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Structure

• Basic concepts, definitions, indicators of spatial autocorrelation, 
exploratory statial data analysis

• Standard spatial econometric models, nonlinear spatial models?

• Panel spatial econometric models, further (alternative?) specifications

Caveat: I’m not an econometrician… I’m a “user” of spatial methods.

For those interested in going into spatial econometrics in-depth, there are 
several summer schools around (e.g., SEA’s summer school in Rome) with 
the top spatial econometricians teaching for up to three full weeks



Analysis of Spatial Data

• WHERE: in which contexts should we worry 

about spatial issues regarding our data?

• WHY: what are the implications of spatial 

interaction and in general spatial aspects for 

statistical/econometric modelling?

• HOW: how are spatial issues treated 

empirically?



Where?

• Spatial (georeferenced) data come in several forms 
(Cressie 1993)
– Geostatistical data – continuous surface in the 

bidimensional domain R2

– Lattice/area (regional) data – finite (ir)regular set of points 
in R2 or areas that partition R2

– Point pattern data – point process that can distinguish 
between locations having or not having a certain attribute

– (Objects – again point process, like point-pattern data, the 
set D of points is result of a random process)

• Similar classification by Fischer and Wang (2011) 
(see next slide)

• Methods often depend on type of data, although they 
can sometimes be borrowed between classes of data



Where? (2)



Where? (3)

• In practical terms (e.g. R programming), we can 
distinguish between (Bivand et al. 2008):
– Point, a single point location, such as a GPS reading or 

a geocoded address

– Line, a set of ordered points, connected by straight line 
segments

– Polygon, an area, marked by one or more enclosing 
lines, possibly containing holes

– Grid, a collection of points or rectangular cells, 
organised in a regular lattice

• All spatial data have positional attributes, 
‘answering the question “where is it?”’



Why?

• Spatial data are often non independent
– Violation of assumption of observations coming from independent random variables 

given in classical statistical theory (sphericity of errors: homoskedasticity and no 
autocorrelation)

– Spatial data tend to be positively correlated, with the degree of correlation decreasing 
over distance

– In this conditions, OLS is not appropriate anymore
• F and t tests on regression parameters may lead to wrong conclusions

• Additionally, the assumption of homoskedasticity may be violated, if, for example, rates from 
areal data of widely different base population are analysed

• Data support
– Incompatible data. How to combine data collected on different supports (e.g., different 

levels of spatial aggregation)?

– Change of support
• Combining data towards creating a new variable

• Modifiable areal units problem (MAUP, Openshaw and Taylor 1979): often data are collected 
for purely administrative areas which don’t have intrinsic geographical meaning. But regression 
results often depend on the scale of the units (scale problem) and their configuration 
(aggregation problem)

• Ecological fallacy (Robinson 1950): making statistical inference on individuals on the basis of 
aggregate data is flawed



How?

• 1) Exploratory Spatial Data Analysis (ESDA)

– Extension of Tukey-type data exploration

– Preliminary data analysis, based in particular on mapping

– GIS may help summarizing geographic information, 

finding outliers, manipulating point data, etc

– Used mostly prior to model building, also to make 

hypotheses about the data, but new ESDA techniques go 

directly into the model building phase, showing how 

variables relate to each other in space















How? (2)

• 2) Spatial Statistics

– Started with Whittle, Moran, Geary, Cliff and Ord (late 

’60s). Also part of ESDA, spatial econometrics and more…

– Has is raison d’être in creating hypotheses and testing map 

patterns

– How social/economic/etc. variables pattern on a map and 

interact with each other?

• Spatial autocorrelation indices (e.g., Geary, Moran)

• Creation of spatial weights matrices

• Spatial filtering (e.g., Getis, Griffith)

• Spatial cluster analysis (e.g., Ripley’s K (Spatial Statistics, 1981) –
coincidentally, the same guy who later contributed to the birth of R)



How? (3)

• 3) Spatial Econometrics
– Paelinck and Klaassen (1979), Anselin (1988)

– Anselin: spatial lag model; spatial error model

– Need for spatial statistical tests to check assumptions of spatial randomness in 
regression residuals

• Moran’s I

• Specification search: Lagrange multiplier tests…

– Geographically weighted regression (GWR; Fotheringham, Brunsdon, 
Charlton) to allow regression parameters to vary over space

– … and many more recently developed methods accounting for spatial 
autocorrelation in econometric techniques (e.g. instrumental variables, GMM 
methods, nonlinear (GLM) models…)

• 4) Geostatistics (not discussed here)
– Geostatistical methods most often start from observations at points of single or 

multiple attributes, and are concerned with their statistical interpolation to a 
field or continuous surface (e.g. kriging) assumed to extend across the whole 
study area



Spatial Autocorrelation

• Definitions

– ‘It represents the relationship between nearby 
spatial units, as seen on maps, where each unit is 
coded with a realization of a single variable’ (Getis 
2009, p. 256)

– ‘Given a set S containing n geographical units, it 
refers to the relationship between some variable 
observed in each of the n localities and a measure 
of geographical proximity defined for all n(n – 1) 
pairs chosen from S’ (Hubert et al. 1981, p. 224)



High Peak district biomass index:

ratio of remotely sensed data spectral bands 

B3 and B4

Spatially autocorrelated Geographically random
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What Is Spatial Dependence?

• Revelli (2003) asks whether the spatial patterns observed in model 
residuals are a reaction to model misspecification, or if they signal the 
presence of substantive interaction between observations in space? A 
similar point is raised by McMillen (2003)

– “two adjacent supermarkets will compete for trade, and yet their turnover will 
be a function of general factors such as the distribution of population and 
accessibility.”

