6. Wässrige Lösungen amphoterer Stoffe

Das letzte Kapitel dieses Leitprogramms widmet sich der Berechnung von pH-Werten wässriger Lösungen amphoterer Stoffe. Amphotere Stoffe enthalten Teilchen, die in wässriger Lösung sowohl *als Säure* als auch *als Base* agieren (*amphoter* von griech.: amphoteros = beiderlei). So weist z.B. die wässrige Lösung des Salzes Natriumhydrogentartrat Hydrogentartrat-Ionen auf, welche gegenüber den Wasser-Molekülen die Funktion der Säure aber auch diejenige der Base übernehmen:

$$\mathbf{H}$$
OOC-CH(OH)-CH(OH)-COO $^{-}$ + \mathbf{H}_{2} O \rightleftharpoons $^{-}$ OOC-CH(OH)-CH(OH)-COO $^{-}$ + \mathbf{H}_{3} O $^{+}$
 \mathbf{H} OOC-CH(OH)-CH(OH)-COO $^{-}$ + \mathbf{H}_{2} O \rightleftharpoons \mathbf{H} OOC-CH(OH)-CH(OH)-COO \mathbf{H} + OH $^{-}$

In der Folge soll das amphotere Teilchen allgemein mit HA $^-$ abgekürzt werden. In der wässrigen Lösung eines *amphoteren* Stoffes stellen sich grundsätzlich *zwei* Dissoziations-Gleichgewichte ein, wobei das eine Gleichgewicht (I) durch die *Säure*konstante $K_{S_{HA}}$ und das andere Gleichgewicht (II) durch die *Basen*konstante $K_{B_{HA}}$ beschrieben wird:

(I)
$$HA^{-} + H_{2}O \iff A^{2-} + H_{3}O^{+} K_{S_{HA^{-}}}$$

(II) $HA^{-} + H_{2}O \iff H_{2}A + OH^{-} K_{B_{HA^{-}}}$

In der wässrigen Lösung eines amphoteren Stoffes stellen sich also *zusätzlich* zum Autoprotolyse-Gleichgewicht des Wassers *zwei* weitere Gleichgewichte ein. Da die HA⁻-Teilchen in wässriger Lösung sowohl *als Säure* als auch *als Base* agieren, entstehen sowohl H₃O⁺-Ionen als auch OH⁻-Ionen, welche *beide* das Autoprotolyse-Gleichgewicht des Wassers beeinflussen. Umgekehrt beeinflusst die Autoprotolyse die beiden Dissoziations-Gleichgewichte (I) und (II). Bei der Beschreibung der wässrigen Lösung eines amphoteren Stoffes müssen also insgesamt drei Gleichgewichte berücksichtigt werden:

(I)
$$HA^{-} + H_{2}O \iff A^{2-} + H_{3}O^{+} K_{S_{HA^{-}}}$$

(II) $HA^{-} + H_{2}O \iff H_{2}A + OH^{-} K_{B_{HA^{-}}}$
(III) $H_{2}O + H_{2}O \iff OH^{-} + H_{3}O^{+} K_{W}$

Aufgabe

Mit den in den Kapiteln 1 bis 5 gemachten Erfahrungen und den soeben erhaltenen Informationen gelingt es Ihnen vielleicht bereits jetzt, die drei Gleichgewichte (I), (II) und (III) miteinander zu verknüpfen: Gehen Sie dabei von der Anfangskonzentration c_o des amphoteren Teilchens HA aus und setzen Sie die unbekannten Variablen x, y und z. Leiten Sie danach die dazugehörigen drei quadratischen Gleichungen her.

(I)
$$HA^-$$
 + H_2O \rightleftharpoons A^{2-} + H_3O^+ $K_{S_{HA^-}}$ c_o

(II)
$$HA^{-}$$
 + $H_{2}O$ \rightleftharpoons $H_{2}A$ + OH^{-} $K_{B}{}_{HA^{-}}$ c_{o}

(III)
$$H_2O$$
 + H_2O \rightleftharpoons OH^- + H_3O^+ K_W

Falls Sie sich noch zu unsicher fühlen oder falls es Ihnen nicht gelingen sollte, die drei Gleichgewichte miteinander zu verknüpfen, so können Sie *einfach weiterlesen*: Die Verknüpfung der Gleichgewichte wird im nun folgenden Teil dieses Kapitels detailliert erläutert.

