How Scary is Automation Risk? Evidence from a Large Survey Experiment

Maria Cattaneo¹ Christian Gschwendt² Stefan C. Wolter³

¹SKBF ²University of Bern ³University of Bern, SKBF, CESifo, IZA

I FLAM Conference 2024

April 4, 2024

Motivation

- Historically, digital technologies have substituted low-skilled and routine workers while complementing high-skilled and non-routine cognitive workers (Katz & Murphy, 1992; Autor et al., 2003)
- Recent advances in AI affect high-skill non-routine tasks, putting new types of jobs at risk of automation (e.g., Eloundou et al., 2023; Felten et al., 2023; Hui et al., 2023)
- Workers can respond to labor demand shifts by
 - retraining & upskilling (Di Giacomo & Lerch, 2023; Golin & Rauh, 2022; Hess et al., 2023; Lergetporer et al., 2023)
 - adjusting their occupational choice (Goller et al., 2023)
- $\rightarrow\,$ What is the willingness to pay of individuals to reduce their exposure to automation risk?

Summary

Research Question: What is the willingness to pay (WTP) of individuals to reduce their exposure to automation risk?

Empirical Strategy & Data: Discrete-choice experiment as part of a large-scale survey among 5,952 Swiss residents between 25 and 60

Findings:

- On average, individuals are willing to accept a 19% lower annual gross wage to work in a job with a 10 ppt. lower automation risk
- WTP varies with respondent age, gender, education, nationality, and risk-aversion

Conclusions: Job automation is considered a substantial threat, and people are willing to give up a lot to work in a more secure job

Discrete Choice Experiment

Survey respondents

- 1 are asked to imagine they had a 40-year-old child
- 2 are presented with a choice set of two *career paths* → Career paths vary in 4 *attributes*: highest education, hierarchical position, annual gross wage, and job automation risk
- 3 need to choose the preferred career path for their child

Discrete Choice Experiment

Example choice set:

Imagine you had a 40-year-old daughter today.

Which of the two career paths would you prefer for her, career path A or career path B?

	Career path A	Career path B	
Highest educational	University of applied	Apprenticeship certificate	
attainment	sciences degree		
Hierarchical position	Low (without	Low (without	
Hierarchical position	management position)	management position)	
Annual gross wage (CHF)	100,000	130,000	
Job automation risk	30%	45%	

Attributes & Levels

Discrete Choice Experiment

Survey respondents

- 1 are asked to imagine they had a 40-year-old child
- 2 are presented two career paths

 \rightarrow Career paths vary in 4 <code>attributes:</code> highest education, hierarchical position, wage, and job automation risk

3 need to choose the preferred career path for their child

Every respondent completes 7 varying choice sets

Applying a mixed logit model, respondent choices are used to approximate their preferences for career path attributes

h

Results

Mixed logit estimates and willingness to pay for career path attributes

	Coefficients	WTP
Automation Risk (10 ppt.)	-0.790***	-15305.5***
	(0.0247)	(371.7)
University Degree	-0.570***	-11035.6***
	(0.0424)	(917.7)
UAS Degree	-0.0375	-726.3
	(0.0328)	(642.9)
Top Management Position	0.0664**	1286.4**
	(0.0257)	(490.1)
Annual Gross Wage (10,000 CHF)	0.839***	
	(0.0272)	
N	83,328	83,328

* p < 0.05, ** p < 0.01, *** p < 0.001

Heterogeneities Interactions

Results

	Full Sample
Male	-686.4*
	(333.7)
Age: 35 - 49	717.8
	(427.7)
Age: 50+	2102.0***
	(482.1)
Below Secondary Degree	2367.7**
	(814.0)
Secondary Degree	1953.6***
	(353.3)
Swiss Citizen	1244.4**
	(384.3)
Parent	-433.6
	(358.1)
Trait: Risk-seeking	-989.5**
	(339.6)
Constant	15943.8***
	(527.1)
Ν	5948

Individual determinants of WTP for a lower automation risk

Conclusions

- Job loss due to automation technology is considered a substantial threat
 - ightarrow Typically implies diminished opportunities to secure similar positions
- Possible manifestations of individuals' identified WTP:
 - Switching to more secure occupations with lower pay
 - Investing time and money to train for a more secure occupation
 - Saving more to allow for early retirement, thus reducing the risk of future job automation
 - Preferences for policies and regulations to protect against job automation, even if economically disadvantageous

Thank you!

Contact: christian.gschwendt@unibe.ch

Literature

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly journal of economics, 118(4), 1279-1333.

Di Giacomo, G., & Lerch, B. (2023). Automation and Human Capital Adjustment: The Effect of Robots on College Enrollment. Journal of Human Resources.

Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). Gpts are gpts: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130.

Felten, E. W., Raj, M., & Seamans, R. (2023). Occupational heterogeneity in exposure to generative ai. Available at SSRN 4414065.

Golin, M., & Rauh, C. (2022). The Impact of Fear of Automation.

Goller, D., Gschwendt C., & Wolter S., 2023. "This Time It's Different" – Generative Artificial Intelligence and Occupational Choice. *Discussion Paper* No. 16638. Institute of Labor Economics (IZA).

Hess, P., Janssen, S., & Leber, U. (2023). The effect of automation technology on workerså training participation. Economics of Education Review, 96, 102438.

Hui, X., Reshef, O., & Zhou, L. (2023). The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market. Available at SSRN 4527336.

Katz, L. F., & Murphy, K. M. (1992). Changes in relative wages, 1963\u00e31987: supply and demand factors. The quarterly journal of economics, 107(1), 35-78.

DCE: Attribute-level universe Back

h

Results: WTP for lower automation risk with interactions Back

	(1)	(2)
Automation Risk (10 ppt.)	15305.5***	13879.6***
	(371.7)	(659.5)
Automation Risk $ imes$ University Degree		2439.8***
		(550.5)
Automation Risk $ imes$ UAS Degree		71.91
		(467.1)
Automation Risk $ imes$ Top Management Position		776.9*
		(302.6)
Ν	83,328	83,328

* p < 0.05, ** p < 0.01, *** p < 0.001