– “the presence of spatial autocorrelation may be attributable either to trends in 
the data or to interactions; … [t]he choice of model must involve the scientific 
judgement of the investigator and careful testing of the assumptions” (Cliff and 
Ord, 1981, pp. 141-142)

• One way of testing the assumptions is through changes in the policy 
context over time, where a behavioural model predicts changes in spatial 
autocorrelation. If the policy changes, the level of spatial interaction should 
change too

(borrowed from Roger Bivand)



Spatial Dependence vs Spatial 

Heterogeneity
• Dependence  →  Interaction, interdependence

• Heterogeneity  →  Intrinsic characteristics unevenly distributed over space

• With a cross-section, hard (impossible) to tell whether outcomes arise from 
interaction or from intrinsic individual characteristics

• Spatial dependence vs spatial heterogeneity
– Positive spatial autocorrelation → spatial diffusion/spillovers

– Negative spatial autocorrelation → spatial competition

• Same problem as in social networks: intrinsic individual characteristics or 
personal interaction?

(borrowed from Daniel Arribas-Bel)



Uses of the Spatial Autocorrelation 

Concept
• Testing for model mispecification

– Non-spatially-random residuals indicate mispecification. Moran’s I 
commonly used

• Measuring the strength of spatial effects on a variable
– Quantifying the spatial effects on both dependent and independent 

variables

• Testing assumptions of spatial stationarity/heterogeneity
– E.g., testing assumption that mean and variance do not vary spatially 

between subgroups

• Identifying spatial clusters

• Quantifying role of distance decay or spatial interaction in 
spatial autoregressive models
– Parameters of spatial interaction models (e.g. distance decay) could be 

obtained through measures of spatial autocorrelation



Uses of the Spatial Autocorrelation 

Concept (2)
• Understanding the influence of geometry of spatial units on a variable

– Measures of spatial autocorrelation will change depending on the spatial 
configuration/spatial scale of units

• Testing hypotheses about spatial relationships…
– … between realizations of a single variable. But can also test spatial relations 

between variables! (Wartenberg 1985)

• Weighting the importance of temporal effects…
– … by using consecutive (year-by-year) indicators of spatial autocorrelation

• Estimating the effects of a single spatial unit on the others (and vice versa)
– Based on local indicators of spatial autocorrelation

• Identifying outliers (spatial and non-spatial)

• Designining appropriate spatial samples



Indicators of Spatial Autocorrelation

• The generic cross-product Γij = ΣiΣjWijYij gives a 
measure of spatial autocorrelation
– W is a matrix representing the spatial relations between 

units

– Y is a matrix showing the non-spatial relations between 
units

• If W and Y have similar structure (high-high, low-low 
values, etc), there is a high degree of spatial 
autocorrelation

• If either W or Y is random, there will be no spatial 
autocorrelation

• But this is a just a measure, not a test!



Indicators of Spatial Autocorrelation 

(2)

• Moran’s I (Cliff and Ord 1973)

– Structured as a Pearson product moment correlation 
coefficient, plus W

– Y is a covariance matrix, i.e., the relation between the 
spatial units is calculated as

– The obtained measure is scaled by

– By convention, i ≠ j (or, in R, i != j)
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Indicators of Spatial Autocorrelation 

(3)
• Moran’s I (cont.)

– As a result, Moran’s I is computed as

– Its expected value IS NOT ZERO! but –1/(n – 1)

– Its variance is calculated differently depending on the 
assumption (randomness or normality)

– The test takes a different formula for testing regression 
residuals and depends on the number of independent 
variables
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Indicators of Spatial Autocorrelation 

(4)
• Geary’s c

– The sociologists Duncan et al. (1961), in their book 
Statistical Geography, point out that:

• “Sooner or later in a study of areal variation the investigator runs 
up against the fact that areal units situated close to each other are 
more likely to be similar in their characteristics than are areal units 
which are some distance apart ...” (pp. 128-9)

– They refer to work on the definition of homogeneous 
regions, and contrast this with work on regional 
differentiation. They present Geary’s c, which they term the 
contiguity ratio, because it shows the ratio between 
variability between neighbours and total variability in a 
data set (Moran’s I is not mentioned)

(borrowed from Roger Bivand)



Indicators of Spatial Autocorrelation 

(5)

• Geary’s c (cont.)

– Here the null is that spatial units do not differ from each 
other, i.e., there is no consistency to their differences

– Y is made of differences (yi – yj)
2, and a scale makes the 

measure normally distributed, and with an expected value 
of 1

• < 1 = positive spatial autocorrelation (small differences)

• > 1 = negative spatial autocorrelation (big differences)

• Geary’s c is therefore negatively correlated to Moran’s I
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Describing a scatterplot trend

positive relationship:

High Y with High X

& Medium Y with Medium X

& Low Y with Low X

negative relationship:

High Y with Low X

& Medium Y with Medium X

& Low Y with High X
28



Graphic examples

r = 1

perfect

positive

r = 0.95 r = 0.72

marked

positive

strong

positive

r = -1r = -0.71

r = 0.51 r = 0.26 r = 0.01

moderate

positive

weak

positive

trace

positive

strong

negative

perfect

negative

regression

trend

line in

blue
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Quadrants of a Moran scatterplot

0

0 z

CZ

Q1 (values [+], sum of neighboring values [+]): H-H

Q3 (values [-],  sum of surrounding values [-]): L-L

Locations of positive spatial association
(“I’m similar to my neighbors”).

Q2 (values [+], sum of neighboring values [-]): H-L

Q4 (values [-], sum of neighboring values [+]): L-H

Locations of negative spatial association
(“I’m different from my neighbors”).

