MODULE 1-P5: Accuracy of 3D DXA-based femoral strength prediction from finite element analysis (FEA)

Vee San Cheong^{1,2}, Dheeraj Jha^{1,2}, Alexander Baker^{2,} Kehan Pan^{1,2}, Lorenzo Grassi³, Namki Hong⁴, Yumie Rhee⁴, Katelyn Greene⁵, Ashley Weaver⁵, Sami Väänänen³, Hanna Isaksson³, Stephen Ferguson^{1,2}, Benedikt Helgason^{1,2} ¹Singapore-ETH Centre, Singapore; ²ETH-Zürich, Switzerland; ³Lund University, Sweden; ⁴Yonsei University College of Medicine, South Korea; ⁵Wake Forest School of Medicine, USA

Clinical burden

- Hip fracture incidence is expected to increase to 6.3 million in 2050 due to ageing population, with 50% of them in Asia.
- Better predictor of hip fracture risk is needed as prediction accuracy based on gold standard dual-energy X-ray absorptiometry computed areal bone mineral density (DXA-aBMD) is 75% or less.
- 3D-2D algorithms that model the 3D bone shapes and distributions from 2D planar DXA projections can provide a more direct assessment of the resistance to fracture.
- Problem: 3D-DXA based finite element (FE) models of bone strength have not been validated against computedtomography, CT-based FE models.

Finite element modelling

(SEC) SINGAPORE-ETH **CREATE ETH**zürich CENTRE

 112 Med (age treat 	paired ical) and 20-88; ment) we	3D-DXA CT imag absence re evaluate	(3D-shape es from fiv of bone ed.	r, Galgo e cohorts disease	
 3D-s than to stren 	haper DX CT segr an unde	A surfaces nented sur er-prediction	s (yellow) we faces (white n of femo	ere smaller e), leading oral neck	200
 New shap simil corre 	geometri oer DXA arity of elation of	ies created images (surface s CT-DXA st	l by binarisa green) incre hapes but rength only s	tion of 3D eased the improved slightly.	200 Strength (N) 001
• A nr)VEL NALA				50
 A no 3D-E new with 	OXA bone geometri a system	es obtaine atic offset.	density (BM d a 1:1 corre	ID) at the elation but	
 A no 3D-E new with 4 4 Total b predict 	XA bone geometri a system MC one volur ed with th	e mineral es obtaine atic offset. Srphon ne shows a ne new mod	density (BM d a 1:1 corre hetric a a good corre	ID) at the elation but	SMD is
 A no 3D-E new with 4 4 Total b predict (^{cuo}) employ 300 x250 200 200 	Ner data $DXA bone geometric a system MC one volur ed with th \int_{x^2 = 0.91 \text{ R}}^{y = 1.08x - 2}\int_{x^2 = 0.91 \text{ R}}^{y = 1.08x - 2}$	e mineral es obtaine atic offset.	density (BM d a 1:1 corre netric a a good corre del.	ID) at the elation but nalysis	SMD is

Discussion & conclusions 5

- A novel methodology that modifies 3D-DXA images to verpredict femoral strength with better accuracy has been developed.
 - Good correlation between DXA-CT strength has been achieved, but the over-prediction of strength in the novel model may be driven by the systematically higher BMD in the new models.
 - Further optimisation of data-driven model is required to match BMD to improve the strength prediction.
- 3D-DXA combined with novel data-driven model has the potential to be used in place of CT-based models to estimate the risk of hip fracture.

20000

(FHT) FUTURE HEALTH TECHNOLOGIES