Building Reserves: Performance in SPACE predicts size of the hippocampus (trainSPACE)

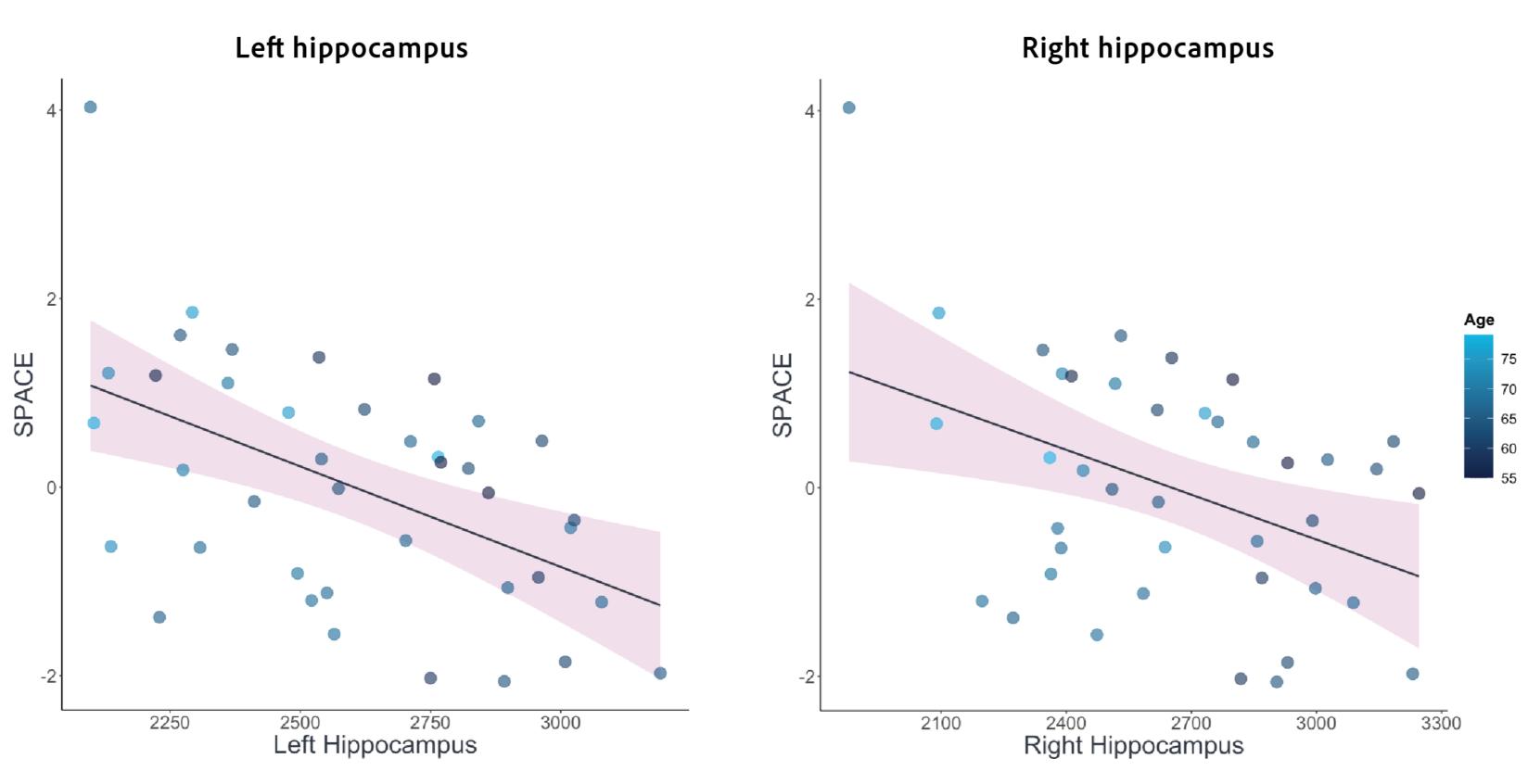
Karolina Minta, Giorgio Colombo, Mervin Tee, Marcus Low, Saima Hilal, Victor R. Schinazi

Introduction:

- Decreases in hippocampal volume and thinner cortices are associated with age-related decline¹.
- Hippocampal volume is also associated with spatial ability².
- Previous research has shown that mental stimulation may induce morphological changes³ and help to improve cognitive performance⁴.
- Current cognitive training programs often focus on basic processing capacities like working memory and executive functions overlooking spatial ability.
- This study explores the association between performance in SPACE and imaging markers of neurodegeneration, while assessing the benefit of an intensive training program.