Q2 Q1

Q4Q3
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Local Measures of Spatial 

Autocorrelation

• Used to investigate certain situational 
characteristics, i.e., local

• The basis is now: Γi = ΣjWijYij, i ≠ j

• Getis and Ord local statistics

– Gi based on proximity

– Gi
* based on clustering
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Local Measures of Spatial 

Autocorrelation (2)
– The difference between the two measures is in the role of 

the ith observation, either its influence on the neighbours, 
or its belonging to a cluster

– Gi
* is related to Moran’s I, which may be seen as a 

weighted average of the local statistics

• Local Indicators of Spatial Association (LISA)
– Anselin (1995)

– Aims to decompose the global indicators of Moran and 
Geary

– All Ii sum to I

– Tests available

– Geary’s c also local
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The W Matrix

• But how to construct the W matrix?

• Should it show, because of theoretical considerations, a decay of spatial 
relations over distance? Many ways to implement that, one of the most 
common being

• Also the definition of distance may be other than the traditional ones (e.g., 
relational distance?)

• Other definitions of the W matrix include
– Contiguous neighbours (queen and rook)

– Length of shared borders divided by perimeter

– Bandwidth (distance) to the nth nearest neighbour

– All centroids within distance d (great circle)

– Bandwidth distance decay (required for GWR)

– Gaussian distance decline

– Derived spatial autocorrelation

– more... (see for example recent work by Jan Paelinck)

,  with 1ij ijW d  −= 



Tessellations (i.e., surface partitionings)

square
hexagon

rook
queen
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spatial autocorrelation

field extents

hexagonrook queen

1st

order

2nd

order
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The W Matrix (2)

• How to standardize the W matrix?
– Most commonly used is row-standardization. Each row of W is divided by its marginal 

sum so that it always sums to one
• One neighbour: weight = 1

• Two neighbours: weight = 0.5 each

• n neighbours: weight = 1/n each → row-standardization tends to give more weight to regions 
which are the lone neighbour rather than when there are more

– Other standardizations: many. Tiefelsdorf (2000) created a family of standardizations, 
following this expression

• where B is a binary spatial weights matrix, and Dq is a diagonal matrix that contains the di
q

components belonging to vector d = B x 1

• q = 0: C-coding (globally standardized); commonly used in spatial statistics, tends to emphasize 
spatial objects with a greater linkage degree. Is symmetrical

• q = –0.5: S-coding (variance stabilized); tends to even the variation levels of weights

• q = –1: W-coding (row-sum standardized); mostly used in spatial econometrics, tends to 
emphasize the weight of objects with small spatial linkages
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Criticisms of Spatial Approaches: 

Ripley
• During the next decade, we see futher contributions from geographers and 

statisticians, such as Ripley (1981) Spatial Statistics; these were at a certain 
distance from the beginnings of spatial econometrics (Anselin, 2010b)

• As Ripley (1988, p. 2) suggests, the assumptions remove hope that spatial data are a 
simple extension of time series to a further dimension (or dimensions):

– the edges of our chosen or imposed study region;

– how to perform asymptotic calculations and how this doubt impacts the use of likelihood 
inference;

– how to handle inter-observational dependencies at multiple scales (both short-range and 
long-range);

– stationarity, and discretisation and support.

• Ripley (1988, p. 8) concludes: “(T)he above catalogue of problems may give rather 
a bleak impression, but this would be incorrect. It is intended rather to show why 
spatial problems are different and challenging”

(borrowed from Roger Bivand)



Criticisms of Spatial Approaches: 

Granger
• Another sceptical voice is that of Granger, thanked specifically for valuable 

criticism in the acknowledgements to Cliff and Ord (1973). In the cross-
sectional setting, possible solutions are “very dependent on the assumption 
of spatial stationarity. Without this assumption, or something very near it, I 
can see little hope for model building. … I am, therefore, very pessimistic 
about the possibility of model building with purely spatial data” (Granger, 
1975)

• Granger’s concluding remark, that: “the quality of the data that 
geographers, economists or regional scientists have to deal with is too poor 
for the use of complicated methods to be worthwhile” ignores the need to 
do one’s best with available data in other arenas of spatial statistics; he 
subsequently used space-time (panel) data in Giacomini and Granger 
(2004)

(borrowed from Roger Bivand)



MAUP

• Gelfand (2010) shows where misaligned spatial data, the 
modifiable areal unit (MAUP), and change of support (COSP) 
may take us; see also Stan Openshaw’s MAUP CATMOG: 
http://qmrg.org.uk/catmog/, and Haining (2010)

• Briant and Lafourcade (2010) examine whether the size and 
shape of spatial units jeopardizes estimates in economic 
geography, finding that size matters more than shape, but that 
both matter less than model specification

• Menon (2012) uses MAUP to create alternative graph 
partitions to the functional regions used in analysis

• Arbia and Petrarca (2013) show how MAUP is relevant also 
for flow data

(again, borrowed from Roger Bivand and modified)

COSP

MAUP

Ecological fallacy



The MAUP: # areal units; shape constant
dimension average # pixels MC

240-by-240 1 0.188

120-by-120 4 0.366

80-by-80 9 0.418

60-by-60 16 0.456

40-by-40 36 0.726

30-by-30 64 0.765

20-by-20 144 0.666

16-by-16 225 0.593

15-by-15 256 0.513

12-by-12 400 0.338

10-by-10 576 0.116

8-by-8 900 -0.214

6-by-6 1,600 -0.507

5-by-5 2,304 -0.982

4-by-4 3,600 -0.164

3-by-3 6,400 -0.043
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Ecological Fallacy

• Wakefield and Lyons (2010) give a survey of the ecological 
fallacy in connection with spatial aggregation; the point of 
concern is the extension of aggregated inference to individuals 
within the aggregates

• They motivate their survey by looking at county asthma 
disease counts and PM2.5 air pollution; of course, within-
county variability in the included variable is challenging, and 
inferring to the individual is hard

• Haining (2010) also stresses that making statistical inference 
about individuals based on aggregate data is flawed

(Roger Bivand)



Spatial Autocorrelation and 

Regressions

• What are the consequences of spatial autocorrelation 

on regression models?

