Is there a mathematical brain?

 Psychological correlates of mathematical expertise

Developmental trajectories

in mathematics

Promoting factors
of expertise development
Deliberate practice What and how much?
Domain-general abilities Intelligence, working memory, ...
Domain-specific abilities Cardinality, ordinality, arithmetic, ...
Domain-general personality Big Five, Need for Cognition, ...
Domain-specific personality Math-related attitudes, motivation, etc.

Psychological correlates

of mathematical expertise

- First systematic investigation of cognitive abilities and personality traits related to math expertise
- $N=105$ adults
- Mathematicians: Individuals who study or have studied math
- Non-mathematicians: Subjects with no to minimal math content (Teaching, Law, Translation, History, Philosophy, ...)

Matching for

1) gender, age, professional experience
2) general intelligence

Matched sample

$N=84$ (42 math, 42 non-math)

Table 1. Descriptive statistics and Bayesian statistics (Bayesian t-test) for mathematicians (Math.) and nonmathematicians (Non-math.)

Variable	Math. $M(S D)$	Non-math. $M(S D)$	BF01 No difference	BF10 Difference
Age (years)	29.31 (12.00)	29.07 (8.62)	4.37	0.23
Experience (years)	10.35 (11.92)	9.37 (8.68)	4.06	0.25
General intelligence (raw score)	176.57 (22.85)	171.79 (23.67)	2.98	0.34
Numerical intelligence (raw score)	58.29 (12.67)	51.74 (13.55)	0.55	1.81
Verbal intelligence (raw score)	42.81 (7.57)	46.36 (7.25)	0.46	2.16
Figural intelligence (raw score)	75.48 (10.53)	73.69 (12.42)	3.52	0.28
Mathematical achievement (raw score)	28.41 (2.74)	18.79 (6.04)	0.00	408,800,000,000
Hours spent with mathematics	19,351 (21,325)	4,651 $(12,139)$	0.01	116.76
Math grade (1 to 5) ${ }^{\text {b }}$	1.19 (0.46)	2.33 (1.00)	0.00	3,928,000
Grade average (1 to 5) ${ }^{\text {b }}$	2.13 (2.19)	1.75 (0.69)	2.64	0.38

Results

Domain-general cognitive abilities

Results

Domain-general cognitive abilities

Results

Domain-general cognitive abilities

Results

Domain-general cognitive abilities

Results

Domain-specific cognitive abilities

Results

Domain-specific cognitive abilities

Results

Domain-specific cognitive abilities

Results

Domain-specific cognitive abilities

2a. Math. vs. Non-math.

Results

Domain-specific cognitive abilities

Arithmetic task (Multiplications)

[^0]
Results

Domain-general and domain-specific personality traits

3a. Math. LE vs. Math. HE

Summary: Promoting factors

of expertise development

Deliberate practice First gross estimate

Domain-general abilities Patterning time: duodecimal, sexagesimal systems

Domain-specific abilities
Numerical distance effect: more accurate representations
Simple arithmetic: better arithmetic fact network

Domain-general personality Openness
Math anxiety: less
Domain-specific personality
Attitudes: more enjoyment, confidence, motivation Self-evaluation: higher

Conceptual knowledge

The „Shtulman" interference effect

Consistent: naïve $=$ scientific theories

Inconsistent: naïve \neq scientific theories
Δ : interference effect

Conceptual knowledge

and math proficiency

Research questions:

- Does the „Shtulman" interference effect generalize to the formal domain of mathematics?
- Is the interference effect related to mathematical achievement and inhibitory control?

Method:

- $N=39$ adult students
- 200 statements from 5 math domains
(fractions, algebra, units and geometry, probability, basic concepts)
- Further measures:
- Math competence test
- Arithmetic fluency
- Math grade
- Picture-word task (inhibitory control)

Results: Accuracy

Results: Reaction times

Results: Correlations

Table 1
Standardized Regression Coefficients for Mathematical Achievement and Inhibitory Control as
Predictors of Interference Strength

	Mathematical achievement			Inhibitory control	
Interference in mathematics	Mathematical competence	Arithmetic fluency	Math grade	Accuracy	RT
Accuracy	-.68***	-.31*	. $37^{* *}$	-. 24	-. 05
RT	-. 14	-. 14	. 15	. 05	. 04

Note. $\mathrm{RT}=$ reaction time. $N=62$ for all variables except math grade $(N=58)$. A lower math grade indicates higher mathematical achievement. ${ }^{*} p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

Conceptual knowledge

 and math expertise

Michaela Meier Dennis Wambacher PhD student Master student

Research questions:

- Do mathematicians and non-mathematicians differ in the „Shtulman" interference effect?

Method:

- $N=61$ adults (30 mathematicians, 31 non-mathematicians)
- 100 statements from 4 math domains
(fractions, algebra, units and geometry, basic concepts)

Variable	Math.	Non-math.		
	$M(S D)$	$M(S D)$		
Age (years)	$23.80(3.93)$	$24.61(4.35)$	$p=.471$	$d=-0.19$
Experience (years)	$4.11(4.00)$	$4.28(3.48)$	$p=.895$	$d=-0.04$
General intelligence (raw score)	$191.52(28.18)$	$183.97(25.72)$	$p=.348$	$d=0.28$
Numerical Intelligence (raw score)	$61.96(12.74)$	$59.48(13.26)$	$p=.526$	$d=0.19$
Verbal intelligence (raw score)	$45.20(7.23)$	$48.00(8.90)$	$p=.213$	$d=-0.34$
Figural Intelligence (raw score)	$84.12(15.87)$	$76.81(12.97)$	$p=.063$	$d=0.53$
Math achievement (raw score)	$\mathbf{2 8 . 3 6 (3 . 2 8)}$	$\mathbf{2 0 . 9 0 (5 . 2 1)}$	$\boldsymbol{p}<.001$	$\boldsymbol{d}=\mathbf{1 . 7 0}$

Preliminary results

Summary: Conceptual knowledge

Interference effect

- „Shtulman" interference effect (in accuracy)
- is negatively related to mathematical competence (also beyond inhibitory control)
- is smaller in mathematicians
- Mathematicians may be better able to inhibit naïve theories in mathematics

Is there a mathematical brain?

Next steps in our research

- Development of
- expert memory tasks
- mathematical creativity tasks
- Further comparisons of math and non-math
- Brain activity during mathematical Shtulman paradigm
- Brain structure

Stephan E. Vogel Associate Prof.

Dennis Wambacher Psych.-techn. ass.

Clemens Brunner Senior Scientist

Alina Hohensinger Psych.-techn. ass.

Silvia Haberhofer Secretary

BMBWF

BUNDESMINISTERIUM FÜR BILDUNG, WISSENSCHAFT UND FORSCHUNG

WKOE

FШF

Der Wissenschaftsfonds.

FN M NF

Fonds national suisse
Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Thank you!

https://psychologie.uni-graz.at/en/educationalneuroscience/researching/

[^0]: 2a. Math. vs. Non-math.