Die Verknüpfung der drei Gleichgewichte (I), (II) und (III) soll nun detailliert erläutert werden. Die Anfangskonzentration c_0 des amphoteren Teilchens HA⁻ wird ein *erstes* Mal in *Schema 6.1* aufgeführt: *Schema 6.1* beschreibt das amphotere Teilchen in seiner Funktion *als Säure*. Die Dissoziation der HA⁻-Teilchen führt hier zur Bildung von einer vorläufig noch unbekannten Konzentration an H_3O^+ -Ionen, welche mit x mol/ ℓ bezeichnet werden soll. Wenn x mol/ ℓ H $_3O^+$ -Ionen entstehen, müssen gleichzeitig auch x mol/ ℓ A $_3O^+$ -Teilchen entstehen, weil die Dissoziation eines HA⁻-Teilchens je ein H_3O^+ -Ion und A_3O^+ -Teilchen erzeugt. Die Konzentration der HA⁻-Teilchen nimmt dabei um x mol/ ℓ ab:

Schema 6.1 Gleichgewicht (I): Das amphotere Teilchen HA agiert als Säure ...
... vorerst ohne jegliche Kopplung mit weiteren Gleichgewichten

Konzentrationen in mol/ℓ	HA ⁻	+	H ₂ O	\rightleftarrows	A ²⁻	+	H ₃ O ⁺
Dissoziations-Gleichgewicht (I)	c _o - x		konstant		x		x

Ein zweites Mal wird die Anfangskonzentration c_o des amphoteren Teilchens HA⁻ in Schema 6.2 aufgeführt: Schema 6.2 beschreibt das amphotere Teilchen in seiner Funktion als Base. Hier entsteht eine vorläufig noch unbekannte Konzentration an OH⁻-Ionen, welche mit y mol/ ℓ bezeichnet werden soll. Wenn y mol/ ℓ OH⁻-Ionen entstehen, müssen gleichzeitig auch y mol/ ℓ H₂A-Teilchen entstehen, weil die Reaktion eines HA⁻-Teilchens mit einem Wasser-Molekül je ein OH⁻-Ion und H₂A-Teilchen erzeugt. Die Konzentration der HA⁻-Teilchen nimmt dabei um y mol/ ℓ ab:

Schema 6.2 Gleichgewicht (II): Das amphotere Teilchen HA agiert als Base ...
... vorerst ohne jegliche Kopplung mit weiteren Gleichgewichten

Konzentrationen in mol/ℓ	HA⁻	+	H ₂ O	\rightleftarrows	H ₂ A	+	OH ⁻
Dissoziations-Gleichgewicht (II)	c _o - y		konstant		у		У

Die Dissoziation der HA⁻-Teilchen führt in *Schema 6.1* zur Bildung von x mol/ ℓ H₃O⁺-Ionen. In ihrer Funktion als Base liefern die HA⁻-Teilchen in *Schema 6.2* y mol/ ℓ OH⁻-Ionen. Das Autoprotolyse-Gleichgewicht des Wassers wird also einerseits mit x mol/ ℓ H₃O⁺-Ionen und andererseits mit y mol/ ℓ OH⁻-Ionen gestört. Die Störung durch diese H₃O⁺-Ionen und OH⁻-Ionen wird in *Schema 6.3 A*, welches das Autoprotolyse-Gleichgewicht beschreibt, in *Zeile (2)* mit " + x " und in *Zeile (3)* mit " + y " gekennzeichnet:

Schema 6.3 A Autoprotolyse-Gleichgewicht ...
... mit den Gleichgewichten (I) und (II) gekoppelt