– Ideally, all spatial autocorrelation in the dependent variable 

should just be explained by the model, right?

– Often, however, regression residuals from models 

analysing georeferenced data, ARE spatially correlated, 

indicating mispecification

• Ignoring this mispecification can also lead to bias and/or inefficient 

parameter estimates

– A number of econometric models have been suggested to 

cope with the DGP behind spatially correlated data



Example: Dependent Variable and 

Regression Residuals

Legend:

Nanomaterials

patent applications

MI = 0.28

0

1

2-3

4-10

11-78

Legend:

Residuals from a

negative binomial

MI = 0.21

under -1.13

-1.13 - -0.74

-0.74 - -0.17

-0.17 - 0.55

over 0.55



Example: Spatial Filter Residuals and 

Spatial Filter

Legend:

SF from a

negative binomial

MI = 0.90

under -0.76

-0.76 - 0

0 - 0.48

0.48 - 0.91

over 0.91

Legend:

Residuals from an

SF negative binomial

MI = -0.10

under -0.96

-0.96 - -0.51

-0.51 - -0.05

-0.05 - 0.6

over 0.6



Spatial Autocorrelation and 

Regressions (2)
• From a historical perspective, merit in starting spatial econometrics is 

given, also in Anselin (1988), to Spatial Econometrics, by Paelinck and 
Klaassen (1979)

• Reading Paelinck and Klaassen (1979, p. viii), we see that the programme 
of research into the space economy undertaken at the Netherlands 
Economic Institute led first to the publication of Paelinck and Nijkamp 
(1975), and then to Klaassen et al. (1979); all three books were published in 
the same series and appear to reject the core concerns of economists at the 
Institute doing research on regionalized national macro-economic models

• Paelinck and his colleagues were aware that an aspatial regionalization of 
national accounts, of input-output models, or transport models, might 
prejudice policy advice and outcomes through inadequate and inappropriate 
calibration

• In the motivation for spatial econometric models given in Paelinck and 
Klaassen (1979, pp. 2-3), consumption and investment in a region are 
modelled as depending on income both in the region itself and in its 
contiguous neighbours, termed a “spatial income-generating model”.

(borrowed from Roger Bivand)



Spatial Autocorrelation and 

Regressions (3)

• Approaches to spatial econometrics

– Define a model that flexibly accommodates a range of 
possible different DGPs (encompassing model), e.g. the 
spatial Durbin model

– Resort to economic theory to obtain a theoretical model and 
justify specification chosen, e.g. spatial 
spillovers/externalities, dependence of flows in trade data, 
etc. (see  e.g. work by Behrens et al., LeSage, etc.)

– Use it to accommodate econometrically heteroskedasticity, 
omitted variable bias, latent variables

– Let the data speak, estimate different models, and take a 
probabilistic approach, e.g. by means of Bayesian model 
averaging?



Spatial Autocorrelation and 

Regressions (4)
• Can (the need for) spatial econometrics be 

eliminated?
– Knowing your data is important: Andersson and Gråsjö 

(2009) show that ‘a representation of space reflecting the 
potential of physical interaction between localities by 
means of accessibility variables on the “right-hand-side” … 
captures substantive spatial dependence’ and can be 
estimated by OLS

– Similar results by Osland and coauthors, showing that 
spatial autocorrelation in house pricing models is removed 
by including distance to CBD or to employment outside of 
CBD

– Accessibility matters, and spatial dependence often reflects 
it



Spatial Autocorrelation and 

Regressions (5)
• LeSage and Pace (2009, 2010) give a simple example 

of how a spatial model may emerge
– Say some regions are all intersected by a highway

– The commuting time of people living in region 1 will not 
only depend on density in that region (and distance to 
work), since people from other regions (partially) use the 
same road as well

– Assuming that commuting time of (people in) region 1 is 
independent of the one of (nearby) region 2 is unrealistic

– It’s then easy to imagine a model with an explicit treatment 
of spatial dependence, e.g., a so-called spatial lag model 
(SAR)
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Spatial Autocorrelation and 

Regressions (6)
• Clearly, if ρ = 0, the model scales back to non-spatial, 

therefore the interest in the statistical significance of ρ

• Grouping for y, the model can be rewritten – in matrix form –
as

• Alternatively, spatial dependence might arise only in the error 
term, giving way to the so-called spatial error model (SEM)
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Spatial Autocorrelation and 

Regressions (7)
• Other models

– Spatial Durbin model (WX) (SDM)

– Manski model (GNS) (complex DGP)

– Spatial moving average model

– SARAR(1,1) model (Kelejian and Prucha 1998)

– Matrix exponential model

– Spatial models with instrumental variables (Kelejian and Prucha 1999)

– Spatial simultaneous equations (Kelejian and Prucha 2004; 
Gebremariam et al. 2011)

– Spatial simultaneous equations in continuous time (Oud et al. 2012)

– Getting rid of W… (Folmer and Oud 2008)

– more...



