

# Irrigation and climate change

Implications for water resources in the semi-arid region of Valencia (Spain)

Sandra Pool<sup>1</sup>, Felix Frances<sup>2</sup>, Alberto Garcia-Prats<sup>2</sup>, Manuel Pulido-Velazquez<sup>2</sup>, Carles Sanchis-Ibor<sup>2</sup>, Mario Schirmer<sup>1,3</sup>, Hong Yang<sup>1,4</sup>, & Joaquin Jimenez-Martinez<sup>1,5</sup>

<sup>1</sup>Eawag, <sup>2</sup>Polytechnic University of Valencia, <sup>3</sup>University of Neuchâtel, <sup>4</sup>University of Basel, <sup>5</sup>ETH Zurich











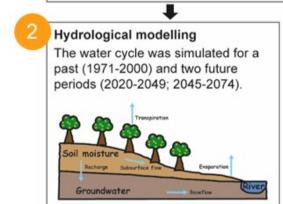
### Computer modelling for climate change impact assessment

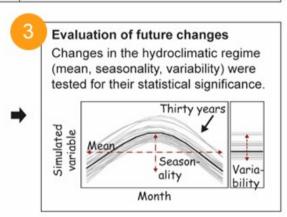
#### The study area:

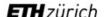
- The semi-arid region of Valencia is the major citrus producer in Europe.
- Irrigated agriculture consumes 89% of the total freshwater withdrawals in Valencia.
- The transformation from flood to drip irrigation is seen as an important step towards increased resilience to water scarcity.
- Here, we use a computer modelling approach to simulate the impact of irrigation tranformation on water resources in a climate change context.

### The modelling set-up:

Climate models


Five different climate models (GCM-RCMs) were used for information on potential future climatic conditions.


Two greenhouse gas emission scenarios (RCPs) were considered.


Trigation scenarios

The irrigation transformation was simulated using a "flood" and a "drip" irrigation scenario.

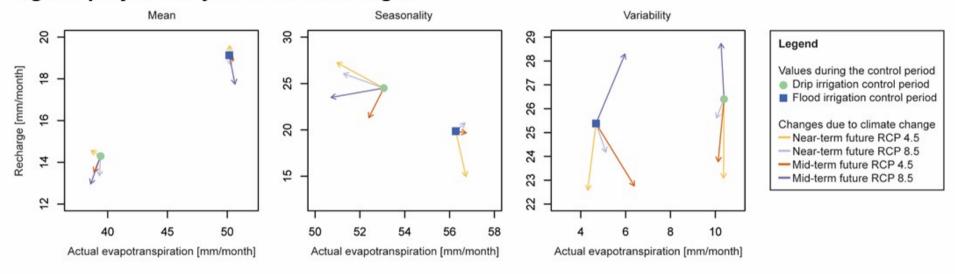
Drip irrigation
















# On the importance of irrigation techniques in a climate change context

### Figure: projected hydroclimatic changes



### Key findings:

- Climate change is expected to significantly reduce groundwater recharge in irrigated agriculture.
- Actual evapotranspiration could increase in flood irrigation, but decrease in drip irrigation under business as usual irrigation volumes.
- The ongoing irrigation transition in Mediterranean areas may have a greater impact on evapotranspiration and recharge than climate change alone (see figure).











## **ETH** zürich







