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A B S T R A C T

We examined the predictive value and interplay of elementary school students' understanding of the control-of-
variables strategy, a domain-general experimentation skill, and their prior content knowledge for subsequent
conceptual knowledge acquisition and conceptual change. Trained teachers provided N=1809 first to sixth
graders with 15 lessons of guided inquiry-based instruction on floating and sinking. We assessed understanding
of the control-of-variables strategy before instruction, and conceptual content knowledge from before to after
instruction. A mixture model analysis, specifically, a latent transition analysis, indicates that understanding of
the control-of-variables strategy predicts content knowledge structure before instruction, and content knowledge
development from before to after instruction. These findings corroborate lab-based research on the interplay of
experimentation skills and content knowledge in inquiry settings and extend it to teacher-guided classroom
instruction. We describe how learning pathways vary depending on students' understanding of the control-of-
variables strategy and prior content knowledge, and discuss implications for learning and instruction.

1. Introduction

Conceptual change research has yielded many insights into students'
development of conceptual knowledge. These insights have stimulated
the generation of elaborate science units for kindergarten (Leuchter,
Saalbach, & Hardy, 2014), elementary (Hardy, Jonen, Moeller, & Stern,
2006), and early secondary school (Smith, 2007). Often, science edu-
cation in these first stages of schooling is based on inquiry. In general,
inquiry-based science instruction, particularly under teacher-guidance,
is an effective instructional means for developing conceptual content
knowledge (Alfieri, Brooks, Aldrich, & Tenenbaum, 2011; Furtak,
Seidel, Iverson, & Briggs, 2012; Hattie, 2009; Slavin, Lake, Hanley, &
Thurston, 2014). But not all students advance to the same degree. Ac-
cording to conceptual change theory, differences in the prior content
knowledge that students bring to class can explain this interindividual
variation. Students' knowledge representations differ because they have
different experiences from everyday life and prior education (Carey,
1985, 2000).

Differences exist not only in content knowledge but also in students'
understanding of experimentation. In inquiry-based instruction, stu-
dents often engage in experimentation. Setting up and interpreting
experiments requires adequate understanding of domain-general ex-
perimentation principles such as the control-of-variables strategy (CVS)

(Kuhn, Black, Keselman, & Kaplan, 2000; Kuhn, Ramsey, & Arvidsson,
2015). There are other, more and less advanced steps in the develop-
ment of knowledge about experimentation, however understanding of
the CVS is pivotal (Croker & Buchanan, 2011; Kuhn, Iordanou, Pease, &
Wirkala, 2008; Osterhaus, Körber, & Sodian, 2016; Piekny & Maehler,
2013; Sodian, Zaitchik, & Carey, 1991). Interindividual differences in
understanding this domain-general strategy can be expected to influ-
ence the acquisition of scientific concepts. In the present study, we aim
at scrutinizing the predictive value and interplay of students' under-
standing of the CVS and their prior content knowledge for subsequent
knowledge acquisition and conceptual change in inquiry-based science
instruction. Building on prior lab-based research, we examine this in-
terplay in the context of real science classrooms, with a large-scale
sample of elementary school students being instructed by their class-
room teachers. For data analysis, we apply an innovative kind of sta-
tistical modeling, specifically, a latent transition analysis.

1.1. Conceptual change in science

When students enter science classrooms, they bring prior concep-
tions about the instructed topics derived from their everyday experi-
ences (Carey, 1985, 2009; Hardy et al., 2006). Imagine children
hanging out at a river. Sitting at the riverbank, they note that stones lie

https://doi.org/10.1016/j.lindif.2018.02.003
Received 23 November 2016; Received in revised form 19 January 2018; Accepted 1 February 2018

⁎ Corresponding author at: Research on Learning and Instruction, Department of Humanities, Political and Social Sciences, Clausiusstrasse 59, RZ H16, 8092 Zurich, Switzerland.
E-mail address: peter.edelsbrunner@ifv.gess.ethz.ch (P.A. Edelsbrunner).

Learning and Individual Differences xxx (xxxx) xxx–xxx

1041-6080/ © 2018 Elsevier Inc. All rights reserved.

Please cite this article as: Edelsbrunner, P.A., Learning and Individual Differences (2018), https://doi.org/10.1016/j.lindif.2018.02.003

http://www.sciencedirect.com/science/journal/10416080
https://www.elsevier.com/locate/lindif
https://doi.org/10.1016/j.lindif.2018.02.003
https://doi.org/10.1016/j.lindif.2018.02.003
mailto:peter.edelsbrunner@ifv.gess.ethz.ch
https://doi.org/10.1016/j.lindif.2018.02.003


on the river ground but wood floats by; later they throw small wooden
branches and flip yet another stone and see that the light pieces of wood
float, while the stones sink to the ground. Watching a steamboat en-
tering the port, they admire the captain whom they recognize to be
essential for safe ship passage. An anchor is released and sits so firmly
on the ground that it prevents any absconding of the massive iron object
that floats on the water. Talking about their experiences, they come up
with some explanations for their perceptions. They discuss that light
things float, heavy things sink, and a captain keeps a ship floating.

The usefulness of conceptions arising from such everyday experi-
ences is often limited for explaining scientific phenomena. The captain
is not the decisive characteristic for a ship's floating ability and not all
wooden things float. But these conceptions are not generally useless.
They serve sufficiently well for explaining some occurrences of floating
ability. However, these conceptions reach their limits when more and
more phenomena are experienced. The conceptions are wrong from a
scientific point of view, because they cannot explain all occurrences of
floating ability, and therefore they are called misconceptions (Chi &
Ohlsson, 2005). An important aim of science education is to help stu-
dents to develop an understanding of scientific concepts. For phe-
nomena of floating and sinking, these are the concepts of object density
and buoyancy force. The step from misconceptions to scientific con-
cepts is far. Intermediate conceptions can bridge the gap (Carey, 1992;
Hardy et al., 2006). These conceptions typically develop when students
blend information given in instruction and their prior conceptions
(Hardy et al., 2006).

Intermediate conceptions are also sometimes deliberately in-
troduced by teachers in order to simplify content, but still to prepare
their students' future science learning. For example, when children
think about floating and sinking, they often give explanations such as
“light things float, heavy ones sink” or “small objects float, large ones
sink”. They do not yet understand that weight and size interact as
density and thus see these conceptions as independent of each other
(Maclin, Grosslight, & Davis, 1997; Smith, Carey, & Wiser, 1985). A
more elaborate but still limited intermediate conception would be
“things made of wood float, while stones sink”. This material-based
conception can explain more floating ability phenomena than the
conceptions of weight and size, but it is still limited in its explanatory
power. When learning science, students show diverse developmental
patterns in how they change from misconceptions via intermediate
conceptions to scientific concepts. To support this development, it is
necessary to understand how these learning patterns are structured and
constrained, and how optimal knowledge development can be sup-
ported.

1.2. Conceptual change in the science classroom

Powerful processes of knowledge restructuring have to be triggered
to enrich students' initial stock of misconceptions with scientific con-
cepts or first with intermediate conceptions. These processes are re-
ferred to as conceptual change (Chi, 2008; Chi & Ohlsson, 2005;
Ohlsson, 2009). For example, novices often have difficulties in re-
cognizing deep and meaningful relations between prior knowledge and
newly acquired knowledge (diSessa, 2008). In such cases, newly ac-
quired knowledge is not connected with prior knowledge, leading to
fragmented knowledge elements that are stored independently of each
other. Knowledge fragmentation decreases when students gain suffi-
cient conceptual understanding of a domain to integrate knowledge
pieces into more coherent and general knowledge structures (Linn,
Eylon, & Davis, 2004). This and similar processes of conceptual change
allow integrated knowledge structures to be built up, for example by
learning that different phenomena can be explained by a single prin-
ciple, concept, or theory (Ohlsson, 2009).