Spatial Autocorrelation and 

Regressions (8)

• Important distinction between SAR and SEM

– SEM has same expectation as OLS (but in small 

samples, OLS is inefficient), while SAR and SDM 

don’t, so least squares estimation is not 

appropriate (biased for both β and ρ)

• Maximum likelihood estimation (Anselin 1988)

• Bayesian (MCMC) estimation (LeSage 1997)

• Others: e.g., two-stage least squares (with instrument 

for Wy) - GMM, or entropy-based estimation



Spatial Lag Model

• A closer look at the spatial lag model shows that the (In – ρW)–1 inverse can 
be rewritten as the infinite series expansion In + ρW + ρ2W2 + ρ3W3 + …
leading [with abs(ρ) < 1] to the model

since the series ια + ρWια + ρ2W2ια + ρ3W3ια + … converges to                 
(1 – ρW)–1ια (because W is row-standardized, Wqι = Wι = ι for q ≥ 0)

• W2 reflects the neighbours of the neighbours (second order neighbours)
– Since in space correlation runs multidirectionally, they will include region i 

itself and therefore W2 has positive values on the diagonal. Instead, in time 
series, the lag operator L is strictly triangular and also L2 will be keeping zeros 
on the diagonal. Distinctive aspect of spatial econometrics!

• Because ρ is <1 in abs. terms, the influence of more far away neighbours is 
smaller, decaying geometrically
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Spatial Lag Model (2)

• In the highway example, if population 
density doubles in region 2 (R2) of 
the seven regions (R1-R7), and the 
spatial lag model suggests fitted 
values for which ρ = 0.642

• Predicted commuting time has risen 
in EVERY region, less and less the 
more they are away from R2

• In a non-spatial model, only yR2
would increase…

• (In – ρW)–1β acts as a multiplier, 
applying higher-order effects to 
explanatory variables Xr

– As a consequence, the usual 
interpretation of the regr. coeffs does 
not hold

– β = (X’X)–1x’(In - ρW)y and, as a 
consequence, OLS is (upward) biased 
and inconsistent

– The estimated increase in commuting 
time in R2 is +11.02 (0 elsewhere)

Region y y* y* - y

R1 42.01 44.58 2.57

R2 37.06 41.06 4.00

R3 29.94 31.39 1.45

R4 26.00 26.54 0.53

R5 29.94 30.14 0.20

R6 37.06 37.14 0.07

R7 42.01 42.06 0.05



Spatial Lag Model (3)

• We may take:
– +4 mins (increase of commuting time in region 2): as the direct impact from 

the change in density → ∂yi/∂Xi2

– +4.87 mins (sum of all remaining commuting time increases): as the indirect 
impact → ∂yj/∂Xi2

– +8.87 mins (total increase): as the overall impact

• If Sr(W) = (In – ρW)–1, then the DGP of the SAR model can be written as
– y = ΣrSr(W)Xr + (In – ρW)–1ε, with

– E(y) = ΣrSr(W)Xr

• Complication is the derivative of yi with respect to Xjr, since
– ∂E(yi)/∂Xjr = Sr(W)ij [i.e. the ijth element of matrix Sr(W)]

• This shows how the standard interpretation of regression coefficients as 
partial derivatives (marginal effects) is not valid for the spatial lag model 
(OLS is upward biased), because change in an X in one region will affect 
all (more) regions → impact measures!

• Sr(W) can be approximated using traces of powers of the spatial weights 
matrix as well as analytically



Interpretation of Spatial Models

• Time-dependence interpretation: economic agents make 
decision based on behaviour of other agents in previous 
periods →Wyt–1. As in time series, yt–1 can be replaced by its 
counterpart in (t – 2), and so on… giving way to a process 
with increasing powers of W and ρ and a serially correlated, 
geometrically decaying spatial dependence

• Omitted variables interpretation: omitted variables arise often 
in regional data because of unmeasured/unmeasurable factors 
(amenities, highway accessibility, etc.). Take an unobserved 
variable z following an autoregressive process z = ρWz + r
– If the true model is simply y = xβ + zθ = xβ + (In – ρW)–1u, then OLS is 

consistent [E(y) = xβ] but inefficient

– But if z and x, as it often happens, are correlated (e.g. u = xγ + v), then 
the DGP gets more complicated [E(y) = xβ + …(a function of xy)] and 
OLS is biased, giving rise to the so-called spatial Durbin model, with 
both Wy and Wx

• y = ρWy + x(β + γ) + Wx(–ρβ) + v



Interpretation of Spatial Models (2)

• Spatial heterogeneity interpretation: in panel literature it is frequent to 
allow heterogeneous intercepts, but in a cross-sectional model? This can be 
done by allowing for a spatially structured random error

– If α is (n x 1) and α = ρWα + ε = (In – ρW)–1ε, then we have the DGP for the 
spatial error model y = Xβ + (In – ρW)–1ε

– Again, if α is correlated with X, it can be shown that we have again the spatial 
Durbin model

• Externalities interpretation: in the real estate market, characteristics of 
neighbouring houses (WX) often have an effect on house value, motivating 
a model of the type y = αι + Xβ1 + WXβ2 + ε

• Model uncertainty interpretation: Bayesian model averaging (not discussed 
here) [LeSage and Pace (2009) show that e.g. a linear combination of the 
SAR and SEM models leads again to the SDM]



Direct and Indirect Impacts

• As mentioned, in models containing endogenous spatial lags (e.g. SAR, SDM), the 
derivative of yi with respect to xjr is not 0, but

– ∂yi/∂xjr = Sr(W)ij

and the derivative of yi with respect to xir is not βr, but 
– ∂yi/∂xir = Sr(W)ii

• W2, implying neighbours of neighbours, will also have non-zero diagonal elements 
(you’re a neighbour to your neighbour) → feedback loops. Their extent will depend 
on

– the position of the regions in space

– the degree of connectivity implied by W

– the value of ρ, measuring the strength of spatial dependence

– the value of the parameters β and θ

• Within the (n x n) matrix Sr(W), diagonal elements will measure direct impacts, and 
off-diagonal elements the indirect ones

• It is then desirable to compute, from the output of a spatial lag model (or similar), 
the actual estimated effects from changes in the explanatory variables

• All measures can be obtained from the matrix Sr(W) = (In – ρW)–1(Inβr + Wθr), 
where θ is the parameter for WX



Direct and Indirect Impacts (2)

• The following direct/indirect impact measures can be identified:
– Average direct impact: impact of changes in ith observation of xr on yi. 