Methods:

- Baseline MRI, SPACE and neuropsychological data are collected from all 40 participants (Age_{control}= 65.20; $Age_{intervention} = 68.10$).
- Participants in the intervention group complete a six-month training regime in which they play SPACE twice per week.
- All participants complete SPACE, a full neuropsychological assessment, and undergo a second MRI scan after six months.
- Eight participants in the intervention group and 12 participants in the control group have completed the entire protocol.


Conclusion:

- Performance in the path integration and in the mapping task predict the size of the hippocampus.
- The training program may have an effect on sustaining cognitive function.
- Participants that underwent the training outperform those in the control group for most tasks in SPACE.

SPACE significantly predicts hippocampal size

2250 2500

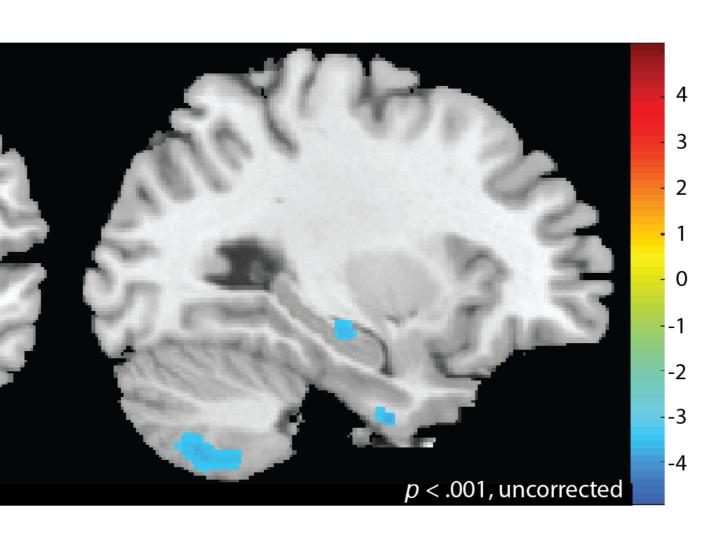
Left hippocampus

Model Fit Me	easures					
			Overall Model Test			
Model	R	R²	F	df1	df2	р
1	0.38	0.15	6.54	1	38	0.015
2	0.64	0.41	8.48	3	36	<.001
Model Comp	parisons					
Comparison						
Model	Model	ΔR²	F	df1	df2	р

Model Coefficients - Left Hippocampus

Predictor	Estimate	SE	t	р
Intercept	4245.85	444.18	9.56	<.001
Age	-18.62	6.53	-2.85	0.007
PI distance error	-0.74	0.34	-2.19	0.035
Mapping performance	-481.58	128.05	-3.76	<.001

(FHT) FUTURE


HEALTH

TECHNOLOGIES

			Overall Model Test				
Model	R	R²	F	df1	df2	р	
1	0.51	0.26	13.44	1	38	<.001	
2	0.65	0.42	8.62	3	36	<.001	
/lodel Comp	arisons						
Comp	parison						
Model	Model	ΔR²	F	df1	df2	р	
1	- 2	0.16	4.84	2	36	0.014	
/lodel Coeff	icients - Rigł	nt Hippocan	npus				
Predictor		Estimate	SE	t	р	_	
Intercept		4861.73	489.03	9.94	<.001		
Age		-27.70	7.19	-3.85	<.001		
PI distance error		-0.93	0.37	-2.49	0.017		
Mapping performance		-323 93	140 98	-2.30	0 027		

Figure 1: Results of the volumetry and VBM. The coloured dots in the graphs show the age of the participants. The table presents the results from the regressions. The VBM presents the inverse relationship between hippocampus size and error in the path integration task.

Right hippocampus

- hippocampus.
- hippocampus.
- hippocampus.

