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à Planning for training events is a challenging task because coordination is necessary. Training sites 

need to be identified, and specific equipment should be at each training site during the events. Often, 
key decisions such as when and where to host training events and how much equipment to send to 
sites need to be defined much earlier than the starting date of the events and cannot be easily modi-
fied later. In real applications, the starting time of each event may deviate from what was scheduled, 
and the amount of equipment present at each training site when the event starts is also uncertain.  

à Optimization under uncertainty (stochastic and robust) has been employed to devise an equipment 
redistribution plan between the training sites so that equipment requirements of training events are 
fulfilled as much as possible, even in the presence of uncertain start times and equipment availability.  

à Results show that the solutions found by considering uncertainty outperform the deterministic ones 
where uncertainty is not addressed, when evaluating the trade-off between performance, i.e., fulfill-
ment of events, and feasibility. 

à The significance of this work is that a decision-support tool based on optimization under uncertainty 
can help find solutions more realistic and feasible than those identified with deterministic approaches, 
thus improving future planning strategies.  

 
The Logistic Planning Problem  

We consider a problem in Singapore, where training 
events are scheduled at some locations, and each event 
requires specific equipment to be run. At each period, the 
equipment can be either redistributed between training 
sites or assembled from components in a warehouse and 
then shipped to training sites. Such decisions must be 
taken much earlier than the start of the training events. 
The objective is to fulfill the equipment requirements of 
events as much as possible.    
 The abovementioned problem can be modeled as a 
Mixed-Integer Linear Program (MILP), i.e., an 
optimization problem with linear objective function and 
constraints where some variables are integer and solved 
directly by available MILP solvers like CPLEX (IBM ILOG, 
2020). Such solvers take as input the MILP model 
representing the problem and return as output the 
optimal solution. At the same time, some key parameters, 
such as the starting time of training events and the 

amount of equipment present at each site when events 
start, are affected by uncertainty. Therefore, a 
deterministic approach (where no uncertainty is 
considered) is not suitable.  
 A more realistic version of the problem aims at 
determining the amount of equipment to be redistributed 
between training sites and to be shipped from the 
warehouse to training sites when considering uncertainty 
on the abovementioned key parameters. This means that 
such decisions, termed here-and-now, must be taken 
before (and should ideally remain feasible after) such 
parameters are realized. Given some target equipment 
fulfillment level for each event, i.e., the minimum 
expected fraction of required equipment that should be 
present at the training site for the duration of the event, 
the objective is then to maximize the number of events 
for which such targets are achieved. Indeed, as 
uncertainty is involved, one may maximize the expected 
number of such events in a stochastic optimization 
fashion (Spall, 2005), where the average performance is 
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optimized over a sample of possible scenarios, or 
optimize the performance of the worst-case scenario with 
a robust optimization approach (Ben-Tal et al., 2009). In 
this work, we decided to use a mixed approach as 
summarized in the next section. 
 The main goals of this project are as follows: 

 Create a model of the Logistic Planning Problem un-•
der uncertainty. 

 Develop an optimization approach to solve the prob-•
lem. 

Apply the solution procedure to a test case from 
DSTA and understand the implications of the results 
obtained with different settings. 

 

Methodology 

We show here how the Logistic Planning Problem has 
been addressed. The main idea, whose details are 
explained in the following, is to select a subset of 𝑛 
random scenarios, optimize the performance against 
them (either with a stochastic or a robust optimization 
approach), and test the performance of the obtained 
solutions using another set of 𝑁 > 𝑛 random scenarios. 

Let the Logistic Planning Problem be formulated as 
follows: 
 
 
where 𝑥 and 𝑦 are the decisions to be taken before and 
after the realization of the uncertainty 𝓏, respectively, and 
𝑦 includes integer variables. The objective function 
(performance measure) 𝑡(�) to be maximized defines the 
number of events for which the target equipment 
fulfillment level is achieved. Feasible 𝑥 and 𝑦 decisions 
belong to sets 𝐷! and 𝐷!(𝑥, 𝓏), respectively. Constraints 
and the objective function are assumed to be linear in 𝑥 
and 𝑦. 
 In the deterministic version, 𝓏 is known and the 
problem is an MILP that can be solved with CPLEX. As 
explained earlier, we address the case where 𝓏 is 
random. Let 𝑇∗ 𝑥, 𝓏  be defined as: 
 