One effective educational intervention for promoting conceptual
change in science is inquiry-based learning, in which students engage in
the thinking processes and activities of scientists (American Association

for the Advancement of Science, 1993). This often includes social,
procedural, and epistemic activities such as arguing scientific ideas,
engaging in experimentation, and interpreting evidence (Furtak et al.,
2012). Inquiry-based learning is a successful method for teaching sci-
ence across various topics and educational levels (Anderson, 2002;
Bennett, Lubben, & Hogarth, 2007; Flick, 1995; Furtak et al., 2012;
Minner, Levy, & Century, 2010; Shymansky, Hedges, & Woodworth,
1990). Particularly in combination with strong teacher guidance, stu-
dents' learning benefits in comparison to other traditional instructional
methods, such as direct instruction (Furtak et al., 2012). However,
learning differs not only between traditional and inquiry-based in-
structional conditions. Also within similar inquiry-based instructional
settings (e.g., within one classroom), students learn to different degrees.
These different learning gains on the one hand reflect differences in
students' prior content knowledge, but it has also been pointed out that
specific domain-general experimentation skills influence students'
knowledge development (Bryant, Nunes, Hillier, Gilroy, & Barros, 2015;
Chen & Klahr, 1999).

1.3. Experimentation and learning from inquiry

A precondition for beneficial engagement in inquiry is a thorough
understanding of experimental designs (Kuhn, 2002; Kuhn et al., 2000).
A crucial facet of experimentation concerns varying the focal variable
while keeping all other factors constant. This strategy is referred to as
the control-of-variables strategy (CVS), or as vary-one-thing-at-a-time
(VOTAT). Following this strategy allows making unambiguous causal
inferences (Strand-Cary & Klahr, 2008). CVS predicts academic per-
formance and science learning above and beyond general reasoning
abilities (Bryant et al., 2015; Wüstenberg, Greiff, & Funke, 2012). Most
but not all children typically develop some understanding of the CVS at
ages 6–10, depending on task context and the number of variables that
have to be controlled (Sodian & Bullock, 2008; Zimmerman, 2007).
Development of the understanding of the correct variation of the focal
variable initiates in early childhood (Piekny & Maehler, 2013; Sodian
et al., 1991). Then, around age 10, development of broader under-
standing of the CVS emerges in many children (Penner & Klahr, 1996).
The understanding of the CVS and its development are moderately re-
lated to children's verbal reasoning and vocabulary, and to their general
science content knowledge (Wagensveld, Segers, Kleemans, &
Verhoeven, 2015). However, thoroughly understanding and being able
to apply the CVS is challenging, and even some undergraduates lack
these competencies (Lin & Lehman, 1999).

The development of conceptions about scientific phenomena and
understanding of experimentation are probably not independent from
each other, but exhibit mutual influence. In observational lab studies,
Schauble (1990, 1996) found evidence for this interplay when she
studied belief revision about causal mechanisms in observational lab
studies. Students' knowledge about causal relations influenced experi-
mentation strategies, while students' experimentation strategies in turn
influenced the acquisition of content knowledge about causal relations.
Based on these studies, it has been widely acknowledged that experi-
mentation skills and content knowledge interplay in inquiry settings
(Zimmerman, 2007). Taking these lab-based findings as a starting
point, we aimed to scrutinize the generality and potential of this in-
terrelation in classroom education.

We do not know from prior research whether students' under-
standing of experimentation influences their development of domain-
specific conceptual knowledge in a teacher-guided inquiry-based cur-
riculum unit. Does teacher guidance level out or enlarge the impact of
students' understanding of experimentation on further learning? There
are arguments for both sides. When teachers guide students in setting
up experiments and engage them in argumentation about the outcomes,
this might sufficiently support inferences and knowledge development
even for students who entered the curriculum with poor understanding
of experimentation. Put differently, teachers might take the
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responsibility off students by explicating critical design features of ex-
periments and how these constrain valid inferences. On the other hand,
according to the widely accepted cognitive constructivist view of
learning, conceptual change requires active learning processes. The role
of teacher guidance first and foremost lies in guiding students' attention
towards critical features (Ziegler & Stern, 2016). While teachers can
trigger students' reasoning and point them towards key concepts, stu-
dents have to figure out and grasp key inferences on their own. In the
instructional setting used in the present study, the students for example
immerse objects of different shapes, sizes, and materials into water, to
examine how these variables influence floating ability. Having a more
advanced understanding of the CVS can be expected to be beneficial for
grasping which characteristics determine floating ability. If only one of
the object characteristics changes between trials, students who under-
stand the importance of CVS should quickly comprehend that this
characteristic is relevant. When none or several main characteristics
change, they should accordingly comprehend that a conclusive in-
ference is not possible. In the present study, we examined whether
students' understanding of the CVS matters and how it predicts trajec-
tories of concept development in a teacher-guided inquiry-based cur-
riculum unit on floating and sinking.

1.4. Innovative statistical approaches to modeling conceptual change

The type of assessment and the statistical model used to analyze
data represent substantial factors in studies on conceptual change
(Frède et al., 2011; Straatemeier, van der Maas, & Jansen, 2008). Ty-
pical approaches to assessing conceptual change include interviews
(Christou & Vosniadou, 2012; Nussbaum & Novak, 1976), drawings
(Vosniadou & Brewer, 1992), concept mapping (Liu, 2004), and ques-
tionnaires with multiple-choice questions (Hardy et al., 2006;
Straatemeier et al., 2008) or open questions (Christou & Vosniadou,
2012). These methods can either be interpreted qualitatively, or stu-
dents' answers can be quantified and analyzed using statistical models.
Qualitative interpretations have the advantage of revealing unexpected
aspects of students' beliefs. They can highlight interindividual differ-
ences in children's content knowledge development. Quantitative ana-
lyses with larger sample sizes allow for generalizations beyond the as-
sessed student sample. This advantage of quantification, however,
usually requires treating all students as stemming from the same po-
pulation. That is, all differences between students are considered
random and the same parameter estimates are used to describe the
content knowledge structure and its development across all analyzed
students. Potential interindividual differences in knowledge structure
and development are usually neglected when analyzing scores from
assessment instruments, for example by simply comparing mean pretest
and posttest scores across large groups of students. This approach is not
in line with conceptual change theory in which qualitative knowledge
differences between children are emphasized as explanation for inter-
individual differences in content knowledge development (Kleickmann,
Hardy, Pollmeier, & Möller, 2011; Schneider & Hardy, 2013).

It is possible to combine the advantages of qualitative and quanti-
tative methods in the framework of mixture modeling. Mixture mod-
eling is a quantitative approach that allows to model interindividual
differences between students. This becomes possible by modeling stu-
dents' scores to stem from a finite number of different populations. In
conceptual change research, these populations describe different
knowledge states. For example, in mathematics, knowledge states can
reveal themselves in different strategies students apply for solving
particular mathematics problems (Fagginger Auer, Hickendorff, Van
Putten, Béguin, & Heiser, 2016; McMullen, Laakkonen, Hannula-
Sormunen, & Lehtinen, 2015). In geography, knowledge states can be
represented in the consistency of answers indicating different cognitive
models of the shape of the earth (Straatemeier et al., 2008). In physics,
knowledge states can refer to groups of students with different numbers
of misconceptions, intermediate conceptions, and scientific concepts

about the floating ability of objects in water (Schneider & Hardy, 2013).
The present study builds on the method of the latter study.

Schneider and Hardy (2013) applied mixture modeling, specifically, a
latent transition analysis, in order to depict the structure and devel-
opment of third-graders' knowledge development in a teacher-guided
inquiry-based basic physics curriculum unit. Specifically, they ex-
amined the development of students' conceptions about floating and
sinking. Latent transition analysis proved useful and informative in
describing students' structural knowledge development. In the present
study, we used the same curriculum as in Schneider and Hardy (2013),
and a similar statistical modeling technique, but on a larger sample and
additionally including covariates.

