse
functions def2-TZVPPD for use with the Stuttgart–Dresden–Bonn relativistic
effective core potentials on all atoms,29 see ref. 18 for the details.

The TISE (5.1) with model Hamiltonian (5.33) is solved for the two real-
valued eigenfunctions Cg and Ce and for the energies Eg and Ee of the ground
and first excited vibrational states by means of the discrete variable repre-
sentation (DVR) method30 on a fine, regularly spaced grid in the angular range
�p/3 radraurþp/3 rad (�601raurþ601). The resulting energies and the
tunnelling splitting DE¼ Ee� Eg¼ 3.16 h c cm�1 are illustrated in Figure 5.1(a).
The corresponding time for one cycle R-P-R of the stereomutation (5.33) is
tstereo¼ h/DE¼ 10.57 ps. The general notation ‘‘t’’ of Section 5.2 is thus spe-
cified as ‘‘tstereo’’, for the present application to stereomutation of CHFBr.
(Note that the value 5.285 ps that is given in ref. (18) applies to the half cycles
R-P and P-R.) The symmetry of the double-well potential V(au) implies that
Cg(au)¼Cg(�au) and Ce(au)¼�Ce(�au) are symmetric and antisymmetric
with respect to the umbrella inversion angle au, respectively; these symmetry
relations for the wave functions impose various symmetry properties on the
nuclear densities and the nuclear fluxes and these are specified below. The
signs of the wave functions are chosen such that they are consistent with
the experimental preparation of the reactant enantiomer [¼(S)-CHFBr], see the
discussion after eqn (5.18) and (5.19). Specifically, we set Cg(au)40, in accord
with the standard convention, and Ce(au) is positive in the domain of the
reactants (auo0) but negative in the domain of the products (au40).

The resulting nuclear angular densities rR(au) and rP(au) of the reactant
(R, red) and product (P, blue) embedded in the left and right wells of V(au)
are also illustrated in Figure 5.1(a). For symmetry reasons, rP(au)¼ rR(�au).
Both rR(au) and rP(au) have single maxima that are located close to the left
and right minima of the double minimum potential at auR and auP,
respectively. The values of rR(au) and rP(au) at au¼ 0, i.e. at the barrier of the
potential curve, are negligible.

Figure 5.1(b) has the nuclear density difference Dr(au)¼ rP(au)� rR(au)
(black) and the nuclear yield y(au) (green), cf. eqn (5.20) and (5.28).
For symmetry reasons, Dr(au)¼�Dr(�au), Dr(au¼ 0)¼ 0 and y(au)¼ y(�au).
The value of Dr(au) is negative in the reactant domain but positive in the
product domain. The yield is always positive. A significant property of the

From Nuclear Fluxes During Tunnelling to Electronic Fluxes During Charge Migration 177

D
ow

nl
oa

de
d 

by
 E

T
H

-Z
ur

ic
h 

on
 1

/2
9/

20
21

 9
:0

8:
07

 A
M

. 
Pu

bl
is

he
d 

on
 2

2 
Se

pt
em

be
r 

20
20

 o
n 

ht
tp

s:
//p

ub
s.

rs
c.

or
g 

| d
oi

:1
0.

10
39

/9
78

18
39

16
03

70
-0

01
67

View Online

https://doi.org/10.1039/9781839160370-00167


yield y(au) – with important consequences for the nuclear fluxes F(au, t) – is
that it has a plateau in the domain of the potential barrier, with maximum
value at the top of the barrier (au¼ 0).

In accord with the experimental initiation of the stereomutation of the CHFBr
radical,17,18 and also for convenience, we set the time t¼ 0 when the nuclear
tunnelling starts from the reactant (S)-enantiomer. This means that the initial
superposition of the wave function (5.3) is prepared with equal coefficients,
Cg¼Ce¼ 1/O2, and the phases in eqn (5.4) are equal to zero. This scenario
simplifies the application of the general theory of Section 5.2. In particular, the
time shift in eqn (5.17) is equal to zero, such that t0 ¼ t in all subsequent
equations for the densities and for the fluxes or the 1D flux densities.

The resulting time evolution of the nuclear angular density r(au, t) during
the first cycle (0rtrtstereo¼ 10.57 ps) of the periodic stereomutation (5.31)
of CHFBr by umbrella inversion is illustrated in Figure 5.3(a). For symmetry
reasons, r(au, t)¼ r(�au, tstereo/2� t)¼ r(�au, tstereo/2þ t)¼ r(au, tstereo� t).
This implies the special symmetry relation r(au, tstereo/4)¼ r(�au, tstereo/4)¼
r(au, 3tstereo/4)¼ r(�au, 3tstereo/4). Accordingly, the initial density of the
reactant (t¼ 0) tunnels to the product (t¼ tstereo/2) and then back to the
reactant (t¼ tstereo). At the intermediate times t¼ tstereo/4 and t¼ 3tstereo/4,
the total nuclear density is separated into two equivalent parts for the reactant
and for the product. Thus, during the first half period (0rtrtstereo/2), the
nuclear density grows for the product at the expense of the reactant, without
any significant appearance at the potential barrier, and vice versa during the
second half period (tstereo/2rtrtstereo).