Obtained as the mean of diagonal elements

– Average total impact to an observation: total impact on individual observation 
yi resulting from changing Xr by the same amount across all n observations. 
Obtained as the mean of row-sums of Sr(W)

– Average total impact from an observation: total impact over all yi from 
changing Xr in the jth observation. Obtained as the mean of column-sums of 
Sr(W)

– Average indirect impact: difference between average total impact and average 
direct impact

• The two average total impact measures are numerically equal but allow for 
different interpretations. They are the average of all derivatives of yi with 
respect to xjr, for all i and j

• For the SDM, greater heterogeneity. The presence of Wθr allows spillovers 
from a change in each explanatory variable to differ (the SAR has a 
common global multiplier)

• LeSage and Pace (2009) also show how it is possible to partition the effects 
by order of neighbours



A Taxonomy of Spatial Models



A Taxonomy of Spatial Models (2)



Specification Search

• Tests of OLS vs spatial models have been developed in the literature (specific-to-
general):

– Burridge (1980) proposed a Lagrange multiplier test of SEM vs OLS, mathematically 
related to Moran’s I, and which only needs OLS residuals and W

– Anselin (1988) added the SAR vs OLS test, which like the Burridge test, did not need 
ML estimation

– Robust versions of these tests have been given by Anselin et al. (1996)

– Florax and Folmer (1992), instead, offer tests against erroneously omitted, spatially 
lagged, explanatory variables

• LeSage and Pace (2009) stress the weakness of such tests, since they ignore the 
SDM, which nests both spatial lag and spatial error model… and suggest Bayesian 
model comparison

• It is also possible to use a Hendry-type strategy (general to specific), fitting the 
most general model first, then testing restrictions by means of LR tests (though they 
don’t extend naturally to non-nested models)

• McMillen (2003) stresses how “tests for spatial autocorrelation also detect 
functional form misspecification, heteroskedasticity, and the effects of missing 
variables that are correlated over space”



Anselin’s Specification Search 

Strategy



Some Recent Developments

• Automatic selection of spatial weights matrix (Seya et al. 
2013)
– Model selection based on MCMC

• Standardized and heteroskedasticity-and-non-normality robust 
LM tests (Baltagi and Yang 2013a,b)
– Tests which are robust against distributional mispecification and against 

heterosk. and non-normality

• Spatial autoregressive models for geographically hierarchical 
data (Dong and Harris 2014)
– Spatial weights matrix and fixed/random effects specifications to 

account for data at different (but nested) levels of geographical 
aggregation

• Spatial quantile regression (McMillen 2012)
– Proposes a spatial version of quantile regression (short book on 

Springer Briefs in Regional Science, method shown in R)



Some Recent Developments (2)

• Spatial causality testing (Herrera et al. 2014)
– Testing for causality in a group of variables with a spatial framework 

(no time here) by means of symbolic entropy

• Spatial Hausman test (Pace and LeSage 2008)
– Test on spatial error model (SEM)

• LM tests for panel models (Debarsy and Ertur 2010)
– LM tests against SAR and SEM in fixed effects panel models

• Spatial model selection in an SUR setting (López et al. 2014)
– Discussion of general-to-specific and specific-to-general model 

selection strategies with a spatial SUR estimation framework

• Tests for spatial error dependence in probit models (Amaral et 
al. 2013)
– Discussion of general-to-specific and specific-to-general model 

selection strategies with a spatial SUR estimation framework

















Types of Panel Data

• Cross-sectional and temporal size:

– Micro panels – ‘short panels’: N big compared to T

• Panel Study of Income Dynamics (PSID)

• Household Budget Continuous Survey (INE-Spain)

– Macro panels – ‘long panels’: T big compared to N

• Penn world tables

– Mini panels: T and N small

• Grunfeld’s investment data

– Large panels – ‘huge panels’: N and T big

• Stock market data

• According to the number of present observations:

– Balanced, or complete: n = NT

– Non-balanced: n = Σi = 1:NTi



Why Using Panel Data?

• Benefits
– Usually gathered on micro units (individuals, firms, households). Many variables can be 

more accurately measured at the micro level, and biases resulting from aggregation may 
be reduced or eliminated (see e.g. MAUP)

– Controlling for individual heterogeneity. Not controlling for it involves the risk of 
obtaining biased results (Moulton 1986, 1987)

– More informative (i.e. large number of observations; N×T) → more variability →
increasing degrees of freedom and reducing collinearity → improving the efficiency of 
estimates (more accurate inference)

– They contain information on both time dynamics and characteristics of individuals, 
which allows one to control for the effects of missing or unobserved variables

– Better able to identify and measure effects that are simply not detectable in pure cross-
sections or time-series data

– Better able to study adjustment dynamics. Estimation of time-adjustment patterns using 
time-series data often has relied on arbitrary prior restrictions (such as Koyck or Almon 
distributed lag models) because time-series observations of current and lagged variables 
are likely to be highly collinear (Griliches 1967) → Individual heterogeneity reduces 
collinearity and the need of restrictions

– Provides micro foundations for aggregate data analysis. Ideal for investigating the 
‘homogeneity’ versus ‘heterogeneity’ issue (i.e. ‘representative agent’ assumption often 
invoked by aggregate analysis)



Why Using Panel Data? (2)

• Limitations
– Design and data collections problems

• Problems of coverage (incomplete account of the population of interest), non-
response (due to lack of cooperation or interviewer error), recall (respondent not 
remembering correctly), frequency of interviewing, interview spacing, reference 
period, etc.