1.5. The present study

We investigated the interrelation between experimentation skills
and content knowledge development using longitudinal mixture mod-
eling. Specifically, on a large-scale sample, we applied a latent transi-
tion analysis with covariates (CVS scores and school grade) to examine
students' content knowledge development and how it is influenced by
their understanding of the CVS. This approach allowed us to model that
students differ in their prior content knowledge and thus combined the
strengths of traditional qualitative and quantitative analysis. As men-
tioned, teacher-guided, inquiry-based instruction is a fruitful instruc-
tional approach for science education, and in lab-based inquiry settings
students' experimentation skills and their knowledge development are
intertwined (Furtak et al., 2012; Schauble, 1990, 1996). But it is yet
unknown whether and to which degree this interplay matters in class-
room-based instruction. We provided a large number of first- to sixth-
graders with teacher-guided, inquiry-based instruction on the topic
floating and sinking of objects in water in their real school environment. In
this setting, we examined whether students' understanding of the CVS
predicts their content knowledge development, particularly in interac-
tion with their prior content knowledge.

2. Method

2.1. Participants

The sample consisted of N=1809 students from 108 first- to sixth-
grade school classes of 50 elementary schools from German speaking
cantons (kind of federal states) of Switzerland.

Mean age was 9.29 years (SD=1.36), with an age range of 6 to
13 years. 48.6% (n=879) of the students were female. The school
classes were recruited to participate in the Swiss MINT Study.

The Swiss MINT Study is a large-scale study in which outcomes of
early-initiated science education are investigated longitudinally. The
study was initiated at ETH Zurich in 2010 and the present sample
consists of all school classes that participated in the relevant parts of the
first phase of the study. The study focused on third and fourth grade but
there were more than 100 students from each grade. Specifically, there
were n=109 (6.0%) first grader, n=206 (11.4%) second graders,
n=514 (28.4%) third graders, n=604 (33.4%) fourth graders,
n=258 (14.3%) fifth graders, and n=118 (6.3%) sixth graders. Active
parental consent was sought for the participating students and parents
were informed that they could withdraw their consent at any time.

2.2. Learning materials

The students received instruction on the topic floating and sinking of
objects in water. The instructional materials for this curriculum unit
were developed and extensively tested at the University of Munster (see
Hardy et al., 2006, for details on the materials). The materials comprise
15 lessons of teacher-guided, inquiry-based classroom instruction.
Across the lessons, students engage in many hands-on experiments in
which they, for example, compare the floating ability of objects of
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different size, shape, or kind. In a stepwise manner, more sophisticated
explanatory models are introduced, tested, and discussed as explana-
tions for students' assumptions and observations. Before and after ex-
periments, the teachers initiate and lead discussions on the students'
prior assumptions and observations, prompting justifications for their
assumptions and for their explanations of outcomes. Thus, the in-
structional principles used in the curriculum unit encompassed prior
knowledge activation, self-explanations, and compare and contrast ac-
tivities.

Instruction starts with directing learners' attention to the size of
objects as well as to the material they are made of. Concepts of object
density, water displacement, and buoyancy force are then introduced
by engaging the students in experiments that show the limits of object
size, weight, and material as explanatory factors for floating ability. For
example, the materials contain cubes and other objects known from
everyday life of different material but the same volumes, of different
volumes but the same materials, and further objects differing in shape
and in hollowness.

These variations in object characteristics allow testing experimen-
tally - by applying the CVS - which object features influence floating
ability. Thus, the CVS can be directly applied in finding out about
floating and sinking phenomena. Students experience that object
weight and size interact, and how water is displaced and pushes back
against objects. The key concepts are then deduced in argumentative
discussions together with the teacher, without referring to scientific
definitions or more scientific terms such as mass, volume, or density.
Rather, the concepts are discussed in students' everyday language (e.g.,
“it matters how heavy something is in comparison to how big it is”) to better
align with students' knowledge. Taken together, the curriculum unit is
thus aimed at developing students' conceptual understanding of the
phenomena, rather than building up fact knowledge about scientific
definitions, to help students acquire conceptual content knowledge that
can be built on in more advanced future education.

The teachers received one day of training in small groups in which
the study authors introduced them to the study materials, experiments,
and instructional principles. The students typically received either one
lesson per week instead of their usual science lessons (which in Swiss
elementary schools usually encompass topics from Geography and
Biology), or they received the whole curriculum within a week that was
devoted to special projects. The curriculum can be used adaptively from
first to sixth grade classrooms. In most first and second grade class-
rooms the most advanced lessons were omitted and instead some basic
lessons were treated more intensively. The implementation of the cur-
riculum unit took the teachers a median time of 2months. There was no
evaluation of teachers' implementation of the curriculum unit, however
comparisons with control groups and further prior studies have shown
that teachers can successfully implement the unit after receiving a short
training (Schalk, Edelsbrunner, Schumacher, & Stern, submitted;
Möller, Hardy, Jonen, Kleickmann, & Blumberg, 2006; Stern,
Schumacher, Edelsbrunner, Schalk, & Deiglmayr, 2016).

2.3. Assessments

To assess students' content knowledge development about floating
and sinking, they answered a multiple-choice questionnaire before
(pretest) and after (posttest) the instruction. The questionnaire assesses
misconceptions (incorrect from a scientific view), intermediate con-
ceptions (partially correct), and scientific concepts (fully correct) about
the floating ability of objects in water. For each question, the students
could choose multiple answers that represented the different types of
conceptions. The questionnaire has been developed in multiple pilot
studies and is a reliable indicator of knowledge development triggered
by the floating and sinking curriculum (see Hardy et al., 2006). An
example item that encompasses answers reflecting all three types of
conceptions is provided in Fig. 1. Students' answers on the ques-
tionnaire yielded three scores, indicating their numbers of

misconceptions, intermediate conceptions, and scientific concepts. We
used these three scores as indicators of students' conceptual content
knowledge about floating and sinking in our main analysis. The stu-
dents could obtain maximum scores of 45 misconceptions, 12 inter-
mediate conceptions, and 19 scientific concepts. The questions covered
typical conceptions found in children that were identified based on
prior literature and in-depth interviews with primary school students.
Misconceptions encompassed for example the dependency of water
displacement on mass, and object mass, volume, or form as active
forces.

Intermediate conceptions included conceptions derived from ev-
eryday life, for example references to objects' material or hollowness as
decisive factors for floating ability. Scientific concepts included for
example references to the ratio of object mass to displaced water, and to
water exerting buoyancy force. Further detailed descriptions of the
questionnaire are available in Hardy et al. (2006). The posttest-ques-
tionnaire included an additional transfer test with seven questions that
were not part of the first assessment. The transfer questions assessed
whether the students could apply the instructed concepts to new si-
tuations that were not covered in the instruction. We used students' sum
score on these seven questions as an indicator of knowledge transfer of
the acquired concepts.

Before the instruction and the pretest on floating and sinking, the
students answered a questionnaire to assess their understanding of the
CVS. The questionnaire consisted of 14 multiple-choice questions (la-
tent reliability estimate= 0.75; see Raykov, Dimitrov, & Asparouhov,
2010). The questions were analogue to classic tasks such as the ramp-
(Chen & Klahr, 1999), airplane- (Bullock & Ziegler, 1999) and the
mouse-task (Sodian et al., 1991). An example item is provided in Fig. 2.
Seven questions dealt with the evaluation or interpretation of experi-
ments, and seven with the creation of experimental designs (Bryant
et al., 2015). In the evaluation items, students were asked whether a
presented experiment was a good comparison for finding something
out. The interpretation items included for example the mouse-task
(Sodian et al., 1991), in which students have to interpret findings,
taking into account whether the focal variable was correctly manipu-
lated. For six items, the correct variation of the focal variable was re-
levant (e.g., the mouse task), and for eight items the control of con-
founding variables (e.g., the airplane task), two aspects which together