Konzentrationen in mol/ℓ	H ₂ O	+	H ₂ O	\rightleftharpoons	OH ⁻	+	H ₃ O ⁺
(1) Reines Wasser: Autoprotolyse-Gleichgewicht		konstant			Z		Z
(2) Zusätzliche H ₃ O ⁺ aus Gleichgewicht (I)						+ X	
(3) Zusätzliche OH ⁻ aus Gleichgewicht (II)					+ y		
(4) Autoprotolyse-Gleichgewicht im neuen Gleichgewichtszustand		konstant			z + y		Z + X

Für die gesuchte H_3O^+ -Gesamtkonzentration muss nun z+x und für die OH^- -Gesamtkonzentration z+y gesetzt werden und in den Ausdruck für die Gleichgewichtskonstante K_W eingesetzt werden. Vgl. dazu *Schema 6.3 A, Zeile (4)*. Durch das Einsetzen von "z+x" und "z+y" in den Ausdruck für die Gleichgewichtskonstante K_W entsteht eine erste quadratische Gleichung:

Gesucht sind:

$$[H_3O^+] = z + x$$
 und $[OH^-] = z + y$

Die quadratische Gleichung lautet:

$$K_W = [OH^-] \cdot [H_3O^+] = (z + x) \cdot (z + y) = 1.00 \cdot 10^{-14}$$

Selbstverständlich kann diese quadratische Gleichung nicht aufgelöst werden, da *drei* unbekannte Variablen aber nur *eine* Gleichung vorliegen: Zwei *weitere* Gleichungen fehlen. Die nachfolgend beschriebene *Kopplung* der beiden Dissoziations-Gleichgewichte (I) und (II) mit dem Autoprotolyse-Gleichgewicht des Wassers und die *Kopplung* der beiden Dissoziations-Gleichgewichte (I) und (II) untereinander liefern diese zwei Gleichungen:

Die Dissoziation der HA⁻-Teilchen führt in *Schema 6.1* zur Bildung von x mol/ ℓ H₃O⁺-Ionen. In ihrer Funktion als Base liefern die HA⁻-Teilchen in *Schema 6.2* y mol/ ℓ OH⁻-Ionen. Das Autoprotolyse-Gleichgewicht des Wassers wird also einerseits mit x mol/ ℓ H₃O⁺-Ionen und andererseits mit y mol/ ℓ OH⁻-Ionen gestört.

Umgekehrt erzeugt aber auch die Autoprotolyse H₃O⁺-Ionen und OH⁻-Ionen und beeinflusst dadurch die beiden Dissoziations-Gleichgewichte des amphoteren Teilchens HA⁻. Die durch die Autoprotolyse erzeugten z mol/ ℓ H₃O⁺-Ionen können nun als Störung des Gleichgewichts (I) betrachtet werden und mit " + z " in Zeile (3) von Schema 6.3 B eingetragen werden. Die durch die Autoprotolyse erzeugten z mol/ ℓ OH⁻-Ionen können als Störung des Gleichgewichts (II) betrachtet werden und mit " + z " in Zeile (3) von Schema 6.3 C eingetragen werden. Die Berücksichtigung der Störung des Autoprotolyse-Gleichgewichts des Wassers durch die beiden Dissoziations-Gleichgewichte (I) und (II) und die gleichzeitige Berücksichtigung der Störung der beiden Dissoziations-Gleichgewichte (I) und (II) durch die Autoprotolyse des Wassers kommt einer Kopplung der drei Gleichgewichte gleich.

Bei der Erstellung der *Schemata 6.3 B* und *C* wurden nicht nur die durch die Autoprotolyse bedingten Störungen " + z " berücksichtigt, sondern auch die bis zu diesem Zeitpunkt noch nicht durchgeführte Kopplung der beiden Dissoziations-Gleichgewichte (I) und (II) *untereinander* vollzogen:

In Zeile (1) des Schemas 6.3 B nimmt die Anfangskonzentration c_0 des amphoteren Teilchens HA um x mol/ ℓ ab: Hier werden die HA-Teilchen in ihrer Funktion als Säure beschrieben. Gleichzeitig aber werden im Dissoziations-Gleichgewicht (II), welches die HA-Teilchen in ihrer Funktion als Base beschreibt, ebenfalls HA-Teilchen verbraucht, nämlich y mol/ ℓ . Auch diese verbrauchten y mol/ ℓ HA-Teilchen die Anfangskonzentration c_0 von HA-Tund müssen deshalb in Zeile (2) des Schemas 6.3 B mit " - y " berücksichtigt werden.

