

Satellite weather index insurance

A case study for Eastern German farms

Willemijn Vroege¹, Janic Bucheli¹, Tobias Dalhaus¹, Martin Hirschi², Robert Finger¹ ¹AECP, ETH Zurich; ²IAC, ETH Zurich

Introduction

- Agricultural production prone to ____ impacts of extreme weather
- Insurance important risk management tool for farms,
- **Drought insurances** are often lacking ____

 \rightarrow We aim to assess potential new insurance solutions based on **soil** moisture and satellite

Background

Extreme droughts are expected to increase under climate change

Data

We assess the use of soil moisture data provided by the Climate Change Initiative (CCI) program of the European Space Agency (ESA)⁴ for insuring wheat, maize and rape yields. This long-term, global and harmonized satellite soil moisture product, which is freely available, is compared to the use of gridded soil moisture estimates provided by the **Deutscher Wetterdienst (DWD)**⁵.

- Traditional indemnity insurances prone to asymmetric information problems
- **Index insurances** as alternative: — Payout dependent on index value
- Different indices have been considered:
 - Weather and climate variables¹:
 - Area-yields²
 - Plant measurements (with satellites)³
- Reliable, high quality, low costs ____ index with high correlation with a farm's agricultural losses
- Soil moisture represents the water stock, which is essential for plant growth
- including soil moisture potentially improves agricultural insurances

Fig. 2. Left: Soil moisture estimated by satellites as provided by the ESA CCI rescaled to min and max measured values between 1995 and 2015 **Right**: Soil moisture estimated with the AMBAV model based on ground-based weather measurements provided by the DWD

Dataset characteristics 4

- ESA CCI soil moisture estimates are based on microwave remote sensing
- DWD product relies on estimates that are modelled based on ground-based weather measurements.

Tab. 1. Summary of data characteristics

	ESA CCI	DWD
Spatial resolution	25km2	1km2
Temporal resolution	Daily	Daily
Record length	40 years	27 years
Unit	m³(Water) m³(Soil)	%nFK

Preliminary results 5

Soil moisture estimates may differ between the two data sets:

- Soil moisture is estimated by measuring different characteristics
- DWD assumes a **standard soil only** —
- The ESA CCI measurement are currently re-scaled to 0-1 to represent degree of saturation while the DWD measurements are given in %nFK
- Different spatial resolutions _____

Fig. 1. An overview of data collection for agricultural insurances.

Lag until data available 1-2 years 1-2 months

References

6

1.Leblois, A. and Quirion, P., 2013. Agricultural insurances based on meteorological indices: realizations, methods and research challenges. Meteorol. Appl. 20, 1-9.

2.Glauber, J.W., 2013. The Growth Of The Federal Crop Insurance Program, 1990-2011. Am. J. Agric. Econ. 95, 482-488.

3.de Leeuw, J. et al., 2014. The Potential and Uptake of Remote Sensing in Insurance: A Review. Remote Sens. 6, 10888-10912.

4.Dorigo, W. et al., 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185-215.

5.Löpmeier, F.-J., 1983. Agrarmeteorologisches Modell zur Berechnung der aktuellen Verdunstung (AMBAV). DWD, Zentrale Agrarmeteorologische Forschungsstelle Braunschweig.

Partners