Figure 5.3(b) illustrates the corresponding changes of the nuclear angular
density r(au, t) compared to the initial density r(au, t¼ 0)¼ rR(au).
For symmetry reasons, Dr(au, t)¼ r(au, t)� rR(au)¼�Dr(�au, t)¼
Dr(au, tstereo� t)¼�Dr(�au, tstereo� t), and the transfer of nuclear density
from R to P and back to R implies that Dr(au, t)o0 in the reactant domain
(auo0), in contrast with Dr(au, t)40 in the product domain (au40).

Finally, the periodic nuclear flux F(au, t) [or the equivalent 1D flux density
j(au, t)] along the umbrella inversion angle au during the first cycle
(0rtrtstereo¼ 10.57 ps) is shown in Figure 5.3(c). In accord with eqn (5.29),
the angular profile of the flux is equal to the yield y(au), and this is modu-
lated by the sinusoidal time evolution with period tstereo. As a consequence,
the nuclear angular flux has the symmetry relations F(au, t)¼ F(�au, t) and
F(au, t)¼ F(au, tstereo/2� t)¼�F(au, tstereo/2þ t)¼�F(au, tstereo� t). Appar-
ently, the nuclear angular flux F(au, t) is positive during the first half cycle
(0ototstereo/2) when R tunnels along au to P, whereas it is negative during
the second half cycle (tstereo/2ototstereo) when P tunnels back to R. At
the switches of the directions, F(au, t)¼ 0 for t¼ 0, tstereo/2, tstereo, 3tstereo/2,
etc. In contrast, the ‘‘local’’ maximum and minimum values of the flux
F(au, t) at umbrella inversion angle au are obtained at t¼ tstereo/4, 5tstereo/4,
9tstereo/4,. . . and at 3tstereo/4, 7tstereo/4, 11tstereo/4,. . ., respectively.

Quite remarkable is the fact that the ‘‘global’’ maxima of the ‘‘forward’’
flux from R to P, and the minima of the ‘‘backward’’ flux from P to R, occur at
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au¼ 0, i.e. at the potential barrier where the nuclear density is always ex-
ceedingly small. Moreover, in the entire domain of the barrier, the values of
the flux are just slightly below (above) those maximum (minimum) values –
the angular shape of the flux, i.e. the yield, has a plateau in the domain of the
potential barrier, cf. Figure 5.1(b). This result, which may appear paradoxical
at first glance, can be rationalized by the following interpretation:31 the
nuclei of the CHFBr radical prefer the two equivalent global minimum
structures, either R or P, and they try to avoid the structure of the ‘‘transition
state’’ (¼j ) at the potential barrier. However, the radical is prepared initially
in the superposition state (5.3) – this is not in an eigenstate, i.e. it is non-
stationary. Hence quantum mechanics forces the radical to undergo periodic

Figure 5.3 Time evolution of the periodic stereomutation of the CHFBr radical by
nuclear tunnelling, from the reactant (R) S-enantiomer to the product
(P) R-enantiomer along the angle au for umbrella inversion, and back,
during the first period, 0rtrtstereo¼ 10.57 ps; compare with Figure 5.1.
(a) Nuclear density r(au, t). The value 0.008 rad�1 of r(au, t) at the planar
configuration (au¼ 0) is very small compared to the maximum values
2.622 rad�1 close to the potential minima. (b) Difference in the nuclear
density r(au, t) at time t minus the initial density of the reactant,
r(au, 0)¼ rR(au). (c) One-dimensional (1D) nuclear flux F(au, t), from R to P
and back. At t¼ tstereo/2, the flux changes sign, hence F(au, t¼ tstereo/2)¼ 0.
The 1D flux is equal to the 1D nuclear flux density j(au, t). The results
(a)–(c) are illustrated by color-coded contour plots.
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stereomutation from R via ¼j to P and then from P via ¼j back to R, and so
on. Since the nuclei of CHFBr dislike the geometry of the transition state,
they make it through ¼j as fast as possible, i.e. with maximum velocity. The
nuclear flux density may be written as nuclear density times a velocity
field.23,32 The very-high tunnelling velocity thus enables the maximum value
of the 1D flux density, or the flux, at the potential barrier, in spite of the very
low value of the density.

5.4 Application to Electronic Charge Migration in
HCCBr1

Let us now switch gears from the rather slow nuclear tunnelling in the
typical time domain from picoseconds (ps) to even much longer times,1 to
the ultrafast electronic charge migration in the typical time domain from few
hundred attoseconds (as) to few femtoseconds (fs). Our second application
of the general quantum theory for the analogy of nuclear tunnelling and
electronic charge migration (Section 5.2) is thus to charge migration in the
bromo-acetylenic cation, HCCBr1. Again, there are several motivations for
the choice of this system.