Dasselbe gilt für die Erstellung des *Schemas 6.3 C:* In *Zeile (1)* des *Schemas 6.3 C nimmt* die Anfangskonzentration c_o der HA⁻-Teilchen um y mol/ ℓ ab: Hier werden die HA⁻-Teilchen in ihrer Funktion als Base beschrieben. Gleichzeitig aber werden im Dissoziations-Gleichgewicht (I), welches die HA⁻-Teilchen in ihrer Funktion als Säure beschreibt, ebenfalls HA⁻-Teilchen *verbraucht*, nämlich x mol/ ℓ . Auch diese verbrauchten x mol/ ℓ HA⁻ beeinflussen die Anfangskonzentration c_o von HA⁻ und müssen deshalb in *Zeile (2)* des *Schemas 6.3 C* mit " - x " berücksichtigt werden.

Schema 6.3 B

Gleichgewicht (I): Das amphotere Teilchen HA agiert als Säure ...

... mit Dissoziations-Gleichgewicht (II) gekoppelt

... mit der Autoprotolyse des Wassers gekoppelt

Konzentrationen in mol/ℓ	HA⁻	+	H ₂ O	ightleftarrow	A ²⁻	+	H ₃ O ⁺
(1) Dissoziations-Gleichgewicht (I)	c _o - x		konstant		х		x
(2) durch Gleichgewicht (II) bedingte Konzentrationsänderungen	- y						
(3) Störung: Zusätzliche H ₃ O ⁺ bzw. Kopplung mit Autoprotolyse							+ <u>z</u>
(4) Dissoziations-Gleichgewicht (I) im neuen Gleichgewichtszustand	c _o - x - y		konstant		x		x + z

Schema 6.3 C

Gleichgewicht (II): Das amphotere Teilchen HA agiert als Base ...

... mit dem Dissoziations-Gleichgewicht (I) gekoppelt

... mit der Autoprotolyse des Wassers gekoppelt

Konzentrationen in mol/ℓ	HA ⁻	+	H ₂ O	ightleftarrow	H ₂ A	+	OH⁻
(1) Dissoziations-Gleichgewicht (II)	c _o - y		konstant		у		у
(2) durch Gleichgewicht (I) bedingte Konzentrationsänderungen	- X						
(3) Störung: Zusätzliche OH ⁻ bzw. Kopplung mit Autoprotolyse							+ Z
(4) Dissoziations-Gleichgewicht (II) im neuen Gleichgewichtszustand	c _o - y - x		konstant		у		y + z

Als Folge der durch die Autoprotolyse bedingten Störung " + z " und der Kopplung der beiden Gleichgewichte untereinander stellen sich neue Gleichgewichtszustände der beiden Dissoziations-Gleichgewichte (I) und (II) ein: Die Variablen x, y und z in den Zeilen (4) der Schemata 6. B und C beziehen sich auf die Dissoziations-Gleichgewichte im neuen Gleichgewichtszustand und werden deshalb mit einer neuen Farbe geschrieben.

Die Zeilen (4) der Schemata 6.3 A, B und C beschreiben die wässrige Lösung des amphoteren Teilchens HA vollständig. Bevor nun aber die drei dazugehörigen quadratischen Gleichungen erstellt werden, empfiehlt es sich zu überprüfen, ob die unbekannten Variablen x, y und z korrekt gesetzt wurden.

Kontrolle:

Für die Konzentration ein und derselben Teilchenart darf in allen drei Gleichgewichten, welche durch die Zeilen (4) der Schemata 6.3 A, B und C beschrieben werden, immer nur dasselbe Variablenset stehen!

→ Die Konzentrationen [HA¯], [H₃O⁺] und [OH¯] sind jeweils in *zwei* der drei Gleichgewichte aufgeführt:

Für [HA $^-$] steht in beiden Gleichgewichten dasselbe Variablenset: " $c_o - x - y$ " Kontrolle i.O. Für [H $_3$ O $^+$] steht in beiden Gleichgewichten dasselbe Variablenset: "x + z" Kontrolle i.O. Für [OH $^-$] steht in beiden Gleichgewichten dasselbe Variablenset: "y + z" Kontrolle i.O.