Fig. 1. An example item from the assessment of students' knowledge about floating and
sinking. The students had to decide whether the metal plate floats or sinks and they could
choose one or more rationales for their choice. The first, third, and sixth rationales each
yielded one point for their misconceptions-score, the second for their intermediate con-
ceptions-score, and the fourth and fifth for their scientific concepts-score.
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represent the CVS. It should be noted that this assessment goes beyond
traditional CVS measures in which often only the control of con-
founding variables is in focus. However, the correct variation of the
focal variable is an important step in the development of CVS, and re-
lated to common misconceptions about experimentation (Klahr & Chen,
2003; Piekny & Maehler, 2013; Schwichow, Christoph, Boone, & Härtig,
2016; Siler & Klahr, 2012; Sodian et al., 1991). We therefore included
these different types of questions to assess a broad construct re-
presenting the varied facets of the CVS and related experimentation
skills similar to Schwichow et al. (2016). All questions treated domains
not related to the curriculum unit. The students received a score of 1 for
each correct answer and a score of 0 for each wrong answer. We used
students' mean score on the questionnaire ranging from 0 to 1 as an
indicator of their understanding of the CVS. A bi-factor analysis cor-
roborated the use of a composite score (Reise, 2012). The under-
standing of the CVS was assessed when the students entered the long-
itudinal study. For some students, this was directly before the floating
and sinking assessment while others received other instructional ses-
sions in between that were not concerned with floating and sinking. The
students took the CVS assessment with a median delay of 9months
before answering the floating and sinking pretest and starting with the
instruction.

2.4. Statistical analysis

The dataset, analysis scripts and further materials are freely avail-
able from https://osf.io/n6gev/. The student variables encompassed
their mean score on the CVS questionnaire, the three scores on the
floating and sinking questionnaire (misconceptions, intermediate con-
ceptions, and scientific concepts) at pretest and posttest, as well as the
score from the transfer questions at posttest, and their age, gender, and
school grade. Our statistical approach comprised three analyses. First,
we estimated descriptive statistics and intercorrelations of the main
study variables. Then, we estimated a basic regression-based model, to
compare its results to those from the mixture modeling approach. For
the basic regression-based model, we set up a change score model
(McArdle, 2009, analytic details provided in the appendix) to estimate
how much of the variance in students' change on the three knowledge
indicator variables could be explained by their CVS scores.

In the next step, we conducted a latent transition analysis (LTA), the
appropriate type of mixture model for our data. We first decided on the
number of knowledge profiles to estimate based on the BIC criterion
(Nylund, Asparouhov, & Muthen, 2007) and theoretical considerations.
For the final model, the following parameters were estimated: a) mean
and variance patterns capturing students' knowledge profiles across the
three knowledge indicators at pretest and posttest, b) profile sizes that
indicated how many of the children showed each of the knowledge
profiles at pretest, c) knowledge profile transition patterns indicating

Fig. 2. An example item from the assessment of students' understanding of the CVS. In this item, the control of confounding factors is the relevant feature for the design of the experiment.
The correct answer is the second choice. Item context taken from Bullock and Ziegler (1999).
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how likely the children were to transition from one to another profile
from pre- to posttest. Afterwards, we added students' score on the CVS
measure as a covariate to the model. This model indicated whether and
how students' understanding of the CVS predicted their content
knowledge profiles at pretest, and their transitions between the dif-
ferent content knowledge profiles from pretest to posttest. We decided
that a difference of more than 10% in transition probabilities between
students high (+1.5SD) and low (−1.5SD) on CVS would indicate a
relevant predictive value of CVS. We also controlled for school grade by
adding it as another covariate, to take into account that the most ad-
vanced lessons were omitted in the lower grades. Finally, based on the
profiles at posttest, we also estimated students' scores on the transfer
questions. That is, we compared the group means of the knowledge
profiles on the transfer score. In the estimation process, we fixed the
mean values on profiles to be the same at pretest and posttest, in order
to be able to interpret which students stayed in the same profile, and
which transitioned into a different one. We did however let the number
of knowledge profiles differ between pretest and posttest. This decision
reflects the assumption that through instruction, it can happen that
some knowledge profiles do not exist anymore, while other, new pro-
files might only be reached after students have received elaborate in-
struction about the concepts.

We did not use null hypothesis significance testing in these analyses.
Significance tests should only be used for purely confirmatory testing
(Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012).
Confirmatory testing is in principle possible in mixture modeling (see
e.g., Finch & Bronk, 2011), however, it is not always appropriate. We do
not deem a purely confirmatory approach appropriate for the present
study, rather the mixture modeling mostly serves an exploratory aim.
Therefore, we abstain from reporting and interpreting p-values.

Rather, we report information criteria, which can inform about the
relative plausibility and predictive value of models and estimates
(Wagenmakers, 2007). In addition, we report effect sizes, confidence
intervals, and criteria for judging the strength or size of effects, where
appropriate. This analysis strategy prevents mixing up predictive
modeling with hypothesis testing, an issue that is seldom considered
however can lead to unfounded inferences about parameter estimates,
models, and theoretical implications (Wagenmakers et al., 2012).

There were 29 (1.6%) students missing at the first content knowl-
edge assessment, and 40 (2.2%) at the second content knowledge as-
sessment. These students were absent from school for unknown reasons.
We applied full information maximum likelihood estimation for all
models except for the change score model for which we applied
Bayesian estimation (for an overview of Bayesian methods, see
Edelsbrunner, 2014; Etz, Gronau, Dablander, Edelsbrunner, &
Baribault, 2017; Wagenmakers, Morey, & Lee, 2016). Both estimators
handle missing data so that listwise deletion was not required, which
means we could use data from all students for the statistical estima-
tions. The Mplus software version 7.11 was used for all analyses
(Muthén & Muthén, 2012).

3. Results

Descriptive statistics of the main study variables in the different
school grades are provided in Table 1. The estimated variance-covar-
iance and correlation matrix with descriptive statistics are provided in
the appendix, Table A2. In comparison to another study with the same
learning materials and knowledge assessments (Hardy et al., 2006),
students' achievement in third grade was slightly lower (Table 1). As a
general indicator of the effectiveness of the instruction, effect sizes and
95% confidence intervals of students' change in mean values on the
three indicator variables of their knowledge about floating and sinking
were estimated. There was a strong reduction of Cohen's d=−0.98,
CI95 [−1.02, −0.93] on children's number of misconceptions, an in-
crease of d=0.72, CI95 [0.68, 0.77] on their number of everyday
conceptions, and an increase of d=0.75, CI95 [0.71, 0.80] on their
number of scientific concepts. These estimates indicate that across the
whole sample, from pretest to posttest students' misconceptions de-
creased strongly and knowledge about the instructed concepts in-
creased moderately to strongly. The increase on the number of inter-
mediate conceptions was expected, because in the course of the
instruction students first learned about the intermediate conceptions,
and then about the scientific concepts (see also Hardy et al., 2006).

3.1. Regression-based analysis

A depiction of the change score model and analytic details are
provided in Appendix A. The model estimates indicated that students'
CVS score explained 2% of variance in change in their misconceptions-
scores from pretest to posttest, 1% of variance in change in their in-
termediate conceptions-scores, and 2% of variance in change in their
scientific concepts-scores. Thus, in a traditional regression-based ap-
proach, the estimated explained variance in knowledge development by
students' CVS scores is low. Including students' school grade or gender
in this model did not change the results.

3.2. Latent transition analysis

Our main analytic approach was the latent transition analysis. We
first examined the number of knowledge profiles based on students'
misconceptions, intermediate conceptions, and scientific concepts
scores at pretest and posttest. We increased the number of profiles in a
stepwise manner up to eight profiles. Best fit was initially obtained with
seven profiles at pretest and posttest. Some profiles were very small at
one of the assessment points, that is, they contained almost no students
and thus not much information. We restricted one of these profiles to
contain zero students and removed others until we achieved the best
fitting model. This model contained four profiles at pretest, and six
profiles at posttest (see Table 2). We controlled for grade by adding it as
a covariate, and added students' scores on the CVS test as another
covariate to examine its interrelations with students' knowledge profiles
at pretest (i.e., their prior knowledge), and with their profile transitions
from pretest to posttest (i.e., their knowledge development). The in-
clusion of students' CVS scores improved model fit from BIC=56,725

Table 1
Estimates of means and standard deviations of study variables in different school grades.