The HCCBr1 cation is similar to the HCCI1 cation, which serves as a key
example. The first joint experimental and theoretical reconstruction and
control of charge migration in HCCI1 was demonstrated recently by Wörner
with partners and coworkers,15 see also ref. 14. Here we summarize some
important details of their reconstruction in order to set up a model that will
then allow us to carry out analogous quantum dynamics simulation of
charge migration in HCCBr1. For this purpose, we centre attention on a
specific scenario of their experiments, namely, at first, they orient the neu-
tral linear precursor molecule HCCI along an axis that serves as a laboratory
fixed z axis, with the C–I bond pointing into the direction zZ0. By analogy,
we shall assume that HCCBr1 is oriented along z, with the origin of the
z-coordinate at the C nucleus of the C–Br bond pointing to zZ0. The generic
coordinate ‘‘q’’, which was introduced in Section 5.2, is thus specified as ‘‘z’’,
for the present application.

After orientation, an intense laser pulse (maximum intensity closely above
1014 W cm�2, wavelength 800 nm, duration about 30 fs, polarization per-
pendicular to the z-axis) causes tunnel ionization of the neutral precursor,
precisely at the selective peak of the laser cycle with maximum electric field
strength. The tunnel ionization takes (presumably much) less than 200 as. It
prepares the cation in a superposition (5.3) of its electronic ground state
(g¼ ~X1 2P) and the first excited state (e¼ Ã1 2P). For the example of HCCI1,
the corresponding electronic energy gap is DE¼ Ee� Eg¼ 2.23 eV, at the
geometry of the global minimum geometry of the neutral precursor HCCI.
Within the next ca. 1.7 fs, the electric field changes sign and drives the
photo-electron back to the cation. Upon re-collision, the system generates
high harmonics that are then used for spectroscopic analysis of the cation.
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This allowed the authors of ref. 15 to determine the coefficients in eqn (5.3),
with a time resolution of about 100 as. Accordingly, from the perspective of
the neutral precursor, the cation is generated with an electron hole centred
at the halogen. This can be rationalized because it is easier to photo-detach
an electron from a halogen such as iodine or bromine, compared to the
hydrogen or carbon atoms of the acetylenic moiety. Changing the per-
spective from considerations of the electron hole to electrons, the ‘‘reactant’’
cation HCCI1 (and, by our assumption, also HCCBr1) is created with some
excess electronic charge in the acetylenic moiety.

The authors of ref. 15 checked carefully that the initial state (5.3) is not
contaminated by any other states. This provides a two-state (g, e) scenario of
charge migration in the cation, along its z-axis, perfectly ready for application
of the general theory of Section 5.2. The charge migration proceeds in quasi-
field-free environment, because the laser field remains perpendicular to the
axis of the cation, such that it cannot induce any further electronic transi-
tions. The authors of ref. 15 then carried out quantum dynamics simulations
of the charge migration in HCCI1, starting from the initial state (5.3) and
using the model of fixed nuclei. They also checked that the populations of the
two states do not change due to any other transitions, i.e. the charge
migration is adiabatic, in accord with the general theory in Section 5.2,
cf. eqn (5.8). As a result, they discovered the periodic migration of the electron
hole, from the initial location at the iodine atom to the acetylenic moiety,
and back. In the case of HCCI1, the period of charge migration is
tchm¼ h/DE¼ 1.85 fs. The generic notation ‘‘t’’ in Section 5.2 is thus replaced
by ‘‘tchm’’ for the present application to charge migration. In the comple-
mentary consideration of the excess electronic charge, it flows from its initial
preferential localization in the acetylenic moiety [electronic density rR(z) of
the ‘‘reactant’’] preferably to the halogen atom [electron density rP(z) of the
‘‘product’’], and back, during one cycle of charge migration with period tchm.

As résumé of the key ingredients for the present model of HCCBr1, the
authors of ref. 15 reconstructed the charge migration in HCCI1 by means of
quantum dynamics simulations, cf. eqn (5.8), starting from the initial
superposition state (5.3) for the two-state scenario. The nuclei were assumed
to be frozen during the period tchm¼ h/DE¼ 1.85 fs, suggesting the model of
fixed nuclei.

In addition to the pioneering work of ref. 15, we could reconstruct the flux
of the valence electrons along the nuclear axis, during charge migration in
HCCI1.21 For this purpose we employed the same initial state (5.3) and used
the same model (two states, fixed nuclei) as in ref. 15. In principle, the total
electronic flux should also include the contribution of the core electrons.
They travel with the nuclei,16 however, and since the nuclei are considered to
be frozen, the core electrons do not contribute to the electronic flux.