 \rightarrow Die verbleibenden Konzentrationen [A²⁻] und [H₂A] sind nur *ein einziges Mal* aufgeführt.

Für die gesuchte H_3O^+ -Konzentration muss nun x+z und für die OH^- -Konzentration y+z gesetzt werden und in den Ausdruck für die Gleichgewichtskonstante K_W eingesetzt werden. Vgl. dazu *Schema 6.3 A, Zeile (4)*. Durch das Einsetzen von "x+z" und "y+z" in den Ausdruck für die Gleichgewichtskonstante K_W entsteht die **erste quadratische Gleichung**:

$$K_W = [\mathrm{OH}^-] \cdot [\mathrm{H}_3\mathrm{O}^+] = (y+z) \cdot (x+z)$$

Für die H_3O^+ -Konzentration muss wiederum x+z, für die A^2 -Teilchen-Konzentration x und für die Konzentration der HA^- -Teilchen c_o - x - y gesetzt werden und in den Ausdruck für die Säurekonstante K_{SHA^-} eingesetzt werden. Vgl. dazu *Schema 6.3 B*, *Zeile (4)*. Durch das Einsetzen von " x+z ", " x " und " c_o - x - y " in den Ausdruck für die Säurekonstante K_{SHA^-} entsteht die zweite quadratische Gleichung:

$$K_{S_{HA^{-}}} = \frac{[A^{2-}] \cdot [H_{3}O^{+}]}{[HA^{-}]} = \frac{x \cdot (x+z)}{(c_{o} - x - y)}$$

Um die **dritte quadratische Gleichung** zu erhalten, muss für die OH⁻-Konzentration wiederum y + z, für die H₂A-Teilchen-Konzentration y und für die Konzentration der HA⁻-Teilchen wiederum $c_o - x - y$ gesetzt werden und in den Ausdruck für die Basenkonstante $K_{B \text{ HA}^-}$ eingesetzt werden. Vgl. dazu *Schema 6.3 C*, *Zeile (4):*

$$K_{B_{HA^{-}}} = \frac{[H_{2}A] \cdot [OH^{-}]}{[HA^{-}]} = \frac{y \cdot (y+z)}{(c_{o} - x - y)}$$

Das nun vorliegende *Gleichungssystem*, welches aus *drei quadratischen Gleichungen* mit den gesuchten Variablen x, y und z besteht, kann der Taschencomputer mit seiner «SOLVE» Funktion lösen. Dazu das folgende konkrete **Rechenbeispiel**:

0.01 mol des Salzes Natriumhydrogentartrat werden in demineralisiertem Wasser gelöst und auf ein Volumen von exakt 1.0 ℓ verdünnt. Die Anfangskonzentration c_o der amphoteren Hydrogentartrat-Ionen beträgt somit 0.01 mol/ ℓ :

$$HOOC-CH(OH)-CH(OH)-COO^- + H_2O \Leftrightarrow OOC-CH(OH)-CH(OH)-COO^- + H_3O^+$$

$$\mathbf{H}$$
OOC-CH(OH)-CH(OH)-COO $^{-}$ + \mathbf{H}_2 O \rightleftharpoons \mathbf{H} OOC-CH(OH)-CH(OH)-COO \mathbf{H} + \mathbf{OH}^{-}

 $K_{S \text{ HOOC-CH(OH)-CH(OH)-COO}} = 5.75 \cdot 10^{-5}$

 $K_{B \text{ HOOC-CH(OH)-CH(OH)-COO}^-} = 9.12 \cdot 10^{-12}$

Die drei quadratischen Gleichungen lauten somit:

$$K_W = [OH^-] \cdot [H_3O^+] = (y + z) \cdot (x + z) = 1.00 \cdot 10^{-14}$$

$$K_{S_{HA^{-}}} = \frac{[A^{2-}] \cdot [H_{3}O^{+}]}{[HA^{-}]} = \frac{x \cdot (x+z)}{(c_{o} - x - y)} = 5.75 \cdot 10^{-5}$$

$$K_{B_{HA^{-}}} = \frac{[H_{2}A] \cdot [OH^{-}]}{[HA^{-}]} = \frac{y \cdot (y+z)}{(c_{o} - x - y)} = 9.12 \cdot 10^{-12}$$