 
 
i.e., the optimal solution value of the problem to solve 
after the uncertainty  𝓏 is realized and the here-and-now 
decisions 𝑥 are defined. A stochastic-optimization 
approach aims at solving the following problem: 
 
 
 
where 𝑈 is the set of possible realizations of the 
uncertain parameters 𝓏, and 𝐸[  ] is the operator 
representing the expectation, which is often 
approximated with the average over a subset of 𝑈. On 
the other hand, a robust optimization approach would 
solve the following problem: 
 
where the objective is to 

optimize against the worst-case scenario. Unfortunately, 
finding 𝑇∗(𝑥, 𝓏) involves an optimization over (integer) 
variables 𝑦 and requires solving an MILP. Therefore, a 
sample average approximation approach to solve the 
stochastic optimization version of the problem would be 
computationally expensive when the number of samples 
is large. Solving the robust problem also requires some 
iterative approach since duality cannot be used to obtain 
a single-level model due to the integrality of variables 𝑦. 
As a consequence, the robust solution, which is often 
conservative, may not be computationally cheap to find. 
 The approach we implemented to address the 
problem takes elements from both the stochastic and 
robust methodologies and consists of the following steps: 

1. Identify 𝑛 random samples 𝓏!,… , 𝓏! from the set 𝑈. 

2. Solve the average-case maximization (ACM) problem:  

 
  
   

3. Solve the worst-case maximization (WCM) problem: 

 
 
 that can be reformulated as follows: 
 
 
 
 

4. Compare the solutions 𝑥 obtained at steps 2 and 3 
against a set of 𝑁 > 𝑛 random samples taken from set 
𝑈 in terms of performance and feasibility. 

In both cases, the duplication of the problem structure is 
needed. The option of point 2 is the sample average ap-
proach often used in stochastic optimization. Therefore, 
the number of samples 𝑛 cannot be too large. At the 
same time, the robust version of point 3 could benefit 
from a limited number of samples and provide solutions 
less conservative, albeit potentially less feasible.  

 

Results and Insights 

We choose 𝑁 = 1000 and 𝑛 = 25 as numbers of samples 
for testing and training the model, respectively. We first 
look at the results obtained from solving the ACM 
problem. Figure 1 shows the feasibility curve of the 
solution when tested against the 𝑁 samples. 
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Figure 1 Feasibility of the ACM solution across the 𝑛 samples. 
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We can observe an overall increase in feasibility as the 
problem captures a larger number of scenario samples 
(𝑛).  
 Figure 2 below shows the performance curves 
obtained from plotting the best (max), average, and worst 
(min) performance of the ACM solution when tested 
against the 𝑁 samples (infeasible instances excluded 
from performance computation). 

 
We can observe small fluctuations with signs of 
convergence of all 3 curves. 
 If we include the infeasible1 instances in performance 
computation, the average performance of the ACM 
solution when tested against the 𝑁 samples will have a 
similar trend to the feasibility curve in Figure 1. The best 
and worst performances are omitted as they will not be 
affected by the infeasible instances. 

We next look at the results obtained from solving the 
worst-case maximization problem. Figures 3 and 4 are 
the curves analogous to Figures 1 and 2, respectively. In 
Figure 3, similar to Figure 1, we can observe an overall 
increasing trend. In Figure 4, we can observe relatively 

larger fluctuations with signs of convergence of only 2 
curves, i.e., best-case and average-case. 

Similarly, if we include the infeasible instances in 
performance computation, the average performance of  
the WCM solution when tested against the 𝑁 samples will 

 
 

1 Objective values of infeasible instances were set to zero during performance 
computation. 

have a largely similar trend to the feasibility curve in 
Figure 3, except for one instance between 𝑛 = 11 and 
𝑛 = 12 where the trend differs due to a huge spike in the 
average performance in Figure 4. 

 

 
 