The example of the successful joint experimental and theoretical re-
construction of the electronic charge migration15 and the electronic flux21 of
the valence electrons in HCCI1 motivates the present analogous quantum
dynamics simulation of the charge migration of the valence electrons in
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HCCBr1. Accordingly, we employ the two-state model for fixed nuclei.
Moreover, we adapt the same methods of ab initio quantum chemistry for
the calculations of the geometric and energetic properties of HCCBr1 as for
HCCI1; for the details, see ref. 33. Specifically, the nuclei of HCCBr1 are
frozen in the global minimum geometry of the precursor molecule HCCBr in
its ground state ~X1 1S1, as illustrated in Figure 5.2(a). The corresponding
lengths of the H–C, C�C and C–Br bonds are 1.063 Å, 1.208 Å and 1.798 Å,
respectively. The electronic Hamiltonian H in the TISE (5.1) consists of the
operators of the kinetic energies of all electrons, and the operators for the
Coulomb interactions of all electrons and the fixed nuclei. We also investi-
gated the effects of spin–orbit coupling, but they turn out to be negligible for
the present purpose.33

The TISE (5.1) is solved for the electronic wave functions Cg and Ce and
energies Eg and Ee of the electronic ground state (g¼ ~X1 2P) and the first
excited state (e¼ Ã1 2P) at the fixed nuclear geometry. The gap is
DE¼ Ee� Eg¼ 2.74 eV. The related period of charge migration is tchm¼ h/
DE¼ 1.51 fs.

The initial state is constructed as superposition (5.3) of Cg and Ce. For the
present purpose, i.e. for the demonstration of the analogy of nuclear tun-
nelling and electronic charge migration, we employ the same coefficients
Cg¼Ce¼ 1/O2 as in Section 5.3, with the same consequences and simplifi-
cations, e.g. the time shift is equal to zero such that t0 ¼ t, etc., cf. eqn (5.16)
and (5.17). As discussed in Section 5.2, this choice yields the most efficient
flux; for the present application this means the most efficient charge mi-
gration with maximum electronic flux; the present electronic flux in HCCBr1

will, therefore, be more efficient than in the example HCCI1 with the ex-
perimentally determined complex and non-equal coefficients, cf. ref. 15 and
21. Irrespective of the different coefficients for the initial superposition state
(5.3), we still adapt an important property of the example HCCI1, namely,
from the perspective of the neutral precursor, it is prepared with electron
hole density centred on the halogen, or turning the tables, the excess elec-
tron density accumulates in the HCC moiety. Accordingly, we determine the
signs of the electronic wave functions Cg and Ce such that the ‘‘reactant’’
and ‘‘product’’ electron densities sR(z) [eqn (5.18)] and sP(z) [eqn (5.19)] are
prepared with excess valence electron density accumulated in the HCC
moiety and at the Br nucleus, respectively; see the discussion after eqn (5.18)
and (5.19).

In practice, we first calculate the 3D one-electron densities of the valence
electrons in the ground state [sg(x, y, z)] and the excited state [se(x, y, z)]
together with the 3D one-electron density difference

Ds(x, y, z)¼�2Ne

Ð
P0dqel Cg(qel) Ce(qel) (5.34)

where ‘‘
Ð
P0dqel’’ symbolizes the sum over all electron spins and the integral

over the spatial coordinates of all electrons but one, and Ne is the number of
valence electrons; compare with eqn (5.20) applied to the present case with
equal coefficients, eqn (5.22). Subsequently, the 3D one-electron densities of
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the valence electrons sg(x, y, z), se(x, y, z) and Ds(x, y, z) are integrated over x
and y in order to obtain the corresponding 1D axial (z) electron densities of
the valence electrons, rg(z), re(z) and Dr(z), respectively. The electron yield
y(z) can then be calculated according to eqn (5.28),

y zð Þ¼ �
Ð z

zmin
dz0Drðz0Þ (5:35)

with reasonable choice of the lower integration limit (Dr(z)E0 for zozmin).
The axial electron densities of the ‘‘reactant’’ [i.e. the density at (t¼ 0)
and the ‘‘product’’ (the density at t¼ tchm/2) are then calculated
as rR(z)¼ rg(z)þ re(z)�Dr(z)/2 and rP(z)¼ rg(z)þ re(z)þDr(z)/2, compare
with eqn (5.18) and (5.19)]. Finally, the time evolution of the electron density
r(z, t) and the flux F(z, t) are evaluated by the general expressions (5.23),
and (5.28) and (5.29) with the substitution q-z and t0 ¼ t.