Grad 1 2 3 4 5 6

Misconceptions Pre 20.27 (6.47) 19.63 (5.70) 18.36 (5.24) 17.56 (5.42) 16.53 (5.54) 14.73 (4.98)
Post 13.88 (7.05) 13.67 (6.58) 12.12 (6.21) 11.56 (6.02) 8.86 (5.31) 9.63 (5.29)

Interm. conceptions Pre 6.01 (2.42) 6.21 (2.53) 6.78 (2.45) 6.90 (2.48) 6.97 (2.62) 7.11 (2.58)
Post 8.91 (2.11) 8.83 (2.39) 9.01 (2.51) 8.68 (2.31) 8.59 (2.50) 9.38 (2.22)

Scientific concepts Pre 6.91 (3.56) 7.17 (3.41) 6.86 (3.41) 6.72 (3.39) 6.57 (3.11) 6.52 (2.91)
Post 8.22 (4.07) 8.64 (4.04) 9.88 (3.93) 10.83 (4.15) 10.71 (4.27) 10.76 (3.90)

CVS score 0.44 (0.16) 0.46 (0.16) 0.45 (0.19) 0.47 (0.20) 0.51 (0.23) 0.57 (0.22)
Transfer score 2.21 (1.80) 1.89 (1.32) 2.27 (1.43) 2.90 (1.57) 3.24 (1.64) 3.35 (1.34)
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to BIC=56,715. The exploratory inclusion of gender did not show any
substantial relations. Finally, we added students' score on the transfer
questions as another indicator variable, to estimate mean values of
students per profile on this score. The inclusions of students' CVS scores
and the transfer scores did not alter the profile structures, which can
sometimes happen after direct inclusion of additional variables
(Hickendorff, Edelsbrunner, Schneider, Trezise, & McMullen, in press).

Our first results concern students' content knowledge profiles at
pretest and posttest. We classified the profiles according to the level and
prominence of the estimated indicator mean values (Marsh, Lüdtke,
Trautwein, & Morin, 2009). In total, there were seven different profiles
(Fig. 3 presents the estimated profiles). There were three profiles with a
prominent number of misconceptions on an overall low level (low
misconceptions profile), on a moderate level (moderate misconceptions
profile), and on a high level (high misconceptions profile). There was
one profile with an above-average number of all three types of con-
ceptions (fragmented profile, cf. Schneider & Hardy, 2013). There was
one profile with a high number of intermediate conceptions (inter-
mediate profile), one with high numbers of intermediate conceptions
and scientific concepts (prescientific profile, cf. Schneider & Hardy,
2013), and one with a moderate but prominent number of scientific
concepts (scientific profile, cf. Schneider & Hardy, 2013).

At pretest, only four profiles were present: The three misconcep-
tions-profiles, and the fragmented profile. At posttest, six profiles were
present; the moderate misconceptions profile, in which most students
(35%) were at pretest, was not present anymore. In addition, the three
most proficient profiles, that is, the intermediate, prescientific, and

scientific profiles were present only at posttest. Thus, at posttest, the
students had become more homogeneous in terms of less proficient
content knowledge profiles, and they had developed three new, profi-
cient content knowledge profiles. Descriptively, on the transfer test
score the low misconceptions profile had the lowest estimate, followed
by the high misconceptions profile, then the fragmented and inter-
mediate profiles, and the prescientific and scientific profiles had the
highest estimates (see Table 3).

Fig. 4 depicts the interrelations between students' CVS score and the
four content knowledge profiles at pretest. By including students' CVS
score as a predictor variable in the latent transition analysis, we esti-
mated how many of the students show either of the four knowledge
patterns depending on their CVS score. This correlational analysis be-
tween the CVS score and the profile frequencies at pretest shows a clear
pattern: The higher students' CVS score was, the less likely they were to
begin instruction in the high or moderate misconceptions-profiles. In-
stead, with increasing CVS scores, the frequency of students entering
instruction in the low misconceptions-profile or in the fragmented
profile increased. This result pattern indicates a positive relation be-
tween students' understanding of the CVS and their content knowledge
profiles at pretest.

Next, we estimated students' profile transitions from pretest to
posttest. All profile transitions detected for at least 5% of students are
depicted in Fig. 5. These were just six transitions, which together re-
presented the knowledge development of more than 72% of students.
None of these six transitions concerned the fragmented profile. The
most frequent transition represented almost a fourth of the students,
who changed from the moderate misconceptions profile into the low
misconceptions profile. Thus, these students could successfully re-
structure their knowledge by getting rid of misconceptions, and ac-
quiring some intermediate conceptions, although their scientific con-
cepts-score stayed almost at the same level. A further 5% changed from
the moderate misconceptions into the fragmented profile, similarly
discarding misconceptions while at the same time acquiring more in-
termediate conceptions and scientific concepts. The second most fre-
quent transition was from the high misconceptions into the fragmented
profile, with students discarding misconceptions, and acquiring both
intermediate conceptions, and scientific concepts. A similar number of
students changed from the low misconceptions into the scientific pro-
file, discarding misconceptions and acquiring scientific concepts. From
the low misconceptions profile, there were two further transitions:
Students either transitioned into the intermediate profile, discarding
misconceptions and acquiring intermediate conceptions, or into the pre-
scientific profile by acquiring in addition a large number of scientific
concepts. All of these most frequent transitions indicate positive
knowledge development in the sense of science education; that is, these
students could discard misconceptions, and acquire intermediate con-
ceptions and/or scientific concepts. In addition, only 4.2% of student
stayed in the same profile from pretest to posttest.

The results regarding our main question, whether students' under-
standing of the CVS predicts profile transitions from pretest to posttest,
are depicted in Fig. 6. In the figure, all transition paths are depicted the

Table 2
Relative fit indices and entropy for the estimated latent transition analysis models.

No. of profiles at
pretest

No. of profiles at
posttest

AIC BIC aBIC Entropy

1 1 60,773 60,806 60,787 na
2 2 58,431 58,513 58,466 0.74
3 3 57,490 57,633 57,550 0.76
4 4 56,921 57,136 57,012 0.75
5 5 56,713 57,010 56,839 0.72
6 6 56,494 56,884 56,659 0.73
7 7 56,358 56,853 56,567 0.75
8 8 56,280 56,874 56,531 0.75
6 7 56,344 56,801 56,537 0.74
5 7 56,339 56,757 56,516 0.72
5 6 56,485 56,842 56,636 0.72
4 6 56,346 56,725 56,506 0.72
4 5 56,705 56,974 56,818 0.70

Note. AIC=Akaike information criterion; BIC= information criterion; aBIC=adjusted
Bayesian information criterion; Entropy= degree of profile separation. Lower informa-
tion criteria indicate better model-data fit, for LTA particularly the BIC. Finally selected
model marked in bold.

Fig. 3. The seven estimated knowledge profiles based on students' numbers of mis-
conceptions, intermediate conceptions, and scientific concepts about floating and sinking.

Table 3
Estimated percentage of students in each profile at pretest and posttest, and mean transfer
score estimates including 95% confidence intervals.

Profile % pretest % posttest Transfer score [CI95]

High misconceptions 29% 6% 1.86 [1.60, 2.12]
Moderate misconceptions 35% na na
Low misconceptions 30% 28% 1.06 [0.84, 1.28]
Fragmented 6% 23% 2.41 [2.07, 2.75]
Intermediate na 11% 2.82 [2.44, 3.18]
Scientific na 21% 3.98 [3.50, 4.46]
Pre-scientific na 11% 4.40 [3.98, 4.84]

Note. na indicates that the knowledge profile was not present at the relevant time point.
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probability of which varied at least 10% between students with high
(+1.5SD) or low (−1.5SD) CVS scores. The estimates of all transition
paths for students with high and low CVS scores are provided in the
Appendix Table A1.