Anwendung der «SOLVE» Funktion für $c_0 = 0.01 \text{ mol/}\ell$:

Resultat:

$$\rightarrow x = 0.001690166922$$
, $y = 0.001457032578$, $z = -0.001457032536$

Der Taschencomputer schlägt insgesamt *vier* Lösungstriplette $\{x, y, z\}$ vor, wobei nur *ein* Lösungstriplett $\{x, y, z\}$ "chemisch sinnvoll" ist, da $[H_3O^+] = x + z$ und $[OH^-] = y + z$ beide > 0 sein müssen, bzw. alle andern Teilchen-Konzentrationen ebenfalls > 0 sein müssen.

Die gesuchten Konzentrationen betragen:

- → $[H_3O^+] = x + z = 0.001690 0.001457 = 0.000233 = 2.33 \cdot 10^{-4} \text{ mol/}\ell$ → $[OH^-] = y + z = 0.001457032578 - 0.001457032536 = 4.2 \cdot 10^{-11} \text{ mol/}\ell$
- → Der pH-Wert der wässrigen Lösung beträgt somit pH = $-\log [H_3O^+] = 3.63$.
- \rightarrow Der pOH-Wert beträgt pOH = $-\log [OH^-] = 10.37$.

Mit Hilfe der Lösungen für die Variablen x, y und z können nun auch die Konzentrationen aller andern in der wässrigen Lösung vorhandenen Teilchen ohne grossen Aufwand berechnet werden:

```
 \begin{array}{lll} [H_3O^+] & \to & \textit{Zeile (4)} \ von \ \textit{Schema 6.3 A und B:} \ [H_3O^+] = x + z \\ [OH^-] & \to & \textit{Zeile (4)} \ von \ \textit{Schema 6.3 A und C:} \ [OH^-] = y + z \\ [H_2A] & \to & \textit{Zeile (4)} \ von \ \textit{Schema 6.3 C:} \ [H_2A] = y \\ [HA^-] & \to & \textit{Zeile (4)} \ von \ \textit{Schema 6.3 B und C:} \ [HA^-] = c_o - x - y \\ [A^{2^-}] & \to & \textit{Zeile (4)} \ von \ \textit{Schema 6.3 B:} \ [A^{2^-}] = x \\ \end{array}
```

 $mit \;\; x = 0.001690166922 \;\; , \;\; y = 0.001457032578 \;\; , \;\; z = -0.001457032536 \;\; und \;\; c_o = 0.01 \; mol/\ell \; ; \;\; c_o = 0.001690166922 \;\; , \;\; x = -0.001457032536 \;\; und \;\; c_o = 0.001690166922 \;\; , \;\; x = -0.001457032536 \;\; und \;\; c_o = 0.001690166922 \;\; , \;\; x = -0.001457032536 \;\; und \;\; c_o = 0.001690166922 \;\; , \;\; x = -0.001457032536 \;\; und \;\; c_o = 0.001690166922 \;\; , \;\; x = -0.001457032536 \;\; und \;\; c_o = 0.001690166922 \;\; , \;\; x = -0.001690166922 \;\; , \;\; x = -0.00166922 \;\; , \;\; x = -0.0016$

→
$$[H_3O^+] = x + z$$
 = $2.33 \cdot 10^{-4} \text{ mol/}\ell$
→ $[OH^-] = y + z$ = $4.2 \cdot 10^{-11} \text{ mol/}\ell$
→ $[H_2A] = y$ = $1.46 \cdot 10^{-3} \text{ mol/}\ell$
→ $[HA^-] = c_0 - x - y = 6.85 \cdot 10^{-3} \text{ mol/}\ell$
→ $[A^{2-}] = x$ = $1.69 \cdot 10^{-3} \text{ mol/}\ell$