The resulting axial one-electron densities of the valence electrons rR(z)
and rP(z) of the ‘‘reactant’’ and ‘‘product’’ cation HCCBr1 are shown in
Figure 5.2(a). They are normalized to the number of valence electrons,
Ne¼ 1þ 4þ 4þ 7� 1¼ 15. Apparently, rR(z) and rP(z) have similar overall
shapes, with two peaks for the local maxima of the electron densities near to
the centre of the C�C bond and at the Br nucleus. These peaks are separated
by local minima of the densities in the C–Br bond. Most important for the
present purposes, however, are the differences between rR(z) and rP(z). Ap-
parently, the ‘‘reactant’’ rR(z) accumulates slightly more excess electron
density in the acetylenic moiety than the ‘‘product’’ rP(z), whereas the
‘‘product’’ rP(z) is more strongly peaked at the bromine nucleus than the
‘‘reactant’’ rR(z). This preparation of rR(z) and rP(z) in HCCBr1 is consistent
with the example HCCI1 for the chosen experimental scenario.14,15 From
this result, one may already anticipate that the dominant flux of the excess
electron density in HCCBr1 during the first half period 0ototchm/2 is from
the acetylenic moiety to the Br nucleus. This is symbolized by the arrows in
the cartoon at the top of Figure 5.2(a).

Figure 5.2(b) shows the difference Dr(z)¼ rP(z)� rR(z) of the axial one-
electron densities of the ‘‘product’’ minus the ‘‘reactant’’. Essentially, Dr(z)
is negative and positive in the domains of the acetylenic moiety and the Br
nucleus, respectively. The corresponding global minima and maxima of
Dr(z) peak at the carbon nucleus of the C–Br bond, and at the Br nucleus,
respectively. The switch from dominantly negative to positive values of Dr(z)
occurs in the C–Br bond, near to the local minima of the densities rP(z) and
rR(z). In addition, Dr(z) has several local maxima and minima that are,
however, much less pronounced compared to the global extrema. The overall
shape of the function Dr(z) suggests distinguishing the ‘‘domains of the
reactant and the product’’ as the domains where Dr(z) is essentially negative
and positive, respectively. The definition of the border zb between the two
domains is somewhat arbitrary, however, due to the small local maxima and
minima of Dr(z). For reference, we set zb¼ 0.50a0� this is the position near
to the carbon nucleus of the C–Br bond where Dr(zb) ¼ 0.
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Figure 5.2(b) also has the yield y(z) which is obtained as negative integral of the
density difference Dr(z), cf. eqn (3.35). The prominent features of Dr(z) that are
discussed above imply that y(z) is essentially positive, with a plateau type feature
in the sub-domain of the C–Br bond which corresponds to the local minima of
rP(z) and rR(z) at z¼ 1.4a0. The global maximum of y(z) is at the border z¼ zb,
which is close to these local minima, but slightly shifted towards the carbon
nucleus of the C–Br bond. Close inspection reveals that the yield is negative in the
domain well beyond the Br nucleus, albeit with negligibly small absolute values.
This is a marginal feature, however, and it is difficult to say whether this is a real
phenomenon, or just an artifact due to the fact that the underlying methods
of quantum chemistry adapted from ref. 33 are state-of-the-art, but not perfect.

The resulting time evolution of the axial one-electron density r(z, t) of the
valence electrons of HCCBr1 during the first cycle of charge migration
(0ototchm¼ 1.51 fs) is shown in Figure 5.4(a). At first glance, the density

Figure 5.4 Time evolution of the periodic electronic charge migration in the linear
HCCBr1 cation along its axis z, during the first period, 0rtrtchm. Initially,
the cation is prepared in the ‘‘reactant’’ (R) superposition state
1/O2 (CgþCe) of the electronic ground state Cg (g¼ ~X1 2P) and the
first excited state Ce (e¼ Ã1 2P). At t¼ tchm/2, it arrives at the ‘‘product’’
(P) superposition state 1/O2(Cg�Ce) (except for an irrelevant overall phase
factor). (a) Time evolution of the one-dimensional (1D) electronic density
r(z, t) of the valence electrons, from R to P and back to R. (b) Difference in
the electronic density r(z, t) at time t minus the initial density r(z, 0)¼ rR(z).
(c) 1D electronic flux F(z, t), equal to the 1D electronic flux density j(z, t).
During the time interval 0ototchm/2 the flux is from R to P. At t¼ tchm/2,
it changes direction, hence F(z, t¼ tchm/2)¼ 0. Subsequently from
tchm/2ototchm, the flux is from P back to R. The results (a)–(c) are
illustrated by color-coded contour plots.
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appears to be rather robust, with two peaks in the C�C bond and at the Br
nucleus, separated by the local minimum in the centre of the C–Br bond. Close
inspection reveals, however, that during the first and second half cycles, a
relatively small part of the density flows from the initial accumulation in the
C�C bond to the Br nucleus, and back to the C�C bond, respectively. It is quite
remarkable that this apparent shift of what we may call the ‘‘axial excess
electron density’’ proceeds without any significant changes in the overall
density at its local minimum at the centre of the C–Br bond. This effect appears
more pronounced in Figure 5.4(b) which shows the difference Dr(z, t)¼ r(z, t)
�rR(z) of the axial one-electron density of the valence electrons at time t minus
the initial density r(z, t¼ 0)¼ rR(z). Obviously, it evolves with temporal sym-
metry Dr(z, t)¼Dr(z, tchm� t) such that during the first half cycle, the initial
axial excess electron density in the C�C bond is depleted to the benefit of the
density at the Br nucleus, and vice versa during the second half cycle, without
any significant changes [Dr(zE1 a0, t)E0] of the density r(z, t) in a wide range
around z¼ 1.85a0 near to its local minimum. Close inspection also reveals a
marginal effect of electron depletion and recovery in the domain beyond the Br
nucleus, but as for the discussion of Dr(z) in Figure 5.2(b), it is not clear
whether this is a real, albeit very small effect, or an artifact.

