ETHzürich

Evaluating models for the simulation of sustainable agricultural systems

Kathrin Fuchs¹, Lutz Merbold^{1,2}, Nina Buchmann¹, Lorenzo Brilli^{3,4}, Nuala Fitton⁵, Katja Klumpp⁶, Mark Lieffering⁷, Raphaël Martin⁶, Paul C.D. Newton⁷, Robert M. Rees⁸, Pete Smith⁵, Susanne Rolinski⁹, Val Snow¹⁰

¹Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Switzerland, ²Mazingira Centre, International Livestock Research Institute, Kenya, ³University of Florence, Italy, ⁴IBIMET-CNR, Italy, ⁵Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, United Kingdom, ⁶INRA, VetAgro Sup, UCA, Unité Mixte de Recherche sur Écosystème Prairial (UREP), France, ⁷AgResearch Grasslands Research Centre, Private Bag 11008, New Zealand, ⁸Scotland's Rural College, Edinburgh, West Mains Road, United Kingdom, ⁹Potsdam Institute for Climate Impact Research, Germany, ¹⁰AgResearch - Lincoln Research Centre, Private Bag 4749, New Zealand

1 Motivation

- The effects of management on **productivity and greenhouse gas** (GHG) emissions needs to be quantified in order to assess sustainable management practices
- Process-based models are useful tools to to quantify these effects in croplands and grasslands
- Further, models are important for up-scaling yields and GHGexchange beyond the field scale
- However, accurate simulations of GHG exchange, in particular nitrous oxide (N₂O) fluxes, are still a challenge, highlighting the necessity of model evaluation and improvement

2 **Objectives**

3

- Evaluation of biogeochemical models for biomass yields and N₂O emissions from an intensively managed grassland in Switzerland
- Estimation of the accuracy of N₂O simulations compared to IPCC Tier 1 approach
- Investigation of the accuracy of driver variables for N₂O production ("Are models right for the right reasons?")
- · Highlighting key aspects of model improvement

4 **Preliminary Results**

 All models estimated annual N₂O emissions more accurately than the commonly applied IPCC (Tier 1) approach.

Models performing best in the estimation of annual N_2O emission (DayCent in two variants) were outperformed by other models that performed best on the prediction of daily N_2O emissions (APSIM in two variants).

Fig. 2. Annual values of observed (horizontal axis) versus simulated N_2O emissions (vertical axis) for models DayCent (DC1, DC2), PaSim, APSIM (AP1, AP2), the ensemble median (E-Median), the ensemble mean (E-Mean), and for the IPCC estimate in parcel A (circles) and parcel B (triangles). The dashed lines indicate the 1:1-lines, and the solid lines display the linear regression line between observed and simulated N_2O emissions.

The ensemble mean achieved better performance Il on the daily time-scale than all individual models.

Fig. 1. Multi-model validation using observational data from the site Chamau

Fig. 3. Weekly averages of simulated (black) and observed (grey) N₂O fluxes for Parcel A (left) and Parcel B (right) by several models and the multi-model ensemble (top to bottom); Upward arrows indicate harvest and downward arrows indicate over-sowing. Grazing periods are shown as black bars. The weekly bias in N₂O fluxes (Δ N₂O) is displayed as colored bar, with red indicating an overestimation, blue an underestimation by the respective model, and yellow a bias close to zero (see legend). A grey colored bar indicates periods of missing data.

5 Conclusions

- The multi-model ensemble simulated the impact of management strategies on yields and N₂O emissions more accurately compared to individual models.
- Therefore, using an ensemble of several (>3) models is highly beneficial to reduce uncertainties when evaluating the sustainability of agricultural systems.

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

FNSNF

Soil as a Resource National Research Programme NRP 68