Misconceptions Never Fully Disappear

Andrew Shtulman Department of Psychology, Occidental College

Intuitive Theories

Before learning scientific theories we construct intuitive theories of the relevant phenomena.

They are *theories* in that they support explanation, prediction, intervention, and counterfactual reasoning.

They are *intuitive* because they are less precise and less accurate than scientific theories.

Charting Intuition

Astronomy	Geocentric \rightarrow heliocentric model	Vosniadou & Brewer, 1994 Siegal et al., 2004
Evolution	Need-based → selection-based theory	Shtulman, 2006
		Brumby, 1984
Fractions	Integer-based -> division-based model	Moss & Case, 1999
		Hartnett & Gelman, 1998
Heat	Substance-based → kinetic theory	Slotta & Chi, 2006
		Wiser & Amin, 2001
Illness	Behavioral -> microbial theory	Au et al., 2008
		Solomon & Cassimatis, 1999
Inheritance	Trait-based → genetic theory	Springer & Keil, 1989
		Duncan et al., 2009
Life	Psychological → vitalist theory	Slaughter & Lyons, 2003
		Johnson & Carey, 1998
Light/sound	Substance-based → wave-based theory	Mazens & Lautrey, 2003
		Linder & Erickson, 1989
Matter	Tactile → particulate theory	Smith, 2007
		Nakhleh et al., 2005
Motion	Impetus-based -> inertia-based theory	McCloskey, 1983
		Clement, 1982

scienceblind

Why Our Intuitive Theories About the World Are So Often Wrong

andrew shtulman

Intuitions About Matter

Intuitions About Life

Conceptual Change

From Chi (1992)

Reemergence of Animism

Participant group	Animals	People	Plants	Inanimates
Healthy young	95	85	75	0
Healthy elderly	100	95	75	0
Mild AD	100	67	22	0
Moderate AD	94	60	27	13

Zaitchik & Solomon (2008)

Animism in Undergrads

Goldberg & Thompson-Schill (2009)

Animism in Bio Professors

Goldberg & Thompson-Schill (2009)

Our Research

Using a speeded statement-verification task, we've found that intuitive theories compete with scientific theories:

- (1) Across content domains
- (2) Across age
- (3) Across education
- (4) Across contexts
- (5) Despite targeted instruction

Method

Participants (150 undergrads) verified 200 statements as quickly as possible, 20 in each of 10 domains.

Half were true; half were false.

Half were consistent with intuition; half were not.

Materials

Consistent statements:

True on T1 and T2 ("Rocks are composed of matter") False on T1 and T2 ("Numbers are composed of matter")

Inconsistent statements:

True on T1, false on T2 ("Fire is composed of matter") False on T1, true on T2 ("Air is composed of matter")

Other Examples

<u>Domain</u>	<u>T1</u>	<u>T2</u>	Statement
Heat	True	True	Ovens produce heat.
	False	False	Rain produces heat.
	True	False	Coats produce heat.*
	False	True	Pressure produces heat.*
Evolution	True	True	Humans are descended from tree-dwelling creatures.
	False	False	Humans are descended from plants.
	True	False	Humans are descended from chimpanzees.*
	False	True	Humans are descended from sea-dwelling creatures.*
Motion	True	True	A moving bullet loses speed.
	False	False	A moving bullet loses weight.
	True	False	A moving bullet loses force.*
	False	True	A moving bullet loses height.*

10 Domains, 50 Concepts

Domain Concepts

Astronomy Planet, star, solar system, lunar phase, season Evolution Common ancestry, phylogeny, variation, selection, adaptation Fractions Addition, division, conversion, ordering, infinite density Heat, heat source, heat transfer, temperature, thermal expansion Heat Illness Contagion, contamination, infection, sterilization, microbe Inheritance Heritability, chromosome, dominance, expression, mutation l ife Life, death, reproduction, metabolism, kinship Light/sound Light, color, sound, propagation, reflection Matter Mass, weight, density, divisibility, atom Motion Force, velocity, acceleration, momentum, gravity

Response Accuracy

Response Latency

An Enduring Phenomenon?

Tensions between science and intuition may decrease with age and education.

We administered the same task to 48 older adults, M age = 65.7 (range = 50 to 87).

Some were professional scientists.

Accuracy by Age

Latency by Age

Accuracy by Education

Latency by Education

Can We Be Primed to Do Better?

A statement like "air has weight" is difficult to verify because we represent two senses of weight:

Scientific:Product of mass and gravityIntuitive:Heft

We sought to prime one sense or the other with images interspersed between statements (n = 100 undergrads).

We focused on the domains of life and matter.

Materials

240 statements per domain = 80 items x 3 predicates

Biological predicates

Reproduces Respires Needs nutrients **Physical predicates**

Has weight Has a temperature Occupies space

Sample Biological Primes

Sample Physical Primes

Accuracy by Prime

Latency by Prime

Can We Be Trained to Do Better?

Priming produced a small increase in accuracy but no increase in speed.

Would direct instruction close the gap between intuitive and counterintuitive statements? (n = 138 undergrads)

Design

Pretest: 240 speeded statement verifications, half on life and half on matter (intermixed)

Tutorial: 7-minute tutorial on life or matter, followed by attention checks

Posttest: 240 different statement verifications, half on life and half on matter

Tutorials

The tutorials emphasized the scientific properties of life and matter and refuted common misconceptions.

Analysis

Pre-post differences are analyzed by whether they were in the domain targeted by instruction.

Life tutorial: Instructed = life, uninstructed = matter Matter tutorial: Instructed = matter, uninstructed = life

Accuracy: Uninstructed Domain

Accuracy: Instructed Domain

Latency: Uninstructed Domain

Latency: Instructed Domain

Would Children Show the Effect?

Adults learn the properties of life and matter as children; our tutorial was more of a reminder than a tutor.

Perhaps the effect of instruction is more potent for those in the midst of constructing a scientific theory.

We administered the same task and the same tutorial to 78 children between 5 and 12 (M age = 8.7).

Accuracy: Uninstructed Domain

Accuracy: Instructed Domain

Latency: Uninstructed Domain

Latency: Instructed Domain

Conclusions

Counterintuitive scientific ideas are verified more accurately given the right:

(1) Context(2) Instruction(3) Expertise

But response lags persist, implying that intuitive ideas are elicited automatically and must be suppressed.

Implications

Message from 1980-2010: students hold intuitive theories *prior to* instruction.

Message today: students hold intuitive theories *even after* instruction.

Students need help differentiating beliefs/behaviors based on intuition from those based on science.

Acknowledgments

Postdoc: Andrew Young

RAs: Charlene Chen, Giovanni Dieffenbach, Alex Flood-Bryzman, Isabel Geddes, Tori Halote, Kelsey Harrington, Eushrah Hossain, Nick Hung, Helen Jiang, Jasper Laca, Grace Lee, Alex Levin, Devon Mann, Onye Nwabueze, Blaire Sellers, Lea Theodorou, Josh Valcarcel, Linneen Warren, Claire Weider, Stefanie Young

<u>References</u>: www.oxy.edu/thinking-lab

Questions?

