MODULE 3-P4: Assistive technologies for functional recovery in persons after stroke

Natalie Tanczak^{1,2}, Christoph M. Kanzler^{1,2}, Roger Gassert^{1,2}, Olivier Lambercy^{1,2} ¹ Singapore-ETH Centre, Future Health Technologies Programme, CREATE Campus, Singapore ² Rehabilitation Engineering Lab, Department of Health Sciences and Technology, ETH Zurich, Switzerland

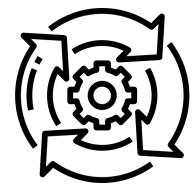
Introduction

- Many persons in the chronic phase after stroke have persisting upper limb impairments which affect their abilities to perform activities of daily living (ADL)
- Assistive technologies (AT) are able to support individuals with such tasks
- Specifically, robotic hand orthoses (RHO) can help support with grasping tasks in ADL
- Further, through promoted usage of the impaired limb, the individual may harness any remaining potential for **recovery** even long after stroke

Research aims

- **1. Optimisation** of a RHO for assistance in grasping tasks for persons after stroke
- **2. Validation** of this device within stroke therapy in clinic
- 3. Extension of this device as an assistive tool in home for daily assistance

Preliminary results [1]


Mixed-Method Focus Group: semi-structured interviews, decision making analysis, hands-on demonstration


A qualitative analysis, supported and complemented with **quantitative** outcomes

Methodological Evaluation (n=5)

• High **frequency** of mention was met with a high level of **importance**

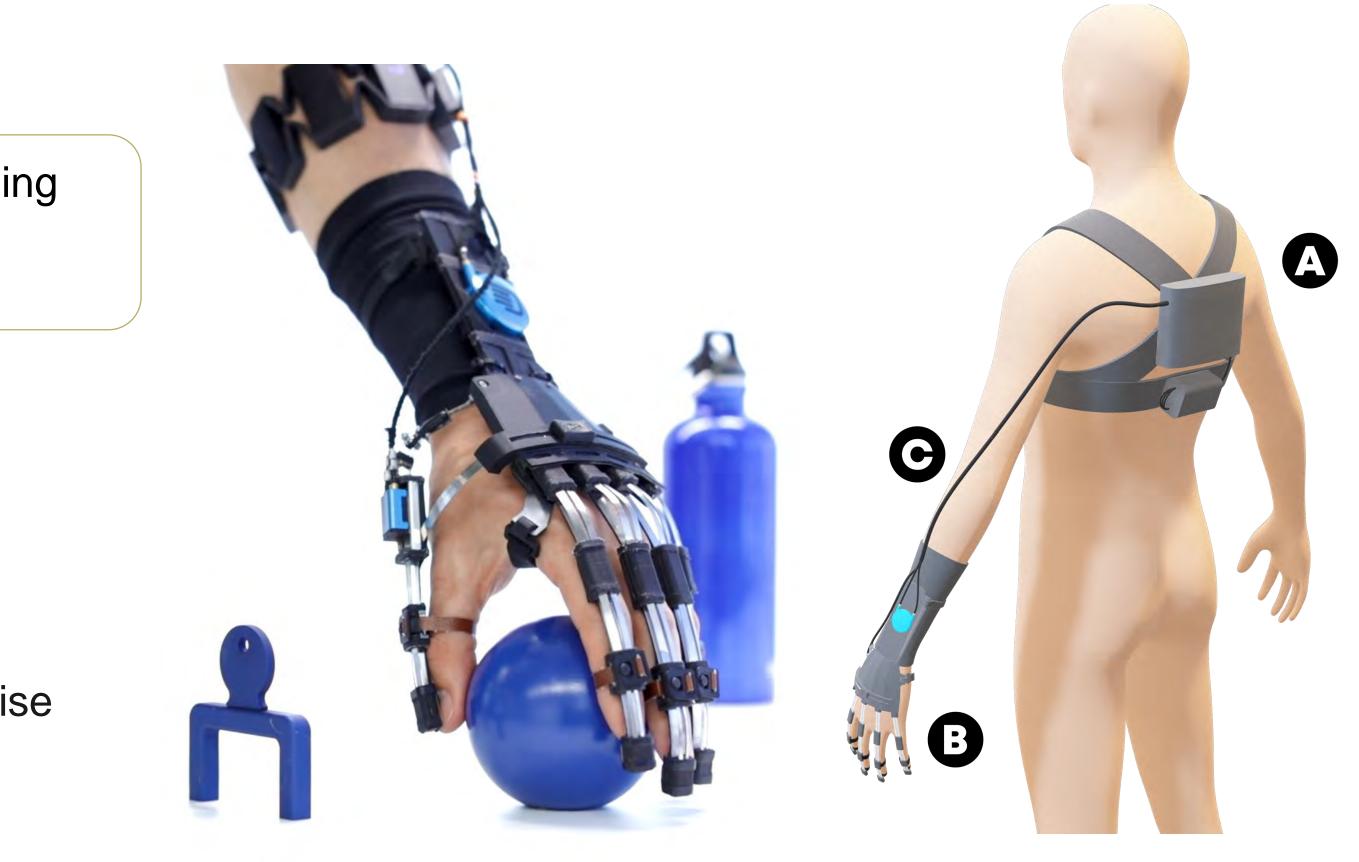
Most desired features for upper limb AT:

Effective

Intuitive

Easy to use Lightweight

(SEC) SINGAPORE-ETH CENTRE



	RELab tenoexo
е	
ir S	A lightweight, fully wearable RHO intended for graspin assistance for individuals with sensorimotor hand impairments
р	 Comprised of:
e r	 Back module containing motors, controls and battery (720g) Lightweight hand module (<150g)
	G Unobtrusive cable transmission
	 Supports various grasp types (Figure 1) to maximis grasping assistance in ADL, increasing the
S	independence of the end user
. 16	 Fully tailorable design: accounting for end user har measurements, preferences on backpack location and
)r	grasping intention methods (ex. Button, phone app)

Figure 2: (Left) Participants ranking their previously listed desired device features in terms of importance. (Right) A participant trying out the RELab tenoexo.

nd

Figure 1: The RELab tenoexo, a fully wearable assistive soft hand exoskeleton for daily activities. The hand module has two actuated degrees of freedom and passive thumb opposition allowing for grasps covering 80% of ADL.

Future work

- **1. Mechanical characterisation:** systematically testing iterations of new RHO designs
- 2. Feasibility testing in clinic: validating the functionality of the RELab tenoexo with the specific needs of the stroke population
- 3. Extension to independent use at home: exploring the feasibility of using the RELab tenoexo independently in the home setting to support ADL

References

[1] N. Tanczak, R. Ranzani, J. T. Meyer, G. Devittori, D. Dinacci, R. Gassert, O. Lambercy, and C. M. Kanzler, "A Novel Mixed-Method Approach to Identify Needs and Requirements for Upper Limb Assistive Technology for Persons after Stroke," Accepted for publication at the 17th International Conference on Rehabilitation Robotics (ICORR), 2022.

(FHT) FUTURE HEALTH **TECHNOLOGIES**