ETH zürich

Measuring dietary iron absorption from mealworms (*Tenebrio molitor*) in young women and assessing the effect of chitin on iron bioavailability: a stable isotope study

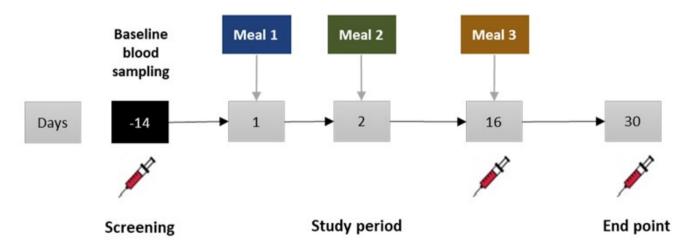
Nikolin Hilaj¹, Valeria Galetti¹, Roberta Murad Lima¹, Adam Krzystek^{1,} Christophe Zeder¹, Michael Zimmermann¹, Diego Moretti²

¹Human Nutrition Laboratory, Health Science and Technology, ETH Zurich; ²Department of Health, FFHS

Background and Rationale

- Iron deficiency is estimated to affect up to 1.5-2 billion people worldwide.
- Edible insects such as mealworms (*Tenebrio molitor*)
 are considered as an alternative source of proteins, but in
 addition are also rich sources of minerals.
- Our recent stable isotope studies in humans with adult crickets suggest the presence of an absorption inhibitor which lowers iron absorption from cricket iron in humans, as well as from plant food iron.
- Chitin, a major component of insect biomass, is a known iron binder.

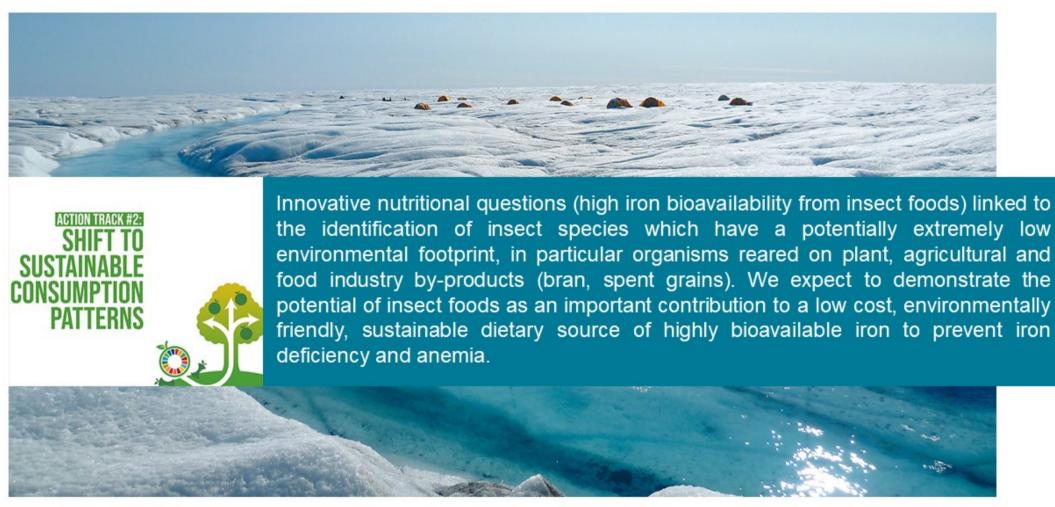
Hypothesis:


Decreasing chitin content could allow the high amounts of iron in insects to be well-absorbed, and enhance the absorption of iron from plant-based foods.

Objectives and Methods

- Measure iron absorption from T.molitor in young women.
- Assess the effect of:
 - chitin on iron absorption (primary objective).
 - of *T.molitor* biomass on iron absorption (secondary objective).

Meal 1: Maize + 54Fe


Meal 2 : Maize + (57Fe) T.molitor native chitin + 58Fe

Meal 3: Maize + (57Fe) T.molitor reduced chitin + 58Fe