– Distortions of measurement errors
• Measurement errors can lead to under-identification

• Nevertheless, availability of multiple observations for a given individual or at a 
given time may allow a researcher to make transformations to induce different 
deductible changes in the estimators, hence to identify an otherwise unidentified 
model

– Selectivity problems: Self-selectivity

– Non response

– Short time-series dimension. Typically, micro-panels involve annual data 
covering short time period for each individual → asymptotic arguments rely 
crucially on the number of individual tending to infinity



Going from Cross-Sectional to Panel 

Data
• What happens to the models we learned in the previous 

lecture?

– Let’s add a t subscript (from 1 to T) to the general encompassing spatial 
model we saw earlier

– Yt = δWYt + αιN + Xt + WXtθ + ut,

• where ut = λWut + εt

– The restrictions to obtain all more specific models are the same as in 
cross-sectional models, and it could in theory be estimated likewise

– BUT: this model(s) does not account for spatial and temporal 
heterogeneity → spatial units are likely to differ in their background 
variables, usually space-specific and time-invariant (e.g. one unit is on 
the sea, another at a border)



Going from Cross-Sectional to Panel 

Data (2)
• The similarity between both generating 

processes seen before concerns the 
multidirectional spatial effect that can appear 
among spatial units within a given time period 
or interval. For other observations, the effect 
is no longer multidirectional since temporal 
dimension is unidirectional

• Thus, the usual strictly spatial representation 
no longer holds

• In fact, strictly spatial representation may 
generate spurious relations that can exert 
influence on the estimated spatial 
autocorrelation pattern or on spatial 
autoregressive parameters

• It is possible to account for the unidirectional 
temporal effect of spatial data located in a 
given radius of influence to evaluate the 
possible dynamic (peer) effect, by connecting 
past observations (dark blue dots) to the 
actual observations (the solid one-way grey 
arrows), as well as multidirectional spatial 
effect for data observed at the same time 
period, by means of the two-way black arrows

• Dubé and Legros (2013) suggest the use of 
spatio-temporal weights matrices



Going from Cross-Sectional to Panel 

Data (3)

• One solution to the aforementioned problem 

(unobserved spatial units characteristics) is to include 

a variable intercept μi

• Similarly, one might want to include time period 

effects ξt, to control for time-specific but spatially 

invariant omitted information

• A space-time model would therefore result as

– Yt = δWYt + αιN + Xt + WXtθ + μ + ξtιN + ut,

• where ut = λWut + εt, and μ and ξt can be either fixed or random 

effects



Estimating Spatial Panel Models

• Let’s assume W is fixed over time and the 

panel balanced

– Estimators can be modified to use time-varying W 

matrices (e.g. based on socio-economic distance or 

demographic characteristics)

• We can write the

– Spatial lag model as: yit = δΣjwijyjt + xit + μi + εit

– Spatial error model as: yit = xit + μi + uit, where uit

= λΣjwijujt + εit



Fixed Effects Spatial Lag Model

• Two complications (Anselin et al. 2006)

– Violation of assumption that E[(Σjwijyjt)εit] = 0 (simultaneity problem)

– Spatial dependence of observations at each point in time may affect 
estimation of fixed effects

• ML estimator developed

–  = (X*TX)–1X*T[Y* – δ(IT  W)Y*]

– Jacobian can be approximated by numerical methods → but estimates 
of δ and  will change slightly every time (possibility to choose 
computation method, depending, for example, on amount of data)

– For large N, determination of variance matrix elements can be 
computationally impossible → approximation by numerical Hessian 
matrix

Jacobian: matrix of all first-order partial derivatives of a vector-valued function

Hessian: matrix of second-order partial derivatives of a scalar-valued function



Fixed Effects Spatial Error Model

• Again, ML estimator available simply as extension of 
cross-sectional estimator

• Both spatial lag and spatial error fixed effects models 
are based on demeaning (Baltagi 2005). Lee and Yu 
(2010) show that this leads to biased results for some 
parameter values

– Without time fixed effects, bias for large N and fixed T

– With time fixed effects, bias if both N and T are large

• They propose two alternative bias-correction 
estimators that are NOT based on demeaning



Random Effects Spatial Lag Model

• Identical log-likelihood function to the fixed 

effects spatial lag model → same estimation 

procedure [net of a preliminary data 

transformation (normal for estimating random 

effects panel models)]



Random Effects Spatial Error Model

• A feasible GLS estimator of  can be derived by 
assuming a W matrix standardized so that all off-
diagonal elements are taken as 1/(N – 1) (Baltagi 
2006)

• Elhorst (2003) proposes a different procedure based 
on spectral decomposition
– Numerically problematic for large N, but for simmetric W 

(other normalizations than row-standardization) works well 
in decent amount of time for N up to 4000

• Estimation of variance matrix is also problematic

• Estimation of this model is by far more problematic 
than the other models



Fixed vs Random Effects

• Abundance of papers in spatial econometrics taking RE as default choice
– It’s a compromise to the all or nothing way of using the cross-sectional component of the data (models 

with fixed effects only use the time-series component)

– It’s more efficient (no loss of degrees of freedom). And fixed effects need sufficiently large T for 
consistent estimation of μi

– Allows estimating coefficients for (quasi) time-invariant variables (main reason!)