Finally, Figure 5.4(c) documents the time evolution of the axial electronic
flux F(z, t). Obviously, it proceeds with robust spatial profile given by
the yield y(z) shown in Figure 5.2(b), modulated by the periodic sinusoidal
function, with corresponding temporal symmetry F(z, t)¼ F(z, tchm/2� t)¼
�F(z, tchm/2þ t)¼�F(z, tchm� t). Accordingly, during the first and second
half cycles, the dominant flux of the excess electron density is from the
acetylenic moiety via the sub-domain of the C–Br bond with minimum
density to the Br nucleus, and back, with maximum absolute values
max|F(z, t)| at z¼ zb for t¼ tchm/4, 3tchm/4, 5tchm/4, 7tchm/4, etc. There are
also marginal fluxes in opposite directions, in the domain beyond the Br
nucleus, [hardly visible on the colour code scale of Figure 5.4(c)], but, as
discussed before, it is not clear whether these are real, albeit negligible
effects, or artifacts.

5.5 Comparison of the Results for Stereomutation of
CHFBr by Nuclear Tunnelling and for Axial
Electronic Charge Migration in HCCBr1

In this section, we compare the results derived in Sections 5.3 and 5.4 for
stereomutation of CHFBr by nuclear tunnelling and for axial electronic
charge migration in HCCBr1. For this purpose, we inspect the corres-
ponding analogous panels (a), (b), etc. of Figures 5.1 and 5.3, and 5.2 and 5.4,
respectively, keeping in mind the underlying theory presented in Section 5.2.

As anticipated in the introduction, Figures 5.1(a) and 5.2(a) are entirely
different, because they have the cartoons of the nuclear and electronic
processes and the corresponding densities of the ‘‘reactants’’ and
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‘‘products’’ that are so entirely different. The nuclear and electronic energy
gaps DE between the levels of the ground and excited nuclear and electronic
states that are involved in the processes differ by more than three orders of
magnitude. As a consequence, the resulting periods t¼ h/DE also differ by
more than three orders of magnitude.

In spite of the enormous qualitative and quantitative differences between
the systems and processes illustrated in Figures 5.1(a) and 5.2(a), the rest of
the figures reveal impressive analogies. These will be detailed below. For this
purpose, we switch back to the generic notation used in Section 5.2, i.e. we
use the period ‘‘t’’ and the coordinate ‘‘q’’, instead of the individual ‘‘tstereo’’
or ‘‘tchm’’ and ‘‘au’’ or ‘‘z’’, respectively. The notation ‘‘qb’’ means the border
between the domains of the reactant (R, qoqb) and the product (P, q4qb),
corresponding to the domains ‘‘auo0’’ or ‘‘zozb’’ and ‘‘au40’’ or ‘‘z4zb’’,
respectively. When we talk about the ‘‘densities’’ or the ‘‘fluxes’’ (plural!)
below, we always mean the corresponding quantities for the two processes:
nuclear tunnelling and electronic charge migration.

Close inspection of the remaining Figures 5.1(b) and 5.3 for nuclear
tunnelling (Section 5.3) and 5.2(b) and 5.4 for electronic charge migration
(Section 5.4) reveals the equivalence of the following phenomena for the two
applications.

(i) The density differences Dr(q)¼ rP(q)� rR(q) of the reactant (R) and
the product (P) are essentially negative in the domain of R, but
positive for P, cf. Figures 5.1(a) and 5.2(a). The word ‘‘essentially’’
here emphasizes the most prominent properties and disregards the
marginal deviations discussed in Section 5.4, and which are actually
so small that it is hard to say whether they are real, albeit with
entirely negligible effects, or just artifacts.

(ii) The yields y(q) have their maxima at the border qb between the
domains of the reactant and the product. Moreover, the yields have
plateaus near to their maxima, cf. Figures 5.1(a) and 5.2(a).

(iii) The time evolutions of the densities r(q, t) and of the fluxes F(q, t)
are periodic, with period t, cf. Figures 5.3 and 5.4.