Kurze Interpretation des Resultats:

Das amphotere Teilchen HA⁻ weist eine *sehr viel kleinere Basenkonstante* als Säurekonstante auf: $K_{B \text{ HA}^-} = 9.12 \cdot 10^{-12} << 5.75 \cdot 10^{-5} = K_{S \text{ HA}^-}$. Auf den ersten Blick liegt deshalb die Vermutung nahe, dass das Dissoziations-Gleichgewicht (II), welches durch die Basenkonstante beschrieben wird, vernachlässigt werden kann und der resultierende pH–Wert ungefähr dem pH-Wert einer gleich konzentrierten Lösung einer einprotonigen Säure mit einer Säurekonstante von $K_S = K_{S \text{ HA}^-} = 5.75 \cdot 10^{-5}$ entspricht. Dem ist jedoch *nicht* so:

Durch die Dissoziation von HA¯-Teilchen gemäss Gleichgewicht (I) entstehen H₃O⁺-Ionen, welche mit OH¯-Ionen aus dem Dissoziations-Gleichgewicht (II) zu H₂O-Molekülen reagieren. Die Reaktion der H₃O⁺-Ionen mit den OH¯-Ionen zu H₂O-Molekülen wird durch das *Autoprotolyse-Gleichgewicht* beschrieben: Die Lösung für z ist *negativ* (z = - 0.001457), was einer "negativen Autoprotolyse", d.h. einer Neutralisation von H₃O⁺- und OH¯-Ionen entspricht! Dem Gleichgewicht (I) werden dadurch H₃O⁺-Ionen und dem Gleichgewicht (II) OH¯-Ionen entzogen; beide Dissoziations-Gleichgewichte (I) und (II) von HA¯ werden gemäss dem Prinzip von Le Châtelier "auf die rechte Seite verschoben" und es dissoziieren weit mehr HA¯-Teilchen als zunächst erwartet.

Dem Autoprotolyse-Gleichgewicht kommt bei der Berechnung von pH-Werten wässriger Lösungen amphoterer Stoffe eine zentrale Rolle als Verknüpfungsgleichgewicht zu. Ein weiterer Hinweis dafür, dass das Autoprotolyse-Gleichgewicht des Wassers der Eckstein der in diesem Leitprogramm vorgestellten Konzepte zur Beschreibung des Verhaltens von Säuren und Basen in wässriger Lösung ist.

Kontrollaufgaben zu Kapitel 6

- 1) Berechnen Sie die H₃O⁺-Konzentration und den pH-Wert einer 0.005 M Natriumhydrogensulfit-Lösung. Entnehmen Sie die relevante Säure- und Basenkonstante der K_S/K_B-Tabelle im Anhang dieses Leitprogramms.
 - Welche OH^- -Konzentration und welchen pOH-Wert weist die Lösung auf? Kontrollieren Sie Ihr Resultat mit Hilfe der Beziehung pH + pOH = 14.00.
- 2) Die ungeladene Form einer Aminosäure, wie sie in der allgemeinen Formel HOOC-CH(R)-NH₂ dargestellt wird, existiert praktisch nicht. Im festen Zustand der Aminosäure sind die funktionellen Gruppen der Aminosäure-Moleküle geladen: $^{-}$ OOC-CH(R)-NH₃⁺. Aminosäure-Moleküle weisen also gleichzeitig eine negative und eine positive Ladung auf, es sind Zwitterionen. Die Aminosäure *Glycin* weist die Formel $^{-}$ OOC-CH₂-NH₃⁺ auf, wobei K_{B -COO}- = 2.19 \cdot 10⁻¹² und K_{S -NH₃+} = 2.51 \cdot 10⁻¹⁰ betragen.
 - Berechnen Sie die H_3O^+ -Konzentration und den pH-Wert einer 0.01 M Glycin-Lösung. Welche OH $^-$ -Konzentration und welchen pOH-Wert weist die Lösung auf? Kontrollieren Sie Ihr Resultat mit Hilfe der Beziehung pH + pOH = 14.00.