For students starting in the high misconceptions profile (Fig. 6A),
with increasing CVS the probability decreased that they would stay in
this profile. Rather, they were more likely to transition into the inter-
mediate profile. This indicates a positive predictive value of CVS. For
students starting in the moderate misconceptions profile (Fig. 6B), with
increasing CVS the probability decreased that they would transition
into the low misconceptions-profile. Instead, the probability increased
that they would transition into the scientific profile, indicating again a
positive predictive value of the understanding of the CVS. For students
starting in the low misconceptions-profile (Fig. 6C), the probability
decreased that they would transition into the scientific profile, while
increasing in the probability to transition into the intermediate profile.

Whether this indicates a positive predictive value will be discussed.
Finally, for students starting in the fragmented profile (Fig. 6D), the
probability decreased to transition into the prescientific profile, and the
probability increased to transition into the scientific profile. As we will
discuss, most of these predictive patterns indicate a positive predictive
value of students' understanding of the CVS for their content knowledge
development. The additional covariate of school grade did not have
substantial additional predictive value beyond CVS. Between lower and
higher grades, the predictive value of students' CVS score for profile
frequencies at pretest, and for the transition probabilities was similar.

4. Discussion

We examined whether and how elementary school students' un-
derstanding of the control-of-variables strategy (CVS) interplays with
their prior content-specific knowledge and predicts their content
knowledge development in inquiry-based science instruction. These
findings reinstate earlier lab-based findings (Schauble, 1990, 1996) and
extend them to guided inquiry-based instruction in the classroom.
Specifically, our analysis of a large-scale sample from six school grades
indicates that CVS in fact matters for concept learning in the classroom:
Students' understanding of the CVS is a positive predictor of their prior
content knowledge (i.e., more proficient knowledge structures), and of
their content knowledge development (i.e., transitions to more profi-
cient knowledge structures). Even under teacher guidance, students'
understanding of the CVS predicts their knowledge development on the

topic floating and sinking.

4.1. The association between CVS and students' content knowledge profiles

The relation of students' understanding of the CVS to their prior
content knowledge was positive: Students' understanding of the CVS
was a positive predictor for having one of the two more proficient
knowledge profiles already at pretest. It is possible that this relation can
be explained by students' broader reasoning abilities because these are
associated with CVS (Bryant et al., 2015), or by their socioeconomic
background. For example, parents' with higher socioeconomic back-
ground typically provide more support in students' everyday inquiry
activities and critical thinking, which might contribute positively to
their understanding of the CVS and also to their content knowledge
development (Gleason & Schauble, 1999). Thus, students' socio-
economic background and general reasoning abilities both might po-
sitively influence their understanding of the CVS, and also their science
content knowledge, explaining the statistical association. Nevertheless,
skills based on the CVS have unique predictive value beyond general
reasoning (Wüstenberg et al., 2012). Reasoning also has been found to
be moderately related to the CVS mostly when it is based on verbal
tasks, but the relation to general non-verbal reasoning seems to be ra-
ther weak (Mayer, Sodian, Koerber, & Schwippert, 2014; Wagensveld
et al., 2015). We therefore argue that our results indeed point towards a
direct interrelation between the understanding of the CVS and science
content knowledge. Crucial for education, the present finding implies
that students entering instruction with less proficient prior content
knowledge tend to also have a less advanced understanding of the CVS.
At the same time, our longitudinal findings indicate that students with
more advanced understanding of the CVS have a higher probability to
transition and change from less proficient into more proficient content
knowledge profiles during the instruction. Thus, students with a good
understanding of the CVS, but less advanced prior knowledge still
benefit from instruction.

A close look at the content knowledge profiles offers insight into
conceptual knowledge structures. No knowledge profile comprised only
one type of conceptions. For example, in the profile with the highest
number of misconceptions, students concurrently held moderate num-
bers of intermediate conceptions and scientific concepts. On the
transfer tasks, students in this profile outperformed those in a profile
with a lower number of misconceptions. How can this be explained? We
assume that this resulted from the co-existence of misconceptions with

Fig. 4. Cross-sectional relation of students' CVS score to knowledge profile frequencies at pretest. Upper panel: the four knowledge profiles at pretest, represented by students' numbers of
misconceptions (MC), intermediate conceptions (IC), and scientific concepts (SC). Lower panel: covariation of estimated profile frequencies (percent of students in the respective profile)
at pretest with students' scores on the CVS assessment, controlling for school grade.
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more advanced conceptions: Misconceptions are not necessarily detri-
mental. Prior research indicates that having some misconceptions is not
a major problem, as long as these misconceptions do not directly con-
tradict related scientific concepts. The coexistence of a large number of
conceptions is advantageous if conceptions are taken up in instruction
to make students aware of their usefulness and limitations in different
contexts (Ohlsson, 2009). Thus, if misconceptions might interfere with
students' initial learning, in the long run it can be beneficial to discuss
and reflect as many initial conceptions as possible (Kapur & Rummel,
2012). This can trigger powerful knowledge changes even if students'
initial knowledge comprises primarily misconceptions (Ramsburg &
Ohlsson, 2016).

4.2. The predictive value of CVS for students' content knowledge
development

Further results illuminate the relation of students' understanding of
the CVS and their content knowledge development from pretest to
posttest. Most of the predictive estimates point towards a positive
predictive value of the understanding of the CVS for content knowledge
development: For students starting in the two content knowledge pro-
files with the highest number of misconceptions (i.e., the high and
moderate misconceptions profiles), the probabilities to leave their in-
itial profile and transition into a more proficient profile increased with
increased understanding of the CVS (Fig. 6A & B). A likely

Fig. 5. The six most frequent content knowledge profile transitions from pretest to posttest. Note that only three of the four pretest profiles are shown because none of the most frequent
transitions started from the fragmented profile.
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interpretation of these results is that the understanding of the CVS
helped these students to restructure their initial knowledge, and get rid
of most of their misconceptions. For students starting in either of the
two more proficient profiles, we found an opposed pattern. Students
starting in a profile with a low number of misconceptions (Fig. 6C) were
more likely to pass into a profile dominated by intermediate concep-
tions when they had a good understanding of the CVS. Students starting
in the fragmented profile showed the contrary pattern (Fig. 6D): that is,
they were more likely to end up in a profile dominated by scientific
conceptions instead of both scientific and intermediate conceptions if
they had a good understanding of the CVS. Their good understanding of
the CVS thus might have helped them to either build up intermediate
conceptions, or, in case they already had more intermediate concep-
tions initially, to get rid of these and instead develop scientific concepts.
In a nutshell, this interpretation of the results can be summarized as
follows: the understanding of the CVS helps students with lower-level
prior knowledge pass into an intermediate profile. It helps those already
in an intermediate profile to pass into a scientific profile. Thus,

independent of the content knowledge profile students have in the
beginning, a good understanding of the CVS supports their knowledge
restructuring and transitioning into a more scientifically valid under-
standing of floating and sinking.

Our analytic approach - latent transition analysis - offers valuable
information on how to target specific groups of students. The knowl-
edge profile with the highest number of misconceptions (i.e. about
three standard deviations above mean) after instruction remained only
for students with very low CVS understanding. Consequently, teachers
should particularly support students lacking proper understanding of
this experimentation skill in inquiry-based instruction. Such support
might help them to get rid of their misconceptions and to restructure
their relevant concept knowledge towards a more proficient knowledge
profile.

A result demanding further discussion is that students with better
CVS understanding were more likely to develop a high number of in-
termediate conceptions, instead of scientific concepts. A potential ex-
planation is that intermediate conceptions, such as material kind and

Fig. 6. Relations of students' CVS score to knowledge profile transitions from pretest to posttest. Left panel: THE four knowledge profiles present at pretest. Right panel: The four profiles
at posttest for which transitions were predicted by students' understanding of the CVS. Gray arrows indicate transitions with decreasing probability for students with higher CVS scores,
black arrows transitions with increasing probability. In accordance with arrow color, numbers between panels indicate transition probabilities for students with low CVS scores (−1.5SD,
first number) and with high CVS scores (+1.5SD, second number). Curved arrow at high misconceptions profile indicates students staying in this profile.