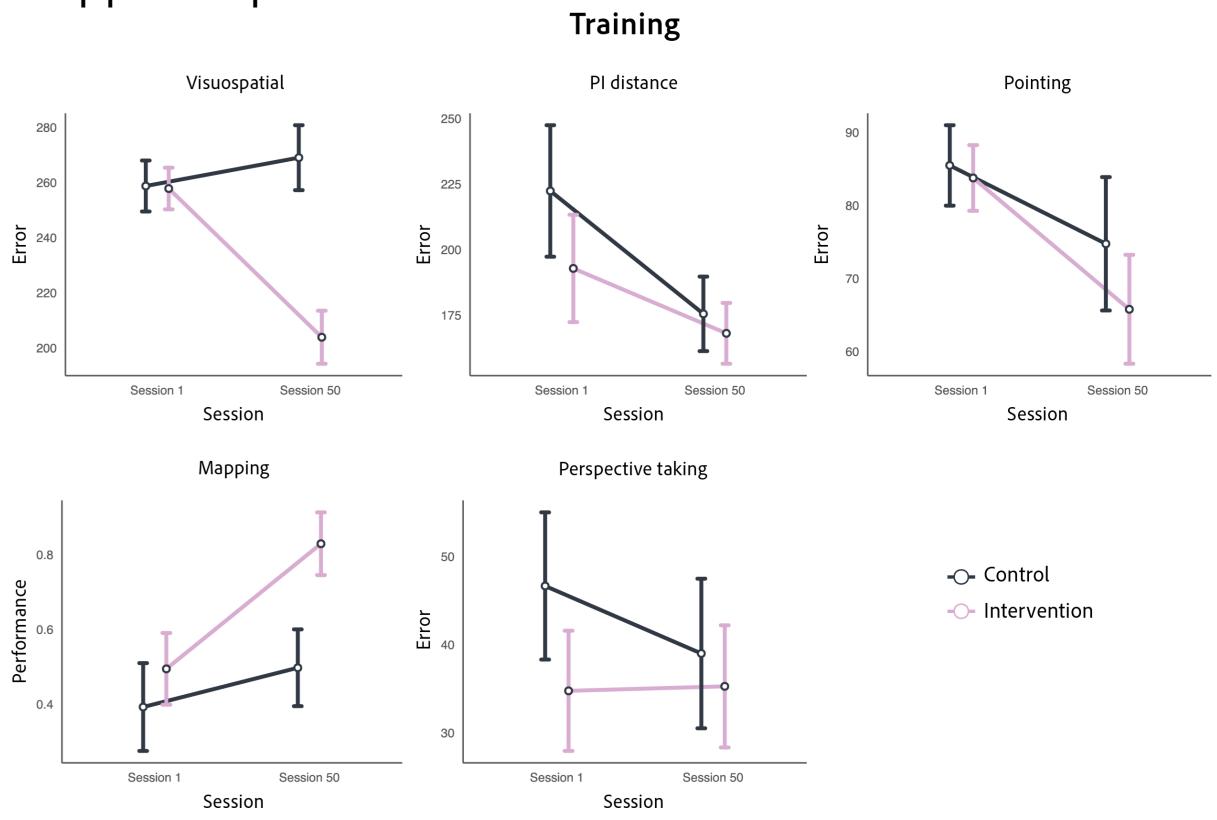


Figure 2: Performance of participants who completed the 6-month training either improved or remained stable for all tasks in SPACE.

References:

- Neurosci. 2010;30(15):5368-75.
- 39.
- 2021;11(1):12313.

Results of the regressions revealed that age, path integration distance error and mapping performance significantly predicted the size of the left ($r^2 = .41$, F(3, 36)) = 8.48, p < .001) and right (r^2 = .42, F(3, 36) = 8.62, p < .001)

Age accounted for 15% and 26% of the variance in the left and right hippocampus, respectively.

As expected, we observed a negative relationship between errors in the path integration task and the size of the left (β = -0.74, p = 0.035) and right (β = -0.93, p = 0.017)

Surprisingly, we observed a negative relationship between performance in the mapping task and the size of the left (β = -481.58, p < 0.001) and right ($\beta = -323.93$, p < 0.027)

1. Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J

2. Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S. and Frith, C.D., 2000. Navigation-related structural change in the hippocampi of taxi drivers. *Proceedings of the National Academy of Sciences*, 97(8), pp.4398-4403

3. Nichols ES, Erez J, Stojanoski B, Lyons KM, Witt ST, Mace CA, et al. Longitudinal white matter changes associated with cognitive training. Hum Brain Mapp. 2021;42(14):4722-

4. Bonnechere B, Klass M, Langley C, Sahakian BJ. Brain training using cognitive apps can improve cognitive performance and processing speed in older adults. Sci Rep.

