

Productivity, emissions intensity and pollution swapping effects in dairy farming

Iordanis Parikoglou¹, Stefan Wimmer², Robert Finger¹

¹ Agricultural Economics and Policy Group, ETH Zürich, ² Bavarian State Research Center for Agriculture (LfL)

Motivation & Method

- Reducing emissions intensity through technical and efficiency changes might be costly and also pollution swapping effects¹
- Pollution swapping occurs when practices aimed to decrease a pollutant result in increases of another (e.g. livestock feeds high in fiber may reduce ammonia emissions but increase GHG emissions²)
- → Does technical and efficiency change in dairy farming result in productivity losses and pollution swapping effects between GHG and ammonia emissions intensity?
- We estimate a by-production frontier model and quantify the contribution of technical and efficiency change to the productivity of economic output, GHG and ammonia emissions³
- Last, we assess the correlation of technical efficiency with respect to economic output and environmental efficiency with respect to ammonia and GHG emissions³

Data & Results

 We use a panel farm level data of 171 dairy farms (2009-2020, N=623) from Swiss farm accountancy data network and the agrienvironmental data network^{4,5}

TABLE 1: Summary statistics, sample of Swiss dairy farms (2009-2020)

Variable	Unit	Mean	St. deviation
Economic output (Y)	1000CHF	172.6	114.5
Ammonia emissions (B1)	KG of CO_2 equiv.		13.1
GHG emissions (B2)	KG of CO_2 equiv.		71.8
Capital (x_1)	1000CHF		258.4
Labour (x_2)	Standardized working days	518	179
Area (x_3)	hectares(ha)	23.7	11.2
Materials (x_4)	1000CHF	100.6	59.2
Valley (R_1)	1 if located in valley region, 0 otherwise	0.2	
$Hill(R_2)$	1 if located in hill region, 0 otherwise	0.5	
Mountain (R_3)	1 if located in mountain region, 0 otherwise	0.3	
Stocking density (z_1)	Livestock units per ha	1.38	0.5
Share of family Labour (z_2)	Fraction	0.7	0.2
Use of drag hose (z ₃)	Binary	0.5	

TABLE 4: Spearman rank correlation coefficients

	Technical efficiency change	GHG efficiency change	Ammonia efficiency change
Technical efficiency change	1.000		
GHG efficiency change	-0.182*	1.000	
Ammonia efficiency change	-0.236*	-0.248*	1.000
Note: * indicates statistical cionifica	non at E9/		

-0.182 and 0.236 suggest that abatement is costly

-0.248 suggests pollution swapping effect

3 Conclusion & Future Research

- Holistic policy perspectives are required to reduce trade-offs between productivity growth and emissions intensity reduction
- Results-based schemes could give farmers freedom to choose optimal options to reduce trade-offs
- Future research should focus on the impact of results-based schemes on reducing trade-offs

Contribution to Sustainable Food Systems

Balancing between increasing agricultural productivity and reducing emissions intensity contributes to achieving the following UN SDGs:

Contact & Further information:

<u>iparikoglou@ethz.ch</u> <u>www.aecp.ethz.ch</u>

Partner/Sponsor:

References:

- 1 Springmann, et al., 2018 Options for keeping the food systemwithin environmental limits. Nature, 562(7728):519–52.
- 2 Sutton et al. 2015, Country case studies, in. Costs of Ammonia Abatement and the Climate Co-Benefits, pages 169-231.
- Malikov et al., 2015 Bayesian approach to disentangling technical and environmental productivity. Econometrics, 3(2):443–465.
 Hoop, D. and Schmid, D., 2015. Grundlagenbericht 2014: Zentrale Auswertung von Buchhaltungsdaten. A. INH, ed. Ettenhausen
- 5 Gilgen et al. 2023 The Swiss agri-environmental data network (SAEDN): Description and critical review of the dataset. Agricultural Systems, 205:103576.