ETHzürich

Food Day @ETH 2024

Nitrogen cycling in tropical pastures in the Northwestern Amazon

Daniel M. Villegas^{1,2}, Hannah Falk¹, Mauricio Sotelo^{2,3}, Jacobo Arango², Emmanuel Frossard¹, Hans-Martin Krause⁴, Jaime Velásquez³, <u>Astrid Oberson¹</u>. ¹Group of Plant Nutrition, ETH Zurich, Switzerland. ²Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Colombia. ³Universidad de la Amazonia, Colombia, ⁴Research Institute of Organic Agriculture (FiBL), Switzerland.

1. Introduction

2. Objective

Unfertilized grass monocultures with extensive grazing management dominate pastures in Colombia's Caquetá region. These practices contribute to significant nutrient losses, particularly nitrogen (N), which result in **pasture degradation** and a decrease in pasture productivity. After pastures degrade, opening of new grazing areas is usually done by forest slash and burn.

Pasture's N supply could be improved by the inclusion of **legumes** in pastures [1,2] or grasses with the capacity of biological nitrification inhibition (BNI) [3].

Understanding soil N cycling is key to develop strategies that improve sustainability of Amazon pastures' management.

To quantify major soil N fluxes in *Urochloa*-based farmers' pastures in the northern Caquetá region of Colombia.

3. Methods

- We evaluated plant biomass production and soil N transformation rates in the following pasture treatments:
- Urochloa humidicola grass alone (GA) and grasslegume (GL)
- Urochloa decumbens GA and GL
- Urochloa brizantha GA and GL

BNI capacity: U. humidicola > U. decumbens > U. brizantha [4]

Laboratory incubation:

- Soil incubation for 96 h at 25°C at 60% of soil water-holding capacity.
- ¹⁵N pool dilution method for gross N fluxes

4. Results and discussion

Plant biomass production was 30% higher in grass-legume (GL) than grass-alone (GA) pastures.

mineral N in *U. brizantha* pasture soils

determination [5].

Nitrate (NO₃⁻) was a more relevant form of soil Soil ammonium consumption (NH_4^+ immobilization + gross nitrification) exceeded ammonification in all compared to U. humidicola and U. decumbens. pasture soils, indicating **net removal of NH₄⁺** from the soil solution during laboratory incubation. С 3,100 mg/kg soil 54 mg/kg soil Gross Gross N. org. 16 mg/kg soil ammonification nitrification 1.18 0.56 NH_4^+ DNRA ~0 33 mg/kg soil

immobilization

1.56

Gross nitrification rates tended to be **lower in** *U***.** humidicola and U. decumbens compared to U. brizantha pasture soils.

Microbial NO₃⁻ immobilization was detected only in grass-alone (GA) pasture soils but not on grass-legume (GL) soils, which favored higher net nitrification in **GL** soils

5. Contribution to sustainable food systems

Mixed pastures of grasses and legumes provide a more sustainable pasture management strategy for the Amazon region compared to grass monocultures. **Legumes improve the N supply**, maintaining primary productivity and **avoid** pasture and soil degradation.

If N supply does not match the plant demand, higher NO_3^- in soils as observed in *U. brizantha* would indicate **risk of N losses via leaching to groundwater** or gaseous emissions. Further research is needed to elucidate the effect of pasture composition on N losses and N use efficiency in the Amazon region.

6. References

MBN

[1] Homem, B. G., de Lima, I. B. G., Spasiani, P. P., Guimarães, B. C., Guimarães, G. D., Bernardes, T. F., ... & Casagrande, D. R. (2021). Nutrient Cycling in Agroecosystems, 121(2), 167-190.

[2] Thomas, R. J. (1992). Grass and forage science, 47(2), 133-142.

[3] Subbarao, G. V., Nakahara, K., Hurtado, M. D. P., Ono, H., Moreta, D. E., Salcedo, A. F., ... & Ito, O. (2009). Proceedings of the National Academy of Sciences, 106(41), 17302-17307.

[4] Subbarao, G. V., Rondon, M., Ito, O., Ishikawa, T., Rao, I. M., Nakahara, K., ... & Berry, W. L. (2007). Plant and Soil, 294, 5-18. [5] Di, H. J., Cameron, K. C., & McLaren, R. G. (2000). Soil Research, 38(1), 213-230.

Partner/Sponsor:

Swiss National Science Founda

immobilization

~0