• Question if RE specification is the right one is often left unanswered. Three conditions for its 
use

– Number of spatial units potentially going to infinity

– Units representative of a larger population (these two conditions controversial for spatial research)

– Zero correlation between RE and explanatory variables (particularly restrictive)

• When data for all units included in a study area are collected, it’s questionable whether 
they’re representative of a larger population

– Population may be said to be ‘sampled exhaustively’ (Nerlove and Balestra 1996)

– ‘the individual spatial units have characteristics that actually set them apart from a larger population 
(Anselin 1988)

– ‘if the sample happens to be the population’, specific effects should be fixed (Beenstock and 
Felsenstein 2007) because each unit represents itself and has not been sampled randomly



Fixed vs Random Effects (2)

• Normally not possible to draw random sets of regions (to infer 
on population and use RE) because then W cannot be defined 
and impact of spatial interactions cannot be consistently 
estimated (you need the neighbouring units to estimate spatial 
spillovers)

• Therefore, FE generally more appropriate (at least for area-
level analysis) than RE

• Hausman’s test can be used to test the hypothesis of zero 
correlation between RE and explanatory variables
– Lee and Yu (2012) derive a related test for a general spatial panel 

model (nesting all common ones)

– Mutl and Pfaffermayr (2011) derive one for when 2SLS are used for 
estimation instead of ML

– Debarsy (2012) provides a test for the panel spatial Durbin model



Model Comparison and Testing

• So how are the LM tests we saw earlier for cross-
sectional models extended to panel?

• Anselin et al. (2006) develop panel versions of LM 
tests for δ and λ (but for pooled panel data)

• Classical and robust LM tests based on non-spatial 
model with or without individual/time fixed effects

• Otherwise, conditional LM tests to test one type of 
spatial dependence conditional on the other (see 
Debarsy and Ertur 2010)

• … based on residuals of either the non-spatial or one 
spatial model



Model Comparison and Testing (2)

• Evidence in favour of spatial dependence is often weak in 
presence of time fixed effects → because most variables tend 
to coviariate locally (grow together) over time, following 
national trends (e.g. participation or unemployment rates)
– Mathematically, time fixed effects are identical to a spatial error 

process where W has all elements (including diagonal) set to 1/N

– So, if both time fixed effects and a spatial error term are included, the 
parameter for the latter will automatically fall

– BUT Lee and Yu (2010) show that ignoring time fixed effects leads to 
large upward bias in the spatial lag coefficient

• Usual debate over specific-to-general or the opposite. Elhorst 
(2014) suggests a mixed strategy
– Estimate non-spatial model to test against spatial lag and spatial error 

(specific-to-general)

– If non-spatial is rejected, estimate spatial Durbin model to test whether 
it can be simplified to spatial lag or spatial error (general to specific) 
(spatial Durbin error model not considered)



Dynamic Spatial Models

• Ideally needed for cases of
– Serial dependence between observations on each spatial unit

– Spatial dependence between observations at each point in time

– Unobservable spatial and/or time specific effects 

– Endogeneity of regressors lagged in space and/or time

• This class of methods developed very recently, as biases were introduced 
when mixing serial and spatial dependence

• A generalized space-time dynamic model can be written as
Yt = τYt–1 + δWYt + ηWYt–1 + Xt1 + WXt2 + Xt–13 + WXt–14 + Ztπ + vt, where

• vt = ρvt–1 + λWvt + μ + ξtιN + εt

• μ = κWμ + ζ

• Zt is a matrix of endogenous explanatory variables

• vt reflects the error term specification (serially and spatially autocorrelated)

• Individual fixed effects are assumed potentially spatially autocorrelated with spatial 
autocorrelation coefficient κ

• Stationarity conditions involve spatial coefficients as well (not discussed 
here)



Taxonomy of Dynamic Space-Time 

Models
• The following model specifications have been considered in the literature

– εt–1 + Wεt

– Yt–1 + Wεt

– Yt–1 + WYt + WYt–1 + Xt + WXt

– Yt–1 + WYt + WYt–1 + Xt, no WXt

– Yt–1 + WYt–1 + Xt + WXt, no WYt

– Yt–1 + WYt + WYt–1 + Xt + WXt, restriction on coeff. of WYt–1

– Yt–1 + WYt + Xt + WXt, no WYt–1

• Methods of estimation
– Bias-correction of the ML or quasi-ML (QML) estimator

– Instrumental variables or generalized method of moments (IV/GMM)

– Bayesian MCMC

• Stability condition: τ + δ + η < 1 (otherwise, estimation gets more 
complicated)

• Effects estimates can be computed for short-term and long-term, as well as 
the path along which an economy moves to its long-term equilibrium 
(Debarsy et al. 2012)



Alternative Approach: Spatial Filtering

• Various types of spatial filtering techniques exist. 
Two well-known ones are the ones by

– Getis (1995)

– Griffith (2003)

– Comparative paper (Getis and Griffith 2002)

– In spatial filtering, studied variables are split into spatial 
and non-spatial components

– Griffith’s spatial filtering (SF) is based on the 
computational formula of Moran’s I (MI) statistic. This 
eigenvector decomposition technique extracts n orthogonal 
numerical components from a n × n normalized spatial 
weights matrix

1 1( ( ' ) ') ( ( ' ) '),n nW I C I       − −= − −



Spatial Filtering

• Eigenvectors are extracted in a decreasing order of their partial contribution to MI, 
the first corresponding to the largest eigenvalue of W

• The set of eigenvecs explaining the spatial pattern in the variable of interest can be 
found by regressing stepwise the dependent variable on the eigenvecs

– The linear combination of the eigenvecs selected is the SF

• Advantages
– The SF works as additional regressors (zero-centred) in a regression model

– As such, it does not require particular estimation techniques, and can be applied to any 
functional form, e.g., within a GLM framework, where a linear model is specified 
‘behind’ the link function

• The single eigenvectors do not have a straightforward economic interpretation, 
differently from what happens in PCA (similar technique)

• Recently it was shown by Griffith (2008) that SF can also contribute to explaning 
spatial heterogeneity in the coefficients. An equivalent to geographically weighted 
regression (GWR, Brunsdon et al. 1998) can be computed by interacting the 
exogenous variables with the eigenvecs