P.A. Edelsbrunner et al. Learning and Individual Differences xxx (xxxx) xxx–xxx

10



object hollowness, describe directly visible object features. Such ob-
vious object features can easily be tested in experiments by applying the
CVS to test for their effects. Explanations based on scientific concepts,
however, do not directly relate to individual, directly visible and tes-
table object features. For example, the scientific concept of object
density demands understanding of the relation between two object
features, mass and volume. Additional skills and abilities, such as
proportional reasoning ability, might interact with CVS in contributing
to such understanding, while understanding of CVS on its own directly
benefits the development of intermediate conceptions.

For students' content knowledge development in inquiry-based in-
struction, our results indicate that their understanding of the CVS might
be a relevant constraint. If students do not understand principles of
experimentation to a sufficient degree, they might not be able to grasp
the importance and implications of well-controlled experiments
(Schwichow et al., 2016). Children often see the meaning of experi-
mentation in producing optimal outcomes, which has been termed the
engineering-approach to experimentation (Schauble, Klopfer, &
Raghavan, 1991). The controlled comparison between different condi-
tions might be meaningful for students only if they understand its value
for gaining conceptual insights about causal relations, beyond the aim
of using an engineering-approach for producing optimal outcomes. For
instruction, this would imply that preparing students with the necessary
understanding of the CVS beforehand might support their conceptual
learning from experimental designs. Students' understanding of the CVS
can be trained efficiently with relatively low time investment, espe-
cially in teacher-directed training settings (Chen & Klahr, 1999; Lorch
Jr et al., 2010; Strand-Cary & Klahr, 2008). We therefore suggest ex-
amining in future studies whether and under which circumstances
training students' understanding of the CVS indeed raises their knowl-
edge gains from subsequent inquiry-based classroom instruction.

4.3. Potential of the mixture modeling approach

The latent transition analysis yielded informative results in com-
parison to a traditional regression model. Given that interindividual
differences in students' content knowledge structure exist, results from
traditional regression models might be less informative than results
from mixture modeling, because regression models are based on the
assumption of a homogeneous multivariate normal distribution popu-
lation across all students. Thus, in accordance with conceptual change
theory, interindividual differences in students' knowledge and its de-
velopment can be more adequately represented in mixture models. This
comes at the price of setting up, estimating, and interpreting complex
models with many parameters. In our study, this was possible due to the
large sample size. With smaller sample sizes, such complex models
cannot be estimated because they would not yield reliable information.
However, in other studies on conceptual change, moderate sample sizes
of a few hundred students were sufficient for estimating and yielding
reliable information from similar models (McMullen et al., 2015;
Schneider & Hardy, 2013; Straatemeier et al., 2008). Thus, in future
quantitative studies on conceptual change, we suggest researchers to
consider mixture modeling and to plan sample sizes accordingly. In case
of moderate sample sizes, Bayesian estimation offers high model flex-
ibility and ease of parameter estimation by incorporating information
from prior studies into the models (see e.g., Chung, Lanza, & Loken,
2008; Etz et al., 2017). Most importantly, mixture modeling offers a
way of yielding the information that conceptual change researchers
really want from quantitative data.

4.4. Comparison to Schneider and Hardy (2013)

The present study represents a partial replication, and extension of
Schneider and Hardy (2013). Schneider and Hardy (2013) used the
same teaching materials and also a latent transition analysis approach
to model third graders' knowledge profiles about floating and sinking.

Our results indicate that similar profiles are present in a new sample
from a different country and across all grades of elementary school.
Similar to Schneider and Hardy (2013), we found, for example, profiles
with high numbers of misconceptions, and a profile with high numbers
of intermediate conceptions and scientific concepts. We also found a
fragmented profile, in which students showed higher-than-average
numbers of all three types of concepts. We did however also find a
profile that was not present in the data of Schneider and Hardy, the
profile with a high number of intermediate conceptions. This profile
was found only after instruction and revealed informative transition
patterns.

The six most frequent transitions, comprising more than 70% of
students, all described knowledge development into more advanced
profiles. That is, these students all reduced their misconceptions, and
acquired new intermediate conceptions or scientific concepts. This
general pattern of results is in accordance with the findings of
Schneider and Hardy (2013), indicating that most students manage to
restructure their knowledge, and that although there is heterogeneity in
students' knowledge, both their initial knowledge and its development
can be described by a limited number of profiles and transition patterns.
In addition, only about 4% of students stayed in their initial profile after
instruction, similar to the findings by Schneider and Hardy (2013).

However, although the instruction and assessment materials were
the same in our study and in Schneider and Hardy (2013), not all
profiles we estimated concur with those found in their study. Differ-
ences might stem from various disparities in study characteristics. First,
in our study first- to sixth graders instead of only third graders were
examined; second, students stemmed from a different country (Swit-
zerland instead of Germany); third, trained teachers instead of the study
authors provided the instruction; and fourth, we analyzed raw scores
instead of scaled scores, an analytic choice which might influence the
findings of a latent transition analysis.

Overall, however, the major conclusions from both studies con-
verge. This convergence is an important finding as to the best of our
knowledge, such close conceptual replications using a mixture mod-
eling approach have not yet been conducted in educational research.
The similarity in findings between the two studies indicates that mix-
ture modeling allows a rather robust description of learning patterns
that can generalize across samples.

4.5. Limitations and outlook

In our study, all teachers received the same training but this does
not imply that they all delivered the same instruction. It was not our
intention to strictly control the instructional characteristics because we
aimed at examining learning in realistic classroom situations. Still, in
future studies, it might be informative to assess characteristics of tea-
chers and their instruction to explain further variance in students'
knowledge development. For example, the amount of teacher guidance
provided during experimentation might influence to which degree
students' own understanding of the CVS matters. From a statistical
view, mixture models can be estimated as multilevel models, making it
possible to estimate models similar to ours with predictors on the stu-
dent level and also on the teacher level (Fagginger Auer et al., 2016;
Vermunt, 2003).

Researchers can use the intraclass correlation estimates from Table
A2 to inform whether multilevel modeling might be appropriate and
informative in their future research.

Finally, our results show that students' understanding of the CVS is
an informative predictor of their content knowledge development. But
we did not randomly manipulate students' understanding of the CVS in
a training study. Therefore, we do not know whether the present effects
are direct and to which extent they are caused by other student char-
acteristics such as intelligence and other cognitive abilities (Mayer
et al., 2014, e.g., executive functions), or further endogeneity factors
like feedback effects and common method variance from questionnaires
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(Antonakis, Bendahan, Jacquart, & Lalive, 2014). In the present study,
students' school grade was included in the analyses, which could not
explain knowledge development beyond students' CVS scores. How-
ever, school grade is a limited proxy of intelligence. We doubt however
that intelligence can fully account for the present findings because the
predictive power of intelligence for learning is limited when students
enter learning situations with relevant prior knowledge (Murayama,
Pekrun, Lichtenfeld, & Vom Hofe, 2013). Its effect is often soaked up in
the prior knowledge (Rütsche & Schalk, submitted; Schneider, Körkel, &
Weinert, 1989), although intelligence can sometimes explain variation
in learning beyond prior knowledge (e.g., Primi, Ferrão, & Almeida,
2010). In addition, CVS has been found to predict science achievement
beyond intelligence (Bryant et al., 2015). Furthermore, intelligence can
be conceptualized as a network of interacting cognitive abilities
(Conway & Kovacs, 2015; Kovacs & Conway, 2016; Van Der Maas et al.,
2006). For future studies examining the causal status of the CVS based
on longitudinal but non-experimental data, we suggest to examine the
role of the CVS from a network perspective to yield insights into its
dynamic relations with other constructs in the course of knowledge
development. To further scrutinize whether the CVS has a direct causal
effect on students' learning, we also re-emphasize our proposal to ex-
amine whether training students in CVS is indeed beneficial for their
content knowledge development.

