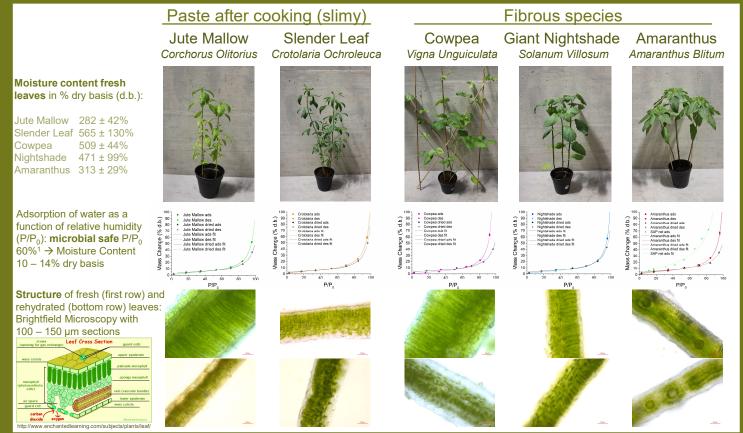
# EHzürich

# Soft Matter Approach to Effective Preservation of African Leafy Vegetables by Drying: SoLVeD


Dr. Leonie van 't Hag1, Prof. Raffaele Mezzenga1

<sup>1</sup>Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich

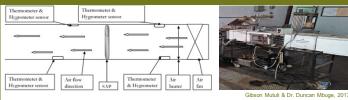
### Introduction

African Leafy Vegetables (ALVs) are indigenous plants in sub-Saharan Africa. They are rich in nutrients such as vitamin A, vitamin C, iron and calcium and play an important role in the dietary intake of vitamins and minerals of local populations. ALVs are highly liable to spoil once harvested, however, and an effective and affordable preservation method is urgently needed. One approach is the use of a desiccant such as superabsorbent polymers (SAP): these polyelectrolyte networks are well-known for their capacity to absorb large amounts of water.

## **Results and Discussion**



#### Moisture Sorption Isotherms: Fitting GAB model<sup>2,3</sup>


| $M_0 \cdot K_G \cdot k \cdot a_w$                                | Amaranthus     | Mo   | K <sub>G</sub> | k    |
|------------------------------------------------------------------|----------------|------|----------------|------|
| $MC = \frac{1}{(1-k\cdot a_w)\cdot [1+(K_G-1)\cdot k\cdot a_w]}$ | Fresh des.     | 0.05 | 20             | 0.97 |
| MC = moisture content (% d.b.)                                   | Pre-dried ads. | 0.05 | 55             | 0.91 |
|                                                                  | SAP net ads.   | 0.15 | 3.8            | 0.97 |

= moisture content (% d.b.)  $a_w$  = water activity (P/P<sub>0</sub>) = RH/100

 $M_0$  (%) = Monolayer sorbent content on the internal surface

K<sub>G</sub> = GAB parameter heat of sorption of the monolayer region k = GAB parameter heat of sorption of the multilayer region

#### Design of Drier: University of Nairobi



### Summary

- Extent of rehydration was dependent on the drying method.
- No significant differences between moisture sorption isotherms of the five ALV species.
- Superabsorbent polymer moisture sorption capacity at microbial safe water activity ( $a_w = 0.6$ ) 3x higher than for ALV leaves.
- Microbial safe water activity with leaves at a moisture content of ≤ 14% dry basis: maximum for effective preservation.
- Leaf micro-structure and cell-compartmentation significantly affected by oven drying at 40 °C: reduced thickness, shorter palisade parenchyma and chloroplasts<sup>4</sup> not intact.

#### References

<sup>1</sup>Agryropoulos et al, LWT - Food Sci. Tech. 2012, 47 324-331. <sup>2</sup>Mbuge et al, J. Food Sci. Tech. 2016, 53(8), 3157-3165. <sup>3</sup>Chayjan and Esna-Ashari, Res. Agric. Eng. 2010, 56, 69-76. <sup>4</sup>Quartacci et al, J. of Exp. Botany 1997, 48(311), 1269-1279.