In this problem, the final selected solution comes from 

solving the WCM problem with 𝑛 = 24. It produces the 
highest feasibility, i.e., 95.4%, with an acceptable 
performance (i.e., objective function value) of 195. 
Though the highest performance among all the solutions 
is 199, this solution only achieves feasibility of less than 
30%. Thus, our final selected robust solution is chosen to 
give the best trade-off between feasibility and 
performance overall. 
 Suppose we have chosen 𝑛 to be 15 instead of 25. 
The solution that provides the best trade-off between 
feasibility and performance will come from solving the 
ACM problem with 𝑛 = 13. This solution is, in fact, poorer 
than our selected WCM solution at 𝑛 = 24, highlighting 
the importance of extending the number of samples (𝑛) if 
computing resources allow, to reduce the likelihood of 
missing out on good solutions. 
 We next perform a comparison between the robust 
and deterministic solutions to highlight the advantages of 
the former. First, we exhaustively compute the optimal 
solution for each of the 𝑁 scenarios. These solutions 
represent an ideal world where we are able to solve our 
problem just-in-time when the uncertainty unfolds. 
However, in reality, our decisions can only be made here-
and-now before uncertainty unfolds. We shall illustrate 
that the goodness of our robust here-and-now solutions 
just slightly falls short of the just-in-time ones. 
 For the comparisons, we shall be using the 
deterministic solution and two other robust solutions; our 
selected robust solution (WCM solution at 𝑛 = 24), and 
an intermediate robust solution (WCM solution at 𝑛 =
18). Table 1 below shows the comparisons between the 
deterministic solution and the two robust solutions when 
using the just-in-time solutions as a benchmark. 
 From Table 1, we observe that the deterministic 
solution has a high probability (99.3%) of infeasibility 
when uncertainty is considered. The intermediate robust 
solution has the next lowest feasibility and the selected 

Figure 3 Feasibility of the WCM solution across the 𝑛 samples. 

Figure 2 Best, average, and worst performance of the ACM solution across 
the 𝑛 samples without infeasible solutions. 

Figure 4 Best-case, average-case, and worst-case performance of the WCM 
solution across the 𝑛 samples without infeasible solutions. 
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robust solution has the highest feasibility, as expected. 

 
To examine the optimality of the deterministic and robust 
solutions as compared to the just-in-time solutions, we 
have excluded the infeasible instances from the analysis, 
otherwise, the presence of infeasible instances for all 3 
solutions will trivialize certain comparisons. From Table 
1, it appears that the robust solutions underperform all 
(𝑁 = 1000) just-in-time solutions, while the deterministic 
solution manages to match the optimality of the just-in-
time solutions in 0.3% of the scenarios. This observation 
reinforces the trade-off between feasibility and 
performance in the robust optimization method. 
 Although our selected robust solution underperforms 
all the just-in-time solutions, the margin of 
underperformance was not significant. The largest 
margin was 2.01%, while in some scenarios the value 
was only 1.02%. On average, the margin of 
underperformance was only 1.42%. When looking at the 
intermediate robust solution, the margin of 
underperformance ranges between 1.02% – 61.42%, 
with an average of 7.56%.  
 While the deterministic solution has a few scenarios 
(0.3%) where its optimality matches that of the just-in-
time solutions, in some other scenarios it actually 
underperforms by as much as 28.93%. On average, the 
underperformance margin is at 8.85%. Incidentally, the 
deterministic solution has the highest (average) margin of 
underperformance compared to the two robust solutions. 
With also a high probability of infeasibility, we can clearly 
see the benefits of the robust optimization approach 
when dealing with uncertainty in our problem. 
 

Conclusions 

Based on the findings in the previous section, we can 
conclude that adopting the robust optimization approach 
is preferred for this particular problem as it provides a 
high probability of feasibility with some trade-off in 
performance. Solving the worst-case maximization 
problem with 𝑛 = 24 samples yields a better result for the 
considered test case. However, we also observe that 
solving the average-case maximization problem 
produces relatively more stable results in terms of 
feasibility and performance. Moreover, depending on the 
choice of 𝑛, solving the average-case maximization 
problem can sometimes produce a better result. 

Therefore, it is recommended to solve both problems if 
computing resources permit. 
 We also acknowledge certain drawbacks of the 
robust optimization approach. Since the duplication of the 
problem structure is required, it can be computationally 
expensive especially when the problem becomes more 
complex. For this problem, with our choice of sample size 
𝑛 = 25, the time taken to solve each of the problems 
(ACM and WCM) is approximately 12 hours. We can 
expect this timing to increase exponentially as the size 
and complexity of the problem increases. Nevertheless, 
given the nature of the problem where there is a low 
tolerance for infeasibility, it is worthwhile to invest the 
time and effort to generate a robust solution, as it often 
requires a much larger time and effort to deal with the 
infeasibility downstream in the real world. 
 It is worth mentioning that the approach described 
here could be employed in other applications where 
planning under uncertainty is involved, for example, 
parcel shipping and freight carried by trucks, air, trains, 
and ports. 
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Table 1 Comparison between the deterministic solution and the robust solu-
tions against the just-in-time benchmark. 