5. Conclusion

Our results indicate that students' understanding of the cotrol-of-
variables is relevant in teacher-guided inquiry-based instruction in

elementary school. This finding opens new prospects for improving
students' learning. Inquiry and other types of instruction have been
researched for decades in science education. With the present study, we
connected two research traditions by relating the CVS to inquiry-based
learning in the classroom: Understanding of CVS is a main determinant
for students' knowledge and their knowledge development in inquiry-
based education. The latent transition analysis indicates that students'
conceptual change depends on their knowledge structures. These
findings are significant for theories of conceptual change; even the most
advanced students do hold some misconceptions. We have shown that
latent transition analysis is a tool that adequately and beneficially
connects conceptual development theories and empirical observations.
Future research might benefit from similar approaches to study whether
and to what extent students' cognitive preconditions shape their
learning of basic and advanced science concepts.
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Appendix A. Additional information on the Bayesian change score model

In the latent change score model, no knowledge profiles are estimated, instead this is a traditional regression-based model in which variance in
students' knowledge on the three scores at posttest was predicted by their knowledge at pretest, and additionally by their CVS score (Fig. A2).

The latent change score model was estimated using Bayesian estimation with Markov Chain Monte Carlo (MCMC) sampling. This estimation
method can be more effective than maximum likelihood estimation and overcomes interpretational issues of other estimation methods and of p-value
hypothesis testing (Edelsbrunner, 2014; Etz et al., 2017; Wagenmakers, 2007; Wagenmakers et al., 2016). We used default priors in Mplus and
MCMC with Gibbs sampling with four chains, each with 10,000 draws, 5000 samples burn-in, and a thinning factor of 5.

Default priors were chosen because we did not have substantial prior information concerning the predictive strength of CVS measures for
conceptual change in regression models, which is reflected in the default priors.

There were no convergence problems, potential scale reduction factors were equal or smaller than 1.020 for all estimated parameters (Brooks &
Gelman, 1998). Posterior trace plots, density plots, and autocorrelation plots of the main parameters, the regression of the three knowledge indicator
change scores on the CVS score, are depicted in Fig. A1. Posterior trace plots depict the parameter estimates yielded in each MCMC draw by the four
chains (one in each color) and the figures indicate that the chains converged very early because the variances in the four chains seem to be mostly
deviating randomly from each other, and stable around the same estimate. The posterior density plots indicate the distributions of these estimates
from each fifth draw (i.e., after thinning to minimize the influence of potential autocorrelation between draws). These posteriors seem almost
perfectly Gaussian, and the medians, which provide the point estimates for the respective parameter, are indicated by blue lines and corresponding
numbers.

The autocorrelation plots, finally, indicate that consecutive MCMC draws were only very marginally dependent on each other, which increases
trust in precise posterior estimates (for further guidance on interpreting Bayesian plots, see e.g. McElreath, 2015). All the actual estimated stan-
dardized model parameters are presented in Fig. A2.
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Fig. A1. Trace plots (left column panel), autocorrelation plots (middle column panel), and posterior density plots (right column panel, median indicated) from the latent change score-
model to predict students' prior knowledge and knowledge change from their understanding of the control of variables-strategy. The plots stem from the MCMC draws of the three
unstandardized parameters for the regression of students' change on the misconceptions score (upper panel), intermediate conceptions score (middle panel), and scientific concepts score
(lower panel) on their CVS score.

Fig. A2. The latent change score-model to predict students' knowledge change from their understanding of the CVS. CVS=CVS questionnaire mean score; C_mc=change on mis-
conceptions score from pretest mc_pr to posttest mc_po; C_ic=change on intermediate conceptions score from pretest (ic_pr) to posttest (ic_po); C_sc=change on scientific concepts score
from pretest (sc_pr) to posttest (sc_po). Double-headed arrows indicate variance or correlation parameters, single-headed arrows regression parameters. Main parameter estimates are the
predictive paths in bold from CVS to C_mc, C_ic, and C_sc. Change score variables represent intercepts and residual variances at posttest, controlling for pretest values, like in a generic
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panel regression model. 0 s and 1 s are fixed parameters, the other values represent standardized Bayesian parameter estimates.

Table A1
Transition probabilities between all profiles for students high (upper panel) and low (lower panel) on CVS.

CVS −1.5SD Post

LMC (0.41) HMC (0.08) FRA (0.27) PRE (0.01) INT (0.04) SCI (0.14)

Pre MMC (0.47) 0.75 0.02 0.14 0.00 0.03 0.06
LMC (0.16) 0.00 0.00 0.02 0.19 0.10 0.69
HMC (0.36) 0.17 0.20 0.56 0.04 0.03 0.00
FRA (0.01) 0.00 0.00 0.00 0.78 0.12 0.11

CVS +1.5SD Post
LMC (0.12) HMC (0.01) FRA (0.16) PRE (0.23) INT (0.22) SCI (0.26)

Pre MMC (0.21) 0.48 0.04 0.18 0.00 0.05 0.25
LMC (0.44) 0.00 0.00 0.05 0.26 0.32 0.37
HMC (0.19) 0.10 0.02 0.54 0.13 0.22 0.00
FRA (0.16) 0.00 0.00 0.00 0.56 0.15 0.29

Note. MMC=moderate misconceptions profile; LMC= low misconceptions profile; HMC=high misconceptions profile; FRA=fragmented profile; PRE=prescientific profile;
INT= intermediate profile; SCI=scientific profile. Numbers in brackets next to profiles indicate profile size at pretest (Pre) and posttest (Post). All other numbers indicate transition
probabilities between respective profiles. No column for MMC shown because this profile was not present at posttest.

Table A2
Descriptive statistics of study variables: Means, SDs, estimates of intraclass correlation coefficients, (co-)variances and correlations.

Grade Gender CVS score MC_pr MC_po IC_pr IC_po SC_pr SC_po

Mean 3.58 0.51 0.47 17.93 11.60 6.75 8.83 6.79 10.12
SD 1.23 0.50 0.20 5.62 6.24 2.51 2.39 3.34 4.16
ICC 0.94 0.00 0.12 0.19 0.22 0.11 0.18 0.10 0.24
Grade 1.51 0.01 0.15 −0.23 −0.22 0.11 −0.01 −0.05 0.18
Gender 0.01 0.25 −0.01 −0.08 −0.04 0.09 0.04 0.03 0.02
CVS score 0.04 0.00 0.04 −0.14 −0.22 0.18 0.16 0.07 0.18
MC_pr −1.62 −0.24 −0.16 31.53 0.40 −0.01 0.06 0.40 0.02
MC_po −1.70 −0.13 −0.28 14.02 38.92 −0.15 −0.07 0.11 −0.10
IC_pr 0.34 0.11 0.09 −0.17 −2.34 6.31 0.32 0.35 0.28
IC_po −0.03 0.05 0.08 0.77 −1.10 1.93 5.73 0.19 0.33
SC_pr −0.19 0.05 0.05 7.49 2.31 2.93 1.52 11.15 0.32
SC_po 0.93 0.04 0.15 0.35 −2.46 2.94 3.28 4.46 17.28

Note. MC_pr=misconceptions score at pretest; MC_po=misconceptions score at posttest; IC_pr= intermediate conceptions score at pretest; IC_po= intermediate conceptions score at
posttest; SC_pr=scientific concepts score at pretest; SC_po=scientific concepts score at posttest; ICC= intraclass correlation coefficient. Variable intercorrelations are presented above
the diagonal, covariances below the diagonal. Covariances of variables with themselves on diagonal are variances. Covariances and correlations are full information maximum likelihood
estimates.
Estimates of ICCs stem from two level model in which mean parameters are modeled varying randomly across teachers.
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