(iv) The time evolutions of the differences Dr(q, t)¼ r(q, t)� r(q, t¼ 0) of
the densities at time t minus the initial densities r(q, t¼ 0)¼ rR(q)
have temporal symmetries, Dr(q, t)¼Dr(q, t� t), cf. Figures 5.3(b)
and 5.4(b).

(v) Likewise, there are temporal symmetries for the fluxes, F(q, t)¼
F(q, t/2� t)¼�F(q, t/2þ t)¼�F(q, t� t), cf. Figures 5.3(c) and 5.4(c).

(vi) The density differences Dr(q, t) are essentially negative in the
reactant domains but positive in the product domains. The values of
Dr(q, t) are negligible for values of q close to the borders qb between
the two domains, cf. Figures 5.3(b) and 5.4(b). This means that
during the full cycles (0otot), the densities, or part of them, are
shifted from R to P, and then back to R, without any significant
changes in the densities at the border between R and P. This result
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for the density differences Dr(q, t) is of course confirmed by the time
evolutions of the densities, cf. Figures 5.3(a) and 5.4(a).

(vii) The fluxes F(q, t) are essentially positive, i.e. from R along q to P
during the first half cycles (0otot/2) but negative, i.e. from P back to
R during the second half cycles (t/2otot). They vanish for t¼ 0, t/2,
t, etc. with periodic continuations. At all other times (t¼j 0, t/2, t, etc.),
F(q, t) has extreme values at the borders qb between the reactant and
product domains. The absolute maxima and minima of the fluxes are
obtained at the borders qb at times t¼ t/4, 3t/4, and then with
periodic continuations at 5t/4, 7t/4, etc., cf. Figures 5.3(c) and 5.4(c).

(viii) The fluxes F(q, t) have plateaus in the vicinities of their maxima or
minima, cf. Figures 5.3(c) and 5.4(c).

In brief, all phenomena (i)–(viii) imply that the densities, or part of the
densities, are shifted periodically from R to P and then back from P to R,
during one cycle with period t. The processes proceed such that during the
first half cycle, P grows at the expense of R, and vice versa during the second
half cycle, without any significant variations of the densities at the borders
qb between the reactant and product domains. This is achieved by fluxes
with plateau-type shapes and maximum or minimum values half-way be-
tween R and P, or between P and R.

The similarity of the phenomena (i)–(viii) reveal and document the
analogy of the two processes, nuclear tunnelling and electronic charge
migration, at least for the quite realistic two-state scenarios we employed in
Sections 5.2–5.4.

5.6 Conclusions
We have evaluated the time evolutions of the densities and the fluxes of two
different processes of two entirely different model systems and discovered
close analogies in the quantum dynamics. The first case study is for periodic
stereomutation from the oriented non-linear (S)-CHFBr to (R)-CHFBr and
back to (S)-CHFBr by coherent nuclear tunnelling, with period
tstereo¼ 10.57 ps. Here (at least one of) the nuclei move with rather large
amplitudes, and the electrons remain in the electronic ground state. The
second case is periodic electronic charge migration in the oriented linear
HCCBr1 cation, with much shorter period tchm¼ 1.51 fs. On this time scale,
the nuclei are essentially frozen, and the electrons evolve coherently in the
electronic-ground and first-excited states. The analogies of the quantum
dynamics are documented in Figures 5.1(b) and 5.3 for nuclear tunnelling,
and in Figures 5.2(b) and 5.4 for electronic charge migration, respectively,
and they are listed as eight common features (i)–(viii) in Section 5.5.

In the context of this book,3 we would like to conclude by extending a
working hypothesis,24 namely, the analogies of the quantum dynamics of
nuclear tunnelling and electronic charge migration suggest that, not only
the stereomutation of CHFBr but also the charge migration in oriented
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HCCBr1, share common features of tunnelling. To support this hypothesis,
let us first recall (at least) three kinds of quantum mechanical nuclear
tunnelling that are documented in the literature. The first and ‘‘standard’’
type of tunnelling is ‘‘tunnelling through a potential barrier V¼j ’’, or briefly
‘‘potential tunnelling’’.1–3 Here the barrier V¼j separates two domains of the
molecular system that may be referred to as the domains of the ‘‘reactant’’
(R) and of the ‘‘product’’ (P). The total energy of the system is below
the barrier, EoV¼j . As a consequence, transitions from R to P or from P to R
are classically forbidden. Nevertheless, they are allowed by quantum
mechanics – ‘‘potential tunnelling’’ is a quantum effect. No doubt, the
stereomutation of CHFBr proceeds by potential tunnelling.

The second type of tunnelling is ‘‘dynamical tunnelling’’, discovered by
Davis and Heller.34 As in the case of potential tunnelling, dynamical tun-
nelling is a quantum effect that enables the transition between two molecular
domains even though it is classically forbidden. In this case, however, the
classical constraint is quite different from the traditional constraint EoV¼j ,
namely, it is a ‘‘dynamical constraint.’’ It may arise at higher energies E4V¼j ,
and in fact, it may arise even in systems that do not possess any potential
barrier at all. In a classical picture, for example, the system may be prepared
with specific initial conditions such that it evolves along one of two separate
stable periodic orbits that co-exist at the same total energy E. As the name
suggests, these orbits are periodic, which means that, in the frame of clas-
sical mechanics, the system must stay on its orbit; it must not ‘‘hop’’ to the
other periodic orbit. The word ‘‘stable periodic orbit’’ indicates that if one
prepares the system in a sufficiently near neighbourhood of the periodic
orbit, e.g. in a narrow torus about the orbit, it still cannot ‘‘hop’’ into the
corresponding torus about the other orbit. In quantum mechanics, the tori
about the two different classical periodic orbits correspond to two different
wave functions that extend along the orbits. Davis and Heller have shown
that if one prepares the molecular system in a wave function that corresponds
to one of two separate classical orbits, then it can make a transition to the
other wave function that extends along the other orbit, even though this is
classically forbidden. This process is called ‘‘dynamical tunnelling’’.34

The third kind of tunnelling was discovered by Hashimoto and
Takatsuka35 for systems that possess two separate instable periodic orbits, at
the same total energy, in the frame of classical mechanics. The word ‘‘in-
stable’’ indicates that if one prepares the system with initial conditions close
to one of the periodic orbits, then it may hop to the neighbourhood of the
other orbit. The time evolution of this type of transition has some important
characteristic features. Namely, at first, the system cycles close to the initial
periodic orbit. Next, after (very!) many such cycles, it makes a sudden hop to
the vicinity of the other periodic orbit. Then it continues to cycle about the
other periodic orbit, again for many times. This temporal pattern reminds us
of the properties of potential tunnelling discussed above, i.e. the systems
prefer to stay in the domains of R and P for rather long times until they make
a sudden transition from R to P, or vice versa.23 Hashimoto and Takatsuka

188 Chapter 5

D
ow

nl
oa

de
d 

by
 E

T
H

-Z
ur

ic
h 

on
 1

/2
9/

20
21

 9
:0

8:
07

 A
M

. 
Pu

bl
is

he
d 

on
 2

2 
Se

pt
em

be
r 

20
20

 o
n 

ht
tp

s:
//p

ub
s.

rs
c.

or
g 

| d
oi

:1
0.

10
39

/9
78

18
39

16
03

70
-0

01
67

View Online

https://doi.org/10.1039/9781839160370-00167


have shown that quantum mechanically, if one prepares the system in the
corresponding initial wave function that extends along one of the instable
periodic orbits, then its density decreases to the benefit of the density close
to the other orbit. This transition occurs without any significant appearance
of density in the domains between the two orbits.

The quantum dynamics of the present charge migration in HCCBr1 pro-
ceeds in a way that reminds us of the type of dynamical tunnelling discovered
by Hashimoto and Takatsuka.35 For example, the time evolution of the elec-
tronic density difference documented in Figure 5.4 is analogous to the time
evolution of the nuclear density during dynamical tunnelling, as documented
in figure 7 of ref. 35. This leads to our working hypothesis: charge migration in
oriented HCCBr1 can be described as dynamical tunnelling. Of course, there
are also important differences. Most important: Hashimoto and Takatsuka
describe nuclear dynamical tunnelling,35 whereas the present charge migra-
tion would correspond to electronic dynamical tunnelling.

Our working hypothesis is also supported by a re-consideration or re-
interpretation of the strikingly different time scales, tstereo¼ 10.57 ps versus
tchm¼ 1.51 fs. The rather long period tstereo is for nuclear potential tunnel-
ling. It is well known that the corresponding times for electronic potential
tunnelling are much shorter. For example, the preparation of the initial
superposition state (5.3) by photo-ionization of the neutral precursor
proceeds by electronic potential tunnelling in the time domain below
100 as.14,15 Likewise, nuclear dynamical tunnelling as discovered by
Hashimoto and Takatsuka is a rather slow process in the ps or even much
longer time domain. By analogy, electronic dynamical tunnelling should
take much shorter times, actually in the sub-fs time domain for the transi-
tion in one direction, tchm/2¼ 750 as.

The present analogy has been discovered for rather simple model systems:
they are oriented, they are prepared initially as a superposition of two
eigenstates (the ground state and the first-excited states), the quantum
dynamics evolve adiabatically, i.e. without any transitions between the two
states or any others, and they are essentially along one degree of freedom
(DOF), without any considerations of the effects of other DOFs that cause
decoherence,36–40 see also ref. 33. It is a challenge to investigate whether the
analogy of nuclear tunnelling and electronic charge migration persists in
more demanding systems, i.e. in molecules that are prepared in a super-
position of more than two states, or with diabatic transitions, or with add-
itional significant DOFs, or with competing effects of decoherence.
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